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Abstract

Sequential Monte Carlo methods, also known as particle methods, are a popu-
lar set of techniques to approximate high-dimensional probability distributions and
their normalizing constants. They have found numerous applications in statistics
and related fields as they can be applied to perform state estimation for non-linear
non-Gaussian state space models and Bayesian inference for complex static models.
Like many Monte Carlo sampling schemes, they rely on proposal distributions which
have a crucial impact on their performance. We introduce here a class of controlled
sequential Monte Carlo algorithms, where the proposal distributions are determined
by approximating the solution to an associated optimal control problem using an it-
erative scheme. We provide theoretical analysis of our proposed methodology and
demonstrate significant gains over state-of-the-art methods at a fixed computational
complexity on a variety of applications.

Keywords: State space models, annealed importance sampling, normalizing constants, op-
timal control, approximate dynamic programming, reinforcement learning.

1 Introduction

Sequential Monte Carlo (SMC) methods have found a wide range of applications in many

areas of statistics as they can be used, among others things, to perform inference for

dynamic non-linear non-Gaussian state space models [27, 35, 16, 28] but also for complex

static models [34, 8, 12]; see [7, 17, 26] for recent reviews of this active area. Although these

methods are supported by theoretical guarantees [11], the number of particles required to

achieve a desired level of precision of the corresponding Monte Carlo estimators can be

prohibitively large for high-dimensional problems. The present work can be thought of as a

means to alleviate such difficulties by leveraging ideas from optimal control to design novel

SMC methods that can achieve a desired level of precision at a fraction of the computational

cost of standard algorithms.

Related work have been recently proposed in [36] for discrete time state space models

and in [24, 38] for partially observed diffusion models. The connection between inference
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and optimal control has been drawn explicitly in [23, 24, 38]. Our work differs from these

contributions, and complements them in the following ways. Firstly, the methodology pro-

posed here allows us to perform inference for static models; a direct extension of available

methods to this scenario is infeasible as it leads to algorithms which are not implementable.

Secondly, in contrast to the methodology proposed in [36], the iterative procedure devel-

oped here approximates the optimal policy of a different control problem at each iteration

in the spirit of [40]. This difference allows us to elucidate the effect each iteration has

on policy refinement. Lastly, we provide a theoretical analysis of various aspects of our

proposed methodology.

The rest of this paper is organized as follows. In Sections 2.2-2.6, we introduce SMC

methods in the framework of Feynman-Kac models [11], as this affords us generality to cover

both state space models and static models. We then identify the optimal policy that induces

an optimal SMC method in Section 2.7. We describe general methods to approximate the

optimal policy in Section 3.1 and develop an iterative scheme to refine policies in Section

3.2. The proposed methodology is illustrated on a neuroscience application in Section

3.3. We present the results of our analysis in Section 4 and conclude with applications

in Sections 5-6. All proofs are given in the Supplementary Material which also includes

three additional applications. MATLAB code to reproduce all numerical results is available

online1.

2 Optimally controlled sequential Monte Carlo

2.1 Notation

We first introduce notation that will be employed throughout the article. Given integers

n  m and a sequence (xt)t2N, we define the set [n : m] = {n, . . . , m} and write the

subsequence xn:m = (xn, . . . , xm). When n < m, we will use the convention
Qn

t=m xt =

1. Let (E, E) be an arbitrary measurable space. We denote the set of all finite signed

measures by S(E), the set of all probability measures by P(E) ⇢ S(E), and the set of all

Markov transition kernels on (E, E) by M(E). Given µ, ⌫ 2 P(E), we write µ ⌧ ⌫ if µ is

absolutely continuous w.r.t. ⌫ and denote the corresponding Radon-Nikodym derivative

as dµ/d⌫. For any x 2 E, �x refers to the Dirac measure at x. The set of all real-valued,

E-measurable, lower bounded and bounded functions on E are denoted by L(E) and B(E)

respectively. Given � 2 S(E) and M 2 M(E), we define (�⌦M)(dx, dy) = �(dx)M(x, dy)

1Link: https://github.com/jeremyhengjm/controlledSMC

2



and (M ⌦ �)(dx, dy) = M(y, dx)�(dy) as the finite signed measures on the product space

E⇥E, equipped with the product �-algebra E ⇥E . Given � 2 S(E), M 2 M(E), ' 2 B(E),

⇠ 2 B(E ⇥ E), we define the integral �(') =
R
E '(x)�(dx), the signed measure �M(·) =

R
E �(dx)M(x, ·) 2 S(E) and functions M(')(·) =

R
E '(y)M(·, dy) 2 B(E), M(⇠)(·) =

R
E ⇠(·, y)M(·, dy) 2 B(E).

2.2 Feynman-Kac models

We begin by introducing Feynman-Kac models [11] and defer a detailed discussion of

their applications to Sections 2.3-2.4. Consider a nonhomogenous Markov chain of length

T + 1 2 N on a measurable space (X, X ), associated with an initial distribution µ 2 P(X)

and a sequence of Markov transition kernels (Mt)t2[1:T ] ⇢ M(X). We write the law of the

Markov chain on path space XT+1, equipped with the product �-algebra X T+1, as

Q(dx0:T ) = µ(dx0)
TY

t=1

Mt(xt�1, dxt) (1)

and denote expectations w.r.t. Q by EQ, and Et,x
Q for conditional expectations on the

event Xt = x 2 X. Given a sequence of strictly positive functions G0 2 B(X), (Gt)t2[1:T ] ⇢
B(X ⇥ X), we define the Feynman-Kac path measure

P(dx0:T ) = Z�1G0(x0)
TY

t=1

Gt(xt�1, xt) Q(dx0:T ) (2)

where Z := EQ

h
G0(X0)

QT
t=1 Gt(Xt�1, Xt)

i
denotes the normalizing constant. Equation

(2) can be understood as the probability measure obtained by repartitioning the probability

mass of Q with the potential functions (Gt)t2[0:T ].

To examine the time evolution of (2), we define the following sequence of positive signed

measures (�t)t2[0:T ] ⇢ S(X) by

�t(') = EQ


'(Xt)G0(X0)

tY

s=1

Gs(Xs�1, Xs)

�
(3)

and their normalized counterpart (⌘t)t2[0:T ] ⇢ P(X) by

⌘t(') = �t(')/Zt (4)

for ' 2 B(X), t 2 [0 : T ], where Zt := �t(X). Equations (3) and (4) are known as the

unnormalized and normalized (updated) Feynman-Kac models respectively [11, Definition

2.3.2]. These models are determined by the triple
�
µ, (Mt)t2[1:T ], (Gt)t2[0:T ]

 
, which de-

pends on the specific application of interest. The measure ⌘T is the terminal time marginal

distribution of P and Z = ZT = µ(G0)
QT

t=1 ⌘t�1(Mt(Gt)).
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2.3 State space models

Consider a hidden Markov chain (Xt)t2[0:T ] ⇢ X, whose law on (XT+1, X T+1) is given by

H(dx0:T ) = ⌫(dx0)

TY

t=1

ft(xt�1, dxt)

where ⌫ 2 P(X) and (ft)t2[1:T ] ⇢ M(X). Observations (Yt)t2[0:T ] ⇢ Y are assumed to

be conditionally independent given (Xt)t2[0:T ], and the conditional distribution of Yt has a

strictly positive density gt(Xt, ·) with (gt)t2[0:T ] ⇢ B(X⇥Y). Here
�
⌫, (ft)t2[1:T ], (gt)t2[0:T ]

 

can potentially depend on unknown static parameters ✓ 2 ⇥, but this is notationally

omitted for simplicity. Given access to a realization y0:T 2 YT+1 of the observation process,

statistical inference for these models relies on the marginal likelihood of y0:T given ✓

Z(y0:T ) = EH

"
TY

t=0

gt(Xt, yt)

#

and/or the smoothing distribution, i.e., the conditional distribution of X0:T given Y0:T =

y0:T and ✓
P(dx0:T |y0:T ) = Z(y0:T )�1

TY

t=0

gt(xt, yt) H(dx0:T ). (5)

If we set Q 2 P(XT+1) defined in (1) equal to H, we recover the Feynman-Kac path measure

representation (2) by defining Gt(xt�1, xt) = gt(xt, yt) for all t 2 [0 : T ]. However, this

representation is not unique. Indeed if Q satisfies H ⌧ Q, we also obtain a Feynman-Kac

path measure representation of (2) by defining the potentials

G0(x0) =
d(⌫ · g0)

dµ
(x0), Gt(xt�1, xt) =

d(ft · gt)(xt�1,·)
dMt(xt�1, ·)

(xt), t 2 [1 : T ].

As outlined in [17], most SMC algorithms available at present correspond to the same basic

mechanism applied to different Feynman-Kac representations of a given target probability

measure. The bootstrap particle filter (BPF) presented in [21] corresponds to Q = H,

i.e. Mt(xt�1, dxt) = ft(xt�1, dxt) for t 2 [1, T ], while the popular ‘fully adapted’ auxiliary

particle filter (APF) of [35] uses Mt(xt�1, dxt) = P(dxt|xt�1, yt) / ft(xt�1, dxt)gt(xt, yt).

As a motivating example, we consider a model for T + 1 = 3000 measurements col-

lected from a neuroscience experiment [39]. The observation yt 2 Y = [0 : M ] at each time

instance t 2 [0 : T ], shown in left panel of Figure 1, represents the number of activated

neurons over M = 50 repeated experiments, and is modelled as a binomial distribution

with probability of success pt 2 [0, 1]. We will write its probability mass function as

yt 7! Bin(yt; M, pt). To model the time varying behaviour of activation probabilities, it is

4
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Figure 1: Number of activated neurons over M = 50 repeated experiments with time

(left), and effective sample size of bootstrap particle filter with N = 1024 particles (right)

for the neuroscience model with parameters ↵ = 0.99 and �2 = 0.11.

assumed that pt = (Xt) where (u) := (1+exp(�u))�1, for u 2 R is the logistic link func-

tion and (Xt)t2[0:T ] ⇢ R is a first-order autoregressive process. This corresponds to a time

homogeneous state space model on X = R, equipped with its Borel �-algebra X = B(R),

with ⌫ = N (0, 1), f(xt�1, dxt) = N (xt;↵xt�1, �
2)dxt, and g(xt, yt) = Bin(yt; M,(xt)) for

t 2 [1 : T ], where we denote the Gaussian distribution on Rd with mean vector ⇠ 2 Rd and

covariance matrix ⌃ 2 Rd⇥d by N (⇠,⌃), and its Lebesgue density by x 7! N (x; ⇠,⌃). The

parameters of this model to be inferred from data are ✓ = (↵, �2) 2 [0, 1] ⇥ R+.

2.4 Static models

Suppose we are interested in sampling from a target distribution ⌘(dx) = Z�1�(dx) 2 P(X)

and/or estimating its normalizing constant Z = �(X). To facilitate inference, we introduce

a sequence of probability measures (⌘t)t2[0:T ] ⇢ P(X) that bridges a simple distribution

⌘0 = µ to the target distribution ⌘T = ⌘ with ⌘ ⌧ µ. Our implementation in Section 6

adopts the geometric path [18, 34, 12]

�t(dx) := µ(dx)

✓
d�

dµ
(x)

◆�t

, ⌘t(dx) := �t(dx)/Zt, t 2 [0 : T ], (6)

where Zt := �t(X) and (�t) ✓ [0, 1] is an increasing sequence satisfying �0 = 0 and

�T = 1. In order to define Q, we introduce a sequence of ‘forward’ Markov transition

kernels (Mt)t2[1:T ] ⇢ M(X) where ⌘t�1Mt approximately samples from ⌘t. One expects

the distribution ⌘̂ = ⌘0M1 · · · MT of samples drawn from a nonhomogeneous Markov chain

with initial distribution ⌘0 and transition kernels (Mt)t2[1:T ] to be close to ⌘T = ⌘. However,

importance sampling cannot be employed to correct for the discrepancy between ⌘̂ and ⌘,

as ⌘̂ is typically analytically intractable.

5



SMC samplers described in [12] circumvent this difficulty by performing importance

sampling on path space (XT+1, X T+1) using an artificial extended target distribution of

the form
P(dx0:T ) = ⌘(dxT )

TY

t=1

Lt�1(xt, dxt�1),

where (Lt)t2[0:T�1] ⇢ M(X) is a sequence of auxiliary ‘backward’ Markov transition kernels.

Assuming that we have Lt�1 ⌦ �t ⌧ �t�1 ⌦Mt with strictly positive and bounded Radon-

Nikodym derivative for all t 2 [1 : T ], the Feynman-Kac path measure representation (2)

can be recovered by defining

G0(x0) = 1, Gt(xt�1, xt) =
d(Lt�1 ⌦ �t)

d(�t�1 ⌦ Mt)
(xt�1, xt), t 2 [1 : T ]. (7)

Under these potentials, the normalized Feynman-Kac models (4) act as the sequence of

bridging distributions (⌘t)t2[0:T ] in this setting. In annealed importance sampling (AIS)

[34] and the sequential sampler proposed in [8], one selects Mt 2 M(X) as a Markov chain

Monte Carlo (MCMC) kernel that is ⌘t-invariant and Lt�1 2 M(X) as its time reversal,

i.e. Lt�1 ⌦ ⌘t = ⌘t ⌦ Mt, so the potentials in (7) simplify to

G0(x0) = 1, Gt(xt�1) =
�t(xt�1)

�t�1(xt�1)
, t 2 [1 : T ]. (8)

2.5 Twisted Feynman-Kac models

SMC methods can perform poorly when the discrepancy between P and Q is large. The

right panel of Figure 1 illustrates that this is the case when we employ BPF on the neu-

roscience application in Section 2.3: the effective sample size (ESS), a common criterion

used to assess the quality of a particle approximation [28, pp. 34–35], falls below 20%

when the data change abruptly. This is because the kernel Mt(xt�1, dxt) = ft(xt�1, dxt)

used to sample particles at time t does not take the observations into account. Bet-

ter performance could be obtained using observations dependent kernels. Indeed, in

the context of state space models, the smoothing distribution (5) can be written as

P(dx0:T |y0:T ) = P(dx0|y0:T )
QT

t=1 P(dxt|xt�1, yt:T ) with

P(dx0|y0:T ) =
⌫(dx0) 

⇤
0(x0)

⌫( ⇤
0)

, P(dxt|xt�1, yt:T ) =
ft(xt�1, dxt) 

⇤
t (xt)

ft( ⇤
t )(xt�1)

, t 2 [1 : T ], (9)

where  ⇤
t (xt) = P(yt:T |xt), t 2 [0 : T ] is commonly known as the backward information

filter [4, 5]. This suggests sampling particles at time t using a proposal which approxi-

mates P(dxt|xt�1, yt:T ). Moreover, the above structure prompts the definition of twisted

Feynman-Kac models.

6



Definition 1. (Admissible policies) A sequence of functions  = ( t)t2[0:T ] is an admissible

policy if these functions are strictly positive and satisfy  0 2 B(X),  t 2 B(X ⇥ X) for all

t 2 [1 : T ]. The set of all admissible policies will be denoted as  .

Definition 2. (Twisted path measures) Given a policy  2  and a path measure

F 2 P(XT+1) of the form F(dx0:T ) = ⌫(dx0)
QT

t=1 Kt(xt�1, dxt) for some ⌫ 2 P(X)

and (Kt)t2[1:T ] ⇢ M(X), the  -twisted path measure of F is defined as F (dx0:T ) =

⌫ (dx0)
QT

t=1 K 
t (xt�1, dxt) where

⌫ (dx0) :=
⌫(dx0) 0(x0)

⌫( 0)
, K 

t (xt�1, dxt) :=
Kt(xt�1, dxt) t(xt�1, xt)

Kt( t)(xt�1)
, t 2 [1 : T ].

