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Abstract

This paper focuses on automatic segmentation of spontaneous data using continuous dimensional labels from multiple coders. It in-

troduces efficient algorithms to the aim of (i) producing ground-truth by maximizing inter-coder agreement, (ii) eliciting the frames or

samples that capture the transition to and from an emotional state, and (iii) automatic segmentation of spontaneous audio-visual data to

be used by machine learning techniques that cannot handle unsegmented sequences. As a proof of concept, the algorithms introduced

are tested using data annotated in arousal and valence space. However, they can be straightforwardly applied to data annotated in other

continuous emotional spaces, such as power and expectation.

1. Introduction

In everyday interactions people exhibit non-basic, subtle

and rather complex mental or affective states like think-

ing, embarrassment or depression (Baron-Cohen and Tead,

2003). Accordingly, a single label (or any small number of

discrete classes) may not reflect the complexity of the af-

fective state conveyed by such rich sources of information

(Russell, 1980). Hence, a number of researchers advocate

the use of dimensional description of human affect, where

an affective state is characterized in terms of a number

of (continuous) latent dimensions (Russell, 1980),(Scherer,

2000).

Spontaneous data and their dimensional annotations, pro-

vided by multiple coders, pose a number of challenges to

the field of automatic affect sensing and recognition (Gunes

and Pantic, 2010). The first challenge is known as reliabil-

ity of ground truth. In other words, achieving agreement

amongst the coders that provide annotations in a dimen-

sional space is very challenging (Zeng et al., 2009). In or-

der to make use of the manual annotations for automatic

recognition, most researches take the mean of the coders

ratings, or assess the annotations manually. How to best

model inter-coder agreement levels for automatic affect an-

alyzers remain mainly unexplored. The second challenge

is known as the baseline problem: having ”a condition to

compare against” in order for the automatic recognizer to

successfully learn the recognition problem at hand (Gunes

and Pantic, 2010). Automatic affect analyzers relying on

audio modality obtain such a baseline by segmenting their

data based on speaker turns (e.g., (Wollmer, M. and Ey-

ben, F. and Reiter, S. and Schuller, B. and Cox, C. and

Douglas-Cowie, E. and Cowie, R., 2008)). For the visual

modality the aim is to find a frame in which the subject

is expressionless and against which changes in subject’s

motion, pose, and appearance can be compared. This is

usually achieved by constraining the recordings to have

the first frame containing a neutral expression. Although

expecting expressionless state in spontaneous multicue or

multimodal data is a strong and unrealistic constrain, au-

tomatic affect analysers depend on the existence of such

a baseline state (e.g., (Petridis et al., 2009; Gunes and

Piccardi, 2009)). Moreover, a number of machine learn-

ing techniques such as (coupled) Hidden Markov Models

and Hidden-state Conditional Random Fields cannot han-

dle unsegmented sequences, they require the data to have

a class label for the entire sequence. To date, many auto-

matic affect recognizers using audio-visual data and utiliz-

ing the aforementioned techniques segment their data man-

ually (e.g., (Petridis et al., 2009)).

This paper provides solutions to all of the aforementioned

issues. It (i) produces ground-truth by maximizing inter-

coder agreement, (ii) elicits the frames or samples that cap-

ture the transition to and from an emotional state (a baseline

condition to compare against), and (iii) automatically seg-

ments long sequences of spontaneous audio-visual data to

be used by machine learning techniques that cannot handle

unsegmented sequences.

2. Data

As a proof of concept, the algorithms introduced are tested

using data annotated in arousal (how excited or apathetic

the emotion is) and valence (how positive or negative the

emotion is) space to obtain sequences that contain ei-

ther positive or negative emotional displays. We use the

Sensitive Artificial Listener Database (SAL-DB) (Cowie

et al., 2005; Douglas-Cowie et al., 2007) and the SE-

MAINE Database (SEMAINE-DB) 1 that contain audio-

visual spontaneous expressions.

2.1. Data Sets and Annotations

Both for the SAL-DB and the SEMAINE-DB, spontaneous

data was collected to the aim of capturing the audio-visual

1The Semaine Database: http://semaine-db.eu/
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interaction between a human and an avatar with four per-

sonalities: Poppy (happy), Obadiah (gloomy), Spike (an-

gry) and Prudence (pragmatic).

The SAL data has been annotated by a set of coders who

provided continuous annotations with respect to valence

and arousal dimensions using the FeelTrace annotation tool

(Cowie et al., 2000; Cowie et al., 2005). Feeltrace allows

coders to watch the audio-visual recordings and move their

cursor, within the 2-dimensional emotion space (valence

and arousal) confined to [−1, 1], to rate their impression

about the emotional state of the subject.

