np)J | Quantum Information

ARTICLE

www.nature.com/npjqi

A quantum causal discovery algorithm

Christina Giarmatzi'? and Fabio Costa®'

Finding a causal model for a set of classical variables is now a well-established task—but what about the quantum equivalent? Even
the notion of a quantum causal model is controversial. Here, we present a causal discovery algorithm for quantum systems. The
input to the algorithm is a process matrix describing correlations between quantum events. Its output consists of different levels of
information about the underlying causal model. Our algorithm determines whether the process is causally ordered by grouping the
events into causally ordered non-signaling sets. It detects if all relevant common causes are included in the process, which we label
Markovian, or alternatively if some causal relations are mediated through some external memory. For a Markovian process, it
outputs a causal model, namely the causal relations and the corresponding mechanisms, represented as quantum states and
channels. Our algorithm opens the route to more general quantum causal discovery methods.

npj Quantum Information (2018)4:17 ; doi:10.1038/s41534-018-0062-6

INTRODUCTION

The discovery of causal relations is a basic and universal task
across all scientific disciplines. The very nature of causal relations,
however, has been a long-standing subject of controversies with
the central question being what, if anything, distinguishes
causation from correlation.

It is only recently that a rigorous framework for causal discovery
has been developed.' Its core ingredients are causal mechanisms
that are responsible for correlations between observed events,
with the possibility of external interventions on the events. It is the
possibility of interventions that provides an empirically well-
defined notion of causation, distinct from correlation: an event A is
a cause for an event B if an intervention on A results in a change in
the observed statistics of B. A causal model is typically defined as a
set of direct-cause relations and a quantitative description of the
corresponding causal mechanisms. The causal relations are
represented as arrows in a graph and the causal mechanisms
are usually described in terms of transition probabilities (Fig. 1).

Among the most important achievements of causal models is
the development of algorithms for causal discovery. The objective
of such algorithms is to infer a causal model based on
observational and interventional data. Such algorithms have
found countless applications and constitute one of the backbones
in the rising field of machine learning, as causal discovery is a
crucial intermediate step for many of its algorithms.

It is a natural question whether similar algorithms can be
developed for quantum systems. In simple quantum experiments,
causal relations are typically known and well under control.
However, the fast growth of quantum technology goes towards
the development of networks of increasing size and complexity.
Hence, appropriate tools to recover causal relations might become
necessary for the functioning of large, distributed quantum
networks, as it is already the case for classical ones’ Causal
discovery might further detect the presence of “hidden common
causes”, namely external sources of correlations that might
introduce systematic errors in a quantum experiment or device.

Finally, from a foundational perspective, the possibility of discover-
ing causal relations from empirical data opens the possibility to
recover causal structure from more fundamental primitives.

Classical causal discovery algorithms, however, fail to discover
causal relations in quantum experiments.* A considerable effort
has been recently devoted to solve this tension and transfer causal
modeling tools to the quantum domain,>'? leading to the
formulation of a quantum causal modeling framework.'>'® (See
refs. '7'8 for a broader philosophical context.)

Here we introduce an algorithm for the discovery of causal
relations in quantum systems. The starting point of the algorithm is
a description of a quantum experiment (or “process”) that makes no
prior assumption on the causal relations or temporal order between
events.' Given such a description, encoded in a process matrix, the
algorithm extracts different levels of causal information for the
events in the process. It determines whether or not they are causally
ordered, namely if they can be organized in a sequence where later
events cannot influence earlier ones. If a causal order exists, the
algorithm finds whether all common causes are modeled as events
in the process matrix—a property expressed by the condition of
Markovianity, as defined in ref. '°. If the process is Markovian, the
algorithm outputs a causal model for it: a causal structure (depicted
as arrows connecting events) together with a list of quantum
channels and states that generate the process.

The complexity of our algorithm scales quadratically with the
number of events, although the size of the problem itself (the
dimension of the process matrix) is exponential. This suggests that
the algorithm can be used efficiently given an efficient encoding
of the input to the code. We further comment on possible
extensions of the algorithm to deal with processes that are not
Markovian, not causally ordered, or that follow a different
definition of Markovianity.'® We provide the implementation of
the algorithm, written on MatLab, some examples, and a Manual
(https://github.com/Christina-Giar/quantum-causal-discovery-algo.
git). The code uses some functions developed by Toby Cubitt
(http://www.dr-qubit.org/matlab.html).

'Centre for Engineered Quantum Systems, School of Mathematics and Physics, University of Queensland, Brisbane QLD 4072, Australia and “Centre for Quantum Computation
and Communication Technology, School of Mathematics and Physics, University of Queensland, Brisbane QLD 4072, Australia

Correspondence: Christina Giarmatzi (c.giarmatzi@ug.edu.au)

Received: 17 April 2017 Revised: 8 December 2017 Accepted: 19 January 2018

Published online: 06 March 2018

Published in partnership with The University of New South Wales

NP| nature partner
pJ journals

http://orcid.org/0000-0002-6547-6005
http://orcid.org/0000-0002-6547-6005
http://orcid.org/0000-0002-6547-6005
http://orcid.org/0000-0002-6547-6005
http://orcid.org/0000-0002-6547-6005
https://doi.org/10.1038/s41534-018-0062-6
https://github.com/Christina-Giar/quantum-causal-discovery-algo.git
https://github.com/Christina-Giar/quantum-causal-discovery-algo.git
http://www.dr-qubit.org/matlab.html
mailto:c.giarmatzi@uq.edu.au
www.nature.com/npjqi

A quantum causal discovery algorithm
C Giarmatzi and F Costa

RESULTS

Process framework

We will use a formulation of quantum mechanics that can assign
probabilities to quantum events with no prior knowledge of their
causal relations.' This formulation is based on the “combs”
formalism for quantum networks,?® with the main difference that
the causal order between events is not assigned in advance.