For any policy  2  , since P ⌧ Q ⌧ Q by positivity of  , we have

P(dx0:T ) = Z�1G 
0 (x0)

TY

t=1

G 
t (xt�1, xt) Q (dx0:T ) (10)

where
G 

0 (x0) :=
µ( 0)G0(x0)M1( 1)(x0)

 0(x0)
, (11)

G 
t (xt�1, xt) :=

Gt(xt�1, xt)Mt+1( t+1)(xt)

 t(xt�1, xt)
, t 2 [1 : T � 1],

G 
T (xT�1, xT ) :=

GT (xT�1, xT )

 T (xT�1, xT )
,

are twisted potentials associated with the twisted path measure Q . Note from (10) that

Z = EQ 
h
G 

0 (X0)
QT

t=1 G 
t (Xt�1, Xt)

i
by construction. The  -twisted Feynman-Kac

models induced by the triple
n

µ , (M 
t )t2[1:T ], (G

 
t )t2[0:T ]

o
are defined as

� t (') = EQ 

"
'(Xt)G

 
0 (X0)

tY

s=1

G 
s (Xs�1, Xs)

#
, ⌘ t (') = � t (')/Z 

t (12)

for ' 2 B(X), t 2 [0 : T ], where Z 
t := � t (X). Observe that

⌘ t (dxt) = ⌘t(dxt)Mt+1( t+1)(xt)Zt/Z
 
t (13)

for t 2 [0 : T � 1], ⌘ T is the terminal time marginal distribution of P and

Z = Z 
T = µ (G 

0 )

TY

t=1

⌘ t�1(M
 
t (G 

t )). (14)

Equation (13) relates the twisted model to the original model (4); we stress that they

coincide only at the terminal time T . To illustrate the effect of twisting models in the

static setting of Section 2.4, rewriting the twisted potentials (11) using (13) as

G 
0 (x0) =

d⌘ 0
dµ 

(x0), G 
t (xt�1, xt) =

d(Lt�1 ⌦ � t )

d(� t�1 ⌦ M 
t )

(xt�1, xt), t 2 [1 : T ],

shows that this corresponds to employing the same backward kernels (Lt)t2[0:T�1], but al-

tered bridging distributions (⌘ t )t2[0:T ], initial distribution µ and forward kernels (M 
t )t2[1:T ].

7



Algorithm 1  -twisted sequential Monte Carlo
Input: number of particles N 2 N and policy  2  .

1. At time t = 0 and particle n 2 [1 : N ]:

(a) sample Xn
0 ⇠ µ ;

(b) sample ancestor index An
0 ⇠ R

�
G 

0 (X1
0 ), . . . , G 

0 (XN
0 )

�
.

2. For time t 2 [1 : T ] and particle n 2 [1 : N ]:

(a) sample Xn
t ⇠ M 

t (X
An

t�1

t�1 , ·);

(b) sample ancestor index An
t ⇠ R

⇣
G 

t (X
A1

t�1

t�1 , X1
t ), . . . , G 

t (X
AN

t�1

t�1 , XN
t )

⌘
.

Output: trajectories (Xn
t )(t,n)2[0:T ]⇥[1:N ] and ancestries (An

t )(t,n)2[0:T ]⇥[1:N ].

2.6 Twisted sequential Monte Carlo

Assume that policy  2  is such that sampling from the initial distribution µ 2 P(X)

and the transition kernels (M 
t )t2[1:T ] ⇢ M(X) is feasible, and evaluation of the twisted

potentials (11) is tractable. We can now construct the  -twisted SMC method as sim-

ply the standard sampling-resampling SMC algorithm applied to  -twisted Feynman-Kac

models [17]. The resulting algorithm provides approximations of the probability measures

(⌘ t )t2[0:T ], normalizing constant Z, and path measure P, by simulating an interacting

particle system of size N 2 N. An algorithmic description is detailed in Algorithm 1,

where R (w1, . . . , wN ) refers to a resampling operation based on a vector of unnormal-

ized weights (wn)n2[1:N ] ⇢ R+. For example, this is the categorical distribution on [1 : N ]

with probabilities (wn/
PN

m=1 wm)n2[1:N ], when multinomial resampling is employed; other

lower variance and adaptive resampling schemes can also be considered. All simulations

presented in this article employ the systematic resampling scheme.

Given the output of the algorithm, i.e. an array of X-valued position variables (Xn
t )(t,n)2[0:T ]⇥[1:N ]

and an array of [1 : N ]-valued ancestor variables (An
t )(t,n)2[0:T ]⇥[1:N ], we have a particle

approximation of ⌘ t given by the weighted random measure

⌘ ,N
t =

NX

n=1

W ,n
t �Xn

t
, W ,n

t :=
G 

t (X
An

t�1

t�1 , Xn
t )

PN
m=1 G 

t (X
Am

t�1

t�1 , Xm
t )

,

for t 2 [1 : T ] (similar expression for t = 0), and an unbiased estimator of Z resembling

the form of (14)
Z ,N =

(
1

N

NX

n=1

G 
0 (Xn

0 )

)
TY

t=1

(
1

N

NX

n=1

G 
t (X

An
t�1

t�1 , Xn
t )

)
. (15)

8



With stored trajectories [22], we can also form a particle approximation of P with P ,N =

N�1
PN

n=1 �Xn
0:T

, where Xn
0:T denotes the path obtained by tracing the ancestral lineage of

particle Xn
T , i.e. Xn

0:T := (X
Bn

t
t )t2[0:T ] with Bn

T := An
T and Bn

t := A
Bn

t+1

t for t 2 [0 : T � 1].

Many convergence results are available for these approximations as the size of the particle

system N increases [11]. However, depending on the choice of  2  , the quality of these

approximations may be inadequate for practical values of N ; for example, the large variance

of (15) often hinders its use within particle MCMC schemes [1] and the approximation

P ,N could degenerate quickly with T . The choice of an optimal policy is addressed in the

following section.

2.7 Optimal policies

With a current policy  2  , initially given by a sequence of constant functions, we

would like to twist the path measure Q 2 P(XT+1) further with a policy � 2  , so

that the resulting twisted path measure (Q )� 2 P(XT+1) is in some sense ‘closer’ to

the target Feynman-Kac measure P. Note from Definition 2 that (Q )� = Q ·�, where

 · � = ( t · �t)t2[0:T ] denotes element-wise multiplication, is simply the ( · �)-twisted

path measure of Q. From (11), the corresponding twisted potentials are given by

G ·�
0 (x0) =

µ (�0)G
 
0 (x0)M

 
1 (�1)(x0)

�0(x0)
, (16)

G ·�
t (xt�1, xt) =

G 
t (xt�1, xt)M

 
t+1(�t+1)(xt)

�t(xt�1, xt)
, t 2 [1 : T � 1],

G ·�
T (xT�1, xT ) =

G 
T (xT�1, xT )

�T (xT�1, xT )
.

The choice of � is guided by the following optimality result.

Proposition 1. For any  2  , under the policy �⇤ = (�⇤t )t2[0:T ] defined recursively as

�⇤T (xT�1, xT ) = G 
T (xT�1, xT ), (17)

�⇤t (xt�1, xt) = G 
t (xt�1, xt)M

 
t+1(�

⇤
t+1)(xt), t 2 [1 : T � 1],

�⇤0(x0) = G 
0 (x0)M

 
1 (�⇤1)(x0),

the refined policy  ⇤ :=  · �⇤ satisfies the following properties:

1. the twisted path measure Q ⇤ coincides with the Feynman-Kac path measure P;

2. the normalized Feynman-Kac model ⌘ 
⇤

t is the time t-marginal distribution of P, and

its normalizing constant Z ⇤
t = Z for all t 2 [0 : T ];

9



3. the normalizing constant estimator Z ⇤,N = Z almost surely for any N 2 N.

Moreover, if G 
0 2 B(X), (G 

t )t2[1:T ] ⇢ B(X ⇥ X) then �⇤ 2  .

In a state space context, (17) corresponds to the recursion satisfied by the backward

information filter introduced in (9) when  2  are constant functions, i.e. µ = µ = ⌫

and M 
t = Mt = ft, t 2 [1 : T ]; see, e.g., [4, 5].

As it can be shown that �⇤ is the optimal policy of an associated Kullback-Leibler

optimal control problem (Supplementary Material, Section 4), we shall refer to it as the

optimal policy w.r.t. Q , although the optimality properties in Proposition 1 only identify

a policy up to normalization factors. An application of this result gives us the optimal

policy  ⇤ =  · �⇤ w.r.t. Q, which is admissible if the original potentials (Gt)t2[0:T ] are

bounded2. To build some intuition, we provide a characterization of the optimal policy in

a specific setting.

Proposition 2. For any policy  2  such that the corresponding twisted potentials

(G 
t )t2[0:T ] and transition densities of (M 

t )t2[1:T ] are log-concave on their domain of defi-

nition, the optimal policy �⇤ = (�⇤t )t2[0:T ] w.r.t. Q is a sequence of log-concave functions.

3 Controlled sequential Monte Carlo

3.1 Approximate dynamic programming

In all but simple cases, the backward recursion (17) defining the optimal policy �⇤ w.r.t. Q 

is intractable. We now exploit the connection to optimal control by adapting numerical

methods for finite horizon control problems [2, p. 329-331] to our setup. The result-

ing methodology approximates �⇤ by combining function approximation and iterating the

backward recursion (17).

We first define, for any µ 2 P(E) on (E, E), the set L2(µ) of E-measurable functions

' : E ! Rd such that k'kL2(µ) := (
R
E |'(x)|2µ(dx))1/2 < 1, and L2(µ) as the set of

equivalence classes of functions in L2(µ) that agree µ-almost everywhere. To simplify

notation, we begin by introducing some operators.

Definition 3. (Bellman operators) Given  2  such that G 
0 2 B(X) and (G 

t )t2[1:T ] ⇢
2For ease of presentation, the notion of admissibility adopted in Definition 1 is more stringent than

necessary as non-admissible optimal policies can still lead to valid optimal SMC methods.

10



B(X ⇥ X), we define the operators Q 
t : L2(⌫ t+1) ! L2(⌫ t ) for t 2 [0 : T � 1] as

Q 
0 (')(x) = G 

0 (x)M 
1 (')(x), ' 2 L2(⌫ 1 ),

Q 
t (')(x, y) = G 

t (x, y)M 
t+1(')(y), ' 2 L2(⌫ t+1),

where ⌫ 0 := µ 2 P(X) and ⌫ t := ⌘ t�1 ⌦ M 
t 2 P(X ⇥ X) for t 2 [1 : T ].

Although these operators are typically used to define unnormalized predictive Feynman-

Kac models [11, Proposition 2.5.1], we shall adopt terminology from control literature and

refer to them as Bellman operators. It can be shown that these Bellman operators are well-

defined, and are in fact bounded linear operators – see Proposition 4. In this notation, we

can rewrite (17) more succinctly as

�⇤T = G 
T , �⇤t = Q 

t �
⇤
t+1, t 2 [0 : T � 1]. (18)

For most problems of practical interest, this recursion is intractable and we must rely on

approximations.

Definition 4. (Logarithmic projection) On a measurable space (E, E), let ⌫ 2 P(E),

⇠ : E ! R+ be a E-measurable function such that � log ⇠ 2 L2(⌫)\L(E), and F ⇢ L(E) be a

closed linear subspace of L2(⌫). We define the (F, ⌫)-projection operator P ⌫ : B(E) ! B(E)

as
P ⌫⇠ = exp

✓
� arg min

'2F
k'+ log ⇠k2

L2(⌫)

◆
. (19)

The projection theorem gives existence of a unique P ⌫⇠. We have chosen to define

� log P ⌫⇠ as the orthogonal projection of � log ⇠ onto F, as this corresponds to learning the

optimal value functions of the associated control problem. Compared to learning optimal

policies directly, as considered in [36], the latter choice is often more desirable as computing

in logarithmic scale offers more numerical stability and the minimization is additionally

analytically tractable in important scenarios. Moreover, this allows us to relate logarithmic

projection errors to performance properties of the resulting twisted SMC method in the

next section. Since projections are typically intractable, a practical implementation will

involve a Monte Carlo approximation of (19).

Definition 5. (Approximate projection) Following notation in Definition 4, given a consis-

tent approximation ⌫N of ⌫, i.e. ⌫N (') ! ⌫(') almost surely for any ' 2 L1(⌫), we define

the approximate (F, ⌫)-projection operator P ⌫,N : B(E) ! B(E) as the (F, ⌫N )-projection

operator. We additionally assume that the function class F is such that P ⌫,N⇠ is a random

function for all ⇠ 2 B(E).

11



Algorithm 2 Approximate dynamic programming
Input: policy  2  and output of  -twisted SMC method (Algorithm 1).

1. Initialization: set M 
T+1(�̂T+1)(X

n
T ) = 1 for n 2 [1 : N ].

2. For time t 2 [1 : T ]:

(a) set ⇠t(X
An

t�1

t�1 , Xn
t ) = G 

t (X
An

t�1

t�1 , Xn
t )M 

t+1(�̂t+1)(X
n
t ) for n 2 [1 : N ];

(b) fit V̂t = arg min'2Ft

PN
n=1

⇣
'(X

An
t�1

t�1 , Xn
t ) + log ⇠t(X

An
t�1

t�1 , Xn
t )
⌘2

;

(c) set �̂t = exp(�V̂t).

3. At time t = 0:

(a) set ⇠0(Xn
0 ) = G 

0 (Xn
0 )M 

1 (�̂1)(X
n
0 ) for n 2 [1 : N ];

(b) fit V̂0 = arg min'2F0

PN
n=1 ('(Xn

0 ) + log ⇠0(X
n
0 ))2;

(c) set �̂0 = exp(�V̂0).

Output: policy �̂ = (�̂t)t2[0:T ] 2  .

If  2  is the current policy, to utilize the output of  -twisted SMC (Algorithm 1) to

learn the optimal policy �⇤, we define the following empirical measures

⌫ ,N
0 =

1

N

NX

n=1

�Xn
0
, ⌫ ,N

t =
1

N

NX

n=1

�✓
X

An
t�1

t�1 ,Xn
t

◆, t 2 [1 : T ], (20)

which are consistent approximations of (⌫ t )t2[0:T ] [11]. Given pre-specified closed and

linear function classes F0 ⇢ L2(⌫ 0 )\L(X), Ft ⇢ L2(⌫ t )\L(X2), t 2 [1 : T ], we denote the

approximate (Ft, ⌫
 
t )-projection operator by P ,N

t for t 2 [0 : T ], and following [2, Section

6.5.1] approximate the recursion (18) by

�̂T = P ,N
T G 

T , �̂t = P ,N
t Q 

t �̂t+1, t 2 [0 : T � 1]. (21)

Adopting control terminology, we shall refer to (21) as the approximate dynamic program-

ming (ADP) algorithm and provide a detailed description in Algorithm 2. Restricting the

function classes to contain only lower bounded functions ensures that the estimated policy

�̂ = (�̂t)t2[0:T ] lies in  , hence the refined policy  · �̂ also lies in  .

As the size of the particle system N increases, it is natural to expect �̂ to converge (in

a suitable sense) to �̃ = (�̃t)t2[0:T ], defined by the idealized algorithm

�̃T = P 
T G 

T , �̃t = P 
t Q 

t �̃t+1, t 2 [0 : T � 1], (22)
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where P 
t denotes the (Ft, ⌫

 
t )-projection operator for t 2 [0 : T ]. We will establish this in

Section 4.2 for a common choice of function class. It follows that the quality of �̂, as an

approximation of the optimal policy �⇤, will depend on the number of particles N and the

‘richness’ of chosen function classes (Ft)t2[0:T ]. More precise characterization of the ADP

error in terms of approximate projection errors will be given in Section 4.1.