For SAL-DB, 27 sessions (audio-visual recordings) from 4

subjects have been annotated. 23 of these sessions were an-

notated by 4 coders, while the remaining 3 sessions were

annotated by 3 coders. The SEMAINE-DB has also been

annotated using FeelTrace along five emotional dimensions

(valence, arousal, power, expectation and intensity) sepa-

rately, by (up to) 4 coders.

2.2. Challenges

The time-based operation of Feeltrace presents us with the

following challenges: (i) for the sessions coded, there is

no one-to-one correspondence between the timestamps of

each coder, (ii) throughout the annotation files, there are

time intervals where annotations are not available, and (iii)

annotations are not (always) synchronized with the audio-

visual data stream.

We tackle the first issue by binning the annotations: an-

notations that correspond to one video frame are grouped

together. The second point refers to missing annotations

for some sets of frames. This could potentially be due

to the following reasons: (i) the coder might not be cer-

tain about the annotation for that particular interval, (ii)

the coder might release the mouse button for some other

reason, (iii) the coders appear to stop annotating when the

avatar is talking, and (iv) the CPU load may have an effect

on the frequency of measurements being recorded. Finally,

the third issue could possibly be due to the following: (i) the

response time is expression dependent, i.e., positive expres-

sions are perceived faster and more accurately than negative

ones (Alves et al., 2008), and (ii) the lag caused by the CPU

load may have an effect on the synchronization between the

actual video played and the recording of the annotations.

Table 1: The inter-coder MSE after applying local normal-

isation procedures: normalizing to a standard deviation of

one and a zero mean (GD), normalizing to zero mean (ZA)

and no normalisation (NN).

ZAMSE GDMSE NNMSE

Valence 0.046 0.93 0.072

Arousal 0.0551 0.9873 0.0829

3. Methodology

In this section we address the challenges identified when

working with databases annotated in continuous dimen-

sional spaces.

Algorithm 1: Binning the annotations of the coders {set of

bins, b}← Binning()

//all members of any structures are considered to be zero1

for each coder file c in the annotation files set do2

for each annotation a in a coder file c with a timestamp of t do3

Determine bin b where t ∈ b4

b.val ← b.val + a.val5

b.arsl ← b.arsl + a.arsl6

b.annotCount ← b.annotCount + 17

end8

for all bins b in the set of bins do9

Average b.val and b.arsl by dividing with b.annotCount10

end11

end12

Algorithm 2: Detecting crossovers in coder anno-

tations: {PosCrossOver, NegCrossOver} ← De-

tectCrossovers(coder c)

//bstr is the binned structure, every member is an annotation of A-V values at that1

frame by the specific coder

for each f in bstr do2

if sign(bstr(f).val) "= sign(bstr(f − 1).val) then3

if sign(bstr(f).val) > 0 then4

Add f to PosCrossOver structure5

end6

else7

if sign(bstr(f).val) < 0 then8

Add f to NegCrossOver structure9

end10

end11

end12

end13

3.1. Annotation Pre-processing

This process involves determining normalisation proce-

dures and extracting statistics from the data in order to ob-

tain segments with a baseline and high inter-coder agree-

ment.

Binning. Binning refers to grouping and storing the anno-

tations together. As a first step the measurements of each

coder c are binned separately. Since we aim at segmenting

video files, we generate bins which are equivalent to one

video frame f . This is equivalent to a bin of 0.04 seconds

(SAL-DB was recorded at a rate of 25 frames/s). The basic

binning procedure is illustrated in Algorithm 1. The fields

with no annotation are assigned a ”not a number” (NaN )

identifier.

Normalisation. The arousal and valence (A-V) measure-

ments for each coder are not in total agreement, mostly due

to the variance in human coders’ perception and interpre-

tation of emotional expressions. Thus, in order to deem

the annotations comparable, we need to normalize the data.

Similar procedures have been adopted by other works using

SAL-DB (e.g. (Wollmer, M. and Eyben, F. and Reiter, S.

and Schuller, B. and Cox, C. and Douglas-Cowie, E. and

Cowie, R., 2008)).

We experimented with various normalisation techniques.

After extracting the videos and inspecting the superim-

posed ground truth plots, we opted for local normalisation

(normalizing each coder file for each session). This helps

us avoid propagating noise in cases where one of the coders

is in large disagreement with the rest (where a coder has a

very low correlation with respect to the rest of the coders).