In this framework, a quantum event A can be thought to be
performed by a party inside a closed laboratory (Fig. 2)—which is
associated with an input and an output Hilbert space, H* and
H%, respectively—and is represented by a completely positive
(CP) map M4~ L(HA) — L(H™), where £(H®) is the space
of linear operators over the Hilbert space of system S. A quantum
instrument is the collection of CP maps J% = {MA}, such that

> M* is a CP and trace-preserving (CPTP) map.

Mtvas found that, for a set of parties {A', ..., A"}, the joint
probability of their CP maps to be realized, given their
instruments, is a function of their maps and some matrix that
mediates their correlations:

p(MA‘7...7MA"|\7AW’...“7A”)

(1)
—Tr [WAﬂAamA."Ag (MA.‘Az, ® - ® MArAg)} _

Using a version of the Choi-Jamiolkovsky (CJ) isomorphism,?'*2

the CJ matrix M4 € £(H" @ H*), isomorphic to a CP map M* :
L(HM) — L(H™) is defined as MA% = [T @ M(|p")(d*])]",
where T is the identity map, |¢T) = 27:'1 i) € HA @ HA, {|j>}72‘1
is an orthonormal basis on H* and T denotes matrix transposition
in that basis and some basis of M. Finally, WA%- A" e
L(HA @ HY @ - @ HY @ H%) is a positive semi-definite
matrix that lives on the combined Hilbert space of all input and
output systems of the parties and is called process matrix. Equation
(1) can be seen as a generalization of the Born rule, and the
process matrix as a generalization of the quantum state, as it is the
resource that allows calculating joint probabilities for all possible
events. Just as the Born rule is the only non-contextual probability
assignment for POVM measurements,®®> Eq. (1) is the only non-
contextual probability rule for CP maps.*

Here we are interested in situations where causal relations
define a partial order, which we call causal order. We identify
causal relations with the possibility of signaling: if the probability
of obtaining an outcome in laboratory B can depend on the
settings in laboratory A, we say that A causally precedes B, and
write A < B. (We write A||B if no signaling is possible and say A and
B are causally independent.) The process matrices that define a
causal order between the events are called causally ordered.

A 5

(/ \\

O /| .
O /‘\ j/

G) i

Fig. 1 Causal relations. An example of a causal relation and its
representation in a graph. Credits: C. Giarmatzi

npj Quantum Information (2018) 17

From mathematical to graphical representation

The causal structure encoded in the process matrix can be
represented by a directed acyclic graph (DAG). A directed graph is a
pair G = (V, &), where V ={V,, ..., V,;} is a set of vertices (or nodes)
and £ECVxV is a set of ordered pairs of vertices, representing
directed edges. A directed path is a sequence of directed edges
where, for each edge, the second vertex is the first one in the next
edge. Figure 3(a) shows a directed path from V; to Vs. A directed
cycle is a directed path that ends up in a vertex already used by
the path, as shown in Fig. 3(b). A DAG is a directed graph with no
directed cycles, as shown in Fig. 3(c). We refer to edges as causal
arrows.

Following ref. ">, we define a quantum causal model by
associating a specific type of process matrix to a DAG. To this end,
we associate a party, with input and output spaces, to each node
of the DAG. If the node has more than one outgoing arrow, then
the output space is composed of subsystems, with one subsystem
for each arrow. We refer to them as output subsystems. We define
the parent space ™ of a node A as the tensor product of all output
subsystems associated with an arrow ending in A. A Markov
quantum causal model is then defined by a collection of quantum
channels, one for each node A, connecting the parent space of A
to its input space.

Now let us see how a process matrix whose causal structure is
represented by a DAG looks like. It will be a tensor product of
three types of factors: input states for the set of parties with no
incoming arrow in the DAG, channels connecting each input
system of a remaining party with its parent space, and finally the
identity matrix 1 for the output systems of the set of parties with

15

LAS —EVENT
! Faesaes]

MEASOR &
N or
N

S

E 5

Fig. 2 Lab-event. A picture of a quantum event, consisting of a
measurement stage of the input system and a preparation stage for
the output system. It may also be simply a unitary transformation.
Credits: C. Giarmatzi

) 8) ¥

Fig. 3 Examples. Figure (@) shows a DAG with a directed path from
V; to V3, (b) an example of a directed cycle and (c) another example
of a DAG. Credits: C. Giarmatzi

Published in partnership with The University of New South Wales

no outgoing arrows in the DAG. For example, if {F', %, ..., M', M?,
... L, I, ...}is a set of parties where F, M and L is the label for the
three set of parties described above (first, middle, and last),
respectively, then their process matrix would be

WHAFS- — p? ®p§f @M 7™M ® . ALl 2

where T™M is a ‘matrix representing a CPTP map 7 from the
parent space of W, ™, to the input of M, M, via the isomorphism
(same as the one used to describe the CP maps of the parties, but
without transposition). T M := 7 @ T (|) (d"|) € H™ @ HM.

From now on we identify a channel with its matrix representa-
tion. A representation of Markovian processes as in Eq. (2) is also
employed in the study of open quantum systems.>

The above condition for the causal structure of the process
matrix to be described by a DAG is a quantum generalisation of
the Markov condition for classical variables and so it can be called
the quantum Markov condition.” (We will comment below on a
slightly different possible definition.'®) Such a process matrix is
also causally ordered, with a partial order defined by the DAG.
However, the class of causally ordered process matrices is strictly
broader than Markovian ones, and they are represented by
quantum combs.?® As we will see later, causally ordered processes
that are not Markovian can be understood as processes involving
correlations with some unobserved systems—called ‘latent’
variables. The algorithm we present here detects whether a
process matrix is causally ordered and if it is, it outputs the causal
order of sets of parties that are causally independent. It further
detects Markovianity and for a Markovian process it outputs the
DAG associated with the process matrix. We discuss in section
“Non-Markovian processes” possible extensions of the algorithm
that could output a DAG for a non-Markovian process.