We defer a detailed discussion on the choice of function classes and shall assume for

now this is such that under the refined policy  · �̂ 2  , sampling from initial distribution

µ ·�̂ 2 P(X), transition kernels (M ·�̂
t )t2[1:T ] ⇢ M(X) is feasible and evaluation of twisted

potentials (G ·�̂
t )t2[0:T ] is tractable.

3.2 Policy refinement

If the recursion (18) could be performed exactly, then no policy refinement would be

necessary as we would initialize  as a policy of constant functions, and obtain the optimal

policy  ⇤ = �⇤ w.r.t. Q. This will not be possible in practical scenarios. Given a current

policy  2  , when we employ ADP to obtain an approximation �̂ of the optimal policy

�⇤ w.r.t. Q , observe that residuals involved in the logarithmic projections in (21)

" T := log �̂T � log G 
T , " t := log �̂t � log G 

t � log M 
t+1(�̂t+1), t 2 [0 : T � 1],

are related to twisted potentials of the refined policy  · �̂ via

log G ·�̂
0 = log µ (�̂0) � " 0 , log G ·�̂

t = �" t , t 2 [1 : T ]. (23)

It follows that the Kullback-Leibler divergence from (Q )�̂ to P is upper bounded by

| log µ (�̂0) � log Z| + k" 0 kL1(P0) +
TX

t=1

k" t kL1(Pt�1,t) (24)

where (Pt)t2[0:T ] and (Pt,s)(t,s)2[0:T�1]⇥[t+1:T ] denote the one time and two time marginal

distributions of P. This shows how performance of ( · �̂)-twisted SMC depends on the

quality of the ADP approximation of the optimal policy w.r.t. Q .

If we consider further twisting the path measure Q ·�̂ by a policy ⇣̂ 2  , the logarithmic

projections in the subsequent ADP procedure defining ⇣̂ are

� log ⇣̂T := arg min
'2FT

k'� " T kL2(⌫ ·�̂,N
T )

, (25)

� log ⇣̂t := arg min
'2Ft

k'� (" t � log M ·�̂
t+1(⇣̂t+1))k

L2(⌫ ·�̂,N
t )

, t 2 [T � 1 : 1],

� log ⇣̂0 := arg min
'2F0

k'� (" 0 � log µ (�̂0) � log M ·�̂
1 (⇣̂1))k

L2
⇣
⌫ ·�̂,N
0

⌘,
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Algorithm 3 Controlled sequential Monte Carlo
Input: number of particles N 2 N and iterations I 2 N.

1. Initialization: set  (0) as constant one functions.

2. For iterations i 2 [0 : I � 1]:

(a) run  (i)-twisted SMC method (Algorithm 1);

(b) perform ADP (Algorithm 2) with SMC output to obtain policy �̂(i+1);

(c) construct refined policy  (i+1) =  (i) · �̂(i+1).

3. At iteration i = I:

(a) run  (I)-twisted SMC method (Algorithm 1).

Output: trajectories (Xn
t )(t,n)2[0:T ]⇥[1:N ] and ancestries (An

t )(t,n)2[0:T ]⇥[1:N ] from  (I)-

twisted SMC method.

where empirical measures (⌫ ·�̂,N
t )t2[0:T ] are defined using the output of ( ·�̂)-twisted SMC

as in (20). Equation (25) reveals that it might be beneficial to have an iterative scheme to

refine policies as this allows repeated least squares fitting of residuals, in the spirit of L2-

boosting methods [6]. Moreover, it follows from (23)-(24) that errors would not accumulate

over iterations. The resulting iterative algorithm, summarized in Algorithm 3, will be

referred to as the controlled SMC method (cSMC). The first iteration of the algorithm

would coincide with that of [36] for state space models, if projections were computed on

the natural scale; subsequent iterations differ in policy refinement strategy. To maintain

a coherent terminology, we will refer to the standard SMC method and  ⇤-twisted SMC

method as the uncontrolled and optimally controlled SMC methods respectively. From the

output of the algorithm, we can estimate P with P (I),N and its normalizing constant Z

with Z (I),N as explained in Section 2.6.

When implementing Algorithm 3, the number of iterations I 2 N can be predeter-

mined or chosen adaptively until successive policy refinement yield no improvement in

performance. In Section 4.3, under appropriate regularity assumptions, we show that this

iterative scheme generates a geometrically ergodic Markov chain on  , and characterize

its unique invariant distribution. For all numerical examples considered in this article, we

observe that convergence happens very rapidly, so only a small number of iterations is

necessary.
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3.3 Illustration on neuroscience model

We now apply our proposed methodology on the neuroscience model introduced in Section

2.3. We take BPF as the uncontrolled SMC method, i.e. we set µ = ⌫ and Mt = f for

t 2 [1 : T ]. Under the following choice of function classes

Ft =
�
'(xt) = atx

2
t + btxt + ct : (at, bt, ct) 2 R3

 
, t 2 [0 : T ], (26)

the policy  (i) = ( 
(i)
t )t2[0:T ] at iteration i 2 [1 : I] of Algorithm 3 has the form

 
(i)
t (xt) = exp

⇣
�a

(i)
t x2

t � b
(i)
t xt � c

(i)
t

⌘
, t 2 [0 : T ],

where a
(i)
t :=

Pi
j=1 aj

t , b
(i)
t :=

Pi
j=1 bj

t , c
(i)
t :=

Pi
j=1 cj

t for t 2 [0 : T ], and (aj+1
t , bj+1

t , cj+1
t )t2[0:T ]

denotes the coefficients estimated using linear least squares at iteration j 2 [0 : I � 1]. Ex-

act expressions of the twisted initial distribution, transition kernels and potentials, required

to implement cSMC are given in Section 8.3 of Supplementary Material.

Figure 2 illustrates that the parameterization (26) provides a good approximation of

the optimal policy. Recalling the relationship between residuals and twisted potentials

(23), we note that monitoring variance of particle weights using the ESS (left panel) allows

us to evaluate effectiveness of the ADP algorithm, and identify time instances when the

approximation is inadequate. We can also deduce if the estimated policy is far from

optimal by comparing the behaviour of normalizing constant estimates (right panel) with

those when the optimal policy is applied, as detailed in Proposition 1. Indeed, while

the uncontrolled SMC approximates Zt = Z (0)

t = p(y0:t), the controlled SMC scheme

approximates Z ⇤
t = p(y0:T ) for all t 2 [0 : T ].

Moreover, we see from the left panel of Figure 3 that improvement in performance is

reflected in the estimated policy’s ability to capture abrupt changes in the data. This

plot also demonstrates the effect of policy refinement: by refitting residuals from previous

iterations (25), the magnitude of estimated coefficients decreases with iterations as the

residuals can be adequately approximated by simpler functions. Lastly, in the right panel

of Figure 3, we illustrate the invariant distribution of coefficients estimated by cSMC using

a long run of I = 1000 iterations, with the first 10 iterations discarded as burn-in. These

plots show that the distribution concentrates as the size of the particle system N increases,

which is consistent with our findings presented in Section 4.3.
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Figure 2: Comparison of uncontrolled and controlled SMC methods in terms of effective

sample size (left) and normalizing constant estimation (right) on the neuroscience model

introduced in Section 2.3. The parameters are ↵ = 0.99, �2 = 0.11 and the algorithmic

settings of cSMC are I = 3, N = 128.

0 500 1000 1500 2000 2500 3000
-20

-15

-10

-5

0

5

10

15

20

25

Iteration 1

Iteration 2

Iteration 3

14 16 18 20 22 24
0

1

2

3

4

5

6

Figure 3: Applying controlled SMC method on the neuroscience model introduced in

Section 2.3: coefficients estimated at each iteration with N = 128 particles (left) and

invariant distribution of coefficients with various number of particles (right).
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4 Analysis

4.1 Policy learning

The goal of this section is to characterize the error of ADP algorithm (21), for learning the

optimal policy (18), in terms of approximate projection errors. We first introduce some

notation. Let (Q 
t )t2[0:T�1] denote the Bellman operators in Definition 3 and for notational

convenience define Q 
T (') = G 

T for any ' (take ⌫ T+1 as an arbitrary element in P(X⇥X)).

For �1  s  t  T , we define the Feynman-Kac semigroup Q 
s,t : L2(⌫ t+1) ! L2(⌫ s+1)

associated to a policy  2  as

Q 
s,t(') =

8
><
>:
', s = t,

Q 
s+1 � · · · � Q 

t ('), s < t,

(27)

for ' 2 L2(⌫ t+1) with ⌫ t for t 2 [0 : T ] as in Definition 3.

Proposition 3. Suppose that we have a policy  2  , number of particles N , and closed

and linear function classes F0 ⇢ L2(⌫ 0 )\L(X), Ft ⇢ L2(⌫ t )\L(X2), t 2 [1 : T ] such that:

[A1] the Feynman-Kac semigroup defined in (27) satisfies

kQ 
s,t(')k

L2(⌫ s+1)
 C 

s,tk'kL2(⌫ t+1)
, �1  s < t  T � 1, (28)

for some C 
s,t 2 [0,1) and all ' 2 L2(⌫ t+1);

[A2] the approximate (Ft, ⌫
 
t )-projection operator satisfies

sup
⇠2S t

E ,NkP ,N
t ⇠ � ⇠k

L2(⌫ t )
 e ,N

t < 1

where S t := {Q 
t exp(�') : ' 2 Ft+1} for t 2 [0 : T � 1] and S T := {G 

T }. Then the policy

�̂ 2  generated by ADP algorithm (21) satisfies

E ,Nk�̂t � �⇤t kL2(⌫ t )


TX

u=t

C 
t�1,u�1e

 ,N
u , t 2 [0 : T ], (29)

where C 
t�1,t�1 = 1 and E ,N denotes expectation w.r.t. the law of the  -twisted SMC

method (Algorithm 1).

Equation (29) reveals how approximate projection errors propagate backwards in time.

If the choice of function class is ‘rich’ enough, and the number of particles is sufficiently

large, then these errors can be kept small and ADP provides a good approximation of

the optimal policy. Moreover, observe that these errors are also modulated by stability

constants of the Feynman-Kac semigroup in (28). We now establish the inequality (28).

For ' 2 B(E), we write its supremum norm as k'k1 = supx2E |'(x)|.
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Proposition 4. Suppose  2  is such that G 
0 2 B(X), (G 

t )t2[1:T ] ⇢ B(X ⇥ X) and let

� := maxt2[0:T ] kG 
t k1 (and Z 

�1 := 1). Inequality (28) holds with

C 
s,t =

✓
Z 

t /Z 
s

tY

u=s+1

kG 
uk1

◆1/2


⇣
Z 

t /Z 
s

⌘1/2
�(t�s)/2, �1  s < t  T � 1. (30)

For the case G 
t (x, y) = G 

t (y) for all x, y 2 X and t 2 [1 : T ], if we assume additionally

for each t 2 [1 : T ] that:

[A3] there exist � t 2 P(X) and  t 2 (0,1) such that for all x 2 X we have

M 
t (x, dy)   t �

 
t (dy). (31)

Then inequality (28) holds with

C 
s,t =


 s+2 kG 

s+1k1 � s+2

�
Q 

s+1,t(1)
� Z 

t

Z 
s

�1/2

, �1  s < t  T � 1. (32)

The assumption of bounded potentials is typical in similar analyses of ADP errors [20,

Section 8.3.3] and stability of SMC methods [11]. The second part of Proposition 4 shows

that it is possible to exploit regularity properties of the transition kernels to obtain better

constants C 
s,t. Conditions such as (31) are common in the filtering literature, see for

example [13, Eq. (9)] and [11, Chap. 4].

4.2 Limit theorems

We now study the asymptotic behaviour of ADP algorithm (21), with a current policy

 2  , as the size of the particle system N converges to infinity. In the following, we

consider logarithmic projections that are defined by linear least squares approximations;

this corresponds to function classes of the form

Ft :=
�
�T

t � : � 2 RM
 

, t 2 [0 : T ], (33)

where �0 ⇢ L2(⌫ 0 ) \ L(X), �t ⇢ L2(⌫ t ) \ L(X2), t 2 [1 : T ] are vectors of M 2 N

pre-specified basis functions. We will treat M as fixed in our analysis and refer to [20,

Theorem 8.2.4] for results on how M should increase with N to balance the tradeoff

between enriching (33) and the need for more samples to achieve the same estimation

precision. We denote by �̃ := (�̃t)t2[0:T ] the policy generated by the idealized algorithm

(22) where �̃t := exp(��T
t �

 
t ), � t being the corresponding least squares estimate. This

result builds upon the central limit theorem for particle methods established in [9, 11, 25].

Theorem 1. Consider the ADP algorithm (21) with current policy  2  , under linear

least squares approximations (33). Under appropriate regularity conditions, for all x 2
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X2T+1, the estimated policy �̂(x) converges in probability to the policy �̃(x) as N ! 1.

Moreover, for all x 2 X2T+1, we have

p
N
⇣
�̂(x) � �̃(x)

⌘
d�! N

⇣
0(T+1),⌦

 (x)
⌘

(34)

for some ⌦ : X2T+1 ! R(T+1)⇥(T+1), where d�! denotes convergence in distribution and

0p = (0, . . . , 0)T 2 Rp is the zero vector.

A precise mathematical statement of this result and its proof are given in Section 3 of

Supplementary Material. The exact form of ⌦ reveals how errors correlate over time, and

suggests that we may expect variance of the estimated policy to be larger at earlier times,

due to the inherent backward nature of the ADP approximation.

4.3 Iterated approximate dynamic programming

We provide here a theoretical framework to understand the qualitative behaviour of policy

 (I), estimated by Algorithm 3, as the number of iterations I converges to infinity. This

offers a novel perspective of iterative algorithms for finite horizon optimal control problems

that may be of interest beyond the purposes of this article.

To do so, we require the set of all admissible policies to be a complete separable metric

space. This follows if we impose that X is a compact metric space and work with  :=

C(X)
QT

t=1 C(X ⇥ X), where C(E) denotes the set of real-valued continuous functions on E,

equipped with the metric ⇢(', ⇠) :=
PT

t=0 k't�⇠tk1 for ' = ('t)t2[0:T ], ⇠ = (⇠t)t2[0:T ] 2  ;

non-compact state spaces can also be accommodated with a judicious choice of metric (see

for e.g. [3, p. 380]).

We begin by writing the iterative algorithm with N 2 N particles as an iterated random

function FN : U ⇥  !  , defined by FN
U ( ) =  · �̂, where �̂ is the output of ADP

algorithm (21) and U 2 U encodes all uniform random variables needed to simulate a

 -twisted SMC method (Algorithm 1). As the uniform variables (U (I))I2N used at every

iteration are independent and identically distributed, iterating FN defines a Markov chain

( (I))I2N on  . We will write E to denote expectation w.r.t. the law of (U (I))I2N and

⇡(I) 2 P( ) to denote the law of  (I). Similarly, we denote the iterative scheme with

exact projections by F :  !  , defined as F ( ) =  · �̃, where �̃ is the output of the

idealized ADP algorithm (22). The following is based on results developed in [14].