As can be seen from Table 1, locally normalizing to zero

mean produces the smallest mean squared error (MSE) both
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for valence (0.046) and arousal (0.0551) dimensions. Vary-

ing the standard deviation results in values which are out-

side the range of [−1, 1] and generates more disagreement

between coders.

Statistics and Metrics. We extract two useful statistics from

the annotations, with a motivation of using them as mea-

sures of agreement amongst the annotations provided: cor-

relation (COR) and sign-agreement (SAGR). We start the

analysis by constructing vectors of pairs of coders that cor-

respond to each video session, e.g., when we have a video

session where four coders have provided annotations, this

gives rise to six pairs. For each of these pairs we extract

the correlation coefficient between the valence (val) values

of each pair, as well as the percentage of sign-agreement in

the valence values, which stands for the level of agreement

in emotion classification in terms of positive or negative:

SAGR(ci, cj) =

∑|frames|
f=0

e(ci(f).val, cj(f).val)

|frames|
(1)

where ci and cj represent the pair of coders the sign-

agreement metric is calculated for, and ci(f).val stands for

the valence value annotated by coder ci at frame f . Func-

tion e is defined as:

e(i, j) =

{

1 if(sign(i) = sign(j))
0 else

The sign-agreement metric is of high importance for the va-

lence dimension as it determines whether the coders agree

on the classification of the emotional state as positive or

negative. More specifically, such metrics provide informa-

tion regarding the perception and annotation behaviour of

the coders (i.e., to what degree data is annotated similarly

by different coders). In these calculations we do not con-

sider the NaN values to avoid negatively affecting the re-

sults.

After these metrics (agreement, correlation) are calculated

for each pair, each coder is assigned the average of the re-

sults of all pairs that the coder has participated in. In other

words, the averaged metric m′
S,cj

with respect to coder cj

for a specific metric m (i.e., correlation or agreement) is

defined as follows:

m′
S,cj

=
1

|S|− 1

∑

i∈S,ci "=cj

m(ci, cj) (2)

where S is the relevant session annotated by |S| number of

coders, and each coder annotating S is defined as ci ∈ S.

Essentially, we calculate the averaged level of agreement

of coder cj with respect to the rest, by using the metric

m. This is somewhat equivalent to the enumerator of the

modified Williams Index, which would be obtained by di-

viding this enumerator by the averaged level of agreement

of all the coders except cj (Alberola-Lopez et al., 2004).

Instead, we obtain the weighted average by using the m′

as weights, as shown in line 28 of Algorithm 4. The au-

tomatic segmentation process is based on the correlation

metric (cor′) alone as correlation experimentally proved

stricter than sign-agreement in providing better comparison

between the coders.

Interpolation. In order to deal with the issue of missing

values, similar to other works reporting on data annotated

in continuous dimensional spaces (e.g., (Wollmer, M. and

Eyben, F. and Reiter, S. and Schuller, B. and Cox, C. and

Douglas-Cowie, E. and Cowie, R., 2008)), we interpolated

the actual annotations at hand. We used piecewise cubic

interpolation as it preserves the monotonicity and the shape

of the data.

Algorithm 3: Match crossovers across coders for each

session, maximizing the number of coders participating:

{MatchedCO}←MatchCrossOvers(CrossOvers)

for Each session s do1

for i=4 to 2 do2

//get as many coders as possible to agree (max. 4 and min. 2)3

for Each crossover co in CrossOvers belonging to s do4

currentlyMatched ← {co}5

Find all crossovers co2 in CrossOvers which:6

- Belong to s7

- Are from different coders8

- co2 "= co ∧ abs(co2.time− co.time) ≤ 0.5 seconds9

Add the co2 to currentlyMatched10

if length(currentlyMatched) = i then11

mark all crossovers in currentlyMatched as seen12

add currentlyMatched to MatchedCO13

remove currentlyMatched from CrossOvers14

belonging to s

end15

end16

end17

end18

3.2. Automatic Segmentation

The automatic segmentation stage consists of producing

negative and positive audio-visual segments with a tem-

poral window that contains an offset before and after (i.e.,

the baseline) the displayed expression. This process is pre-

sented in Algorithm 4 that makes use of Algorithms 2 and

3.

Firstly, we describe the actual time window that the audio-

visual segment is supposed to capture. For instance, for

capturing negative emotional states, if we assume that the

transition from non-negative to a negative emotional state

occurs at time t (in seconds), we then have a window of

[t − 1, t, t′, t′ + 1] where t′ seconds is when the emotional

state of the subject returns to non-negative. The procedure

is analogous for positive emotional states.

