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Abstract—Federated learning (FL) has recently emerged5
as a striking framework for allowing machine and deep6
learning models with thousands of participants to have dis-7
tributed training to preserve the privacy of users’ data. Fed-8
erated learning comes with the pros of allowing all partici-9
pants the possibility of creating robust models even in the10
absence of sufficient training data. Recently, smartphone11
usage has increased significantly due to its portability and12
ability to perform many daily life tasks. Typing on a smart-13
phone’s soft keyboard generates vibrations that could be14
abused to detect the typed keys, aiding side-channel at-15
tacks. Such data can be collected using smartphone hard-16
ware sensors during the entry of sensitive information such17
as clinical notes, personal medical information, username,18
and passwords. This study proposes a novel framework19
based on federated learning for side-channel attack de-20
tection to secure this information. We collected a dataset21
from 10 Android smartphone users who were asked to type22
on the smartphone soft keyboard. We convert this dataset23
into two windows of five users to make two clients train-24
ing local models. The federated learning-based framework25
aggregates model updates contributed by two clients and26
trained the Deep Neural Network (DNN) model individually27
on the dataset. To reduce the over-fitting factor, each client28
examines the findings three times. Experiments reveal that29
the DNN model achieves an accuracy of 80.09%, showing30
that the proposed framework has the potential to detect31
side-channel attacks.32

Index Terms—Federated learning, healthcare, keystroke33
inference, machine learning, motion sensor, privacy34
preservation, side chanel attacks, smartphone security.35

I. INTRODUCTION36

THE smartphone contains Personal Health Records (PHR)37

comprising data (i.e., family medical histories, past med-38

ical and surgical interventions, mental health data, physical ac-39

tivity data, heart rate data, and mood prediction) [1]–[3]. Studies40
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[4]–[6] have shown that PHR data can be stolen using a smart- 41

phone’s hardware sensor. Regulatory requirements (i.e., General 42

Data Protection Regulation (GDPR) [7], HIPAA [8]) can be 43

met with the help of a newly emerging paradigm, Federated 44

learning (FL), in the field of machine learning. While making 45

use of benefits associated with massively distributed data, FL can 46

mitigate privacy concerns [9]–[12]. FL helps the participants in 47

collaborative training of a global model without sharing their 48

local training data [12]. During each round of communication, 49

all participants train local models based on their training data, 50

and the model is then submitted to the server with updates. A 51

global model is built by the server while employing a secure 52

aggregation using the average of weights associated with local 53

models [13], [14]. 54

FL finds inspiring applications in self-driving cars’ image 55

classification, recommendation of services for personalized 56

products, and following word predictors for keyboards [15]. As 57

FL preserves participants’ anonymity and the confidentiality of 58

training, adversaries may find attraction in this setting. More- 59

over, there is a possibility of creating a robust deep-learning 60

model by adversaries needing sufficient training data. They can 61

make such models as they train in an FL framework. In the 62

context of Deep-Learning Side-Channel Attacks (DLSCAs), 63

[16] investigated a new attack vector. Currently, DLSCA is re- 64

garded as one of the most effective attacks against cryptographic 65

algorithms’ implementation [16]. 66

Although there exist several studies focusing on 67

smartphone-based side Chanel attacks [4]–[6], however, 68

they did not focus on privacy preservation of data and lack 69

providing promising results in regards to achieving higher 70

accuracy when classifying keystrokes. This study addresses 71

the side-channel information associated with smartphone soft 72

keys and vulnerability to leaking by physical implementations. 73

Multi-source training, commonly known for generalization, 74

[17], [18], involves using more than a single profiling device, can 75

reduce the negative impact caused by hardware specifications. 76

However, it results in communication overhead due to the 77

distribution of model training. Besides, the model is expensive 78

to train due to complex data models. Bagging [19], also known as 79

bootstrap aggregation, is another available solution for reducing 80

generalization errors in machine learning. Recently, a diverse set 81

of distinctly trained models have been utilized collectively for 82

voting on the output result [20] and showed superior robustness 83

and predictive performance; however, it reduced the variance 84
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compared to stand-alone learning models. Keeping insight into85

these statements, this paper aims to fill this gap by presenting86

one such evaluation. By implementing FL, multi-source training87

(data-level aggregation) and FL (model-level aggregation) are88

applied to detect side-channel attacks. The following are the89

key contributions and aspects of this work:90
� Develop a novel FL-based framework that exposes the is-91

