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Abstract

Building on deep representation learning, deep su-
pervised hashing has achieved promising perfor-
mance in tasks like similarity retrieval. However,
conventional code balance constraints (i.e., bit bal-
ance and bit uncorrelation) imposed on avoiding
overfitting and improving hash code quality are un-
suitable for deep supervised hashing owing to their
inefficiency and impracticality of simultaneously
learning deep data representations and hash func-
tions. To address this issue, we propose proba-
bilistic code balance constraints on deep supervised
hashing to force each hash code to conform to a dis-
crete uniform distribution. Accordingly, a Wasser-
stein regularizer aligns the distribution of generated
hash codes to a uniform distribution. Theoretical
analyses reveal that the proposed constraints form
a general deep hashing framework for both bit bal-
ance and bit uncorrelation and maximizing the mu-
tual information between data input and their cor-
responding hash codes. Extensive empirical anal-
yses on two benchmark datasets further demon-
strate the enhancement of compactness and infor-
mativeness of hash codes for deep supervised hash
to improve retrieval performance (code available at:
https://github.com/mumuxi/dshwr).

1 Introduction
Due to the explosive growth of high-dimensional and large-
scale data in real applications, hashing has attracted signif-
icant attention and has been widely utilized for fast infor-
mation search and retrieval tasks in recent years. Intending
to improve storage and search efficiency, hashing encodes
high-dimensional data into compact binary codes which pre-
serve the similarities of original data. Parallel to tradi-
tional data-independent hashing, e.g., locality sensitive hash-
ing (LSH) [Datar et al., 2004] applying random projections
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(a) Original Images (b) DHN (c) DCH

(d) CNN Features (e) DHN+CB (f) DCH+CB

Figure 1: Visualization illustration using T-SNE. Figures (a) and (d)
are the visualization of original images and CNN features extracted
via a pre-trained AlexNet [Krizhevsky et al., 2012]. Figures (b) and
(c) visualize the hash codes generated by DHN [Zhu et al., 2016]
and DCH [Cao et al., 2018] respectively, while figures (e) and (f)
visualize the hash codes from DHN and DCH considering code bal-
ance constraint [Wang et al., 2018] (suffixed ”+CB”).

as hash functions, this paper focuses on data-dependent hash-
ing (specifically supervised hashing). It aims to learn task-
specific hash functions to guarantee the similarities in hash
coding space as close as those in the original space and is
roughly categorized into supervised and unsupervised hash-
ing [Wang et al., 2016; Wang et al., 2018].

Benefiting from the advances of deep neural models in
nonlinear end-to-end representation learning, deep hashing
has enjoyed wide attention in similarity retrieval [Wang et
al., 2021]. Especially, deep supervised hashing (DSH) meth-
ods jointly learn deep representation and hash codes through
given similarity/label supervision, achieving state-of-the-art
retrieval performance [Wu et al., 2019]. Recent DSH meth-
ods focus primarily on refining or customizing objective func-
tions for preserving similarity, e.g., reducing quantization
loss caused by continuous relaxation [Gattupalli et al., 2019],
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weighting training pairs to tackle the label imbalance is-
sue [Cao et al., 2018] and introducing class-wise learning ob-
jective [Wang et al., 2020]. However, these methods hardly
involve code balance constraints to improve hash quality,
e.g., compactness and informativeness of hash codes. In fact,
a large number of works have demonstrated that code bal-
ance can effectively avoid learning collapse, i.e., generating
the same hash codes for all similar datapoints, and facilitate
generating compact and informative hash codes [Weiss et al.,
2008; Chen et al., 2019]. Figure 1 illustrates an example of
random 5, 000 images from the CIFAR-10 dataset. We can
observe: figure (b) is overly intensive and figure (c) shows
excessive dispersion and intra-cluster overlaps (fewer points
in figure), and both two figures show massive inter-cluster
overlaps. In contrast, figures (e) and (f) show better perfor-
mance due to preserving both inter-cluster and intra-cluster
discriminability, indicating that code balance promotes code
compactness and informativeness.