Detecting and Matching Crossovers. In Algorithm 2,

for an input coder c, the crossing over from one emo-

tional state to the other is detected by examining the va-

lence values and identifying the points where the sign

changes. Here a modified version of the sign function

is used which returns 1 for values ≥ 0 (a value of 0

valence is never encountered in the annotations), −1 for

negative, and 0 for NaN values. Algorithm 2 accumu-

lates all crossover points for each coder, and returns the

set of crossovers to-a-positive (PosCrossOver) and to-a-

negative (NegCrossOver) emotional state. The output is

then passed to Algorithm 3.

The goal of Algorithm 3 is to match crossovers across

coders. For instance, if a session has annotations from 4

coders, due to synchronization issues discussed previously,

the frame (f ) where each coder detects the crossover is

not the same for all coders (for the session in question).

Thus, we have to allow an offset for the matching process.
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Figure 1: Two examples of interpolated valence ((a),(c))

and arousal ((b),(d)) plots from two individual segments

produced by the segmentation procedure.
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Figure 2: Valence annotations from two coders in

SEMAINE-DB before and after applying pre-processing

operations.

This procedure searches the crossovers detected by the

coders and then accepts the matches where there is less

than the pre-defined offset (time) difference between

them. When a match is found, we remove the matched

crossovers and continue with the rest. The existence of

different combinations of crossovers which may match

using the predefined offset poses an issue. By examining

the available datasets, we decided to maximize the number

of coders participating in a matched crossover set rather

than minimizing the temporal distances between the

participating coders. The motivations for this decision are

as follows: (i) if more coders agree on the crossover, the

reliability of the ground truth produced will be higher, and

(ii) the offset amongst the resulting matches is on average

quite small (less than 0.5 secs) when considering only the

number of participating coders. Maximising the number

of participating coders can simply be achieved by iterating

over the entire set of crossovers. This is expressed by the

loop beginning in line 2 of Algorithm 3. We disregard

cases where only one coder detects a crossover due to lack

of agreement between coders.

Segmentation Driven by Matched Crossovers : This pro-

cedure (illustrated in Algorithm 4) takes the output of

Algorithm 3, and attains the sets of matched crossovers

(Algorithm 3, lines 6-7). An iteration for all sets of

matched crossovers for to-Negative transition is shown

starting in line 7. mcos, mcos(i).f and mcos(i).c repre-

sent the current matched crossover, the frame where the i-

Figure 3: Example frames from an automatically extracted

segment from SEMAINE-DB capturing the transition from

a negative to a positive emotional state and back.

th crossover (of the matched crossover) occurred, and the

coder who detected the i-th crossover of mcos, respec-

tively. mcos(i).val is the vector of valence measurements

for coder i participating in mcos. The crossover frame de-

cision (for each member of the set) is made in lines 10:17,

and the start frame of the video segment is decided. In or-

der to capture 1 second before the transition window, the

number of frames corresponding to the pre-defined offset

are subtracted from the start frame. The ground truth val-

ues for valence are retrieved in lines 19:30 by incrementing

the initial frame number where each crossover was detected

by the coders. The procedure of determining combined av-

erage values continues until the valence value crosses again

to a non-negative valence value. The endpoint of the audio-

visual segment is then set to the frame including the offset

after crossing back to a non-negative valence value.

The ground truth of the audio-visual segment consists of

the arousal and valence (A-V) values described in lines 24
and 28 of the algorithm. If only two coders agree in the

detection of crossovers, their contribution is weighted by

using the correlation metric (cor′, calculated as described

in Equation 2).

4. Experiments and Results

As a proof of concept, the algorithms introduced have been

extensively tested on SAL-DB.

We first present in Fig. 1 two segments extracted by using

Algorithm 4, for a transition to a negative emotional state.

The first dashed vertical line represents the transition to that

state, and the second one out of that state. In the plots,

we present the A-V values after the interpolation. Thus, at

times no crossover may be observed in the valence values.