Quantum causal discovery

The code takes as an input a process matrix, which can be
obtained from experimental data. The procedure is similar to
guantum state tomography: one can reconstruct the process
matrix given the probabilities arising from informationally
complete instruments.'® The code also requires information about
the dimension of all input and output systems and the
decomposition of the output systems into subsystems. The output
subsystems represent possible outgoing arrows, to be discovered
by the algorithm.

The linear constraints. A process matrix of the form of Eq. (2)
satisfies a set of linear constraints. This set identifies a DAG—in
fact, each constraint corresponds to a particular element in the
DAG. There are two types of constraints.

Open output: A party A has an open output when in the
process matrix W there is an identity matrix on the
corresponding output system Aq. This translates to the following
linear constraint:

~A
1° @Tra,W=Ww, 3)

where 7°° = 140 /d,. and d,, is the dimension of the system Ao.
When this condition is satisfied, the party A cannot signal to any
party and is considered /ast. In the case where the output system
of the party is decomposed into output subsystems Ag, i=1, ...,
n, then the corresponding identity matrix in the process matrix
lives on the Hilbert space of that output subsystem Ao,. We also
call this subsystem open and the linear constraint is

~A
1 @ Trp W = W. 4

Channel: A quantum channel between the input of a party A
and its parents space ™ is represented by a factor 774 in the
process matrix, as we have already mentioned. It is a positive

Published in partnership with The University of New South Wales

A quantum causal discovery algorithm
C Giarmatzi and F Costa

npj

matrix that lives on the tensor product of the Hilbert spaces of the
output and input systems involved, and has the property that
upon tracing out the output of the channel (the input of A) what
remains is identity on the input (the space of output systems):

Tr, T4 =17 5)

This property is necessary and sufficient for the channel to be
trace preserving and we use it to discover channels in the process
matrix: we trace out the input of A, A, and we check whether in
the remaining process matrix there is identity on the output
system of a given party, say, B. This describes a linear constraint
that a process matrix satisfies when there is a channel from the
output of B to the input of A.

1% Trg, (Tra W) = Tra W. ©)

If the output of party B is decomposed into subsystems, then we
use the above constraint for each subsystem separately, by
replacing Bo with every output subsystem Bo,.

~Bo,
177 @ Trg, (Tra W) = Tra W. 7

Note that conditions (6) and (7) are also satisfied for open
systems and subsystems, respectively. However, the algorithm
checks conditions (3) and (4) first and does not consider again
those (sub)system that have been tagged “open”. Therefore, it will
not associate a channel to open (sub)systems. The maximal set of
output systems and subsystems for which conditions (6) and (7)
hold is the parent space of A, ™.

In the concrete implementation of the algorithm, the above
equalities are tested up to some precision defined by a small
number &, which can be adjusted depending on the working
precision. When testing examples generated numerically, this
permits one to take into account the different numerical rounding
of non-integer numbers that might otherwise lead to errors—for
example, /2 defined up to some digit will be different to v/22/+/2
as the rounding of the last digit in different steps of the
calculation will cause a different result. Naturally, the number € can
also be adjusted to account for experimental inaccuracies, when
the process matrix is obtained from experimental data.

The code. The causal discovery code subjects the process matrix
to the above types of linear constraints and the set of them that
are satisfied defines the DAG.

The code takes as input: the number of parties, the dimension
of each input system, output system, output subsystem, and the
process matrix. The code assumes that the process matrix is
positive semi-definite. Hence, its output is meaningful only if this
assumption is satisfied.

Briefly the procedure of causal discovery goes as follows: First
the code identifies and traces out any open output subsystems.
Then it determines whether the process matrix is causally ordered.
If it is, it outputs a possible causal order and proceeds to
determine if the process is Markovian. For a Markovian process, it
outputs the DAG, and the represented mechanisms. Below we
expand on these three stages. In the Methods, we show how the
code works using an example of a 4-partite process matrix. We
present the causal information extracted in the different stages for
that example, as well as the final output of the code.

Tracing out open output subsystems: The code checks each
output subsystem to identify if it is open, using the linear
constraint in Eq. (4). Each found open subsystem is traced out
from the process matrix, keeping track of the label of the party
and the label of the subsystem, for example, subsystem 3 of party
2. Keeping track of open subsystems is what allows the algorithm
to find a minimal DAG, namely without extra arrows, as discussed
below.

npj Quantum Information (2018) 17

A quantum causal discovery algorithm
C Giarmatzi and F Costa

Checking if W is causally ordered: Let us call a non-signaling set,
a set of parties that are causally independent, namely that cannot
signal to each other. A non-signaling set is maximal if it is not a
proper subset of another non-signaling set. The first output of the
algorithm is all the maximal non-signaling sets and their causal
order. This is done through the linear constraint that detects open
output systems, in Eq. (3). The set of parties whose output systems
satisfy the constraint is labeled as last set. Note that the constraints
has to be satisfied by the whole output system and not only by
some subsystems. To determine the next set, the second last, the
code traces out the last set from the process matrix and, using the
same constraint, it identifies the new last set, and so on. Note that
the partition into maximal non-signaling sets does not uniquely
identify the partial order of the parties, in the sense that it is not
guaranteed that parties in different non-signaling sets can signal
to each other. What is guaranteed is that at least one party from a
set X can signal to at least one party in a succeeding set) (Fig. 4).
Note also that the partition into maximal non-signaling sets is not
unique, much like a foliation of space-time into space-like
hypersurfaces.