Unfortunately, traditional code balance constraints, such as
bit balance and bit uncorrelation, imposed on whole data pop-
ulation [Weiss et al., 2008], are unsuitable for DSH methods
due to three key issues: 1) finding the zero-mean-thresholded
hash functions that achieve bit balance is difficult, especially
when building deep hash functions [Wang et al., 2012]; 2)
obtaining the hash codes for all datapoints once is both ineffi-
cient and impractical when simultaneously learning deep data
representation and hash functions; 3) traditional code balance
constraints are unsuitable for the conventional batch training
in deep models, since guaranteeing code balance across the
entire data population hardly hold same balance conditions in
each data batch. Due to the above issues, DSH methods rarely
consider the benefits obtainable from code balance, which
leads to low quality and representability of hash codes.

To tackle the above issues, we propose a novel probabilistic
code balance constraint suitable for DSH scenarios. Specifi-
cally, we force each hash code to independently satisfy a dis-
crete uniform distribution on {−1, 1}K , i.e., Uni({−1, 1}K).
Our theoretical analysis indicates that it not only covers the
traditional bit balance and bit uncorrelation constraints but
maximizes the mutual information between the original data
and the corresponding hash codes. The deep insights reveal
that the constraint introduces random noise to uniformly scat-
ter datapoints into hash space and to improve hash robustness
and avoid overfitting. In addition, we propose a Wasserstein
regularization that utilizes the Wasserstein-1 distance to mea-
sure the distance between the hash code distribution and the
target discrete uniform distribution and minimize the regular-
ization to achieve the constraint. The contributions can be
summarized as follows:

• We propose a novel probabilistic code balance constraint
suitable for DSH and theoretically analyze the effective-
ness and insights of the constraint for the first time.

• We introduce Wasserstein regularization to achieve the
constraint via Wasserstein-1 distance and propose an
empirical estimate of the Wasserstein regularization.

• We conduct extensive experiments using different types
of SotA DSH baselines on two benchmark datasets in
terms of metrics on retrieval performance and informa-

tiveness. The results show the constraint not only en-
hances code compactness for promoting retrieval perfor-
mance but improves the informativeness of hash codes.

2 Related Work
Supervised hashing aims to learn similarity-preserving hash
functions via the given/computed similarity relation in the
original space [Wang et al., 2018]. With the emergence
of early supervised hashing methods, e.g., spectral hash-
ing [Weiss et al., 2008], graph hashing [Liu et al., 2014]
and kernel hashing [Liu et al., 2012], which learn hash
projection vectors rather than random projections in the
data-independent hash, supervised hashing has attracted
an increasing amount of research interest and achieved
significantly better performance than the data-independent
hash [Shi et al., 2017]. To improve hash quality, the non-deep
supervised hashing adopts code balance constraints – bit bal-
ance and bit uncorrelation – to avoid learning collapse and
facilitate generating compact hash codes [Luo et al., 2020].

Deep supervised hashing methods, leveraging the capa-
bility of deep learning in representation learning, outper-
form non-deep hashing methods and has thus been widely
applied [Dizaji et al., 2018; Wu et al., 2019]. Most DSH
methods focus on refining or customizing objective functions,
e.g., quantization loss [Zhu et al., 2016; Gattupalli et al.,
2019], weighted pairwise loss [Cao et al., 2018] and triple
loss [Liu et al., 2018], for preserving similarity. A cou-
ple of works, e.g. pointwise methods [Jiang et al., 2018;
Su et al., 2018], further introduce label supervision to cap-
ture global position relationship, which is influenced by the
quality of classification results. Recently, some works intro-
duce class centers as proxies of classes to ensure continuous
semantic similarity, which improves the discriminability of
hash codes [Yuan et al., 2020; Wang et al., 2020]. Although
these methods can achieve excellent performance, code bal-
ance constraints, which are beneficial to improving hash qual-
ity, are generally ignored in the DSH context. Quite a few
previous methods such as [Chen et al., 2019] consider code
balance to improve hash quality. However, those methods
often utilize discrete optimization algorithms to solve the ob-
jective functions and act on the whole data population, which
thus is inefficient under large-scale data and unsuitable for
DSH. To tackle these issues, this work proposes a probabilis-
tic code balance suitable for DSH to facilitate the learning of
compact and informative hash codes.