sue of smartphone hardware sensors revealing smartphone92

users’ privacy and preserving the formal privacy while also93

detecting side-channel attacks.94
� Proposed framework aggregates model updates provided95

by 10 participants. The Deep Neural Network (DNN) is96

utilized for training on combined side-channel data from97

10 decentralized edge devices at the client end, after which98

the model outputs from 2 clients are aggregated at the99

server end.100
� Experiments show that the FL-based DNN model for side-101

channel attack detection achieves an accuracy of 80.09%,102

indicating that the suggested framework can identify side-103

channel attacks efficiently.104

This research is organized into several sections. Section II105

provides a quick overview of the most recent relevant work.106

Section III provides the network model, dataset, and prelim-107

inaries. The proposed framework is presented in Section V.108

Section VI presents the assessment criteria and outcomes of the109

recommended approaches. Finally, Section VII concludes the110

study and concludes with recommendations for further work.111

II. RELATED WORK112

This section presents the background and existing work side-113

channel attacks using machine learning and deep learning.114

A. Machine Learning Based Side-Channel Attacks115

Detection116

Javed et al. [4] explored hardware sensors (like the gyroscope,117

accelerometer, and magnetometer) to detect typed characters on118

a smartphone soft keyboard. The authors focused on inferring119

cross-application keystrokes and developed an Android-based120

app named AlphaLogger. The AlphaLogger shows that the121

smartphone sensor data can be used to predict soft keyboard122

inputs. They created their dataset with ten individuals using var-123

ious Android smartphones. The experiments showed that when124

sensors are used in conjunction with the magnetometer sensor,125

the AlphaLogger performs better, resulting in a 90.2% accuracy.126

In another work, Cai et al. [21] provided three kinds of research127

in succession to investigate smartphone-based side-channel at-128

tacks and investigate the security implications of implicit sensors129

in smartphone devices. They discuss a broad framework of130

defense against sensor-sniffing attacks. The work showcases in-131

creasingly ubiquitous sensors like (GPS and mouthpieces). The132

very same researchers explain smartphone-based side-channel133

attacks in [6]. The authors demonstrate the weakness of a side-134

channel attack using an Android application named TouchLog-135

ger. TouchLogger used ML methods to estimate keystrokes by136

using the gyroscope sensor. This study was evaluated using a nu-137

meric keypad on an HTC Evo 4G smartphone in landscape mode.138

TouchLogger correctly predicted more than 70% of keystrokes.139

Chiappetta et al. developed a machine learning framework 140

to discover cache-based side channels [22]. In this detection 141

approach, neural networks have been employed to build models 142

based on the values of Hardware Performance Counters (HPCs) 143

that meet benign and spying processes during the detection of 144

stealth Flush+Reload attacks. Cai et al. [23] used machine learn- 145

ing methods for intelligent IoT applications to assess smartphone 146

vulnerability based on the Android OS. They performed an ex- 147

perience study on over 1,406 Android applications to determine 148

the amount of security risk. They used six Machine Learning 149

approaches, and the Random Forest classification algorithm 150

outperformed all others. 151

B. Deep Learning Side-Channel Attacks Detection 152

Javeed et al. [5] focused on the side-channel cyber-attacks 153

using which hackers can monitor an individual’s essential data 154

through the smartphone screen’s keystrokes. They proposed 155

Betalogger that makes use of a Dense Multi-layer Neural Net- 156

work (DMNN)., which is built on the sequence to sequence 157

labeling (S2SL) architecture. The Betalogger technique employs 158

dense Language Modeling (LM) and DMNN to predict and 159

create lengthy or short phrases written on a smartphone keypad. 160

They improved the dataset used in their previous research [4]. 161

The authors presented a comparative analysis of the proposed 162

DMNN technique with several machine learning approaches, 163

and DMNN outperformed these algorithms with an accuracy of 164

91.14%. A study focusing on timing analysis [24] established 165

the side-channel attacks showing essential information can be 166

compromised by the cipher’s non-constant running time. Power 167

analysis [25] was also introduced, where the input data-driven 168

typical consumption of varying amounts of power is exploited. 169

Presently, power consumption remains a leading one among 170

the most easily comprised side channels. This paper focuses on 171

power analysis. An n-bit key k E K is intended to be recovered as 172

a result of the side-channel attack. Here, the K denotes the set of 173

all possible keys. For recovering, the attacker uses the physical 174

measurements (e.g., power consumption) and unknown data in- 175

put (i.e., plaintext). The strategy of divide-and-conquer is usually 176

used where m-bit parts ki (subkeys) are generated from the 177

division of the key k, which is followed by independent recovery 178

of subkeys, for i E {1, 2;....n/m}. Typically, m = 8. The two set- 179

tings for side-channel analysis in deep learning are profiling and 180

non-profiling. The targeted cryptographic algorithm’s leakage 181

profile is learned before the actual attack in profiling attacks. 182

In summary, side-channel attacks have been studied, ranging 183

from traditional desktops to smartphones. The above-discussed 184

studies focused on smartphone-based side-channel attacks [4]– 185

[6] helps to detect side-channel attacks. However, they did not 186

focus on privacy preservation of data and lacked in providing 187

promising results regarding achieving higher accuracy when 188

classifying keystrokes. This paper aims to fill this gap by pre- 189

senting one such evaluation using FL based DNN model for 190

side-channel attack detection. 191

III. NETWORK MODEL, DATASET AND PRELIMINARIES 192

A smartphone-based application is developed to collect data 193

from smartphones, The data collection process is performed 194
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with the help of 10 individuals, and five smartphones included195