The process matrix is causally ordered if and only if the
algorithm succeeds in grouping all parties in maximal non-
signaling sets. This is because, given the non-signaling sets, we
can define a total order among the parties by adding arbitrary
order relations among members of each set. For example, we can
order the parties in different time steps where: when A < B, A
occurs at a time before B and, when A||B then we pick an arbitrary
time ordering (Fig. 5). With the parties ordered in this way, the

1\\5@ /g'{%
®\

Se

5

£ 2
\

_
et L

A

Fig. 4 Maximal non-signaling sets. The first output of the code is a
grouping of the parties into maximal non-signaling sets. The solid
arrows represent a DAG compatible with this grouping. Not all
parties in different sets are linked by causal arrows; the dashed
arrows are examples of these missing links. Credits: C. Giarmatzi

s — —

f e

|
©

s,

+, &7

ta _ LTS
@

Fig. 5 Total causal order. Starting from the DAG in Fig. 4, we can
order all events in time, obtaining a total order of the parties, by
putting an arbitrary order between parties in the same non-
signaling set. Credits: C. Giarmatzi

npj Quantum Information (2018) 17

process matrix satisfies the condition defining a quantum comb.?°
This is a recursive version of Eq. (3), that holds for the output of
each system after all systems that come after it are traced out. A
central result in the theory of quantum networks is that, whenever
this condition holds, the corresponding process can be realized as
a channel with memory.2%??’ Thus, this part of the algorithm
determines whether the input process matrix has a physical
realisation as a causally ordered process.

Causal discovery and Markovianity: After the algorithm has
traced out all open output subsystems and has established the
maximal non-signaling sets of the parties, it is time to determine
the DAG. The algorithm checks all possible causal arrows—
compatible with the previously found causal order—between
pairs of an input system of a party and an output system of
another party, using Eq. (6). If a party’s output system is divided
into subsystems, then each subsystem is checked using the linear
constraint in Eq. (7). To check if these constraints are satisfied, the
algorithm has to check each possible one individually. In
particular, for each input system that is traced out, it checks
whether the constraint holds for each output system or subsystem
that has not been associated yet with a causal arrow. Every time
the constraint is satisfied, a causal arrow is associated with the
corresponding systems and the output system or subsystem is
marked as used and is not being checked again. The collection of
all output systems and subsystems that satisfy the constraints for a
single input system of a party A uniquely identifies the parent
space of A, [, Figure 6 shows the information input to the code,
and the output information that is obtained during the three
stages described above.

At this stage, the code outputs a DAG if the process is
Markovian, namely if the process matrix is of the form of Eq. (2). To
determine this, the code constructs a test-matrix that is Markovian
with respect to the found DAG: it contains all (and only) the factors
as in Eq. (2) that correspond to the elements of the DAG. There are
three kinds of these elements: first parties, causal arrows, and last
parties; the corresponding terms on the process matrix are input
states for the first parties, channels that live on the input and
output systems and subsystems of the associated parties, and
identity matrices on the output system of the last parties,
respectively. To construct the test process matrix, these factors
are extracted from the original process matrix by tracing out all
systems except from the desired ones. If the process is Markovian,

TINPOT

TSTAGE 4

Fig. 6 Stages of the algorithm. As part of the input, we depict the
parties and the information about their output systems and
subsystems. Stage one traces out the open output subsystems,
depicted in blue. The rest of the systems in black are output systems
and subsystems. For a causally ordered process, stage two groups
the parties into maximal non-signaling sets. For a Markovian
process, stage three provides the causal model. There is no arrow
for the output system of party 4 as it is last. Credits: C. Giarmatzi

Published in partnership with The University of New South Wales

then the test-matrix will be equal to the original process matrix
that was input to the code.

Minimality. The code is guaranteed to give a unique and minimal
DAG for a Markovian process. A process matrix is said to be
Markov with respect to the DAG if every channel (found by Egs. (6)
and (7)) in the process matrix is represented by an arrow in the
DAG. However, a W can be Markov to more than one DAG—some
DAGs will have arrows allowed by the causal order but there is no
actual channel in the W corresponding to this arrow. In other
words, a W can be in the tensor product form (2), but with some
factor of the form TM"M = 1™ @ pM, for some normalized density
matrix p. This represents a channel that always produces the state
p. Hence, this W is Markovian with respect to a DAG with arrows
representing such channels, from ™ to M, but is also Markovian to
a DAG without such arrows.

If every arrow in the DAG corresponds to a non-trivial channel in
the process matrix, the DAG is called minimal. From another
perspective, a DAG is minimal if, by removing any arrow from it,
then the W is not any more Markov with respect to the resulting
DAG.

The fact that the output of the code is always the minimal DAG
is guaranteed by the first step of the algorithm, where the open
subsystems are established and discarded. Indeed, an “extra
arrow” in a non-minimal DAG would necessarily be associated
with an open subsystem—an identity tensor factor in the process
matrix.

Note also that, in ref. '> it was proven that a DAG can be in
principle recovered under the additional assumption of faithful-
ness. Our algorithm does not require such an extra assumption,
proving that causal discovery is always possible for a quantum
Markov causal model.

5

Complexity of the algorithm

The dimension of the process matrix is given by the product of
input and output dimensions of each party. Thus, the size of the
process matrix would generally scale exponentially with the
number of parties. This is expected, as also the dimension of
ordinary density matrices would scale exponentially with the
number of parties.

One can however consider situations where, under appropriate
assumptions and approximations, the physical scenario under
consideration is described by a polynomial number of parameters.
Then, the main cost of the algorithm lies in two parts: the one that
establishes the non-signaling sets and the one that searches for
causal arrows between parties. The first step tests condition (3) for
all parties, to determine each non-signaling set, and the second
step tests condition (6) (or (7)) for pairs of nodes—in both cases
the number of tests required is thus quadratic in the number of
parties. Therefore, given an efficient encoding of the input process
matrix, the algorithm scales quadratically with the number of
parties.