3 Preliminary: Supervised Hashing
We first outline the general supervised hashing settings used
to achieve similarity-preserving hash codes. Let X ⊂ RD and
Y ⊂ {−1, 1}K be the input domain and binary hash domain
respectively, where D and K denote their respective dimen-
sions. We have pairwise supervision of similarity information
S ∈ {0, 1}n×n for n datapoints where sij = 1 if datapoints
xi and xj in X are semantically similar and sij = 0 other-
wise. Supervised hashing aims to learn a mapping function
Hϕ := X → Y with parameters ϕ (e.g., a neural network)
by minimizing the gap between the similarities S in the input
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domain X and those calculated in the hash domain Y . We
then introduce the two traditional code balance constraints.
Code Balance. To avoid severe overfitting and guarantee
high-quality hash codes [Wang et al., 2016; Wang et al.,
2018], bit balance and bit uncorrelation are usually consid-
ered from the information-theoretic perspective. Let X :=
{xi ∈ X}ni=1 and Y := {yi = HΦ(xi),yi ∈ Y}ni=1.

• Bit Balance: To generate compacted hash codes, it is
desirable to maximize the information contained in each
hash bit. According to the maximum entropy principle,
hash bits that provide balanced partitioning of X, i.e.,∑n

i=1 yi = 0, have maximum information.
• Bit Uncorrelation: A general method of obtaining in-

formative hash codes is to maximize the informativeness
in hash codes by forcing the different hash bits to be un-
correlated (mutually orthogonal), i.e.,

∑n
i=1 yiy

T
i = nI

(where I is an identity matrix of size n).

4 Probabilistic Code Balance Constraint
We propose a novel code balance constraint that suits DSH
scenarios. More specifically, we force each generated hash
code independently to satisfy a discrete uniform distribution
on {−1, 1}K , e.g., y ∼ Uni({−1, 1}K), where we can prove
that the constraint over Y covers the aforementioned bit bal-
ance and bit uncorrelation constraint:
Theorem 1 (Coverage of Bit Balance and Bit Uncorrela-
tion). For any yi ∈ Y, if yi ∼ Uni({−1, 1}K), it satisfies
E(

∑n
i=1 yi) = 0 and E(

∑n
i=1 yiy

T
i ) = nI.

Theorem 1 (proved in Appendix A) indicates that y ∼
Uni({−1, 1}K) can achieve both effects of the above two
code balance constraints. Unlike the two constraints per-
forming summation over the hash codes of all datapoints in
a symmetrical manner, our proposed asymmetrical constraint
forces the hash codes to satisfy the independent discrete uni-
form distribution and has no need to obtain the hash codes for
all datapoints beforehand. It can effectively avoid the diffi-
culty in achieving the zero-mean threshold in the bit balance.
Theorem 2 (Mutual Information Maximization). Given X
and Y where Y is a deterministic function of X, if PY is a
uniform distribution on the space of Y; then mutual informa-
tion between X and Y, i.e., I(X,Y), is the maximum.

The key insight underpinning the probabilistic code bal-
ance constraint is that of maximizing the mutual information
between the original data and the corresponding hash codes
(as illustrated in Theorem 2 proved in Appendix B). The ob-
tained hash codes, therefore, preserve not only the similar-
ity relationships but also more information from the origi-
nal data. Intuitively, the constraint uniformly scatters data-
points into hash space via introducing random noises, which
facilitates avoiding overfitting training data and improves the
generalization robustness of hash functions. In addition, we
can easily find that our proposed constraint is irrelevant to
the scale of data since the proposed constraint is imposed
on every single bit. It is therefore consistent to impose the
constraint on data batches and the whole data population, in-
dicating that the constraint is suitable for batch training. In

summary, the proposed code balance tackles the three key is-
sues in adopting the traditional code balance constraints and
is suitable for DSH. Next, we minimize the distance between
the distribution of the generated hash codes and the target dis-
crete uniform distribution to achieve the proposed constraint.