As performance evaluation is a significant issue for any au-

tomatic system, in Table 2 we attempt to provide mean-

ingful performance results of the introduced algorithms on

SAL-DB. The table presents the performance of the auto-

matic audio-visual segmentation procedure in terms of: (i)

how well it is able to utilise the actual number of frames

(# of frames), (ii) using the given data, how many audio-

visual segments it is able to produce (# of segments), and

(iii) how much overlap there is (overlap) between the seg-

ments, and between the positive and negative classes. The

goal of the automatic segmentation procedure is then to

utilise as many frames as possible from the given data to

produce a high number of meaningful segments. Too much

overlap between the segments or between the classes is un-
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Table 2: Evaluation of the introduced segmentation algorithms using SAL-DB. The table presents the actual number of

frames together with the utilised number of frames (# of frames), the number of audio-visual segments produced (# of

segments) using the data at hand, and the intra-class (percentage of frames included in more than one segment within the

same class) and inter-class (percentage of frames included in both classes) overlap.

subject # 1 2 3 4

total # of frames 56162 80553 28583 88199

negative

# of frames 27389 46056 14554 43353

# of segments 110 170 99 166

intra-class overlap 6.42% 8.33% 4.53% 7.70%

positive

# of frames 23831 36034 13584 38589

# of segments 110 149 91 174

intra-class overlap 18.90% 14.18% 10.22% 11.60%

inter-class overlap 6.16% 7.39% 14.37% 9.92%

Algorithm 4: Segment and produce ground truth: Segmen-

tation()

for each coder annotation file c do1

//capture a transition to and from a neg. state to a non-neg.2

// use the correlation (cor′) for weighting when match has 2 coders3

{PosCrossOver, NegCrossOver}← DetectCrossovers(c)4

MatchedPos←MatchCrossOvers(PosCrossOver)5

MatchedNeg ←MatchCrossOvers(NegCrossOver)6

for each matched set of crossovers mcos in MatchedNeg do7

//average time (frame) of crossing over to negative valence8

//0.5 second offset has been used9

if length(mcos)≥ 3 then10

//agreement in 3 or 4 coders11

avgFrm = int

(

∑ |mcos|
i=0

mcos(i).f

length(mcos)

)

12

end13

else14

//2 coders agree, weight using correlation (cor′)15

avgFrm = int

(

∑ |mcos|
i=0

(mcos(i).f∗cor′(mcos(i).c))

∑ |mcos|
i=0

cor′(mcos(i).c)

)

16

end17

startFrm = avgFrm− 2518

incFrm← 019

repeat20

incFrm← incFrm + 121

if length(mcos)≥ 3 then22

//agreement in 3 or 4 coders23

avgValence =24
∑ |mcos|

i=0
mcos(i).val(mcos(i).f+incF rm)

length(mcos)

end25

else26

//2 coders agree, weight using cor′27

avgValence =28
∑ |mcos|

i=0
(mcos(i).val(mcos(i).f+incF rm)∗cor′(mcos(i).c))

∑ |mcos|
i=0

cor′(mcos(i).c)

end29

until sign(avgValence)=1 or avgValence is NaN ;30

//add offset after crossing back to non-negative (or NaN)31

endFrm = (avgFrm + incFrm) + 2532

//Video is segmented in the range [startFrm,endFrm]33

//Ground truth (valence/arousal) is averaged34

end35

//the process is repeated analogously for ”to-Positive” crossovers36

(MatchedPos) - line 7
end37

intended and undesirable, but expected to some degree due

to the offsets before and after the transitions. By observing

Table 2 we conclude that the algorithm fulfills its goal.

As a final step we test the developed algorithms on the re-

cently released SEMAINE-DB. Although the arousal and

valence annotations of SEMAINE-DB do not contain NaN

values, the steps to be followed for segmentation are simi-

lar.

Finally, a qualitative assessment of the proposed algorithms

is provided by Fig. 2 and Fig. 3. Fig. 2 illustrates valence

annotations from two coders in SEMAINE-DB before and

after applying pre-processing operations (for synchroniza-

tion). Fig. 3 shows example frames from an automatically

extracted segment from SEMAINE-DB using the presented

algorithms. Overall, the produced segment appears to well

capture the transition from a negative emotional state to a

positive one, and back.

5. Conclusion

This paper introduced efficient algorithms to the aim of (i)

producing ground-truth by maximizing inter-coder agree-

ment, (ii) eliciting the frames that capture the transition to

and from an emotional state, and (iii) automatic segmen-

tation of spontaneous multimodal data to be used by ma-

chine learning techniques that cannot handle unsegmented

sequences. As a proof of concept, the algorithms intro-

duced have been tested using SAL and SEMAINE data an-

notated in arousal and valence spaces. Overall, the auto-

matic segmentation procedures introduced appear to work

as desired and output segments that well capture the tar-

geted emotional transitions.
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