Samsung J7, Huawei Honor, Samsung Grand Prime, Oppo F3,196

and Oppo F1. This dataset is the extension of the previously de-197

veloped dataset [4]. The core purpose of generating this dataset198

is to provide a high-quality federated learning-oriented dataset199

and produce side-channel attacks. The dataset also included the200

user postures, such as noise and movements while typing (i.e.,201

walking, sitting, and standing). The participants were asked to202

type on a soft keyboard in these three postures. The individuals203

participating in the experiments hold the smartphone in portrait204

mode and type with both hands’ thumbs. Two parameters are205

set to ensure the dataset’s quality: what data is required and206

how often is required during the data collection process. The re-207

quired information is collected with a constant 40 instances/per208

second (ps) frequency from the keyboard. Several hardware209

sensors are configured on each smartphone. However, some of210

the smartphones that participated in the dataset development211

were not equipped with a gyroscope sensor, and some of the212

smartphones were used without a magnetometer. We keep only213

the dataset that has been collected from all three sensors. The214

developed dataset files consist of 26 alphabets. Each of the215

alphabet on the keyboard is pressed continuously for almost216

2 minutes, and the keyboard readings are stored in a comma-217

separated (CSV) file. In addition, to each keyboard reading, we218

assigned a timestamp to ensure that the keyboard readings are219

well-structured.220

The collected raw data is transformed into a sensor event221

window. From each participant file, a sample of 500 windows is222

selected. The window size chosen is diverse enough for the clas-223

sification methods and capturing required data [4]. Therefore, we224

manually assigned labels to the collected data as ground truth and225

according to the alphabet. The manually labeled data correctly226

record the sensor measurements, and map recorded data with227

corresponding pressed alphabets. After this, based on 160,000228

raw sensor data, a feature matrix reading is constructed. Each229

reading included 3− axis of three sensors in the constructed230

feature matrix.231

IV. BACKGROUND232

In recent times, federated learning has been regarded as a233

machine learning approach with promising results. It has proven234

itself by leveraging multiple nodes’ distributed personalized235

datasets, such as mobile devices, resulting in better privacy236

preservation and improved performance. The wide distribution237

of training data can be seen in federated learning, maintained238

by workers on mobile devices. A central aggregator updates a239

global model as it collects local updates from these devices while240

using the local training data for training the global model during241

each iteration.242

A global model across local data samples held in various243

decentralized edge servers or devices is trained by FL [26].244

Federated learning methods can be categorized into Vertical245

[27], [28], and horizontal [26], [29]. Datasets sharing a label246

space while having different feature spaces are handled using247

procedures of vertical federated learning. Horizontal federated248

learning [29] is preferred for datasets sharing feature space but 249

differing in samples. The third category of federated transfer 250

learning also exists for datasets differing in both feature and 251

label space. 252

For exchange and verification of model updates, blockchain 253

was also leveraged in block-chained federated learning intro- 254

duced by [30]–[32]. For side-channel attacks, horizontal feder- 255

ated learning appears applicable as similar features are shared by 256

traces captured from various devices having the same plaintext 257

and key. Fig. 1 differentiates between centralized learning frame- 258

work (A) and federated learning framework (B) in the context 259

of data training. 260

Client updates are combined to produce a new global model 261

when the server uses the algorithm. A subset k of client devices 262

receives a global model w at the training round t. For a par- 263

ticular case, t = 0, the same global model trained or initialized 264

randomly on proxy data gives the starting point to client devices. 265