Non-Markovian processes

A Markovian process is one with a process matrix of the form of
Eq. (2), and is represented by a DAG. In a non-Markovian process
the process matrix is not of that form, i.e. it is not a tensor product
of factors representing input states for the parties with no
incoming arrows, channels, and identity matrices for the output of
the parties in the last set. In other words, in a non-Markovian
process, these factors alone—or their representation in a DAG—
cannot account for the observed correlations between the events.

Latent nodes. If the code outputs that the process is causally
ordered but non-Markovian, it can be represented as a quantum
circuit compatible with the causal order, where the parties are
connected with quantum channels with memory,>%?’ as we depict

Published in partnership with The University of New South Wales

A quantum causal discovery algorithm
C Giarmatzi and F Costa

npj

in Fig. 7(a). In the language of causal modelling, such a process
can be represented by an extended DAG with additional nodes,
called latent, and channels connecting them to the rest of the
parties, so that the extended process is Markovian and reduces to
the original one for a particular choice of CPTP maps applied in
the extra nodes,'” as depicted in Fig. 7(b). The intuition is that the
correlations obtained from the original process cannot be
produced by considering the original nodes and channels without
memory. Therefore, there are extra nodes, not considered in the
process, which affect the local outcomes of the nodes considered.

For example, the outcomes of quantum measurements
performed in some measurement stations (nodes) in a laboratory,
may be affected by the temperature or maybe another system is
leaking into one of the stations, like stray light affecting the
detection part and causing correlated noise. If these are producing
significant change in the data—higher than the noise tolerance in
the code—the process will appear non-Markovian.

To recover a causal model by introducing latent nodes we
would need to extend the algorithm such that it adds nodes and
arrows until it finds that it is Markovian. Computationally, this task
can be hard because the code has to find the right combination of
the number of nodes needed, their position in the DAG and the
exact channels around them. However, although the original
process is non-Markovian, the code still outputs the causal order
of the parties for a causally ordered process matrix. From that, one
could make guesses about the right causal model, by introducing
nodes with specific input and output systems and channels
connecting them to the rest of the parties. To do this, one should
add the corresponding factors into the current test matrix Wies;
and run the code using as input the updated number of parties,
dimensions of systems and W,es: as the process matrix and see if
now the process is Markovian.

o) 6)

Fig. 7 Non-Markovian vs. Markovian process. In figure (a), we
represent a causally ordered non-Markovian process as a quantum
circuit where the channels connecting the parties are quantum
channels with memory. In figure (b), the same process can be
represented as a Markovian process for the extended number of
nodes. The new nodes introduced are the latent nodes. Credits: C.
Giarmatzi

npj Quantum Information (2018) 17

A quantum causal discovery algorithm
C Giarmatzi and F Costa

Mixture of causal orders. Another possible reason why the
process is non-Markovian is that it might be the case that it
represents a probabilistic mixture of two or more Markovian
processes with different causal orders, resulting in a non-causally
ordered process matrix. There is a Semidefinite Program (SDP) for
this problem, that finds the right decomposition.?® For instance,
for a bipartite process, the SDP would look like the following.

given W
findg
such that W = gW”=8 4 (1 — q)W8=A
0<g<t

(8)

where WX=Y denotes a valid process matrix where Y is last and
therefore has a factor 1. In the case with more parties, one
simply has to write a decomposition that includes all different
causal orders for the given parties. Given the result, one can apply
the causal discovery algorithm to each term in the decomposition.
Note that a mixture of processes with the same causal order can
be modeled as a causally ordered, non-Markovian process with

latent nodes acting as “classical common causes”.?%>°

Dynamical and indefinite causal order. So far, we have seen that
when events have a definite causal order, they can be represented
either by a fixed causal order process or by a mixture of causal
orders. However, it may be the case that the process matrix
represents a situation of more than two parties, where the causal
order of some parties depend on the operations of parties in their
past. That is, a party may influence the causal order of future
parties. Such a dynamical causal order was studied in ref. ' where
a definition of causality was proposed, compatible with such
dynamical causal order. For the tripartite case, it was found that
the process matrix describing such a situation should obey certain
conditions. However, similar conditions were not found for the
case of arbitrary parties. In such cases, the notion of causal
discovery is not clear, as depending on some events in the past,
the DAG of future ones would change. Hence the output would be
different DAGs for different operations of certain parties. We do
not know if the discovery of those DAGs is possible.

Different definitions of Markovianity. Our algorithm relies on the
definition of quantum Markov causal model of ref. '>. A different
definition was proposed in ref. ', where the output systems of the
parties are not assumed to factorize into subsystems in the
presence of multiple outgoing arrows. In ref. 'S, arrows in the DAG
are still associated with a quantum channel from the output space
of the parent nodes to the input space of the child but, rather than
defining a factorisation in subsystems of the output space,
multiple outgoing arrows are more generally associated with
commuting channels. For example, in a tripartite scenario where A
is a parent of both B and C, a Markovian process matrix would
have the form

YA AoBIBoCCo pAI ® (T‘/IL\OBI . T;\OC\) ® 1]30(:07 (9)

with the condition T7oB . T/oG — 770G . 1B Thys, according to
ref. '®, a Markovian process matrix does not need to be a tensor
product but can more generally be a product of commuting
matrices. To distinguish the two definitions, we will call tensor-
Markovian and commuting-Markovian a process matrix that
satisfies the condition of ref. ' (used in our code) and ref. '¢,
respectively. Note that all tensor-Markovian processes are com-
muting Markovian, but the converse is not true. In ref. '® it is
further assumed that input and output spaces of each node are
isomorphic. Thus, strictly speaking, not all tensor-Markovian
process considered here satisfy the definition of ref. '°, but only
those with input and output of equal dimension. This difference is
of little consequence from the point of view of a causal discovery
algorithm, since in any case the dimension of each space has to be

npj Quantum Information (2018) 17

specified as input to the code.