4.1 Wasserstein Regularization
We propose a Wasserstein regularization to estimate the dis-
tance between the distribution of generated hash codes and
the target discrete uniform distribution, thereby achieving the
proposed probabilistic code balance constraint via minimiz-
ing the estimated distance. We here denote the discrete uni-
form distribution as Pr : Uni({−1, 1}K), and the distri-
bution of hash codes as Pϕ, i.e., yi ∼ Pϕ, which is gen-
erated by the specific deep hash function Hϕ. To achieve
yi ∼ Uni({−1, 1}K), we minimize the distance between the
two distributions Pr and Pϕ. Accordingly, we introduce the
Wasserstein-1 distance (a.k.a. Earth-Mover distance), which
is a distance function between probability distributions de-
fined on the same metric space Ω, i.e., Pr and Pϕ defined on
space Ω = {−1, 1}K in our case:

W (Pr,Pϕ) = inf
γ∈Γ(Pr,Pϕ)

E(y,y′)∼γ∥y − y′∥, (1)

where Γ(Pr,Pϕ) denotes the set of all joint distributions
γ(y,y′), the marginal distributions of which are Pr and Pϕ

respectively. Intuitively, we can understand the definition via
considering the optimal transport problem: in the given space
Ω, the Wasserstein-1 distance reflects the minimal cost of
transporting mass from Pr to Pϕ in order to transform the
distribution Pr to the distribution Pϕ. Analogously, we pro-
pose an empirical estimate of the Wasserstein-1 distance in
a way that makes it unnecessary to directly estimate the dis-
tribution of hash codes. More specifically, given input data
X ∈ Rn×D, we first randomly sample n binary target vec-
tors denoted by A, the elements of which follow Pr:

A ∈ {−1, 1}n×K , s.t. a ∈ {−1, 1}K ,a ∈ A, a ∼ Pr. (2)

We then optimally pair the hash code of each datapoint with
each target vector respectively such that the sum of the dis-
tances between all pairs is minimal. To obtain the optimal
pairing matrix P ∈ {0, 1}n×n, we first define a set of con-
straints (denoted P) for all possible pairing matrices:

Pn = {P ∈ {0, 1}n×n|P1n = 1n,P
T1n = 1n}, (3)

where 1n denotes a n-sized vector with all 1s. Given hash
codes Y of X, we then optimize the following objective:

min
P∈Pn

1

2
||Y −PA||2F = min

P∈Pn

−tr(PAYT ), (4)

where we use a squared ℓ2 distance, and tr(·) denotes the
trace function. Once an optimal pairing matrix P is found,
the above distance can be regarded as an estimate of the
Wasserstein-1 distance between Pr and Pϕ, that is:

inf
γ∈Γ(Pr,Pϕ)

E(y,y′)∼γ∥y − y′∥ ≈ min
P∈Pn

−tr(PAYT ). (5)

Accordingly, the learning objective of DSH equipped with
Wasserstein Regularization (WR) contains two components:
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Algorithm 1 Alternating Optimization

1: Input: Given input data S.
2: Initiate the neural network ϕ and set batch size b
3: while stopping criteria is not satisfied do
4: Fixing ϕ, randomly sample b input samples Xb and

calculate Ỹb.
5: Randomly sample Ab from the distribution Pr.
6: Solve Pb using Hungarian algorithm.
7: Update ϕ using batch gradient descent according to the

gradients ∇ϕJ ′(ϕ).
8: end while

the similarity loss used to preserve the similarity S in the
original space, and the Wasserstein Regularization which en-
hances the compactness and informativeness of hash codes:

J (ϕ) = min
ϕ

ℓ(S,YYT ) + βmin
ϕ

min
P∈Pn

−tr(PAYT ), (6)

where Y = Hϕ(X), and β > 0 denotes a balance weight
adjusting the importance of Wasserstein Regularization. The
similarity loss is calculated via the loss function ℓ and can be
specified to the similarity loss of a certain DSH method.

4.2 Optimization
Following the common continuous relaxation treatment [Li et
al., 2017; Cao et al., 2018], we approximate the sgn function
with a squashing function (e.g., tanh), the output Ỹ of which
is within (−1, 1). We thus obtain a differentiable neural func-
tion H ′

ϕ := X → Ỹ and the corresponding learning objec-
tive J ′(ϕ) updated as below, of which the parameters can be
solved using gradient-based back propagation algorithm.

J ′(ϕ) = min
ϕ

ℓ(S, ỸỸT )− βmin
ϕ

min
P∈Pn

tr(PAỸT ). (7)

Apart from A which is randomly sampled from the distribu-
tion Pr, we further need to obtain the optimal pairing matrix
P. Obtaining P is a linear assignment problem, which can be
solved exactly via Hungarian algorithm [Kuhn, 1955]. Un-
der the batch gradient updates, the algorithm can efficiently
perform under the restriction of one batch, significantly re-
ducing the time complexity from O(n3) to O(nb2), where b
is the number of samples in one batch.