Theorem 2. Assume that the iterated random function FN satisfies:

[A4] E
⇥
⇢(FN

U ('0), '0)
⇤

< 1 for some '0 2  ,
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[A5] there exists a measurable function LN : U ! R+ satisfying E
⇥
LN

U

⇤
< ↵ for

some ↵ 2 [0, 1) such that ⇢(FN
U ('), FN

U (⇠))  LN
U ⇢(', ⇠) holds for all ', ⇠ 2  . Then

the Markov chain ( (I))I2N ⇢  generated by Algorithm 3 admits a unique invariant

distribution ⇡ 2 P( ), and convergence is characterized by

%(⇡(I), ⇡)  C( (0))rI , I 2 N, (35)

for some C :  ! R+ and r 2 (0, 1), where % denotes the Prohorov metric on P( ) induced

by the metric ⇢, and

[A6] for each  2  , ⇢(FN
U ( ), F ( ))  N�1/2E ,N

U where (E ,N
U )N2N is a uniformly

integrable sequence of non-negative random variables with finite mean that converges in

distribution to a limiting distribution with support on R+.

Then we have
E⇡ [⇢( ,'⇤)]  N�1/2E

h
E'⇤,N

U

i
(1 � ↵)�1 (36)

where '⇤ is a fixed point of F and E⇡ denotes expectation w.r.t.  ⇠ ⇡.

Assumption A5 requires the ADP procedure to be sufficiently regular: i.e. for two

policies ', ⇠ 2  that are close, given the same uniform random variables U to simulate

a  -twisted and ⇠-twisted SMC method, the policies '̂ (w.r.t. Q ) and ⇠̂ (w.r.t. Q⇠)

estimated by (21) should also be close enough to keep the Lipschitz constant LN
U small.

Assumption A6 is necessary to quantify the Monte Carlo error involved when employing

approximate projections, and can be deduced for example using the central limit theorem

in (34).

The first part of Theorem 2, which establishes existence of a unique invariant distri-

bution and geometric convergence to the latter, follows from standard theory on iterated

random functions; see, e.g., [14]. The second conclusion of Theorem 2, which provides a

characterization of the limiting distribution, is to the best of our knowledge novel. We

note that this only requires existence of a fixed point of F , which may not be unique.

5 Application to state space models

5.1 Neuroscience model

We return to the neuroscience model introduced in Section 2.3 and explore cSMC’s util-

ity as a smoother, with algorithmic settings described in Section 3.3, in comparison to

the forward filtering backward smoothing (FFBS) procedure of [15, 26]. We consider an

approximation of the maximum likelihood estimate (MLE) (↵, �2) = (0.99, 0.11) as param-

eter value, and the smoothing functional x0:T 7! M((x0), ..., (xT )) whose expectation
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Figure 4: Assessing performance on the neuroscience model introduced in Section 2.3

based on 100 independent repetitions of each algorithm: sample relative variance of

smoothing expectation (left) and log-marginal likelihood estimates (right).

represents the expected number of activated neurons at each time. Although BPF’s parti-

cle approximation of the smoothing distribution degenerates quickly in time, cSMC with

I = 3 iterations offers a marked improvement: for example, the number of distinct ances-

tors at the initial time is on average 63 times that of BPF. We use N = 1024 particles for

cSMC and select the number of particles in FFBS to match compute time. The results,

displayed in the left panel of Figure 4, show some gains over FFBS and especially so at

later times.

We then investigate the relative variance of log-marginal likelihood estimates obtained

using cSMC and BPF in a neighbourhood of the approximate MLE. As the marginal

likelihood surface is rather flat in ↵, we fix ↵ = 0.99 and vary �2 2 {0.01, 0.02, . . . , 0.2}.

We use I = 3 iterations, N = 128 particles for cSMC and N = 5529 particles for BPF to

match computational cost. The results, reported in the right panel of Figure 4, demonstrate

that while the relative variance of estimates produced by BPF increases exponentially as

�2 decreases, that of cSMC is stable across the values of �2 considered.

Lastly, we perform Bayesian inference on the unknown parameters ✓ = (↵, �2) and

compare the efficiency of cSMC and BPF within a particle marginal Metropolis-Hastings

(PMMH) algorithm [1]. We specify a uniform prior on [0, 1] for ↵ and an independent

inverse-Gamma prior distribution IG(1, 0.1) for �2. Initializing at ✓ = (0.99, 0.11), we run

two PMMH chains (✓cSMC
k )k2[0:K], (✓BPF

k )k2[0:K] of length K = 100, 000. Both chains are

updated using an independent Gaussian random walk proposal with standard deviation

(0.002, 0.01), but rely on cSMC or BPF to produce unbiased estimates of the marginal

likelihood when computing acceptance probabilities. To ensure a fair comparison, we

use I = 3 iterations and N = 128 particles for cSMC which matches the compute time
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Figure 5: Autocorrelation functions of PMMH chains, with marginal likelihood estimates

produced by cSMC or BPF, for parameters of the neuroscience model introduced in Section

2.3.

taken by BPF with N = 5529 particles, so that both PMMH chains require very similar

computational cost. The autocorrelation functions of each PMMH chain, shown in Figure

5, reveal that the (✓BPF
k )k2[0:K] chain has poorer mixing properties. These differences can

be summarized by the effective sample size, computed as the length of the chain K divided

by the estimated integrated autocorrelation time for each parameter of interest, which was

found to be (4356, 2442) for (✓BPF
k )k2[0:K] and (20973, 13235) for (✓cSMC

k )k2[0:K].

5.2 The Lorenz-96 model

Following [33], we consider the Lorenz-96 model [29] in a low noise regime, i.e. the Itô

process ⇠(s) = (⇠i(s))i2[1:d], s � 0 defined as the weak solution of the stochastic differential

equation:
d⇠i = (�⇠i�1⇠i�2 + ⇠i�1⇠i+1 � ⇠i + ↵) dt + �fdBi, i 2 [1 : d], (37)

where indices should be understood modulo d, ↵ 2 R is a forcing parameter, �2
f 2 R+ is

a noise parameter, and B(s) = (Bi(s))i2[1:d], s � 0 is a d-dimensional standard Brownian

motion. The initial condition is taken as ⇠(0) ⇠ N (0d, �
2
fId). We assume that the process

is observed at a regular time grid of size h > 0 according to Yt ⇠ N (H⇠(st), R), st =

th, t 2 [0 : T ], and consider the partially observed case where Hii = 1 for i = 1, . . . , p and

0 otherwise with p = d � 2.

As discussed in [33], an efficient discretization scheme in this low noise regime [31,

ch. 3] is given by adding Brownian increments to the output of a high-order numer-

ical integration scheme on the drift of (37). Incorporating time discretization gives a

time homogenous state space model on (X, X ) = (Rd, B(Rd)) with ⌫ = N (0d, �
2
fId),

f(xt�1, dxt) = N (xt; q(xt�1), �
2
fhId)dxt and g(xt, yt) = N (yt; Hxt, R) for t 2 [1 : T ],
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where y0:T 2 YT+1 = (Rp)T+1 is a realization of the observation process and q : X ! X

denotes the mapping induced by a fourth order Runge-Kutta (RK4) method on [0, h]. We

will take noise parameters as �2
f = 10�2, R = �2

gIp, observe the process for 10 time units,

i.e. set h = 0.1, T = 100 and implement RK4 with a step size of 10�2. For this application,

we can employ the fully adapted APF as uncontrolled SMC method [35], i.e. set µ = ⌫ 

and Mt = f for t 2 [1 : T ] with policy  t = g, t 2 [0 : T ].

Our ADP approximation will utilize the function classes

Ft =
n
'(xt) : xT

t Atxt + xT
t bt + ct : (At, bt, ct) 2 Sd ⇥ Rd ⇥ R

o
, t 2 [0 : T ], (38)

where Sd = {A 2 Rd⇥d : A = AT }. Under this parameterization, the policy  (i) =

( 
(i)
t )t2[0:T ] at iteration i 2 [1 : I] of Algorithm 3 is given by

� log 
(i)
t (xt) = xT

t A
(i)
t xt + xT

t b
(i)
t + c

(i)
t , t 2 [0 : T ], (39)

where A
(i)
t :=

Pi
j=1 Aj

t , b
(i)
t :=

Pi
j=1 bj

t , c
(i)
t :=

Pi
j=1 cj

t for t 2 [0 : T ] and (Aj+1
t , bj+1

t , cj+1
t )t2[0:T ]

denotes coefficients estimated using linear least squares at iteration j 2 [0 : I � 1]. Having

APF as uncontrolled SMC is also equivalent to taking BPF as uncontrolled with an initial

policy  (0) = ( 
(0)
t )t2[0:T ] of the form (39) with A

(0)
t := 1

2�
�2
g HT H, b

(0)
t := ���2

g Hyt

and c
(0)
t := 1

2�
�2
g yT

t yt + 1
2p log(2⇡) + 1

2d log(�2
g) for t 2 [1 : T ]. For A 2 Sd, the nota-

tion A � 0 refers to A being positive definite. If the constraints (��2
f Id + 2A

(i)
0 )�1 � 0,

(��2
f h�1Id + 2A

(i)
t )�1 � 0, t 2 [1 : T ] are satisfied or imposed, then sampling from twisted

initial distribution and transition kernels is feasible and evaluation of the corresponding

potentials is also tractable; see Section 8.2 of Supplementary Material for exact expres-

sions. The diagnostics discussed in Section 3.3 indicate that (39) provides an adequate

approximation of the optimal policy by adapting to the chaotic behaviour of the Lorenz

system.

We begin by comparing the relative variance of log-marginal likelihood estimates ob-

tained by cSMC and APF, as ↵ takes values in a regular grid between 2.5 to 8.5. We

consider d = 8 and simulate observations under the model with ↵ = 4.8801, �2
g = 10�4.

We employ N = 512 particles and the following adaptive strategy within cSMC: perform

policy refinement until the minimum ESS over time is at least 90%, terminating at a max-

imum of 4 iterations. To ensure a fair comparison, the number of particles used in APF is

chosen to match computation time. The results, plotted in the left panel of Figure 6, show

that cSMC offers significant variance reduction across all values of ↵ considered. Moreover,

we see from the right panel of Figure 6 that the adaptive criterion allow us to adaptively

increase the number of iterations as we move away from the data generating parameter.
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sample relative variance of log-marginal likelihood estimates based on 100 independent

repetitions of each algorithm (left), average number of iterations taken by cSMC under

adaptive criterion (right).

Next we consider configurations (d, �2
g) 2 {8, 16, 32, 64} ⇥ {10�4, 10�3, 10�2} with ↵ =

4.8801 and generate observations under the model. We use I = 1 iteration for cSMC in

all configurations and increase the number of particles N with d for both algorithms. As

before, N is chosen so that both methods require the same compute time to ensure a fair

comparison. The relative variance of both methods are reported in Table 1. These results

indicate several order of magnitude gains over APF in all configurations considered.

6 Application to static models

We now detail how the proposed methodology can be applied to static models described

in Section 2.4. The framework introduced in [12] generalizes the AIS method of [34] and

the sequential sampler of [8] by allowing arbitrary forward and backward kernels instead of

being restricted to MCMC kernels. This degree of freedom is useful here as sampling from

twisted MCMC kernels and computing integrals w.r.t. these kernels is typically impossible.

We consider the Bayesian framework where the target distribution of interest is a

posterior distribution ⌘(dx) = Z�1 µ(dx)`(x, y) defined on (X, X ) = (Rd, B(Rd)), given by

a Bayes update with a prior distribution µ 2 P(X) and a likelihood function ` : X⇥Y ! R+.

In applications, the marginal likelihood Z(y) :=
R
X µ(dx)`(x, y) of observations y 2 Y

is often also a quantity of interest. Assuming ⌘ has a strictly positive and continuously

differentiable density x 7! ⌘(x) w.r.t. Lebesgue measure on Rd, we select the forward kernel

Mt as the transition kernel of an unadjusted Langevin algorithm (ULA) [37] targeting ⌘t

defined in (6), i.e. Mt(xt�1, dxt) = N (xt; xt�1 + 1
2hr log ⌘t(xt�1), hId)dxt where h > 0
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Observation noise

�2
g = 10�4 �2

g = 10�3 �2
g = 10�2

N log10(RVAR) log10(RVAR) log10(RVAR)
A

lg
or

it
h
m

APF

d = 8 1382 �6.7263 �5.6823 �4.4061

d = 16 2027 �7.4056 �5.9009 �4.4719

d = 32 4034 �7.5943 �5.4901 �4.1039

d = 64 11, 468 �7.5173 �5.3765 �3.1057

cSMC

d = 8 512 �11.1252 �10.4173 �8.66563

d = 16 512 �11.8899 �11.1011 �9.29596

d = 32 1024 �12.5804 �11.8622 �9.6577

d = 64 4096 �13.5959 �12.7691 �9.74631

Table 1: Algorithmic settings and performance of APF and cSMC for each dimension d

and observation noise �2
g considered. Notationally, N refers to the number of particles

and RVAR is the sample relative variance of log-marginal likelihood estimates over 100

independent repetitions of each method.

denotes the step size at time t 2 [1 : T ]. Under appropriate regularity conditions, for

sufficiently small h, Mt admits an invariant distribution that is close to ⌘t [30]. Moreover,

as the corresponding Langevin diffusion is ⌘t-reversible, this suggests that Mt will also

be approximately ⌘t-reversible for small h. This prompts the choice of backward kernel

Lt�1(xt, dxt�1) = Mt(xt, dxt�1), in which case, we expect the potentials (7) to be close to

(8) when the step size is small. We have limited the scope of this article to overdamped

Langevin dynamics; future work could consider the use of generalized Langevin dynamics

and other non-reversible dynamics.

6.1 Log-Gaussian Cox point process

We end with a challenging high dimensional application of Bayesian inference for log-

Gaussian Cox point processes on a dataset3 concerning the locations of 126 Scots pine

saplings in a natural forest in Finland [32, 10, 19]. The actual square plot of 10⇥10 square

metres is standardized to the unit square and locations are plotted in the left panel of

Figure 7. We then discretize [0, 1]2 into a 30 ⇥ 30 regular grid. Given a latent intensity

process ⇤ = (⇤m)m2[1:30]2 , the number of points in each grid cell Y = (Ym)m2[1:30]2 2 N302

are modelled as conditionally independent and Poisson distributed with means a⇤m, where
3The dataset can be found in the R package spatstat as finpines.
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a = 1/302 is the area of each grid cell. The prior distribution for ⇤ is specified by ⇤m =

exp(Xm), m 2 [1 : 30]2, where X = (Xm)m2[1:30]2 is a Gaussian process with constant

mean µ0 2 R and exponential covariance function ⌃0(m, n) = �2 exp(�|m � n|/(30�))

for m, n 2 [1 : 30]2. We will adopt the parameter values �2 = 1.91, � = 1/33 and

µ0 = log(126)��2/2 estimated by [32]. This application corresponds to dimension d = 900,

a prior distribution µ = N (µ01d,⌃0) with 1d = (1, . . . , 1)T 2 Rd and likelihood function

`(x, y) =
Q

m2[1:30]2 exp (xmym � a exp(xm)), where y = (ym)m2[1:30]2 2 Y = Nd is the

given dataset.

In view of Proposition 2, we consider the following function classes

F0 =
n
'(x0) = xT

0 A0x0 + xT
0 b0 + c0 : (A0, b0, c0) 2 Sd ⇥ Rd ⇥ R

o
, (40)

Ft =
�
'(xt�1, xt) = xT

t Atxt + xT
t bt + ct � (�t � �t�1) log `(xt�1, y)

: (At, bt, ct) 2 Sd ⇥ Rd ⇥ R
o

, t 2 [1 : T ],

where (At)t2[0:T ] are restricted to diagonal matrices to reduce the computational overhead

involved in estimating large number of coefficients for a problem of this scale. The rationale

for approximating the xt�1 dependency in  ⇤
t (xt�1, xt), t 2 [1 : T ] is based on the argument

that the potentials (7) would be close to that of AIS (8) for sufficiently small step size

h. We refer to Section 7.1 of Supplementary Material for exact expressions required to

implement cSMC. As before, the diagnostics discussed in Section 3.3 reveal that such a

parameterization offers an adequate approximation of the optimal policy.