Our algorithm could be adapted to discover the causal structure
of commuting-Markovian processes. Note that the strategy used
in our code, to detect the parent space of each node by checking
(5), would not work. Indeed, tracing out B; from matrix (9) does not
result in a matrix with identity on Ao. A possible approach could
be to instead detect all the children of each node A, namely all the
nodes with an incoming arrow departing from A. The children are
then identified as the smallest subset of parties C', ..., C* such that

aw. (10

As this condition must be checked for subsets of parties, the
number of tests is exponential in the number of parties for the
worst-case scenario. In contrast, we have seen that to discover a
tensor-Markovian causal structure a quadratic number of tests is
sufficient. Another potential complication is that our test for
Markovianity relies on the tensor-product form of the process
matrices; it is not clear if there is a simple way to test whether a
process is commuting-Markovian.

An alternative approach is to retain the definition of tensor-
Markovian processes and model commuting-Markovian processes
as non-Markovian ones. Indeed, since a commuting-Markovian
process is causally ordered, it can always be recovered from a
tensor-Markovian one by adding an appropriate number of latent
nodes.'® An extension of our code to detect latent nodes could
thus be used to detect the causal structure of a commuting-
Markovian process. In Fig. 8 we show an example of a DAG of a
commuting-Markovian process (left) and how that would be
represented as a tensor-Markovian (right) with a latent node.

DISCUSSION

We have presented an algorithm (whose implementation we
provide) that can discover an initially unknown causal structure in
a quantum network. This is an important proof of principle: it
shows that causal structure has a precise empirical meaning in
quantum mechanics. Just as other physical properties, it can be
unknown and discovered. This is of particular significance for
foundational approaches where causal structure is seen as
emergent from more fundamental primitives. Causal discovery
provides the methodology to determine when and how causal
structure emerges.

Causal discovery can also have broad applications for protocols
based on large and complex quantum networks. Our algorithm is
guaranteed to find a minimal causal model for any Markovian
process, namely a process in which all causally relevant events are
under experimental control, with no extra assumptions; this
improves on the results of ref. '°, where the additional condition
of faithfulness was invoked. Even for non-Markovian processes,

©)

/7
68
AN

Fig. 8 Different definitions of Markovianity. A process that is
Markovian according to ref. '®, e.g. for the DAG on the left, is
generally described by a DAG with a latent node (filled node in the
DAG on the right) according to the definition of Markovianity of ref.
5 on which our algorithm is based. Credits: C. Giarmatzi

Published in partnership with The University of New South Wales

the algorithm still recovers important causal information, namely a
causal order of the events.

Another important use of our algorithm is to tackle the
difficult problem of non-Markovianity. An extensive body of
research is currently devoted to the problem of detecting non-
Markovianity.>? Our algorithm finds a concrete solution: it allows
discovering when some external memory is affecting the
correlations in the observed system. Detecting non-Markovianity
can also have important practical applications for large quantum
networks: the presence of “latent nodes”, can indicate a possible
source of systematic correlated noise in a process, that might
affect the working of a quantum protocol. It can further have
applications in cryptography for detecting the presence of an
eavesdropper.

Finally, our algorithm has promising possible extensions. A
natural extension is an algorithm that can make “good guesses”
for causal structure in the presence of latent nodes. Promising is
also the extension of causal discovery to mixtures of causal order,
dynamical, and indefinite causal structure.

METHODS
In this section, we provide an example of how the code works for a

particular process matrix, and how the different levels of causal information
are extracted. In our example we have four parties {1, 2, 3, 4},

>> causal_discovery_algorithm

the_sets =

W= N &

Time 8.1967

A quantum causal discovery algorithm
C Giarmatzi and F Costa

npj

with dimensions

d-h d10 2 4

. dy 2 8
dim = =

dy, i 2 2

dy 2 4

Party 1 has two output subsystems with a dimension of 2 each, and party 2
has three output subsystems with a dimension of 2 each, denoted as
subdim{1}=1[2 2], subdim{2}=[2 2 2]. The process matrix is of the
following form:

M/inglat2|203|304l4o — p3\ @ TP @ T102 g T2:104 g (20 20240,

(1m

where p is some input state for party 3, and 1o, and 2¢, denote the ith
output subsystem of party 1 and 2, respectively. Note that the above form
of the input process matrix to the code is of course not known in advance.
We remind that the input to the code is the above matrix dim, the arrays
subdim{1}, subdim{2} and the process matrix Winpuy in its numerical form,
in which the systems are ordered as 1,10, 10,2120, 20,20,31304140. In the
following, we describe the calculations that take place. The various
procedures can be grouped into three stages.

Stage 1—tracing out the open output subsystems

In this stage, the code looks at the elements subdim{X}. In our example, X
=1, 2. Knowing that these parties have output subsystems, it checks if
those are open—if on the process matrix there is identity on those
subsystems. To do that, the code checks the following equality for each

There are open subsystems: 1 of party 2 of dimension 2

There are
Link from
Link from

Link from party 3 to party 1.

3 primal arrows

primal_arrows =
2 4
1 2
3 1

Time 2.0232

open subsystems: 2 of party 2 of dimension 2
subsystem 3 of party 2 to party 4.

subsystem 1 of party 1 to party 2.

——— kK ———

Link from subsystem 2 of party 1 to party 4.

i secondary arrows
secondary_arrows =
1 4

Time ©0.089431

The process is Markovian
fx >>

Fig. 9 Output of command window. The command window, for the given example, showing the output of the code regarding the maximal
non-signaling sets, the open subsystems and the causal arrows. Primal_arrows refers the the causal arrows from successive maximal non-
signaling sets and secondary_arrows refers to all the other causal arrows. Time refers to the time that lapsed to evaluate the step just above

Published in partnership with The University of New South Wales

npj Quantum Information (2018) 17

npj

A quantum causal discovery algorithm
C Giarmatzi and F Costa

output subsystem:
4o ® Ter, Winput = Winput- 12)

The code displays on the command window (see Fig. 9) the output
subsystems for which this constraint is satisfied, and traces it out from the
process matrix. In our example, it outputs “There are open subsystems: 1 of
party 2 of dimension 2" and “2 of party 2 of dimension 2". The remaining
process matrix is now

Wilo2i203i30440 — p3\ ® T30 ® Tlo12 ® T203T0,% ® 1]40’ (13)

and will be used as the input process matrix for the rest of the code.

