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ABSTRACT 
Pump energy costs can be a major component of total 
operational expenditure for water utilities and it is a 
challenge to reduce pump energy costs while ensuring the 
continuous supply of high-quality water. Data61 and 
Sydney Water have worked collaboratively to develop 
intelligent network optimisation models to address the 
above challenge. Specifically, an energy saving 
optimisation model has been built to identify the optimal 
pump and valve operating schedules, so that peak-hour 
and shoulder-hour pumping is minimised and energy costs 
are reduced, while the required level of water quality 
performance is achieved. A simulation over three months 
demonstrated that a potential saving of around 15% in 
energy costs can be made with this approach. 

Keywords: Optimisation, Energy Saving, Pump 
Scheduling. 

 

INTRODUCTION 
The Sydney Water Corporation supplies drinking water, 
wastewater, recycled water and stormwater services to 
more than five million customers in the Illawarra, Blue 
Mountains and Sydney metropolitan area. Pump energy 
costs can be a major component of operational 
expenditure for Sydney Water and other water utilities. For 
example, the pump energy costs for the Woronora Delivery 
System, accounts for 66% of the total operational 
expenditure of the system. Therefore, to minimise 
operational costs, it is important to reduce pump energy 
costs. On the other hand, water supply continuity also 
needs to be guaranteed.  

This work addresses the above challenge by presenting a 
framework of energy saving optimisation in water 
distribution networks. More specifically, the objective is to 
optimise pump and valve operations, so that energy cost is 
minimised, water demand is met and reservoir operating 
window constraints are satisfied. In our previous work, 

analytics models for water demand forecasting, water 
quality modelling and chemical dosing optimisation have 
been developed (Mathews et al. 2017; Wang et al. 2018). 
This work focuses on the application of energy saving 
optimisation and more technical details of it can be found 
in our other publication (Zhao et al. 2019). 

In particular, an optimisation model has been built based 
on water demand forecast to find the optimal operating 
schedule of pumps and valves for the next 24 hours 
starting at 7am every day. We have run a simulation over 
three months from December 2016 to February 2017 and 
have compared energy consumption and costs with 
historical data, which demonstrates that the optimisation 
model is effective in reducing energy consumption during 
peak and shoulder hours, resulting in a saving of around 
15% in energy costs. 

 

BUSINESS BACKGROUND 
The Woronora Delivery System 
This work studies the Woronora Delivery System (see 
Figure 1), which includes 13 reservoir sites and supplies 
on average 80 ML (in summer months) of water per day to 
210,000 customers in 30 separate pressure zones in the 
south of Sydney. Under normal operating conditions, the 
majority of raw water is supplied from the Woronora Dam. 
Due to data availability and quality, this study focuses on a 
subset of the system (six sites within the shaded rectangle 
– Figure 1). However, the methodology used in this work 
can be easily extended to the whole network when data 
become available for all sites. 

Energy Cost 
As shown in Figure 2, pump energy costs are composed of 
multiple components, including: 
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Figure 1: Woronora Water Supply Network 

 
 

 

Figure 2: Components of Energy Costs 

 

• demand charge (shown as peak, shoulder and off-peak in 
the figure), which is calculated with the amount of 
electricity used and the time of use, 

• supply (or access) charge, which is of a fixed rate and 
charged by day or month, 

• network capacity charge, which is calculated based on the 
maximum half-hourly consumption (KVA) that occurs in 
the peak tariff period (2pm-8pm on a working weekday) 
for the current month and has a rolling period of 12 
months, and 

• market and environmental charges, which are calculated 
with the total amount of electricity used. 
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The time of use for energy demand charges are 
• peak: 2pm-8pm working weekdays, 
• shoulder: 7am-2pm and 8pm-10pm working weekdays, 

and 
• off-peak: all other times. 

The figure shows that the network capacity charge and 
demand charge (including peak, shoulder and off-peak 
demand charges) account for around 80% of total energy 
costs. Therefore, to reduce energy costs, peak-hour and 
shoulder-hour pumping is to be reduced, because energy 
charge rates are higher in those hours and also because 
network capacity charge is calculated based on maximum 
half-hourly power readings during peak hours. 

Datasets 
Various data have been collected for the Woronora 
Delivery System, including:  
• network topology data, including pipe characteristics and 

locations of control devices, such as flow meters, pumps 
and valves, 

• customer water consumption data, 
• monthly invoices for pumping stations, 
• half-hourly energy consumptions and charges, 
• pumping status and speed data – status and speed of 

pumps per 15 minutes, 
• valve status data – status of valves per 15 minutes, 
• flowmeter data – flow speed per 15 minutes, and 
• reservoir data – reservoir water levels per 15 minutes. 