As cSMC relies on ULA moves, we select as competing algorithm AIS with Metropolis-

adjusted Langevin algorithm (MALA) moves. For both algorithms, we adopt the geometric

path (6) with �t = t/T and fix the number of time steps as T = 20. We use N = 4096

particles, I = 3 iterations for cSMC and 5 times more particles for AIS to ensure that our

comparison is performed at a fixed computational complexity. Using pilot runs, we chose

a step size of 0.5 for MALA to achieve suitable acceptance probabilities, and a smaller

step size of 0.05 for ULA as this improves the approximation in (40). The results obtained

show that AIS performs poorly in this scenario, providing high variance estimates of the

log-marginal likelihood compared to each iteration of cSMC, as displayed in the right panel

of Figure 7. The sample variance of log-marginal likelihood estimates is 372 times smaller

for the last iteration of cSMC compared to AIS, and 90 times smaller in terms of root

mean squared error4. The ESS averaged over time and repetitions was 94.24% for the last

iteration of cSMC and 67.16% for AIS.
4Computed by taking reference to an estimate obtained using many repetitions of a SMC sampler with

a large number of particles.
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log-marginal likelihood estimates obtained with 100 independent repetitions of cSMC and

AIS (right).
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1 Proofs of Section 2.7

Proof of Proposition 1. By Fubini’s theorem, �⇤ is well-defined as the integrals in (17)

exist since Z = EQ 
h
G 

0 (X0)
QT

t=1 G 
t (Xt�1, Xt)

i
is finite, and is admissible if the po-

tentials (G 
t )t2[0:T ] are bounded. From (10), the first tth-marginal distribution and time

tth-marginal distribution of P are given by

P(dx0:t) = Z�1µ (dx0)G
 
0 (x0)

(
t�1Y

s=1

M 
s (xs�1, dxs)G

 
s (xs�1, xs)

)
M 

t (xt�1, dxt)�
⇤
t (xt�1, xt)

(S1)

and

P(dxt) = Z�1Z 
t ⌘

 
t (dxt)M

 
t+1(�

⇤
t+1)(xt) (S2)

respectively, for t 2 [0 : T ]. The representation (Property 1)

P(dx0:T ) =
⇣
µ 
⌘�⇤

(dx0)

TY

t=1

(M 
t )�

⇤
(xt�1, dxt) = Q ⇤

(dx0:T )

follows from (S1)-(S2) by noting that µ (�⇤0) = Z and

P(dxt|x0:t�1) =
M 

t (xt�1, dxt)�
⇤
t (xt�1, xt)

M 
t (�⇤t )(xt�1)

for t 2 [1 : T ]. Under the refined policy  ⇤ :=  · �⇤, it follows from (16) that

G ⇤
0 (x0) = Z, G ⇤

t (xt�1, xt) = 1, t 2 [1 : T ],

hence Property 3 follows from the form of the estimator (15) and Z ⇤
t = Z for all t 2 [0 : T ].

Using the latter, (13), and (S2) establishes Property 2.

Proof of Proposition 2. For t = T , log-concavity of �⇤T = G 
T follows by assumption. For

t 2 [0 : T � 1], we proceed with an inductive argument on the backward recursion (17).

Assuming that �⇤t+1 is log-concave, note that xt 7! M 
t+1(�

⇤
t+1)(xt) is log-concave since

the product (xt, xt+1) 7! �⇤t+1(xt, xt+1)M
 
t+1(xt, xt+1) is and log-concavity is preserved by

marginalization. Hence �⇤t is log-concave as the product of log-concave functions is also

log-concave.

2 Proofs of Section 4.1

Proof of Proposition 3. We begin by noting the semigroup property

Q 
s,u(') = Q 

s,t � Q 
t,u('), 0  s < t < u  T,

2



where we recall that we have defined Q 
T (') = G 

T for any ' for notational convenience.

Define the approximate Bellman operators as Q̂ 
t ' = P ,N

t Q 
t ' for ' 2 L2(⌫ t+1), t 2 [0 :

T ]. The measures ⌫ t for t 2 [0 : T ] have been introduced in Definition 3. By defining

�̂T+1 = 1 for notational convenience and using (18), we obtain the following telescoping

decomposition

�̂t � �⇤t =

TX

u=t

Q 
t�1,u�1 � Q̂ 

u (�̂u+1) � Q 
t�1,u�1 � Q 

u (�̂u+1).

Hence by the triangle inequality we have

k�̂t � �⇤t kL2(⌫ t )


TX

u=t

kQ 
t�1,u�1 � Q̂ 

u (�̂u+1) � Q 
t�1,u�1 � Q 

u (�̂u+1)kL2(⌫ t )

for any t 2 [0 : T ]. Under Assumption A1, (27) are linear bounded operators, hence

k�̂t � �⇤t kL2(⌫ t )


TX

u=t

C 
t�1,u�1kP ,N

u Q 
u (�̂u+1) � Q 

u (�̂u+1)kL2(⌫ t )
.

Taking expectations and applying Assumption A2 yields (29).

Proof of Proposition 4. It follows from (12) that for any r 2 [1 : T ] and ' 2 L1(⌘ r ) we

have

⌘ 0 (') =
µ (G 

0')

µ (G 
0 )

, ⌘ r (') =
⌘ r�1(M

 
r (G 

r '))

⌘ r�1(M
 
r (G 

r ))
, ⌘ r�1(M

 
r (G 

r )) =
Z 

r

Z 
r�1

. (S3)

Now for r 2 [1 : T � 1] and ' 2 L2(⌫ r+1), using Jensen’s inequality and the above identity

kQ 
r (')k2

L2(⌫ r )
=

Z

X2

G 
r (x, y)2M 

r+1(')2(y)⌘ r�1(dx)M 
r (x, dy)

 kG 
r k1

Z

X2

G 
r (x, y)M 

r+1('
2)(y)⌘ r�1(dx)M 

r (x, dy)

= kG 
r k1⌘ r�1(M

 
r (G 

r ))

Z

X
M 

r+1('
2)(y)⌘ r (dy)

=
Z 

r

Z 
r�1

kG 
r k1k'k2

L2(⌫ r+1)
.

The result for r = 0 follows the same arguments. Letting ' 2 L2(⌫ t+1), whence Q 
s+1,t(') 2

L2(⌫ s+2), the above bound with r = s + 1 implies that

kQ 
s,t(')k2

L2(⌫ s+1)
= kQ 

s+1Q
 
s+1,t(')k2

L2(⌫ s+1)
 Z 

s+1

Z 
s

kG 
s+1k1kQ 

s+1,t(')k2
L2(⌫ s+2)

.

Iterating we establish (30).
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When G 
r (x, y) = G 

r (y) for all x, y 2 X and r 2 [1 : T ],

kQ 
s,t(')k2

L2(⌘ s M 
s+1)

=

Z h
Q 

s,t(')(x)
i2
⌘ s M 

s+1(dx)

=

Z "
Q 

s,t(')(x)

Q 
s,t(1)(x)

#2

(Q 
s,t(1))2(x)⌘ s M 

s+1(dx)


Z

Q 
s,t('

2)(x)

Q 
s,t(1)(x)

(Q 
s,t(1))2(x)⌘ s M 

s+1(dx),

by Jensen’s inequality applied to the Markov operator ' 7! Q 
s,t(')/Q 

s,t(1). From As-

sumption A3 in (31), and the boundedness of (G 
t )t2[0:T ] it follows that

Q 
s,t(1)(x) = G 

s+1(x)

Z
M 

s+2(x, dy)Q 
s+1,t(1)(y)   s+2kG 

s+1k1 � s+2(Q
 
s+1,t(1)) < 1.

Therefore we can write

kQ 
s,t(')k2

L2(⌘ s M 
s+1)


Z

Q 
s,t('

2)(x)Q 
s,t(1)(x)⌘ s M 

s+1(dx)

  s+2 kG 
s+1k1 � s+2

�
Q 

s+1,t(1)
� Z

Q 
s,t('

2)(x)⌘ s M 
s+1(dx)

  s+2 kG 
s+1k1 � s+2

�
Q 

s+1,t(1)
�
⌘ s M 

s+1(Q
 
s,t(1))

Z
Q 

s,t('
2)(x)

⌘ s M 
s+1(Q

 
s,t(1))

⌘ s M 
s+1(dx)

=

"
 s+2 kG 

s+1k1 � s+2

�
Q 

s+1,t(1)
�Z 

t

Z 
s

#
k'k2

L2(⌘ t M 
t+1)

,

since one can check that for any function f

⌘ s M 
s+1Q

 
s,t(f)

⌘ s M 
s+1Q

 
s,t(1)

= ⌘ t M 
t+1(f), ⌘ s M 

s+1Q
 
s,t(1) =

Z 
t

Z 
s

.

3 Proofs of Sections 4.2 and 4.3

Given � 2 S(E) and matrix-valued ' : E ! Rp⇥d with 'i,j 2 B(E) for all i 2 [1 : p], j 2
[1 : d], we extend the definition of �(') element-wise, i.e. �(')i,j = �('i,j). Assuming that

the Gram matrices

A ,N
t := ⌫ ,N

t (�t�
T
t ), t 2 [0 : T ], (S4)

are invertible, under (33) the estimated policy has the form �̂t = exp(��T
t �

 ,N
t ), t 2 [0 : T ],

where the least squares estimators � ,N
t = (A ,N

t )�1b ,N
t , t 2 [0 : T ] are defined by the

backward recursion

b ,N
T = �⌫ ,N

T (log G 
T · �T ), (S5)

b ,N
t = �⌫ ,N

t ({log G 
t + log M 

t+1(exp(��T
t+1(A

 ,N
t+1 )�1b ,N

t+1 ))} �t),
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for t 2 [0 : T �1]. To prove the claims in Theorem 1, we first establish convergence of � ,N
t

to � t := (A 
t )�1b t , given by the Gram matrix A 

t := ⌫ t (�t�
T
t ) and vector b t defined by

the backward recursion

b T = �⌫ T (log G 
T · �T ), (S6)

b t = �⌫ t ({log G 
t + log M 

t+1(exp(��T
t+1(A

 
t+1)

�1b t+1))} �t),

for t 2 [0 : T � 1].

Proposition S1. Consider ADP algorithm (21), with current policy  2  , under linear

least squares approximations (33) with basis functions (�t)t2[0:T ] chosen so that:

[A7] the Gram matrices (A 
t )t2[0:T ] are invertible;

[A8] the function x 7! M 
t (exp(��T

t �))(x) is X -measurable for all � 2 RM , t 2 [1 : T ]

and the integrals in (S6) are finite;

[A9] for each t 2 [0 : T � 1], there exist a X -measurable function Ct : X ! R+ and

a continuous function �t : R+ ! R+ satisfying ⌫ t (Ct|�t|) < 1 and limx!0 �t(x) = 0

respectively such that
���log M 

t+1(exp(��T
t+1�))(x) � log M 

t+1(exp(��T
t+1�

0))(x)
���  Ct(x)�t(|� � �0|)

holds for all x 2 X and �, �0 2 RM . As N ! 1, the least squares estimators � ,N :=

(� ,N
t )t2[0:T ] converge in probability to � := (� t )t2[0:T ];

[A10] (i) for each t 2 [0 : T � 1], the function � 7! log M 
t+1(exp(��T

t+1�))(x) is contin-

uously differentiable for all x 2 X;

(ii) its gradient x 7! g t+1(�, x) := r� log M 
t+1(exp(��T

t+1�))(x) is X -measurable for all

� 2 RM , satisfies ⌫ t (|�tg
 
t+1(�

 
t+1, ·)T |) < 1 and for each t 2 [0 : T � 1], there exists a

positive, X -measurable function C 0
t : X ! R+ satisfying ⌫ t (C 0

t|�t|) < 1 such that

��g t+1(�, x) � g t+1(�
0, x)

��  C 0
t(x)|� � �0|

holds for all x 2 X and �, �0 2 RM ;

[A11] the vector-valued function ⇠ = (⇠ t )t2[0:T ] : X2T+1 ! R(T+1)M defined component-

wise as

⇠ t = �(A 
t )�1{log G 

t + log M 
t+1(exp(��T

t+1�
 
t+1))}�t � (A 

t )�1�t�
T
t �

 
t , t 2 [0 : T � 1],

(S7)

⇠ T = �(A 
T )�1(log G 

T · �T +�T�
T
T�

 
T ),

5



satisfies ⇠ 2 L2(⌫ ) with ⌫ := ⌦T
t=0 ⌫

 
t 2 P(X2T+1) and the following central limit

theorem
p

N
⇣
⌫ ,N (⇠ ) � ⌫ (⇠ )

⌘
d�! N

⇣
0(T+1)M ,� 

⌘
(S8)

with ⌫ ,N := ⌦T
t=0 ⌫

 ,N
t .

Then we have
p

N
⇣
� ,N � � 

⌘
d�! N

⇣
0(T+1)M ,⌃ 

⌘
(S9)

where ⌃ = U � (U )T is given by a block upper triangular matrix U 2 R(T+1)M⇥(T+1)M

defined by blocks of size M ⇥ M

U 
s,t =

8
>>>>><
>>>>>:

Qt�2
u=s�1 E 

u , s < t,

IM , s = t,

0M⇥M , s > t,

(S10)

for s, t 2 [1 : T + 1], with E 
t := �(A 

t )�1⌫ t (�tg
 
t+1(�

 
t+1, ·)T ), t 2 [0 : T � 1] and 0M⇥M

as the M ⇥ M matrix of zeros.

Proof of Proposition S1. Note that for each t 2 [0 : T ], by strong law of large numbers

(LLN) for the particle approximation ⌫ ,N
t (see [4]) A ,N

t ! A 
t almost surely as N ! 1,

therefore using continuity of matrix inversion and the continuous mapping theorem, we

have (A ,N
t )�1 ! (A 

t )�1 almost surely. Using continuity of the spectral matrix norm

and another application of the continuous mapping theorem, we see that the minimum

eigenvalue of A ,N
t converges to that of A 

t , which is strictly positive under Assumption

A7. Hence for sufficiently large values of N , we have invertibility of A ,N
t with probability

one.

Starting with time t = T , by LLN b ,N
T ! b T in probability, so by Slutsky’s lemma it

follows that � ,N
T ! � T in probability. Consider the difference

� ,N
T � � T = (A ,N

T )�1(b ,N
T � A ,N

T � T ) = ((A 
T )�1 + op(1)) (b ,N

T � A ,N
T � T ).

Since (A 
T )�1(b ,N

T � A ,N
T � T ) = ⌫ ,N

T (⇠ T ) and ⌫ T (⇠ T ) = 0M with ⇠ T defined in (S7), it

follows from (S8) that b ,N
T � A ,N

T � T = Op(N
�1/2). Therefore

� ,N
T � � T = ⌫ ,N

T (⇠ T ) + op(N
�1/2) (S11)

and applying the central limit theorem (CLT) in Assumption A11 gives

p
N
⇣
� ,N

T � � T

⌘
d�! N

⇣
0M ,� T+1,T+1

⌘

6



where � T+1,T+1 2 RM⇥M refers to the lowest right block of � .