Stage 2—checking if W is causally ordered

In this stage, the maximal non-signaling sets are established, as well as
their causal order. To establish the “last set”, which is the set of parties that
have no outgoing arrow, the code checks the constraint

7 @ T, W = w, (14)

for all parties A=1{1, 2, 3, 4}. The set of parties that satisfy this constraint
constitutes the “last set”. To establish the next set, the last set is traced out
from the process matrix and the remaining process matrix undergoes the
same above constraint for the remaining parties. In this way, all the
maximal sets are established, together with their causal order. If the code
completes this task with all the parties grouped into maximal sets, then the
process matrix is causally ordered. In our example the maximal sets and
their causal order are: {3} < {1} < {2} < {4}. This is shown on the

Node 3

Node 2

Node 4]

5

Fig. 10 Output DAG. The DAG that the code outputs for the given
example

npj Quantum Information (2018) 17

command window as (see also Fig. 9)
4

the_sets =

w =

Stage 3—causal discovery and Markovianity

In this stage the code discovers the causal arrows that connect the parties.
Once all the causal arrows have been found, it checks if the process is
Markovian. If it is, it outputs the DAG corresponding to the process. If it is
not Markovian, then the discovered causal arrows are not reliable and
hence a DAG is not provided. Now let us see how the code goes about
discovering the causal arrows. The causal arrows are between an input
system of a party, say A and an output system or subsystem of another
party, say B. This is done by the following two constraints for output
system or subsystem.

1% @ Trg, (Tra W) = Tra W, (15)

1 @ Trg, (Tra W) = Try W. (16)

To check whether this constraint is satisfied, the code must check each
pair of [input system-output system] or [input system—-output subsystem]
individually. An input system can be involved with more than one causal
arrow, but an output system or subsystem can be involved with only one
causal arrow. Hence, once an output system or subsystem has been
associated with a causal arrow, it is not checked again in the rest of the
code. The code outputs on the command window the causal arrows found.
In our example that would be “Link from subsystem 3 of party 2 to party
4., “Link from subsystem 1 of party 1 to party 2.", “Link from party 3
to party 1.”, “Link from subsystem 2 of party 1 to party 4.”, as is shown in
Fig. 9.

Now the code proceeds with the Markovianity check. This involves
constructing a process matrix that is Markovian with respect to the found
DAG; specifically, a matrix composed out of input states for the first parties,
channels for the found causal arrows and identity matrices for the last
parties. For the first parties, it extracts from the process matrix their input
states. In our example, party 3 is first and its input state is extracted from
the process matrix by tracing out all the other systems

¥ = Tr3~IW, 17

where 3, denotes the space of input and output systems that is
complementary to 3, To extract the channels, the code similarly traces
out all systems except the ones involved in the channels. Note that for an
input system that is involved with many arrows the corresponding channel
would be represented from the parent space of the party—all the systems
that have an arrow to that party—to the input of the party. In our example,
there are the simple channels from systems 3¢ to 1, from 1¢, to 2, and
from {1o,, 20,} to 4,. The corresponding channels are

Tl =Tr~Ww (18)
301
T2 = Tr—Ww
10,2 (19)
Tz 203% — Tr
* o, 20, (20)

The code is then adding identities to the output systems of the last
parties. In our example we have 1%. Finally, the code constructs the
following test matrix:

Wge\:(02\203|3o4|4o — p3| ® T30 ® Tlor2 ® T20310,% ® 1% 21)

After rearranging the systems in the order of the original process matrix,
that is [11622031304140l, the code tests if Wies; = W. If this is true, which it
is in our example, the code outputs on the command window “the process
is Markovian” and outputs the DAG corresponding to the found causal
arrows, shown in Fig. 10.

Code availability

In the given repository (https://github.com/Christina-Giar/quantum-causal-
discovery-algo.qgit), we provide the code presented in this paper, written in
MatLab, together with the set of necessary functions. We also provide a

Published in partnership with The University of New South Wales

https://github.com/Christina-Giar/quantum-causal-discovery-algo.git
https://github.com/Christina-Giar/quantum-causal-discovery-algo.git

code written in Mathematica, where valid process matrices of arbitrary
causal structures can be generated, given the number of parties. These
process matrices can be used as examples of input to the code. Finally, we
provide a Manual on how to use both codes.

ACKNOWLEDGEMENTS

We thank Gerard Milburn, Sally Shrapnel and Andrew White for discussions. We
acknowledge the traditional owners of the land on which the University of
Queensland is situated, the Turrbal and Jagera people. This work was supported by
the Australian Research Council (ARC) Centre for Engineered Quantum Systems grant
(CE 110001013), the ARC Centre for Quantum Computation and Communication
Technology (Grant No. CE110001027), and by the Templeton World Charity
Foundation (TWCF 0064/AB38). This publication was made possible through the
support of a grant from the John Templeton Foundation. The opinions expressed in
this publication are those of the authors and do not necessarily reflect the views of
the John Templeton Foundation.

AUTHOR CONTRIBUTIONS

Both authors developed the theory and contributed to writing of the manuscript. C.
Giarmatzi implemented the MatLab code.