Accordingly, we apply an alternating optimization to solve
Equation 7. First, when fixing Ỹ, we sample b training sam-
ples Xb and calculate its corresponding intermediate matrix
Ỹb. We then randomly sample b target vectors, denoted by
Ab from the discrete uniform distribution and solve Pb ∈ Pb

with the Hungarian algorithm to optimally pair Ỹb and Ab.
Finally, when fixing Ab and Pb, we update the parameters ϕ
via batch gradient descent. The corresponding algorithm is
presented in Algorithm 1.

5 Experiments and Evaluation
To verify the effectiveness of the proposed probabilistic code
balance in promoting retrieval performance and improving
hash code quality, we select six state-of-the-art deep hash-
ing baselines and compare the baselines with their variants
equipped with WR on two public image datasets.

5.1 Experimental Setup
Datasets. We adopt two public image datasets for evalua-
tion. 1) CIFAR-101: the dataset consists of 60, 000 32 × 32
images in 10 classes, where each class has 6, 000 images.
Two images will be treated as a ground-truth similar pair
if they share common label. 2) NUS-WIDE2: it contains
a total of 269, 648 images. Similar to [Zhu et al., 2016;
Liu et al., 2019], we use its subset of 195, 834 images as-
sociated with the 21 most frequently concepts, where each
concept consists of at least 5000 images, and define two im-
ages as a groundtruth similar pair if they share at least one
common label.
Baselines. We select different types of SotA DSH meth-
ods, including pointwise, pairwise and class-wise methods,
for evaluation in our experiments: 1) DSDH [Li et al.,
2017] jointly learns a linear classifier based on pointwise
groundtruth labels along with the hash functions; 2) Hash-
Net [Cao et al., 2017] tackle the data balance issue by weight-
ing training pairs; 3) DCH [Cao et al., 2018] further intro-
duces a Cauchy cross-entropy loss to measure pairwise sim-
ilarity; 4) ADSH [Jiang and Li, 2018] directly learns hash
codes for all database points asymmetrically and efficiently.
5) CSQ [Yuan et al., 2020], the latest class-wise method, pro-
poses a global similarity metric referring to hash centers. 6)
DPAH [Wang et al., 2020] introduces learnable class centers
as the global proxies to capture global similarity. Note that
non-deep hashing methods are not included in our experi-
ments due to the focus on DSH. To evaluate the effective-
ness of our proposed probabilistic code constraint, we con-
struct a WR-enabled variant for each baseline, i.e., adding
the Wasserstein regularization to its objective function.
Evaluation Protocol. We follow the experimental settings
recommended in [Zhu et al., 2016; Li et al., 2017]. In CIFAR-
10 and NUS-WIDE, we randomly sample 100 images per
class to form the testing set, with the remaining images used
as the database, then randomly sample 100 images and 500
images per class from the database to act as the validation
set and training set respectively (we adopt the whole database
for training in ADSH for consistency.). To facilitate fair com-
parison, we adopt the same network (see Appendix C), fix
batch size to 256 for all baselines, and evaluate the compara-
tive methods over code length K ∈ {16, 32, 48, 64}. We tune
the baselines on validation sets to find their optimal config-
uration. For their WR-enabled variants, we further tune the
balance hyperparameter β within the range of 0.1 to 1.0 with
step 0.1 to obtain the best results. All experiments have been
run five times, and the average results are reported. In the
experiments, we report the Mean Average Precision (MAP)
to evaluate similarity retrieval performance, while Mutual In-
formation Neural Estimation (MINE) [Belghazi et al., 2018]
is used to evaluate the informativeness of hash codes.