We now argue inductively: for time t 2 [0 : T � 1], we decompose b ,N
t = c ,N

t + d ,N
t

where

c ,N
t := �⌫ ,N

t ({log G 
t + log M 

t+1(exp(��T
t+1�

 
t+1))}�t),

d ,N
t := ⌫ ,N

t ({log M 
t+1(exp(��T

t+1�
 
t+1)) � log M 

t+1(exp(��T
t+1�

 ,N
t+1 ))}�t).

Assumption A8 implies c ,N
t ! b t in probability. If � ,N

t+1 ! � t+1 in probability, by

Assumption A9 we have

|d ,N
t |  ⌫ ,N

t (Ct|�t|)�t(|� ,N
t+1 � � t+1|) = op(1),

hence � ,N
t ! � t in probability. We now examine the difference

� ,N
t � � t = ((A 

t )�1 + op(1)) (c ,N
t + d ,N

t � A ,N
t � t ). (S12)

Since (A 
t )�1(c ,N

t � A ,N
t � t ) = ⌫ ,N

t (⇠ t ) and ⌫ t (⇠ t ) = 0M with ⇠ t defined in (S7), it

follows from (S8) that c ,N
t � A ,N

t � t = Op(N
�1/2). To study the term d ,N

t , we use

Assumption A10(i) and apply Taylor’s theorem to obtain

d ,N
t = �⌫ ,N

t ((� ,N
t+1 � � t+1)

T g t+1(�
 
t+1, ·)�t) + r ,N

t

with remainder

r ,N
t = �⌫ ,N

t

⇣
(� ,N

t+1 � � t+1)
T
h
g t+1(�̃

N
t+1, ·) � g t+1(�

 
t+1, ·)

i
�t

⌘

for some �̃N
t+1 lying on the line segment between � ,N

t+1 and � t+1. Applying Assumption

A10(ii) we have that

��r ,N
t

��  |�̃ ,N
t+1 � � t+1||� ,N

t+1 � � t+1|⌫ ,N
t

�
C 0

t(·)|�t|
�

 |� ,N
t+1 � � t+1|2⌫ ,N

t

�
C 0

t(·)|�t|
�

= |� ,N
t+1 � � t+1|2

h
⌫ t
�
C 0

t(·)|�t|
�

+ op(1)
i

where the second inequality follows from the definition of �̃N
t+1 and the final equality by

the LLN. By the inductive hypothesis we have that

p
N
⇣
� ,N

t+1 � � t+1

⌘
d�! N

⇣
0M ,⌃ t+1,t+1

⌘

for some ⌃ t+1,t+1 2 RM⇥M , and since by assumption ⌫ t (C 0
t(·)|�t|) < 1 we conclude

that r ,N
t = Op(N

�1). From Assumption A10(ii) and the LLN we conclude that d ,N
t =

Op(N
�1/2) and we can thus write

(A 
t )�1d ,N

t = E 
t (� ,N

t+1 � � t+1) + op(N
�1/2)

7



where E 
t := �(A 

t )�1⌫ t (�tg
 
t+1(�

 
t+1, ·)T ). Combining these observations with (S12) gives

� ,N
t � � t � E 

t (� ,N
t+1 � � t+1) = ⌫ ,N

t (⇠ t ) + op(N
�1/2). (S13)

Stacking (S13) for t 2 [0 : T � 1] and (S11) as a (T + 1)M -dimensional vector yields

⇣ ,N :=

0
BBBBBBBBB@

(� ,N
0 � � 0 ) � E 

0 (� ,N
1 � � 1 )

(� ,N
1 � � 1 ) � E 

1 (� ,N
2 � � 2 )

...

(� ,N
T�1 � � T�1) � E 

T�1(�
 ,N
T � � T )

� ,N
T � � T

1
CCCCCCCCCA

= ⌫ ,N (⇠ ) + op(N
�1/2).

Noting that the block matrix U defined in (S10) is such that U ⇣ ,N = � ,N �� for any

N 2 N, (S9) follows from the CLT in Assumption A11 and an application of the continuous

mapping theorem.

We first make some remarks about the assumptions required in Proposition S1. As-

sumptions A7 and A8 ensure that the least squares estimators converge to a well-defined

limit. Assumptions A9 and A10 are made to deal with the intractability of the function

(�, x) 7! log M 
t+1(exp(��T

t+1�))(x), which can be verified when its form is known. Lastly,

Assumption A11, which asserts existence of a path central limit theorem for the function

(S7), can be deduced in the case of multinomial resampling from [4, Theorem 9.7.1]. In

the following, we will write As,t 2 RM⇥M to denote the s, t 2 [1 : T + 1] submatrix of a

block matrix A 2 R(T+1)M⇥(T+1)M .

Theorem S1. Consider ADP algorithm (21), with current policy  2  , under linear least

squares approximations (33) with basis functions (�t)t2[0:T ] chosen so that Assumptions

A7-A11 in Proposition S1 are satisfied. Then as N ! 1, for all x 2 X2T+1, the estimated

policy �̂(x) converges in probability to the policy �̃(x) generated by the idealized algorithm

(22). Moreover, for all x 2 X2T+1, we have

p
N
⇣
�̂(x) � �̃(x)

⌘
d�! N

⇣
0(T+1),⌦

 (x)
⌘

, (S14)

where ⌦ : X2T+1 ! R(T+1)⇥(T+1) is given by

⌦ s,t = �̃s�̃t�
T
s

T+1X

k=s

T+1X

`=t

U 
s,k�

 
k,`(U

 
`,t)

T�t (S15)

for s, t 2 [1 : T + 1].
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Proof of Theorem S1. Appealing to the continuous mapping theorem allows us to conclude

from Proposition S1 that �̂t converges (pointwise) in probability to �̃t := exp(��T
t �

 
t ), t 2

[0 : T ]. Applying the delta method on (S9) establishes that the (pointwise) fluctuations

satisfy (S14), where ⌦ s,t = �̃s�̃t�
T
s ⌃

 
s,t�t for s, t 2 [1 : T + 1]. The form of the asymptotic

variance (S15) follows from the block upper triangular structure of (S10).

Proof of Theorem 2. Under Assumptions A4 and A5, existence of a unique invariant dis-

tribution ⇡ 2 P( ) and geometric convergence (35) follow from [5, Theorem 1.1]. Let '⇤

denote a fixed point of F and define the backward process '(I) = FN
U(1) � · · · � FN

U(I)('
⇤)

for I 2 N. Noting from [5, Proposition 1.1] that the limit '(1) := limI!1 '(I) does not

depend on '⇤ and is distributed according to ⇡, we shall construct the random policy

 ⇠ ⇡ by taking  = '(1).

By the triangle inequality,

⇢( ,'⇤)  ⇢('(1), '(I)) + ⇢('(I), '⇤) (S16)

for any I 2 N. To examine the first term in (S16), we consider the decomposition in the

proof of [5, Proposition 5.1]:

⇢('(I+J), '(I)) 
J�1X

i=0

I+iY

j=1

LN
U(j)⇢(F

N
U(I+i+1)('

⇤), '⇤)

for I, J 2 N. By the monotone convergence theorem, taking the limit J ! 1 gives

E
h
⇢('(1), '(I))

i


1X

i=0

I+iY

j=1

E
⇥
LN

U(j)

⇤
E
⇥
⇢(FN

U(I+i+1)('
⇤), '⇤)

⇤
.

Under Assumptions A4 and A5, it follows that ⇣ := E
⇥
⇢(FN

U ('⇤), '⇤)
⇤

< 1 since by the

triangle inequality

⇢(FN
U ('⇤), '⇤)  ⇢(FN

U ('⇤), FN
U ('0)) + ⇢(FN

U ('0), '0) + ⇢('0, '
⇤)

 (1 + LN
U )⇢('⇤, '0) + ⇢(FN

U ('0), '0).

Applying Assumption A5, the triangle inequality and the fact that '(I) ! '(1) as I ! 1
establishes that

E
h
⇢('(1), '(I))

i


1X

j=0

E
h
⇢('(I+j), '(I+j+1))

i
 ⇣↵I(1 � ↵)�1

and hence

lim
I!1

E
h
⇢('(1), '(I))

i
= 0. (S17)
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For the second term in (S16), using the fact that '⇤ is a fixed point of F , the triangle

inequality and Assumptions A5 and A6

⇢('(I), '⇤) = ⇢(FN
U(1) � · · · � FN

U(I)('
⇤), F ('⇤))


IX

i=1

⇢(FN
U(1) � · · · � FN

U(i)('
⇤), FN

U(1) � · · · � FN
U(i�1) � F ('⇤))


IX

i=1

i�1Y

j=1

LN
U(j)⇢(F

N
U(i)('

⇤), F ('⇤))

 N�1/2
IX

i=1

i�1Y

j=1

LN
U(j)E

'⇤,N

U(i)

with the convention that (FN
U(1) �FN

U(0))(') = '. Taking expectations and the limit I ! 1
gives

lim
I!1

E
h
⇢('(I), '⇤)

i
 N�1/2E

h
E'⇤,N

U

i
(1 � ↵)�1. (S18)

Combining (S16), (S17) and (S18) allows us to conclude (36).

4 Connection to Kullback-Leibler control

The Kullback-Leibler (KL) divergence from ⌫ 2 P(E) to µ 2 P(E) is defined as KL(µ|⌫) =
R
E log(dµ/d⌫)(x)µ(dx) if the integral is finite and µ ⌧ ⌫, and KL(µ|⌫) = 1 otherwise. The

intent of this section is to show that �⇤ defined in (17) is the optimal policy of an associated

KL optimal control problem [15, 10]. Making this connection allows us to leverage existing

methodology and analysis developed in the approximate dynamic programming literature

[2, 16] in Section 3.1 and 4.1 respectively.

Suppose that the current policy is  2  and consider the following optimal control

problem

inf
�2�

KL
⇣
(Q )�|P

⌘
= inf

�2�
E(Q )� [C(X0:T )] (S19)

where the set of admissible policies for the control problem is

� :=
n
� 2  : KL

⇣
(Q )�|Q 

⌘
< 1

o

and the cost functional C : XT+1 ! R can be written as

C(x0:T ) := log
d(Q )�

dQ 
(x0:T ) � log

dP
dQ 

(x0:T ). (S20)

10



Using properties of KL divergence, it follows from Property 1 of Proposition 1 that �⇤

defined in (17) solves the optimal control problem (S19). Rewriting (S20) gives

E(Q )� [C(X0:T )] = KL
⇣
(µ )�|µ 

⌘
+

TX

t=1

E(Q )�

h
KL
⇣
(M 

t )�|M 
t )(Xt�1)

⌘i

� E(µ )�

h
log G 

0 (X0)
i
�

TX

t=1

E(Q )�

h
log G 

t (Xt�1, Xt)
i

+ log Z.

We shall henceforth redefine the cost functional (S20) to remove the intractable constant

log Z that does not affect the minimizer of (S19).

Given a policy � 2 �, the corresponding value functions V � = (V �
t )t2[0:T ] of the control

problem are given by the expected cost-to-go from a fixed time and state (see for example

[2, Section 2.1])

V �
0 (x0) := KL

⇣
(M 

1 )�|M 
1 )(x0)

⌘
+

T�1X

s=1

E0,x0

(Q )�

h
KL
⇣
(M 

s+1)
�|M 

s+1)(Xs)
⌘i

� log G 
0 (x0) �

TX

s=1

E0,x0

(Q )�

h
log G 

s (Xs�1, Xs)
i
, (S21)

V �
t (xt�1, xt) := KL

⇣
(M 

t+1)
�|M 

t+1)(xt)
⌘

+
T�1X

s=t+1

Et,xt

(Q )�

h
KL
⇣
(M 

s+1)
�|M 

s+1)(Xs)
⌘i

� log G 
t (xt�1, xt) �

TX

s=t+1

Et,xt

(Q )�

h
log G 

s (Xs�1, Xs)
i
, t 2 [1 : T � 1],

V �
T (xT�1, xT ) := � log G 

T (xT�1, xT ).

In this notation, the total value of policy � is given by

v(�) := (µ )�(V �
0 ) + KL

⇣
(µ )�|µ 

⌘
= KL

⇣
(Q )�|P

⌘
� log Z.

We now define the optimal value v⇤ and optimal value functions V ⇤ = (V ⇤
t )t2[0:T ] w.r.t.

Q by taking the infimum over the set �

v⇤ := inf
�

v(�), (S22)

V ⇤
0 (x0) := inf

�s,s2[1:T ]
V �

0 (x0),

V ⇤
t (xt�1, xt) := inf

�s,s2[t+1:T ]
V �

t (xt�1, xt), t 2 [1 : T � 1],

V ⇤
T (xT�1, xT ) := � log G 

T (xT�1, xT ),

and denote the minimizer (if it exists) as �⇤ = (�t)t2[0:T ]. We stress the dependence of both

V ⇤ and �⇤ on the current policy  2  as it is omitted notationally. These minimization

11



problems can be solved using a backward dynamic programming approach. From (S21)

and (S22), we have the dynamic programming recursion

V ⇤
T (xT�1, xT ) = � log G 

T (xT�1, xT ), (S23)

V ⇤
t (xt�1, xt) = � log G 

t (xt�1, xt) + inf
�t+1

n
(M 

t+1)
�(V ⇤

t+1)(xt)

+ KL
⇣
(M 

t+1)
�|M 

t+1

⌘
(xt)

o
, t 2 [1 : T � 1],

V ⇤
0 (x0) = � log G 

0 (x0) + inf
�1

n
(M 

1 )�(V ⇤
1 )(x0) + KL

⇣
(M 

1 )�|M 
1

⌘
(x0)

o
,

v⇤ = inf
�0

n
(µ )�(V ⇤

0 ) + KL
⇣
(µ )�|µ 

⌘o
.

The above is commonly referred to as the discrete time Bellman recursion.

Owing to the use of KL costs, the minimizations in (S23) are tractable: assuming that the

current policy  2  satisfies KL(P|Q ) < 1, applying [3, Proposition 2.3] gives

V ⇤
T (xT�1, xT ) = � log G 

T (xT�1, xT ), (S24)

V ⇤
t (xt�1, xt) = � log G 

t (xt�1, xt) � log M 
t+1(e

�V ⇤
t+1)(xt), t 2 [1 : T � 1],

V ⇤
0 (x0) = � log G 

0 (x0) � log M 
1 (e�V ⇤

1 )(x0),

v⇤ = � log µ (e�V ⇤
0 ) = � log Z,

with infimum attained at �⇤t = e�V ⇤
t for t 2 [0 : T ]. Observe that the optimal value

functions are simply logarithmic transformations of the optimal policy, and the dynamic

programming recursion (S24) corresponds to (17) in logarithmic scale. The optimal value is

v⇤ = � log Z as we have adjusted the cost functional (S20). Lastly, the finite KL condition

guarantees existence of a unique minimizer �⇤ that lies in �. It should be clear from

Proposition 1 that working with the subset � ⇢  is not necessary, i.e. such a condition

is only required when we formulate �⇤ as the optimal policy of a Kullback-Leibler control

problem.
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5 A non-linear multimodal state space model

We consider a popular toy non-linear state space model [7, 12] which corresponds to working

on (X, X ) = (R, B(R)), Y = R and having

⌫(dx0) = N (x0; 0, 5)dx0, (S25)

ft(xt�1, dxt) = N
✓

xt;
1

2
xt�1 +

25xt�1

1 + x2
t�1

+ 8 cos(1.2t), �2
f

◆
dxt,

gt(xt, yt) = N
✓

yt;
1

20
x2

t , �
2
g

◆
,

for t 2 [1 : T ], where ✓ = (�2
f , �2

g) 2 R+ ⇥ R+. We will employ the BPF as uncontrolled

SMC, i.e. set µ = ⌫ and Mt = ft for t 2 [1 : T ]. As the smoothing distribution (5) is

highly multimodal, owing to the uncertainty of the sign of the latent process, this example

is commonly used as a benchmark to assess the performance of SMC methods. Moreover,

we observe from Figure S1 that this problem also induces complex multimodal optimal

policies.