nk examples exist for local datasets of every client for a given 266

round. Here,k denotes the participating clients’ index. In Gboard 267

studies, the typing volume of users relates to nk. All clients 268

calculate the average gradient gk with their current model wt on 269

their local data using stochastic gradient descent (SGD). 270

ωk
t + 1, which is the local client update is given for any client 271

learning rate ε as calculated in Eq. 1. 272

ωt − εgk → ωkt+1 (1)

For obtaining new global modelωt+1, a weighted aggregation 273

is done by the server as Eq. 2 274

K∑

k=1

nk

N
ωk
t+1 → ωt+1 (2)

Here N = P . In a nutshell, SGD updates are computed by 275

clients locally and then received at the server for aggregation. 276

The number of clients per round (global batch size), number of 277

client epochs, and batch size would make the list of hyperpa- 278

rameters. In contrast to server storage, decentralized on-device 279

computation offers less privacy and security risks, even for 280

anonymized server-hosted data. Direct and physical data control 281

can be assured by keeping data on client devices. Each client 282

communicates the transitory-focused and aggregated model up- 283

dates to the server. The server never stores these client updates; 284

they are processed in memory and discarded immediately after 285

weight vector accumulation. 286

Content uploaded is restricted to model weights as it follows 287

the principle of data minimization. Lastly, only the aggregate 288

form of results is used such that many client device updates 289

are combined to improve the global model [33]. It is needed 290

from the users in the presented procedure of federated learning 291

that they trust the fact that individual weight uploads will not be 292

scrutinized at the aggregation server. Server training is preferred 293

because entrusting the server with user data is a difficult choice. 294

To address the trust requirement, it is viable to explore additional 295

techniques. Privacy-preserving techniques like differential pri- 296

vacy and secure aggregation complement FL in past research. 297
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Fig. 2. Proposed Deep Neural Network using Federated Deep Learning framework for Side Channel Attack Detection.

V. PROPOSED FRAMEWORK298

This section elucidates the concepts of federated learning,299

network types, and model architecture as they are the building300

blocks of our proposed methods. Fig. 2 depicts the DNN training301

process utilizing Federated Learning. It consists of three signif-302

icant steps. The first step is Training Initialization. Depending303

on the intended application, the FL server, a cloud server, sets304

the required data type and training hyperparameters, such as the305

number of epochs, learning rate, and activation function.306

In addition, the FL server initially builds a global model.307

Specifications and various hyperparameters are sent to partic-308

ipating DNN models (clients). It is worth noting that the FL309

server determines both the learning rate and the model epochs.310

The second step is the training of the DNN model. Each client311

begins collecting new information and changes the parameters of312

its local model (Ly
x), and it depends on the global model (My),313

where y is the index of the current iteration. Each client also314

seeks ideal settings to reduce the loss. Now we send the updated315

parameters regularly to the FL server. Step three is global model 316

aggregation. In this step, we aggregate the results of multiple 317

clients at the server end and send back the updated parameters 318

to each client. The FL server’s goal is to reduce the mean global 319

loss function by using this (3). 320

Loss(My) =
1

N

x=N∑

x=1

Loss(Ly
x) (3)

It is noticeable that these steps are performed till the desired 321

accuracy is obtained or the loss function gradually decreases. 322

A. Network Types 323

A variety of objectives, privacy settings, and network types 324

can be chosen for FL. In addition to other machine learning- 325

related complex criteria, network type significantly impacts 326

the definition of a federated learning system’s performance 327

and security-related benefits. It can be categorized into broad 328
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Fig. 3. Proposed Deep Neural Network Structure.