5.2 Results and Discussion
Retrieval Performance. The MAP results of each baseline
and its corresponding WR-enabled variant are reported in Ta-
ble 1. As we can observe from the table, the WR-enabled

1http://www.cs.toronto.edu/kriz/cifar.html
2http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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Method WR
CIFAR-10 NUS-WIDE

16 bits 32 bits 48 bits 64 bits ∆ 16 bits 32 bits 48 bits 64 bits ∆

DSDH
/ 0.7407 0.7523 0.7478 0.7486

2.52
0.7038 0.721 0.7208 0.7215

1.37+ 0.7493* 0.7737* 0.7704* 0.7713* 0.7127* 0.7315* 0.7301* 0.7321*

HashNet
/ 0.6628 0.691 0.6903 0.6853

2.29
0.7017 0.7323 0.7418 0.7378

1.75+ 0.6771* 0.7045* 0.7083* 0.7021* 0.7115* 0.7467* 0.7539* 0.7526*

DCH
/ 0.7451 0.7484 0.7491 0.7253

1.77
0.7182 0.7555 0.7593 0.7413

3.08+ 0.7515* 0.7626* 0.7587* 0.7477* 0.7291* 0.7718* 0.7887* 0.7763*

ADSH / 0.6438 0.7612 0.764 0.761 3.67 0.7007 0.7102 0.7182 0.7022 2.61+ 0.6702* 0.7869* 0.7911* 0.7893* 0.7144* 0.7273* 0.7358* 0.7278*

CSQ
/ 0.7436 0.7691 - 0.755

2.05
0.76 0.7761 - 0.7812

1.93+ 0.7587* 0.7871* - 0.7685* 0.7721* 0.7896* - 0.8003*

DPAH
/ 0.7129 0.7217 0.7347 0.7329

2.33
0.7567 0.7832 0.7912 0.7819

2.11+ 0.7287* 0.7381* 0.7521* 0.751* 0.7691* 0.7978* 0.8097* 0.802*

Table 1: MAP evaluation of the six baselines and their WR-enabled variants on two public datasets. The better results between baselines with
(+) and without (/) WR are shown in bold where ∗ indicates the statistically significant improvement (i.e., two-sided t-test with p < 0.05).
∆ denotes the average improvement of each WR-enabled variant over its baseline.
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Figure 2: MAP evaluation of the WR-enabled variants with different β on CIFAR-10 (a-c) and NUS-WIDE (d-f).

variants outperform their corresponding baselines. More
specifically, the WR-enabled variants perform much better
on longer code lengths, i.e., 32 bits and 48 bits, where the
MAP improvement of each WR-enabled variant over its base-
line is over 1.74% and can reach 3.87%. This is intuitively
attributable to the fact that the learning of the similarity-
preserving objective is more easily distorted, and more vul-
nerable to the noise introduced by WR, as smaller code
lengths. Moreover, we find that the improvement on ADSH,
CSQ, and DPAH is larger than that on the others. This is
attributable that WR-enabled ADSH trained on the database
points improves the quality of the hash codes on these points,
while the Wasserstein regularization can further improve the
discriminability of the hash codes (especially for similar data-
points) generated from the class-wise methods, i.e, CSQ and
DPAH. The above results are impressive since the Wasser-
stein regularization promotes the retrieval performance on
different kinds of DSH methods, including point-wise (label-
based), pairwise and class-based methods. In addition, we in-
vestigate the approximation quality of Wasserstein-1 distance
(i.e., Equation 5) and observe that the WR-enabled variants
get better performance with the increase of batch size and the
best MAP when batch size b = 512 (see Appendix D). These
results demonstrate that Wasserstein regularization introduc-
ing random noises is beneficial to improving the robustness

WR 16 32 64 128 256 512

/ 5.9 4.14 3.23 2.77 2.57 2.47
+ 6.1 4.29 3.43 2.95 2.89 2.96

∆ 3.39 3.62 6.19 6.5 12.45 19.84

Table 2: Average training time cost (seconds per epoch) over six
baselines with K = 48 on CIFAR in terms of different batch sizes.

of hash functions and avoiding overfitting training data.
Training Complexity. We ran the baselines and their WR-
enabled variants using a single GTX-1080 GPU. The aver-
age training time costs on different training batch sizes are
reported in Table 2; ∆ denotes the percentage of additional
training time cost required by WR-enabled variants over their
corresponding baselines. The results show that the time cost
for computing Wasserstein regularization increases as the
batch size increases. This is because the bulk of the time
cost associated with WR computation is linked with predict-
ing hash codes for batch data, i.e., O(bTh) where Th denotes
the time complexity for a single datapoint, as well as that
for applying the Hungarian algorithm, i.e., O(nb2). In ad-
dition, the percentage is less than 13% when the batch size
b <= 256, indicating that the additional time cost is afford-
able and worthwhile considering the benefits of WR.
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(a) Original Images (b) DSDH (c) HashNet (d) DCH (e) ADSH (f) CSQ (g) DPAH