5.1 Approximate dynamic programming

To approximate these policies, we rely on the following flexible function classes

Ft =

⇢
'(xt) = � log

✓ MX

m=1

↵t,m exp
�
��t(xt � ⇠t,m)2

�◆

: (↵t,m, �t, ⇠t,m) 2 R+ ⇥ R+ ⇥ R, m 2 [1 : M ]

�

for all t 2 [0 : T ], which corresponds to a radial basis function (RBF) approximation of the

optimal policy in the natural scale. With this choice of function classes, the approximate

projections (21) can be implemented using non-linear least squares.

Given the output of a twisted SMC method based on the current policy, we adopt the

following approach which is computationally more efficient. Firstly, we fix �t as a pre-

specified bandwidth factor ⌧ 2 R+ multiplied by the sample standard deviation of particles

(Xn
t )n2[1:N ] at time t 2 [0 : T ]. Instead of performing the above logarithmic projections to

learn the associated value functions, we fit the RBF approximation directly at the natural

scale with ⇠t,n = Xn
t for n 2 [1 : N ], as this can be efficiently implemented [13, p. 161]

as a linear least squares problem with non-negativity constraints in (↵t,n)n2[1:N ]. We note

that care has to be taken to ensure that these computations are numerically stable. We

then sort the estimated weights (↵t,n)n2[1:N ] and keep as knots (⇠t,m)m2[1:M ] particles with

13
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Figure S1: Optimal policy of non-linear multimodal state space model (S25) at terminal

times. The problem setting corresponds to T = 100, �2
f = 10, �2

g = 1 and the algorithmic

settings of cSMC is I = 1, N = 512, M = 16.

the M largest weights, as this avoids having to retain components with low weights. This

selection procedure allows us to adaptively focus our computational effort on approximating

the optimal policy at appropriate regions of the state space.

Writing (↵i+1
t,m )m2[1:M ] as the weights, �i+1

t as the bandwidth and (⇠i+1
t,m )m2[1:M ] as the knots

estimated by cSMC at iteration i 2 [0 : I � 1] for t 2 [0 : T ], the policy  (i) = ( 
(i)
t )t2[0:T ]

at iteration i 2 [1 : I] has the form

 
(i)
t (xt) =

X

m2[1:M ]i

↵
(i)
t,m exp

⇣
��(i)

t (xt � ⇠
(i)
t,m)2

⌘
, t 2 [0 : T ], (S26)

where m = (mj)j2[1:i] 2 [1 : M ]i is a multi-index, �(i)
t :=

Pi
j=1 �

j
t , ⇠

(i)
t,m :=

Pi
j=1 �

j
t ⇠

j
t,mj

/�
(i)
t

and

↵
(i)
t,m :=

iY

j=1

↵j
t,mj

exp

0
@�

iX

j=1

�j
t (⇠

j
t,mj

)2 + �
(i)
t (⇠

(i)
t,m)2

1
A .

It follows that under policy (S26), the initial distribution µ 
(i) is a mixture of Gaussian

distributions, Markov transition kernels (M (i)

t )t2[1:T ] are given by mixtures of Gaussian

transition kernels and evaluation of the twisted potentials (G (i)

t )t2[0:T ] defined in (11)

is tractable; exact expressions are given in Section 8.1 of the Supplementary Material.

Figure S1 shows that such a parameterization is flexible enough to provide an adequate

approximation of the optimal policy.

5.2 Comparison of algorithmic performance

We investigate the use of cSMC when the observation noise is small, i.e. high signal-to-

noise ratio, since this is the regime where BPF exhibits poor performance. To do so, we fix

14



Observation noise

�2
g = 0.1 �2

g = 0.5 �2
g = 1

A
lg

or
it

h
m

BPF

N 2252 4710 6553

ESS% 15.07% 30.24% 39.12%

log Z �281.6185 ± 1.0054 �262.9861 ± 0.6037 �250.6369 ± 0.2845

RVAR 1.27 ⇥ 10�5 5.27 ⇥ 10�6 1.29 ⇥ 10�6

cSMC

I 1 1 1

N 512 512 512

M 16 16 16

⌧ 0.5 0.4 0.3

ESS% 82.35% 92.51% 94.66%

log Z �281.1483 ± 0.2295 �262.7223 ± 0.2425 �250.6949 ± 0.1439

RVAR 6.67 ⇥ 10�7 (19.1) 8.52 ⇥ 10�7 (6.18) 3.29 ⇥ 10�7 (3.91)

Table S1: Non-linear multimodal state space model (S25): algorithmic settings and

performance of BPF and cSMC for each observation noise considered. Notationally, N

refers to the number of particles, I is the number of iterations taken by cSMC, M denotes

the number of components and ⌧ the bandwidth factor used in the ADP approximation.

Results were obtained using 100 independent repetitions each of method. The shorthand

ESS% denotes the percentage of effective sample size averaged over time and repetitions,

log Z refers to the estimation of the normalizing constant in logarithmic scale (± a standard

deviation), RVAR is the sample relative variance of these estimates over the repetitions.

Shown in bold is the gain that cSMC offers relative to BPF.

�2
f = 10 and simulate three sets of observations y0:T 2 YT+1 of length T +1 = 100 according

to (S25) as �2
g takes values in {0.1, 0.5, 1}. We use N = 512 particles in cSMC and I = 1

iteration as preliminary runs indicate that policy refinement under the parameterization

(S26) provides little improvement, especially when additional computing time is taken into

account. The number of particles in BPF is then chosen to match computational time.

The number of components M and bandwidth factor ⌧ were tuned using preliminary runs.

These algorithmic settings and the results obtained in 100 independent repetitions of each

method are summarized in Table S1. As expected, although the performance gains over

BPF diminish as the observation noise increases, it can be substantial when �2
g is small.
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6 Linear quadratic Gaussian control

This section considers a Gaussian static model (Section 2.4) which will allow us to draw

connections to concepts from the linear quadratic Gaussian (LQG) control literature [1].

Consider µ(dx0) = N (x0; µ0,⌃0)dx0 on (X, X ) = (Rd, B(Rd)) and `(x, y) = exp(�(y �
x)T R�1(y�x)/2) for some y 2 Y = Rd and symmetric positive definite R 2 Rd⇥d. By con-

jugacy, the models (6) are Gaussian and for t 2 [0 : T ] we have ⌘t(dxt) = N (xt; µt,⌃t)dxt

with

µt := ⌃t(⌃
�1
0 µ0 + �tR

�1y), ⌃t := (⌃�1
0 + �tR

�1)�1

and

Zt = det(⌃0)
�1/2 det(⌃t)

1/2 exp

✓
�1

2

�
µT

0 ⌃
�1
0 µ0 + �ty

T R�1y � µT
t ⌃

�1
t µt

 ◆
.

6.1 Riccati equation

We now show that the backward recursion (17) with  initialized as a policy of constant one

functions can be performed exactly to obtain analytic expressions of the optimal policy

w.r.t. Q. First note that under the choice of forward and backward Markov transition

kernels specified in Section 6, the potentials (7) have the form

� log Gt(xt�1, xt) = xT
t Ãtxt + xT

t b̃t + c̃t + xT
t�1D̃txt�1 + xT

t�1ẽt, (S27)

where

Ãt :=
1

8
h⌃�2

t , b̃t := �1

4
h⌃�2

t µt, c̃t :=
1

2
(�t � �t�1)y

T R�1y, (S28)

D̃t := �1

8
h⌃�2

t +
1

2
(�t � �t�1)R

�1, ẽt := �(�t � �t�1)R
�1y +

1

4
h⌃�2

t µt,

for t 2 [1 : T ]. For sufficiently small step size, observe that dropping O(h) terms in (S28)

gives log Gt(xt�1, xt) ⇡ (�t � �t�1) log `(xt�1, y) which, as expected, recovers the AIS

potentials (8). For notational convenience, we set (Ã0, b̃0, c̃0, D̃0, ẽ0) as the zero matrix

or vector of the appropriate size and write the mean of the Euler-Maruyama move as

xt�1 + hr log ⌘t(xt�1)/2 = Ptxt�1 + qt with Pt := Id � h⌃�1
t /2 and qt := h⌃�1

t µt/2.

Proposition S2. The optimal policy  ⇤ = ( ⇤
t )t2[0:T ] w.r.t. Q is given by

� log ⇤
0(x0) = xT

0 A⇤
0x0 + xT

0 b⇤0 + c⇤0, (S29)

� log ⇤
t (xt�1, xt) = xT

t A⇤
t xt + xT

t b⇤t + c⇤t + xT
t�1D

⇤
t xt�1 + xT

t�1e
⇤
t , t 2 [1 : T ],
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where the coefficients (A⇤
t , b

⇤
t , c

⇤
t , D

⇤
t , e

⇤
t )t2[0:T ] are determined by the backward recursion

A⇤
t = Ãt +

1

2
h�1Pt+1(Id � K⇤

t+1)Pt+1 + D⇤
t+1, (S30)

b⇤t = b̃t + Pt+1K
⇤
t+1b

⇤
t+1 + e⇤t+1 +

1

2
Pt+1(Id � K⇤

t+1)⌃
�1
t+1µt+1,

c⇤t = c̃t + c⇤t+1 �
1

2
log det(K⇤

t+1) +
1

2
h�1qT

t+1qt+1

� 1

2
h�1(qt+1 � hb⇤t+1)

T K⇤
t+1(qt+1 � hb⇤t+1),

D⇤
t = D̃t,

e⇤t = ẽt,

for t 2 [T�1 : 0], with K⇤
t := (Id+2hA⇤

t )
�1, t 2 [1 : T ] and initialization at (A⇤

T , b⇤T , c⇤T , D⇤
T , e⇤T ) =

(ÃT , b̃T , c̃T , D̃T , ẽT ).

Proof. We proceed by induction. Clearly, (S29) holds for t = T since  ⇤
T = GT . Assume

that (S29) holds for time t + 1. The recursion (17) can be written as

� log ⇤
t (xt�1, xt) = � log Gt(xt�1, xt) � log Mt+1( 

⇤
t+1)(xt).

Some manipulations yield

� log Mt+1( 
⇤
t+1)(xt) = xT

t

✓
1

2
h�1Pt+1(Id � K⇤

t+1)Pt+1 + D⇤
t+1

◆
xt

+ xT
t

✓
Pt+1K

⇤
t+1b

⇤
t+1 + e⇤t+1 +

1

2
Pt+1(Id � K⇤

t+1)⌃
�1
t+1µt+1

◆
� 1

2
log det(K⇤

t+1)

+ c⇤t+1 +
1

2
h�1

�
qT
t+1qt+1 � (qt+1 � hb⇤t+1)

T K⇤
t+1(qt+1 � hb⇤t+1)

 
.

Adding this to (S27) establishes that � log ⇤
t has the desired form (S29) and equating

coefficients of the polynomial gives (S30).

The backward recursion (S30) for the coefficients is analogous to the Riccati equation in

the context of LQG control. To illustrate the behaviour of these coefficients, we set the

prior as µ0 = 0d, ⌃0 = Id and the likelihood as y = (⇠, . . . , ⇠)T for some ⇠ 2 R and

Ri,j = �i,j + (1 � �i,j)⇢ for i, j 2 [1 : d] and some ⇢ 2 [�1, 1] (here �i,j denotes the

Kronecker delta). The time evolution of these coefficients is plotted in the top row of

Figure S2 for the problem setting d = 2, ⇠ = 4, ⇢ = 0.8. Noting that the optimal value of

the Kullback-Leibler control problem (S22) is

v⇤ = � log Z

= c⇤0 +
1

2
log det(⌃0) �

1

2
log det(K⇤

0 ) � 1

2
(⌃�1

0 µ0 � b⇤0)
T K⇤

0 (⌃�1
0 µ0 � b⇤0) +

1

2
µT

0 ⌃
�1
0 µ0
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with K⇤
0 := (⌃�1

0 + 2A⇤
0)

�1, the dominant contribution that the constant c⇤0 has to v⇤

suggests that it is important to estimate the constants in (S29) to learn good policies.

Moving from the bottom left to top left plot, observe that increasing the location parameter

⇠ from 1 to 4 increases the magnitude of (b⇤t , e
⇤
t )t2[0:T ] but leaves (A⇤

t , D
⇤
t )t2[0:T ] unchanged.

This behaviour is evident from the expressions of (D⇤
t , e

⇤
t )t2[0:T ] and is unsuprising for

(A⇤
t )t2[0:T ] as the parameter ⇠ does not alter the ‘structure’ of the problem. The increase

in the magnitude of (b⇤t )t2[0:T ] shows that the optimally controlled SMC method achieves

the desired terminal distribution by initializing

µ 
⇤
(dx0) = N (x0; K

⇤
0 (⌃�1

0 µ0 � b⇤0), K
⇤
0 )dx0 (S31)

closer to the posterior distribution and taking larger drifts in

M ⇤
t (xt�1, dxt) = N (xt; K

⇤
t (Ptxt�1 + qt � hb⇤t ), hK⇤

t ) dxt, t 2 [1 : T ]. (S32)

Comparing the plots in the bottom row reveals that the off-diagonal elements of (A⇤
t , D

⇤
t )t2[0:T ]

vanish under independence. Therefore these terms should be taken into account for pos-

terior distributions that are very correlated. Having obtained the optimal policy w.r.t. Q

in a backward sweep, we may then simulate the optimally controlled SMC method in a

forward pass. In Figure S3, we contrast the output of the uncontrolled SMC method with

that of the optimally controlled.

6.2 Approximate dynamic programming

The ability to compute the optimal policy in this setting allows us to evaluate the effec-

tiveness of ADP algorithm (21) under correct parameterization, i.e. select the function

classes

F0 =
n
'(x0) = xT

0 A0x0 + xT
0 b0 + c0 : (A0, b0, c0) 2 Sd ⇥ Rd ⇥ R

o
,

Ft =
�
'(xt�1, xt) = xT

t Atxt + xT
t bt + ct + xT

t�1Dtxt�1 + xT
t�1et

: (At, bt, ct, Dt, et) 2 Sd ⇥ Rd ⇥ R ⇥ Sd ⇥ Rd
o

, t 2 [1 : T ].