ADDITIONAL INFORMATION

Competing interests: The authors declare no competing financial interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

REFERENCES

1. Pearl, J. Causality (Cambridge University Press, Cambridge, 2009).

2. Spirtes, P., Glymour, C. N. & Scheines, R. Causation, prediction, and search, Vol. 81
(MIT Press, Cambridge, MA, 2000).

3. Lamport, L. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21, 558-565 (1978).

4. Wood, C. J. & Spekkens, R. W. The lesson of causal discovery algorithms for
quantum correlations: causal explanations of Bell-inequality violations require
fine-tuning. New J. Phys. 17, 033002 (2015).

5. Tucci, R. R. Quantum Bayesian nets. Int. J. Mod. Phys. B 09, 295-337 (1995).

6. Leifer, M. S. Quantum dynamics as an analog of conditional probability. Phys. Rev.
A 74, 042310 (2006).

7. Laskey, K. B. Quantum causal networks. Preprint at arXiv:0710.1200 [quant-ph]
(2007).

8. Leifer, M. S. & Spekkens, R. W. Towards a formulation of quantum theory as a
causally neutral theory of bayesian inference. Phys. Rev. A 88, 052130 (2013).

9. Cavalcanti, E. G. & Lal, R. On modifications of reichenbach'’s principle of common
cause in light of bell's theorem. J. Phys. A 47, 424018 (2014).

10. Fritz, T. Beyond Bell’s theorem II: scenarios with arbitrary causal structure. Com-
mun. Math. Phys. 341, 391-434 (2016).

11. Henson, J, Lal, R. & Pusey, M. F. Theory-independent limits on correlations from
generalized bayesian networks. New J. Phys. 16, 113043 (2014).

12. Pienaar, J. & Brukner, C. A graph-separation theorem for quantum causal models.
New J. Phys. 17, 073020 (2015).

Published in partnership with The University of New South Wales

A quantum causal discovery algorithm
C Giarmatzi and F Costa

np)

13. Chaves, R., Majenz, C. & Gross, D. Information-theoretic implications of quantum
causal structures. Nat. Commun. 6, https://doi.org/10.1038/ncomms6766 (2015).

14. Ried, K. et al. A quantum advantage for inferring causal structure. Nat. Phys. 11,
414-420 (2015).

15. Costa, F. & Shrapnel, S. Quantum causal modelling. New J. Phys. 18, 063032
(2016).

16. Allen, J.-M. A,, Barrett, J.,, Horsman, D. C, Lee, C. M. & Spekkens, R. W. Quantum
common causes and quantum causal models. Phys. Rev. X 7, 031021 (2017).

17. Shrapnel, S. Discovering quantum causal models (2015).

18. Shrapnel, S. Using Interventions to Discover Quantum Causal Structure. Ph.D. thesis
(2016).

19. Oreshkov, O., Costa, F. & Brukner, C. Quantum correlations with no causal order.
Nat. Commun. 3, 1092 (2012).

20. Chiribella, G., D’'Ariano, G. M. & Perinotti, P. Theoretical framework for quantum
networks. Phys. Rev. A 80, 022339 (2009).

21. Jamiotkowski, A. Linear transformations which preserve trace and positive
semidefiniteness of operators. Rep. Math. Phys. 3, 275-278 (1972).

22. Choi, M.-D. Completely positive linear maps on complex matrices. Linear Algebra
Appl. 10, 285-290 (1975).

23. Caves, C. M, Fuchs, C. A, Manne, K. K. & Renes, J. M. Gleason-type derivations of
the quantum probability rule for generalized measurements. Found. Phys. 34,
193-209 (2004).

24. Shrapnel, S., Costa, F. & Milburn, G. Updating the Born rule (2017). Preprint at
arXiv:1702.01845 [quant-ph].

25. Pollock, F. A, Rodriguez-Rosario, C., Frauenheim, T., Paternostro, M. & Modi, K.
Complete framework for efficient characterisation of non-Markovian processes.
Preprint at arXiv:1512.00589 [quant-ph] (2015).

26. Gutoski, G. & Watrous, J. Toward a general theory of quantum games. In Pro-
ceedings of 39th ACM STOC, 565-574. Preprint at arXiv:quant-ph/0611234 (2006).

27. Kretschmann, D. & Werner, R. F. Quantum channels with memory. Phys. Rev. A 72,
062323 (2005).

28. Araujo, M. et al. Witnessing causal nonseparability. New J. Phys. 17, 102001 (2015).
29. MacLean, J.- P. W,, Ried, K, Spekkens, R. W. & Resch, K. J. Quantum-coherent
mixtures of causal relations. Preprint at arXiv:1606.04523 [quant-ph] (2016).

30. Feix, A. & Brukner, C. Quantum superpositions of “common-cause” and “direct-
cause” causal structures. Preprint at arXiv:1606.09241 [quant-ph] (2016).

31. Oreshkov, O. & Giarmatzi, C. Causal and causally separable processes. New J. Phys.
18, 093020 (2016).

32. Rivas, A, Huelga, S. F. & Plenio, M. B. Quantum non-Markovianity: characteriza-
tion, quantification and detection. Rep. Prog. Phys. 77, 094001 (2014).

Open Access This article is licensed under a Creative Commons

BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2018

npj Quantum Information (2018) 17

https://doi.org/10.1038/ncomms6766
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A quantum causal discovery algorithm
	Introduction
	Results
	Process framework
	From mathematical to graphical representation
	Quantum causal discovery
	The linear constraints
	The code
	Tracing out open output subsystems
	Checking if W is causally ordered
	Causal discovery and Markovianity
	Minimality

	Complexity of the algorithm
	Non-Markovian processes
	Latent nodes
	Mixture of causal orders
	Dynamical and indefinite causal order
	Different definitions of Markovianity

	Discussion
	Methods
	Stage 1—tracing out the open output subsystems
	Stage 2—checking if W is causally ordered
	Stage 3—causal discovery and Markovianity
	Code availability

	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGMENTS

