
“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works.” 

 



Harnessing Confidence for Report Aggregation in
Crowdsourcing Environments

Hadeel Alhosaini
School of Computer Science

University of Technology Sydney
Sydney, Australia

Hadeel.Alhosaini@student.uts.edu.au

Xianzhi Wang
School of Computer Science

University of Technology Sydney
Sydney, Australia

Xianzhi.Wang@uts.edu.au

Lina Yao
School of Computer Science and Engineering

University of New South Wales
Sydney, Australia

Lina.Yao@unsw.edu.au

Zhong Yang
School of Computer Science

University of Technology Sydney
Sydney, Australia

Zhong.Yang@student.uts.edu.au

Farookh Hussain
School of Computer Science

University of Technology Sydney
Sydney, Australia

Farookh.Hussain@uts.edu.au

Ee-Peng Lim
School of Computing and Information Systems

Singapore Management University
Singapore

eplim@smu.edu.sg

Abstract—Crowdsourcing is an effective means of accomplish-
ing human intelligence tasks by leveraging the collective wisdom
of crowds. Given reports of various accuracy degrees from
workers, it is important to make wise use of these reports to
derive accurate task results. Intuitively, a task result derived
from a sufficient number of reports bears lower uncertainty,
and higher uncertainty otherwise. Existing report aggregation
research, however, has largely neglected the above uncertainty
issue. In this regard, we propose a novel report aggregation
framework that defines and incorporates a new confidence
measure to quantify the uncertainty associated with tasks and
workers, thereby enhancing result accuracy. In particular, we
employ a link analysis approach to propagate confidence infor-
mation, subgraph extraction techniques to prioritize workers,
and a progressive approach to gradually explore and consolidate
workers’ reports associated with less confident workers and tasks.
The framework is generic enough to be combined with existing
report aggregation methods. Experiments on four real-world
datasets show it improves the accuracy of several competitive
state-of-the-art methods.

Index Terms—crowdsourcing, report aggregation, confidence
propagation, experimental evaluation

I. INTRODUCTION

Crowdsourcing is based on the notion of the collaborative
work created by public participants. Its platforms have drawn
increasing attention in recent years as a means of accom-
plishing human intelligence tasks effectively and economically
on a large scale [1], [2]. It holds the great potential of data
collecting, maximizing human resources, the ability to tackle
problems on a large scale of the crowd rather than individually,
supporting decisions making, and allowing access to diverse
knowledge and experience [3]. It has been leveraged in various
applications to exchange information for benefits or rewards.
In general, the key elements of a typical crowdsourcing sys-
tem include the outsourced task, requester (or crowdsourcer),
workers, and platform for managing the within processes,
Fig. 1 shows the overall workflow.

As these platforms offer an extensive pool of workers with
variant expertise to undertake distinct tasks, they result in a
large number of accumulated output tasks reports that need
to be collected for further analysis. However, since workers
can be of differed reliability [6], they may provide inaccurate,
out-of-date, erroneous, or even false reports. Such uncertainty
poses challenges to the distillation of accurate results from
these reports [7]. In fact, data veracity has become one
of the most critical challenges for data crowdsourcing [8].
It refers to the accuracy and quality of collected data. As
the collection of trustworthy data can enhance the analysis
of crowdsourcing platforms’ data, there is an emphasis on
implementing techniques to handle the data veracity challenge.

Currently, most crowdsourcing platforms address the data
veracity challenge by letting multiple workers contribute to
the same tasks and then aggregating those workers’ reports
to derive the final results. We define this report aggregation
problem as follows:

Definition 1: Given a set of tasks (each representing a
question), T , a pool of workers, W , and a collection of
workers’ reports for the tasks (i.e., workers’ answers to the
questions), V , the objective of report aggregation is to predict
an answer for every task t ∈ T , where each answer is expected
to be as close to the true answer as possible.

According to a US study [9], data aggregation is ranked
as one of the top threats that can impact the reputation of
organizations. As the quality of their techniques may be re-
stricted by several challenges such as crowd workers’ expertise
or malicious attacks, it is crucial to control the crowdsourc-
ing aggregation quality [10]. Therefore, an excellent report
aggregation method should deliver accurate results given the
collected reports.

Intuitively, more reports help reduce the uncertainty with
the estimation of both worker reliability and task results—
workers who contribute more reports give us more evidence to
estimate their reliability, tasks that received more reports give



Fig. 1: A typical crowdsourcing framework

us more evidence to predict their results. So far, most previous
research efforts have not considered such uncertainty in report
aggregation thus compromising the accuracy of results [11],
[12]. In fact, reducing this uncertainty is important from a
practical point of view, as many real-world crowdsourcing
scenarios witness uneven distributions of reports, demonstrated
by the long-tail phenomenon [11], [13]. This phenomenon
leads to drastically different uncertainty associated with work-
ers and tasks. Based on this insight, we introduce the notion
of confidence to handle such uncertainty. Specifically, in this
paper, we propose a new concept, confidence, which measures
the impact of report count on the uncertainty with predicted
results, to improve the quality of crowdsourcing results:

Definition 2: Given an object (either a worker or a task),
o ∈ W ∪ T , and its associated reports V (o), the confidence
of o measures the degree to which we trust the evaluation
result1 of o and is a monotone increasing function of report
size |V (o)|.

Confidence has two important properties: monotonicity by
report count and mutual dependency. The first property sug-
gests that more reports indicate stronger evidence and more
reliable results; conversely, a smaller number of reports carry
weaker evidence and lead to less reliable results. The second
property suggests that i) high-confidence workers are likely to
provide more confident reports and ii) workers who provide
reports on high-confidence tasks are likely to be more confi-
dent. Therefore, it is necessary to propagate confidence among
workers and tasks to incorporate this mutual dependency. Here,
we use an example to illustrate the idea of confidence and
demonstrate how it affects the aggregation results.

Example 1: Consider the scenario where a requester wants
to determine the correctness of a textual statement via crowd-
sourcing. Five workers submit T or F labels to four statements
(i.e., four tasks), denoted by labeled connections in Fig. 2.
If we treat all workers equally and use majority voting to
predict task labels, we can get the results of {?,?,F,F}, where
‘?’ denotes an undetermined result. By using report count as
confidence, we trust the workers and tasks with more reports,

1The result is either the reliability of a worker or the predicted result for a
task

Fig. 2: An example of report counts before and after confi-
dence propagation in a report aggregation problem.

resulting in the confidence scores shown next to workers and
tasks in Fig. 2a and leads us to the new prediction results of {F,
F,?, F}. Further, by propagating the confidence among workers
and tasks using our method (to be introduced later), we are
able to obtain updated confidence scores shown in Fig. 2b and
obtain the prediction results of {F,F,T,F}. We will later extract
some real examples from our experimental results to validate
the advantages of confidence propagation.

Given the significance of considering confidence to the
quality of crowdsourcing results, we propose a General Report
Aggregation (GRA) framework that uses confidence as a heuris-
tic to derive more accurate crowdsourcing results. We make
the following contributions in this paper:

• We introduce a new concept of confidence to the crowd-
sourced data or report aggregation problem. We define



base confidence as the numbers of associated reports
of workers or tasks and propagate confidence among
workers and tasks to take into account their interactions
to derive the final confidence.

• We propose a progressive report aggregation approach
that gives priority to evaluating high-confidence workers
and tasks and then leverages high-confidence results to
reduce the uncertainty associated with lower-confidence
workers and tasks to improve the overall accuracy of
results for all tasks.

• We incorporate confidence with performance measures
of workers and tasks to derive crowdsourcing results.
Extensive experiments on real-world datasets demonstrate
that GRA improves the accuracy of existing methods.
The results also support our analysis that GRA does not
increase the time complexity of existing methods.

II. RELATED WORK

Data aggregation methods, also known as truth discovery
techniques, have broad applications in the integration of multi-
source data for various purposes such as fact checking, truth
inference, and spam detection [14]. Existing truth discovery
research mostly focuses on unsupervised methods due to the
lack of ground truth in many real-world scenarios [15], [16].

Until now, the related techniques have rarely been applied
to the crowdsourcing domain [14]. They generally fall into
three categories: i) iterative methods, which use heuristic func-
tions to alternately evaluate workers’ reliability and reports’
veracity to predict true answers [17]–[20]; ii) optimization
methods, which predict true answers by explicitly solving
optimization models [11], [21]–[24]; iii) probabilistic methods,
which employ Bayesian models, typically generative models,
to predict true answers via point estimate [25], maximum
likelihood [26]–[28], or maximum a posteriori probability esti-
mation [29]–[31]. Some methods further incorporate problem-
specific clues such as value similarity [20], item difficulty [19],
and source dependence [27], [32] to achieve better perfor-
mance.

Although most of the above truth discovery techniques can
be applied to crowdsourcing scenarios, they share two com-
mon deficiencies. First, they do not consider the uncertainty
associated with the prediction results derived from differed
numbers of reports received by different tasks. Consequently,
they may not perform well on many real-world crowdsourcing
scenarios that exhibit long-tailed distributions of report counts
over workers or tasks. Second, previous studies [6] have shown
that it reduces nearly half of the mistakes made by a general
truth discovery technique to know the reliability of information
sources (i.e., workers in the crowdsourcing context) a priori.
However, most existing methods use random or default values
to initialize parameters (e.g., the reliability of information
sources and the veracity of sources’ reports), which may not
result in satisfactory performance.

The most relevant work to ours is the confidence-aware truth
discovery method [11]. This method considers the positive
correlation between information sources’ confidence and the
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Fig. 3: General report aggregation framework

numbers of its provided reports and shows the positive effect of
considering such confidence in predicting values of tasks from
multi-sourced data. Our framework distinguishes from the
above work in employing a progressive approach (rather than
a one-off approach) that incorporates propagated confidence
(rather than merely the confidence of information sources)
to derive the crowdsourcing results. While the progressive
approach enables better settings of parameters to accelerate
the aggregation process, confidence propagation considers the
mutual reinforcement of confidence among workers and tasks
to deliver more reasonable confidence computation. Besides,
instead of being a proprietary method, our framework is
general and can be applied to multiple existing methods to
life their performance.

III. OUR PROPOSED FRAMEWORK

Our GRA framework (see Fig. 3) involves three components:
confidence propagation, confident subgraph extraction, and
confidence-aware report aggregation. The confidence propa-
gation component aims to compute confidence scores from
report counts of workers and tasks. It considers not only
the confidence of workers and tasks but also the interaction
between workers and tasks in the computation. The confident
subgraph extraction and confidence-aware report aggregation
components together form a progressive report aggregation
approach. We hypothesize that some subsets of workers and
tasks can provide a better estimation of the optimal parameters
than default or random settings. Therefore, the approach does
not require parameter tuning for every individual dataset but
has to potential to yield higher accuracy.

In particular, we use confidence as the criterion to differen-
tiate workers and tasks and to derive subsets of different con-
fidence levels. On this basis, the progressive approach learns
the parameter settings from high-confident subsets of workers
and tasks and apply them to lower-confident subsets to boost
the overall accuracy, where confident subgraph extraction is
responsible for progressively inducing better prior parameters
for report aggregation methods, while confidence-aware report
aggregation incorporates confidence scores to improve the
accuracy of crowdsourcing results. By using confidence as a
heuristic to induce higher-quality results for low-confidence



TABLE I: Notations used in the paper.

Notation Explanation
W Set of workers
T Set of tasks
E Set of edges/interactions among workers and tasks

T (w) Set of tasks on which a worker w provides reports
W (t) Set of workers who provide reports on a task t
V (w) Set of reports provided by worker w
V (t) Set of reports received by task t
C Confidence of workers and tasks
R Reliability of workers
F Veracity of answers for tasks

c(w), c(t) Confidence of worker w and task t
r(w) Reliability of worker w
f(vt) Veracity of answer vt for task t

Algorithm 1 The GRA Framework

Input: a bipartite graph G(W,T ;E);
a predefined number of iterations, k.

Output: the answer predicted for every task.
1: R← {r(w)|r(w) = 0.8, w ∈W}
2: F ← {f(vt)|f(vt) = 1

|V (t)| , vt ∈ V (t), t ∈ T}
3: Ĝ← G
4: C ← Algorithm 2 (G)
5: while fewer than k iterations do
6: G ← Algorithm 3 (G, C, k)
7: R, F ← Algorithm 4 (Ĝ/G, C, R, F )
8: end while
9: return {argmax

vt∈V (t)

f(vt)|t ∈ T}

workers and tasks from those results for high-confidence work-
ers and tasks, a report aggregation method to continuously
adapt its parameters and achieves higher accuracy.

We list the main notations used in this paper in Table I.
As shown in Algorithm 1, our report aggregation framework
starts by initializing the parameters, including the reliability
of workers (line 1) and the veracity of answers for every task
(line 2). We initialize every answer with the equal veracity
because we know nothing about answers at the beginning.
The framework then computes the propagated confidence of
workers and tasks based on the full worker-task bipartite graph
(line 4), followed by an iterative subgraph extraction (line 6)
and report corroboration (line 7) procedure. In each iteration,
Algorithm 3 extracts a most confident subgraph from the
worker-task graph. The subgraph size is determined by the
predefined number of iterations k. All the extracted subgraphs
together (denoted by Ĝ/G) represent a subproblem of the
original report aggregation problem and form the input of
Algorithm 4 for report corroboration. The corroboration results
will be used as priors of future corroborations. In this way,
the results from previous iterations serve as seeds to boost the
result accuracy of future iterations. The final result of a task is
the answer with the highest veracity score among the scores
of all answers provided by workers for the task (line 9).