This choice corresponds to function classes of the form (33), hence we can use linear least

squares to estimate the coefficients at each iteration of cSMC – see (S4) and (S5). If

(Ai+1
t , bi+1

t , ci+1
t , Di+1

t , ei+1
t ) denote the coefficients estimated at iteration i 2 [0 : I � 1] of

Algorithm 3 in step 2(b), it follows that the policy at iteration i 2 [1 : I] is given by

� log 
(i)
0 (x0) = xT

0 A
(i)
0 x0 + xT

0 b
(i)
0 + c

(i)
0 ,

� log 
(i)
t (xt�1, xt) = xT

t A
(i)
t xt + xT

t b
(i)
t + c

(i)
t + xT

t�1D
(i)
t xt�1 + xT

t�1e
(i)
t ,
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Figure S2: Coefficients of the optimal policy w.r.t. Q in LQG control under various problem

settings. The algorithmic settings of cSMC are T = 10, h = 0.1, �t = t/T . Note that all

except the top right plot share the same axes.
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Figure S3: Comparison of uncontrolled SMC and optimal LQG controlled SMC in terms of

effective sample size (left) and normalizing constant estimation (right). The problem set-

ting considered here is d = 32, ⇠ = 20, ⇢ = 0.8 and the algorithmic settings of uncontrolled

SMC are N = 2048, T = 10, h = 0.1, �t = t/T .
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for t 2 [1 : T ], where A
(i)
t :=

Pi
j=1 Aj

t , b
(i)
t :=

Pi
j=1 bj

t , c
(i)
t :=

Pi
j=1 cj

t , D
(i)
t :=

Pi
j=1 Dj

t , e
(i)
t :=

Pi
j=1 ej

t . Observe from (S31) and (S32) that we need to impose the following positive def-

inite constraints

⌃�1
0 + 2A

(i)
0 � 0, Id + 2hA

(i)
t � 0, t 2 [1 : T ],

which can be done by projecting onto the set of real symmetric positive definite matrices

[9]. In our numerical implementation, we find that these constraints are already satisfied

when the step size h is sufficiently small. Although the computational complexity of this

ADP procedure is O(N), it scales quite costly in dimension d as computation of least

squares estimators require inversion of p⇥ p matrices where p = d2 +3d+1. For problems

with large d, it might be worth considering the use of iterative linear solvers which offer

reduced complexity. We note that it is possible to avoid learning the xt�1 dependency in

the policy  ⇤
t (xt�1, xt), t 2 [1 : T ] and hence reduce computational complexity drastically;

we do not exploit this observation here for simplicity of presentation but will do so for

other applications.

Figure S4 displays the coefficients estimated by cSMC with I = 2 iterations. It is striking

that with N = 2048 particles, we are able to accurately estimate, in a single ADP iteration,

the true coefficients in dimension d = 32 (here p = 1121). That said, we typically need to

increase N with d to prevent the Gram matrices (S4) from being ill-conditioned. Moreover,

we find that it is unnecessary to perform policy refinement in this example, as the estimated

policies converge immediately to an invariant distribution that is very concentrated around

the optimal policy (S29), which is the fixed point of the idealized algorithm in Theorem 2

under correct parameterization. The performance of the resulting controlled SMC method

is indistinguishable from that in Figure S3.

7 Bayesian logistic regression

Consider a binary regression problem: each observation ym 2 {0, 1}, m 2 [1 : M ] is mod-

elled as an independent Bernoulli random variable with probability of success (xT Xm),

where (u) := (1 + exp(�u))�1 for u 2 R is the logistic link function, x 2 X = Rd denotes

the unknown regression coefficients and Xm 2 Rd the m 2 [1 : M ] row of a model matrix

X 2 RM⇥d. Hence the likelihood function and its gradient is given by

`(x, y) = exp

 
yT Xx �

MX

m=1

log(1 + exp(xT Xm))

!
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Figure S4: Coefficients of the optimal policy w.r.t. Q in LQG control against estimates

obtained using ADP algorithm. The problem setting is d = 32, ⇠ = 20, ⇢ = 0.8 and the

algorithmic settings of uncontrolled SMC are N = 2048, T = 10, h = 0.1, �t = t/T .

and

r log `(x, y) = XT y �
MX

m=1

(1 + exp(�xT Xm))�1Xm

where y = (ym)m2[1:M ] 2 Y = {0, 1}M is a given dataset of interest. Following [8], we

specify a Gaussian prior distribution µ(dx0) = N (x0; µ0,⌃0)dx0 on (X, X ) = (Rd, B(Rd))

of the form µ0 = 0d and ⌃0 = ⇡2M/(3d)(XT X)�1.

7.1 Approximate dynamic programming

In view of Proposition S2 and the previous section on LQG control, we consider the function

classes in (40). As before, coefficients (Ai+1
t , bi+1

t , ci+1
t )t2[0:T ] at each iteration i 2 [0 : I�1]

can be estimated by linear least squares and the policy  (i) = ( 
(i)
t )t2[0:T ] at iteration

i 2 [1 : I] has the form

� log 
(i)
0 (x0) = xT

0 A
(i)
0 x0 + xT

0 b
(i)
0 + c

(i)
0 ,

� log 
(i)
t (xt�1, xt) = xT

t A
(i)
t xt + xT

t b
(i)
t + c

(i)
t � (�t � �t�1) log `(xt�1, y),

for t 2 [1 : T ], where A
(i)
t :=

Pi
j=1 Aj

t , b
(i)
t :=

Pi
j=1 bj

t , c
(i)
t :=

Pi
j=1 cj

t for t 2 [0 : T ].

Assuming that the constraints K
(i)
0 := (⌃�1

0 + 2A
(i)
0 )�1 � 0, K

(i)
t := (Id + 2hA

(i)
t )�1 � 0,
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t 2 [1 : T ] are satisfied or imposed, then sampling from

µ 
(i)

(dx0) = N
⇣
x0; K

(i)
0 (⌃�1

0 µ0 � b
(i)
0 ), K

(i)
0

⌘
dx0

and

M (i)

t (xt�1, dxt) = N
⇣
xt; K

(i)
t {qt(xt�1) � hb

(i)
t }, hK

(i)
t

⌘
dxt, (S33)

with qt(xt�1) := xt�1 + hr log ⌘t(xt�1)/2 for t 2 [1 : T ] is feasible and evaluation of the

twisted potentials (G (i)

t )t2[0:T ] defined in (11) is tractable since

µ( 
(i)
0 ) = det(⌃0)

�1/2 det(K
(i)
0 )1/2 exp

✓
1

2
(⌃�1

0 µ0 � b
(i)
0 )T K

(i)
0 (⌃�1

0 µ0 � b
(i)
0 ) � 1

2
µT

0 ⌃
�1
0 µ0 � c

(i)
0

◆

and

Mt( 
(i)
t )(xt�1) = det(K

(i)
t )1/2 exp

✓
1

2
h�1(qt � hb

(i)
t )K

(i)
t (qt � hb

(i)
t )(xt�1)

◆

⇥ exp

✓
�1

2
h�1(qT

t qt)(xt�1) � c
(i)
t + (�t � �t�1) log `(xt�1, y)

◆

for t 2 [1 : T ]. We note that imposing At = 0 and letting bt depend on the argument xt�1 in

(40) is related to the approach in [11, 14], as (S33) then corresponds to an Euler-Maruyama

discretization of a controlled diffusion with an additive control xt�1 7! b
(i)
t (xt�1). For this

application, the parameterization (40) provides a good approximation of the optimal policy:

we illustrate this in Figure S5 on a particular dataset concerning modeling of heart diseases.

7.2 Comparison of algorithmic performance

We now perform a comparison of algorithms on the analysis of three real datasets1 with

different characteristics, in the same manner as Section 6.1. We use N = 1024 number of

particles in cSMC and select the number of iterations using preliminary runs – see Figure

S5. The number of particles used in AIS is then chosen to match computational cost,

measured in terms of run time. These algorithmic settings and the results obtained using

100 independent repetitions each of method are summarized in Table S2. Although AIS

provides state-of-the-art results in complex scenarios for these models [6], the comparison

shows that for all datasets considered, cSMC outperforms it and particularly so for the

task of marginal likelihood estimation by several orders of magnitude.
1Datasets were downloaded from the UCI machine learning repository and standardized before analysis.
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Figure S5: Comparison of uncontrolled and controlled SMC methods in terms of effective

sample size (top left), normalizing constant estimation (top right) and variance of particle

weights (bottom row) when performing Bayesian logistic regression on the Heart disease

dataset. The algorithmic settings of cSMC are I = 5, N = 1024, T = 20, h = 1⇥10�4, �t =

t/T .
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Dataset

Heart disease Australian credit German credit

(M = 270, d = 14) (M = 690, d = 15) (M = 1000, d = 25)

A
lg

or
it

h
m

AIS

N 1843 1843 2048

h 5 ⇥ 10�2 3 ⇥ 10�2 1 ⇥ 10�2

ESS% 82.95% 79.75% 74.95%

log Z �118.0198 ± 0.4383 �252.8699 ± 1.5128 �527.4392 ± 3.3088

VAR 1.92 ⇥ 10�1 2.29 10.95

RMSE 4.40 ⇥ 10�1 2.60 10.06

cSMC

I 3 4 3

N 1024 1024 1024

h 1 ⇥ 10�4 1 ⇥ 10�3 5 ⇥ 10�4

ESS% 99.99% 99.95% 99.91%

log Z �117.9638 ± 0.0117 �250.7504 ± 0.0101 �517.9299 ± 0.0092

VAR 1.36 ⇥ 10�4 (1.41 ⇥ 103) 1.03 ⇥ 10�4 (2.23 ⇥ 104) 8.39 ⇥ 10�5 (1.31 ⇥ 105)

RMSE 1.16 ⇥ 10�2 (37.86) 1.02 ⇥ 10�2 (2.55 ⇥ 102) 9.11 ⇥ 10�3 (1.10 ⇥ 103)

Table S2: Algorithmic settings and performance of AIS and cSMC when performing

Bayesian logistic regression for each dataset. Notationally, N refers to the number of

particles, h the step size used in MALA for AIS and ULA for cSMC, and I is the number

of iterations taken by cSMC. Both algorithms take T = 20 time steps for all datasets.

Results were obtained using 100 independent repetitions each of method. The shorthand

ESS% denotes the percentage of effective sample size averaged over time and repetitions,

log Z refers to the estimation of the normalizing constant in logarithmic scale (± a stan-

dard deviation), VAR is the sample variance of these estimates over the repetitions and

RMSE the corresponding root mean squared error, which we computed by taking reference

to an estimate obtained using many repetitions of a SMC method with a large number of

particles. Shown in bold are the gains that cSMC offers relative to AIS.
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8 Model specific expressions

8.1 Expressions for non-linear multimodal state space model

For notational simplicity, we write µ0 = 0, �2
0 = 5 and µt(xt�1) := xt�1/2 + 25xt�1/(1 +

x2
t�1) + 8 cos(1.2t) for t 2 [1 : T ]. Assume that the policy  (i) = ( 

(i)
t )t2[0:T ] at iteration

i 2 [1 : I] has the form (S26). The initial distribution is given by

µ 
(i)

(dx0) =
X

m2[1:M ]i

A
(i)
0,mN

⇣
x0; µ

(i)
0,m, (�

(i)
0 )2

⌘
dx0

with

µ
(i)
0,m := (�

(i)
0 )2

⇣
2�

(i)
0 ⇠

(i)
0,m + µ0�

�2
0

⌘
, (�

(i)
0 )2 :=

⇣
2�

(i)
0 + ��2

0

⌘�1
,

and

A
(i)
0,m :=

↵
(i)
0,m exp

⇣
��(i)

0 (⇠
(i)
0,m)2 + (µ

(i)
0,m)2(�

(i)
0 )�2/2

⌘

P
n2[1:M ]i ↵

(i)
0,n exp

⇣
��(i)

0 (⇠
(i)
0,n)2 + (µ

(i)
0,n)2(�

(i)
0 )�2/2

⌘ .

For each t 2 [1 : T ], the Markov transition kernel

M (i)

t (xt�1, dxt) =
X

m2[1:M ]i

A
(i)
t,m(xt�1)N

⇣
xt; µ

(i)
t,m(xt�1), (�

(i)
t )2

⌘
dxt

with

µ
(i)
t,m(xt�1) := (�

(i)
t )2

⇣
2�

(i)
t ⇠

(i)
t,m + µt(xt�1)�

�2
f

⌘
, (�

(i)
t )2 :=

⇣
2�

(i)
t + ��2

f

⌘�1
,

and

A
(i)
t,m(xt�1) :=

↵
(i)
t,m exp

⇣
��(i)

t (⇠
(i)
t,m)2 + µ

(i)
t,m(xt�1)

2(�
(i)
t )�2/2

⌘

P
n2[1:M ]i ↵

(i)
t,n exp

⇣
��(i)

t (⇠
(i)
t,n)2 + µ

(i)
t,n(xt�1)2(�

(i)
t )�2/2

⌘ .

Evaluation of the twisted potentials (G (i)

t )t2[0:T ] defined in (11) is tractable since

µ( 
(i)
0 ) =

�
(i)
0

�0
exp

✓
�1

2
µ2

0�
�2
0

◆ X

m2[1:M ]i

↵
(i)
0,m exp

✓
��(i)

0 (⇠
(i)
0,m)2 +

1

2
(µ

(i)
0,m)2(�

(i)
0 )�2

◆

and

Mt( 
(i)
t )(xt�1) =

�
(i)
t

�f
exp

✓
�1

2
µt(xt�1)

2��2
f

◆ X

m2[1:M ]i

↵
(i)
t,m exp

✓
��(i)

t (⇠
(i)
t,m)2 +

1

2
µ

(i)
t,m(xt�1)

2(�
(i)
t )�2

◆

for t 2 [1 : T ].
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8.2 Expressions for Lorenz-96 model

Suppose that the current policy is given by (39) and write

Ã
(i)
t := A

(0)
t + A

(i)
t , b̃

(i)
t := b

(0)
t + b

(i)
t , c̃

(i)
t := c

(0)
t + c

(i)
t ,

for t 2 [0 : T ], where (A
(0)
t , b

(0)
t , c

(0)
t )t2[0:T ] are the coefficients corresponding to APF. If the

constraints K
(i)
0 := (��2

f Id + 2Ã
(i)
0 )�1 � 0, K

(i)
t := (��2

f h�1Id + 2Ã
(i)
t )�1 � 0, t 2 [1 : T ]

are satisfied or imposed, then sampling from

µ 
(i)

(dx0) = N
⇣
x0;�K

(i)
0 b̃

(i)
0 , K

(i)
0

⌘
dx0

and

M (i)

t (xt�1, dxt) = N
⇣
K

(i)
t {��2

f h�1q(xt�1) � b̃
(i)
t }, K

(i)
t

⌘
dxt, t 2 [1 : T ],

is feasible and evaluation of the twisted potentials (G (i)

t )t2[0:T ] defined in (11) is tractable

since

µ( 
(i)
0 ) = ��d

f det(K
(i)
0 )1/2 exp

✓
1

2
(b̃

(i)
0 )T K

(i)
0 b̃

(i)
0 � c̃

(i)
0

◆

and

Mt( 
(i)
t )(xt�1) = ��d

f h�d/2 det(K
(i)
t )1/2 exp

✓
�1

2
��2

f h�1(qT q)(xt�1) � c̃
(i)
t

◆

⇥ exp

✓
1

2
(��2

f h�1q � b̃
(i)
t )T K

(i)
t (��2

f h�1q � b̃
(i)
t )(xt�1)

◆

for t 2 [1 : T ].

8.3 Expressions for neuroscience model

Assume that the constraints k
(i)
0 := (1+2a

(i)
0 )�1 > 0, k

(i)
t := (��2+2a

(i)
t )�1 > 0, t 2 [1 : T ]

are satisfied or imposed. Then the initial distribution

µ 
(i)

(dx0) = N
⇣
x0;�k

(i)
0 b

(i)
0 , k

(i)
0

⌘
dx0

and the Markov transition kernels

M (i)

t (xt�1, dxt) = N
⇣
xt; k

(i)
t (↵��2xt�1 � b

(i)
t ), k

(i)
t

⌘
dxt

for t 2 [1 : T ]. Moreover, the twisted potentials (G (i)

t )t2[0:T ] defined in (11) can be evalu-

ated since

µ( 
(i)
0 ) = (k

(i)
0 )1/2 exp

✓
1

2
k

(i)
0 (b

(i)
0 )2 � c

(i)
0

◆
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and

Mt( 
(i)
t )(xt�1) = (k

(i)
t )1/2��1 exp

✓
1

2
k

(i)
t (↵��2xt�1 � b

(i)
t )2 � 1

2
��2↵2x2

t�1 � c
(i)
t

◆

for t 2 [1 : T ].
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