 

       
Figure 3: Water Demand Forecast - Engadine Zone Figure 4: Water Demand Forecast - Engadine Zone  

(incl. Demands from All Downstream Zones) 

 

We have also collected weather data from the Bureau of 
Meteorology, Australia , for water demand forecasting 
purposes. 

 

METHODOLOGY 
This application aims to optimise pump and valve  
operations of the Woronora Delivery System (see Figure 1) 
utilising accurate water demand forecasts, so that energy 
costs are minimised, water demand is met, reservoir 
operating window constraints are satisfied and water 
quality performance is optimised. The input data include 
electricity consumption and cost, weather data, pumping 
and valve status, flowmeters and reservoir data. 

Initially, at 7am every day, water demand is predicted with 
a Bayesian linear model, which forecasts the water 
demand of every reservoir supply zone in the next 24 

hours. Thereafter, by taking input of initial reservoir levels, 
reservoir operating windows, pump operation and 
electricity tariffs, an optimisation model is built to minimise 
energy costs. A simulation over three months has been 
conducted for model validation. 

Water Demand Forecasting 
A prerequisite for optimising network operations, pumping 
schedules and reducing energy costs is accurately 
forecasting how much water will be used within different 
parts of the network. Water demand forecasting combines 
operational data and weather information about past and 
forecasted conditions and generates a prediction of short-
term (24-36hr) future water demand. Specifically, factor 
analysis is firstly performed to identify important correlating 
factors, i.e. past flow, past and forecasted rainfall, past and 
forecasted temperatures, and a weekday/weekend flag.  
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A Bayesian probabilistic model is then employed to capture 
forecast uncertainty. 

The result of water demand forecast at 7am for the 
Engadine zone is shown in Figure 3, where we can clearly 
see a high demand of water at 7am-11am and at 4pm-
8pm. Figure 4 shows the demand of the same zone but 
including demands from all downstream zones, that is, 
those downstream reservoirs and reticulation zones that 

draw water from the Engadine reservoirs. There is a 
significant amount of water demand at 10pm-5am in Figure 
4, which is caused by the filling of the downstream 
reservoirs during those off-peak hours. The forecast of 
cumulative water demand of a single site is shown in 
Figure 5a. 

 

 

                 
  (a) Hourly Demand Forecast of One Site     (b) Demand Forecast of the Whole Network 

Figure 5: Results of Water Demand Forecast 
 

 
Figure 6: Energy Saving Optimisation Model 

The forecasting results have been evaluated by comparing 
the ground truth of historical data from 2 Jan 2014 to 31 
Oct 2017. The Mean Absolute Percentage Error (MAPE) 
was used as the evaluation metric. Figure 5b demonstrates 
it can achieve reliable results except for some outliers in 
the historical records. The results of MAPE are 6.59% 
(summer), 4.33% (autumn), 4.07% (winter), 5.07% (spring) 
and 4.92% (overall).  

The forecast error in summer is slightly higher than other 
seasons, likely because of more days with extreme 
weathers and total fire bans in summer. With an overall 
MAPE of 4.92%, this provides operational planners with 
accurate forecasts of water demand over operational 
windows, allowing more informed and timely trunk water 
operational decisions to be made. 
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Energy Saving Optimisation 
Our energy saving optimisation model is shown in Figure 6 
and an objective function is defined as below to model 
energy cost and constraints to reflect the relationship 
between water demand, water flow and reservoir water 
levels. However, if minimising energy cost for the next 24 
hours only, the produced results would have minimum 
water levels at the end of the day, which would incur more 
energy cost in the next day. To mitigate the above issue,  

a penalty item is added to the objective function to make 
sure that the water levels at reservoirs at the end of the 
day would be close to the upper bounds. Therefore, the 
objective function is defined as 

Obj ∶= EnergyCost + Penalty (1) 

where EnergyCost is the total electricity cost of all sites in 
the next 24 hours. 

 

    
Figure 7: Simulation Process 
 
 

 

Figure 8: Optimised Pumping Schedule 
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The optimisation of the above objective function is subject 
to 1) the relationship between reservoir levels, pumps and 
water demand, 2) reservoir operating windows, 3) the 
number of available pumps at every supply zone, and 4) 
the minimum daily water flow from the water filtration plant. 