categories of cross-silo and cross-device. For the cross-silo329

learning, a smaller number of clients, usually ranging from 10330

to 100, would pursue shared objectives through cooperation.331

Connectivity in such a case is likely to be more reliable, the332

client has powerful computing resources, and data sets are much333

more significant. On the other hand, the intelligence services of334

a central provider are used by a more significant number of335

client devices (up to millions) in cross-device learning. In this336

category, small client data sets are usually used while there is a337

high intermittence of network connectivity.338

B. Model Architecture339

The number of layers and neurons is critical in modeling340

neural network structures. The dimension of the training set341

predetermines the number of input and output neurons in a342

DNN. Various clients train the DNN model. The DNN model’s343

structure consists of the input layer, multiple hidden layers, and344

an output layer. We use a sequential DNN model composed of345

a single input layer. The input dimension of this layer is nine,346

and the last dense layers are composed of 26 output classes.347

After an input layer, we used a dense layer with 256 units348

and a relu activation function. The DNN model architectures349

comprise 5 dropout layers and four dense layers. The dropout350

layers are used to reduce the over-fitting of the model. The351

dropout layers value is 0.2. The four hidden layers are composed352

of the relu activation function and 256, 128, 64, and32 units.353

The fully connected layer used the softmax activation function354

to predict a multinomial probability distribution. It is used for355

multi-class classification problems. The DNN model used adam356

optimizer to reduce the loss and to calculate the loss, the DNN357

model used categorical_crossentropy. Each dense layer used the358

relu activation function, and the fully connected layer used the359

softmax activation function to solve the multi-class classification360

problem. Fig. 3 presents the DNN structure used in this study361

for experiments.362

VI. EXPERIMENTAL RESULTS AND ANALYSIS363

This section presents the experimental results and analysis364

of the proposed framework. In addition, we examine the effect365

of various parameters on the performance of our framework.366

The experiments were conducted on a proposed dataset gathered367

from 10 Android smartphone users. One server and two clients368

are involved in the experiments. Starting with random weight369

TABLE I
CLIENT 1 RESULTS

initialization, the proposed dataset is utilized for training the 370

DNN model specified in Section V-B. Initially, we collected 371

12,999 dataset samples. We split this dataset into two parts. 75% 372

of the data is used to train the model, and the remaining 25% is 373

used for testing purposes. The 2 clients trained the DNN model 374

on theN number of side-channel datasets. To minimize the loss, 375

we evaluate each client’s outcomes three times. The experiments 376

were performed on 26 classes; we used a label encoder to convert 377

the labels into a numeric form into the machine-readable form. 378

The results of N clients were combined on the server-side. The 379

end standard evaluation metrics, including accuracy, precision, 380

recall, and F1-score, were utilized in the experiments. After 381

aggregation at the server end, the DNN model achieves an 382

accuracy of 80.09%. 383

A. Server-Based Training With Log Data 384

An FL system with one central parameter server and two 385

clients is considered. The server manages the selection of each 386

node/client at the start of the model training process and ag- 387

gregates received model changes. Server-based training of the 388

DNN model relies on data logged. Logs are anonymized and 389

cleansed of personally-identifying information before training. 390

For the server, we initialize various parameters, then we set 391

num_rounds=3, which means that we evaluate our experiments 392

three times. After the FL starts, we go through three rounds. 393

Each round has two stages fit_round and evaluate_round. In the 394

fit_round, the clients send the training results to the server, and in 395

the evaluate_round, both the clients send the testing results to the 396

server, and the server aggregates the results. The above process 397

took 50.57 minutes to complete the experimental process. The 398

server combines the results of N clients and finds that the 399

DNN model has the greatest accuracy of 80.09%. This result 400

demonstrates that the DNN model detects side-channel attacks 401

accurately. 402

B. Federated Training With Client 1 Caches 403

Client 1 used a sequential DNN model for experiments. The 404

DNN model contains five dense layers and five dropout layers. 405

Initially, the input dimension is nine, and the last dense layers 406

(fully connected layers) are composed of 26 classes. The model 407

used adam optimizer as an activation function. This model 408

computed loss using categorical_crossentropy. As mentioned 409

in Section VI-A, client 1 evaluates experiments three times and 410

sends the experimental result to a server in two stages fit_round 411

and evaluate_round. The DNN model performed experiments in 412

three rounds. The experimental results of client one are presented 413

in Table I. Experiments show that the results are evaluated three 414

times using standard evaluation measures (accuracy, precision, 415

recall, and F1-score). In the first round, the DNN model exhibits 416



IE
EE P

ro
ofFig. 4. Visualization of highest results obtained from client 1.