(h) CNN Features (i) DSDH+WR (j) HashNet+WR (k) DCH+WR (l) ADSH+WR (m) CSQ+WR (n) DPAH+WR

Figure 3: Visualization on CIFAR-10. We report one pair visualization for each baseline, where each pair corresponds to a baseline and its
WR-enabled variant with the same code length. See Appendix E for the visualization results on NUS-WIDE.

Performance Varying with β. We also investigate the re-
trieval performance of WR-enabled variants under varying
values of β on the two datasets. Note that results on K = 48
are not reported due to space limitations. Comparing the fig-
ures of different bits, we find that the WR-enabled variants
perform better on longer code lengths and worse on shorter
code lengths, confirming the results in Table 1. In addition,
the performance of most WR-enabled variants decreases as
the values of β increase from 0.3 to 0.9, especially on K = 16
and K = 32. This is reasonable because Wasserstein reg-
ularization – i.e., the probabilistic code balance – improves
hash quality by introducing random noise and avoiding DSH
overfitting from arising during the supervision of similarity
in training data. However, when β increases, a larger weight
is allocated to Wasserstein regularization; this may result in
the hash function being highly biased to noises and greatly
degrade the retrieval performance.

5.3 Code Compactness and Informativeness
In this section, we evaluate the compactness and informative-
ness of the hash codes generated in the first experiment. We
first calculate the mutual information between the original
data (images) and the corresponding hash codes via MINE
by a 100 − 100 − 1 sized three-layer fully-connected neural
network, as in Table 3. The results show that WR enables
large amounts of mutual information between each original
data and its hash codes, which indicates that the Wasserstein
regularization improves the informativeness of the generated
hash codes. We further visualize the hash codes via T-SNE, as
shown in Figure 3. We find that WR-enabled variants achieve
good performance, and even outperform their baselines, in
terms of similarity preservation. In addition, when compar-
ing WR-enabled variants with their baselines, we easily ob-
serve that hash codes generated by WR-enabled variants are
scattered and exhibit less overlap, indicating the higher com-
pactness and informativeness of the hash codes. These re-
sults demonstrate the effectiveness of the probabilistic code
balance and reveal that WR, with its introduction of random
noise to scatter hash codes, improves the compactness and in-

Method WR
CIFAR-10 NUS-WIDE

16 bits 48 bits 16 bits 48 bits

DSDH
/ 0.0652 0.2421 0.3988 0.4351
+ 0.2589 0.8625 0.4855 0.5774

HashNet
/ 0.3265 -0.1598 0.4032 0.3284
+ 0.4158 0.8124 0.6889 0.4302

DCH
/ -0.4109 -1.3194 0.2854 0.1212
+ 2.3706 -0.8522 0.6512 0.3622

ADSH
/ -0.9106 -0.1058 0.3681 -0.0159
+ 0.463 0.1225 0.7014 0.0249

CSQ
/ -0.2578 -0.2235 0.1481 0.2545
+ 0.273 0.3131 0.687 0.5318

DPAH
/ -0.8566 -0.5169 0.2171 0.0711
+ 0.1669 0.643 0.9378 0.321

Table 3: Informativeness evaluation of the baselines and their WR-
enabled variants. Better results are marked in bold.

formativeness of hash codes and provides benefits for model
generalization, i.e., avoiding training data overfitting.

6 Conclusions
To improve the quality of hash codes in deep supervised hash-
ing, we propose a novel probabilistic code balance constraint,
which forces each hash bit to independently satisfy a discrete
uniform distribution on {−1, 1}K (K is hash code length).
We prove and analyze the effectiveness and insights of the
proposed constraint, and further incorporate the Wasserstein
regularization to implement the constraint. Extensive experi-
ments by comparing six DSH baselines and their WR-enabled
variants on two image benchmark datasets demonstrate the
probabilistic code balance can effectively promote retrieval
performance and improve the compactness and informative-
ness of hash codes.
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