The relationship between reservoirs, pumps and water 
demand is defined as 

V(t) = V(t-1) + Pin (t) - Pout (t) - D(t)  (2) 

where t is time (hour), V(t)  is reservoir level at the end of 
hour t, Pin (t) and Pout (t) are respectively the amount of 
water pumped into and out of the reservoir and D(t) is 
water demand from the corresponding zone. 

 

IMPLEMENTATION 
The above problem is formalised as an optimisation 
problem, which maximises or minimises an objective 
function by systematically choosing input values from 
within an allowed set and computing the value of the 
function. To meet a business requirement that the 
optimisation needs to run at 7am every day and produce 
an optimised pumping schedule within minutes, the 
optimisation problem is solved with Linear Programming.  
It studies the case in which the objective function is linear 
and the constraints are specified using only linear 
equalities and inequalities and therefore the optimisation 
process is very fast. 

The above optimisation was implemented with R (R Core 
Team 2018), a software environment for statistical 
computing and graphics, and the lpsymphony package 
(Kim et al. 2018), which adapts Symphony (Ralphs et al. 
2017), an open-source mixed-integer linear programming 
(MILP) solver, for use in R. It was very fast and our 
experimental results showed that it took only 1.7 seconds 
on average for a 24-hour optimisation of six pumping 
stations. 

 

 

 

          
  (a) Energy Consumption of Engadine      (b) Total Energy Cost of all Sites 

Figure 9: Simulation Results 
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Figure 10: Impact on Water Quality 

 

SIMULATION AND RESULTS 
After modelling, a simulation was conducted over three 
months from 1 December 2016 to 28 February 2017 to 
validate the effectiveness of optimisation. At first, at 7am 
every day, optimisation ran to identify the optimised pump 
and valve  operating schedules for the next 24 hours. The 
reservoir levels were then updated based on historical 
demand and the optimised pumping schedule. This was 
followed up by going back to the first step to optimise for 
the next day. The above simulation process is illustrated in 
Figure 7. 

Figure 8 shows the optimisation result for a pumping 
station on 6 February 2017, where the red solid line shows 
history and blue solid line optimised pumping schedules. 
The red dotted line shows history, the blue dotted line 
shows optimised reservoir levels, and the grey dotted lines 
shows lower and upper bounds of reservoir levels. With the 
optimised schedule, before 7am of every day, reservoirs 
are pumped with water close to their upper bounds, so that 
pumping during the following shoulder and peak hours can 
be reduced. Before 2pm, enough water is pumped into 
reservoirs to ensure that little or no pumping would be 
needed during the following peak hours. Figure 8 clearly 
shows that peak-hour pumping is reduced. 

We then compared the energy consumption and cost of 
the optimised pumping schedule with historical data. 
Figure 9a shows energy consumption of the pumping 
station during the three months, which also confirms that 
peak-hour and shoulder-hour pumping is significantly 
reduced. A comparison of energy costs shows that around 
15% of energy costs can be saved with the optimisation 
model (Figure 9b).  

With the optimised pumping schedule, most reservoirs 
have improved water quality, as shown in Figure 10. 

From the simulation results, we identified the following 
observations. Some of them are consistent with existing 
domain knowledge and some provide new insights 
regarding pump scheduling. The observations are, to 
minimise energy costs:  
• Off peak (22:00-7:00) 
o Pumping as much water as possible 
o Pumping water close to upper bound when off-peak 

ends at 7:00 
• Morning and afternoon shoulder hours (7:00-14:00) 
o Pumping water when needed 
o At 14:00, reservoir should have enough water for 

demand up to 20:00, so that no pumping would be 
needed during the following peak hours. 

o At 22:00, the water in the reservoir should be close to 
the lower limit, so that pumping in the previous 
morning shoulder hours is minimised. 

• Peak hours (14:00-20:00) 
o Avoiding any pumping if possible 

• Evening shoulder hours (20:00-22:00) 
o Pumping when the water level would become lower 

than the lower bound if no pumping 
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CONCLUSIONS AND 
FUTURE WORK 
The Woronora Delivery System has been studied and an 
analytics model has been developed that could 
considerably reduce the current energy costs while 
meeting water demand. A simulation over three months 
demonstrated that a reduction of 15% in energy costs 
could be achieved and that most reservoirs would have 
improved water quality.  

In future work, optimisation on both energy saving and 
water quality will be integrated and performed iteratively. 
Moreover, the simulation needs to run for longer than a 
year, to further validate the impact on network capacity 
charge for the long term. Further  future work would be to 
reduce the number of times of starting/closing pumps and 
opening/closing valves, especially for large sites. 
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