Fig. 5. Visualization of highest results obtained from client 2.

an accuracy score of 73% with 70% precision, 73% recall, and417

69% F1-score. Again we evaluate the results to prevent our418

model from over-fitting; we obtained low results compared to419

round 1. The results obtained in round 2 are; 68% accuracy, 69%420

precision, 68% recall, and 62% F1-score. As we set number-of-421

rounds=3, we re-evaluate the results for round 3. This time we422

obtained the highest results compared to the previous results423

of client 1. We obtained the highest accuracy score of 78% in424

round 3, 81% precision, 78% recall, and 74% F1-score. Round425

3 exhibits the highest results from client 1. The highest results426

are visualized in Fig. 4. The training and validation accuracy is427

shown in Fig. 4(a). The Figure shows that client 1 in round 3428

achieved the highest validation accuracy compared to training429

accuracy because of the fewer samples in the validation set.430

Fig. 4(b) shows the training and validation loss; Because of less431

number of samples in the validation set, the validation loss is432

less than the training loss. During the training process, the loss433

decreases on every epoch, which means, on the other hand, the434

model performance is increasing. In the end, Fig. 4(c) shows the435

Receiver Operating Characteristic’s (ROC) curve of each class.436

Most classes gained a ROC score of 1, which means that this437

model performs well on the dataset. The ROC curves, closer to438

the top-left corner, indicate better performance.439

C. Federated Training With Client 2 Caches440

Client 2 used the same sequential DNN model in their ex-441

periments. This model has the same experimental settings as442

TABLE II
CLIENT 2 RESULTS

mentioned in Section VI-B. The dense layer of this model also 443

contains 26 classes. The model uses the same Adam optimizer as 444

an activation function and categorical_crossentropy to compute 445

loss. Client 2 also evaluates experiments in three rounds and 446

sends the experimental result to a server in two stages fit_round 447

and evaluate_round. Client 2’s experimental findings are given 448

in Table II. The outcomes are examined three times using es- 449

tablished evaluation techniques (accuracy, precision, recall, and 450

F1-score). The experiments are performed in three rounds as 451

shown in Table II. In the first round, the DNN model exhibits an 452

accuracy score of 67% with 63% precision, 67% recall, and 62% 453

F1-score. Again we evaluated the results to prevent our model 454

from over-fitting; we obtained higher results than in round 1. The 455

results obtained in round 2 are; 79% accuracy, 78% precision, 456

79% recall, and 75% F1-score. At the server end, we set the 457

number of rounds =3; we re-evaluated the results for the third 458

round. We obtained an accuracy score of 75% in round 3, 73% 459

precision, 75% recall, and 70% F1-score. Round 2 exhibits the 460

highest results from client 2. The highest results are visualized in 461

Fig. 5. The training and validation accuracy is shown in Fig. 5(a). 462

The Figure shows that client 2 in the second round achieved 463
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the highest validation accuracy compared to training accuracy464

because of the fewer samples in the validation set. Fig. 5(b)465

shows the training and validation loss; Because of less number466

of samples in the validation set, the validation loss is less than467

the training loss. During the training process, the loss decreases468

on every epoch, which means, on the other hand, the model469

performance is increasing. In the end, Fig. 5(c) shows the ROC470

curve of each class. Most classes gained a ROC score of 1, which471

means that this model performs well on the dataset. The ROC472

curves, closer to the top-left corner, indicate better performance.473

VII. CONCLUSION474

This study proposed an FL-based DNN model for channel475

attack detection. We have collected a dataset from Android users476

while typing on a soft keyboard. The dataset is divided into477

two windows to make two local clients’ training models. We478

have trained the DNN model on two clients, and the results479

were aggregated on the server-side with 80.09% accuracy. Each480

client evaluates the findings three times to limit the over-fitting481

factor. Client 1 achieved the best results in the third round with482

78% accuracy, while client 2 achieved the best results in the483

second round with 79% accuracy. The DNN model obtained a484

ROC curve score of more than 95% for each class, indicating485

that the model performed admirably on the provided dataset.486

The results show that federated learning effectively identifies487

channel attacks, and the system efficiency study reveals that488

end-to-end training time and memory cost are both inexpensive489

and promising for resource-constrained IoT devices. In the490

future, we intend to examine this phenomenon further by train-491

ing additional models with other combinations of smartphone492

devices.493
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