The framework ensures confident predictions always pre-

cede less confident predictions during the corroboration pro-
cess. But it never prevents methods from using low-confidence
subsets. The rationale lies in the predicted results can be
passed down to future iterations and provide better seedings
for result predictions on less confident workers and tasks.
Note that the original input, G, should be a connected graph;
otherwise, each independent subgraph represents a different
problem and should be solved separately.

A. Confidence Propagation

Our confidence computation is based on two ideas. First,
workers and tasks associated with different numbers of reports
should bring about varying degrees of uncertainty. Second,
all clues including the workers and tasks with sparse reports
should be considered to improve the result accuracy. On
the above basis, we define confidence score to measure the
strength at which the multi-source data support the evalua-
tion/prediction regarding different workers and tasks.

The straightforward way to compute confidence is to equate
confidence with report count as done in Example 2 (a). How-
ever, this method considers only the direct report counts of
workers and tasks but neglects their interactions. As discussed,
we recognize the mutual dependency of confidence between
workers and tasks, i.e., the confidence of a worker or task
is determined not only by its report count but also by the
confidence and report counts of other workers and tasks both
directly and indirectly associated with it.

Therefore, we propose a propagation-based confidence com-
putation method based on a variant of Hyperlink-Induced
Topic Search (HITS) [17] and describe it in Algorithm 2. The
principle is that a worker or task associated with more workers
and tasks of higher confidence also has higher confidence.
In particular, the hub scores and authority scores in HITS
correspond to the confidence of workers and the confidence of
tasks, respectively. In each iteration, the algorithm updates the
confidence of both workers and tasks following the edges of
the bipartite worker-task graph (lines 4-9). The sum of all
propagated scores are bounded by the original total report
count (N̂ ) throughout iterations (lines 10-12); this ensures the
algorithm can always converge to the eigenvector (lines 3-
13). Since N̂ represents the total number of reports over all
workers and tasks, the propagation process eventually reaches
a stationary redistribution of this number among all workers
and tasks. The final step of confidence propagation is to
transform the propagated scores into a reasonable range to
ease future use (lines 14-16). The final output is a confidence
score for every worker and task (line 17).

Unlike in HITS, where the hub scores and authority scores
are normalized separately, it is crucial to normalize the confi-
dence of workers and tasks simultaneously due to their mutual
dependency. Since confidence scores might be distributed arbi-
trarily over workers and tasks, we consider them as univariate
independent and identically distributed samples drawn from
some distribution with an unknown density g and conduct



Algorithm 2 Confidence Propagation

Input: a bipartite graph G(W,T ;E).
Output: confidence scores of every worker and task.

1: c(w), c(t)← 1, ∀w ∈W , ∀t ∈ T .
2: N̂ ←

∑
w∈W |T (w)|+

∑
t∈T |W (t)|

3: while convergence not reached do
4: for w ∈W do
5: c(w)←

∑
t∈T (w)

∑
w′∈W (t) c(w

′)
6: end for
7: for t ∈ T do
8: c(t)←

∑
w∈W (t)

∑
t′∈T (w) c(t

′)
9: end for

10: for o ∈W ∪ T do
11: c(o)← N̂∑

w∈W c(w)+
∑

t∈T c(t) · c(o)
12: end for
13: end while
14: for o ∈W ∪ T do
15: c(o)← update c(o) by Eq. (2)
16: end for
17: return {c(o)|o ∈W ∪ T}

kernel density estimation [33] to transform confidence into
probabilistic representations:

gh(c) =
1

(|W |+ |T |)h
∑

o∈W∪T

K(c− c(o)

h
) (1)

where K is the kernel, a non-negative function that integrates
to one, and h > 0 is the bandwidth. Since the density estima-
tion technique is not the focus in this work, we just choose
the standard normal kernel function due to its convenient
mathematical properties, and use the rule-of-thumb bandwidth
estimator for estimating Gaussian density to select the optimal
bandwidth, i.e., h = 1.06σ · (|W | + |T |)− 1

5 , where σ is the
standard variance of all confidence scores. On the above basis,
we calculate the transformed confidence score for each worker
or task o, c(o), as follows:

c(o) =

∫ c(o)

−∞
gh(c) dc (2)

This method essentially assigns confidence scores to work-
ers and tasks based on their standings in the list of raw
confidence scores of all workers and tasks. In this way, this
method enforces a more even and coherent distribution that
is insensitive to the differences among the original confidence
scores, thereby avoiding the dominance of those extremely
large or tiny raw confidence scores in subgraphs (to be
extracted later).

B. Confident Subgraph Extraction

In this section, we aim to extract some confident subgraphs
from a worker-tasks bipartite graph to facilitate more accurate
report aggregation on the original graph. As discussed, work-
ers and tasks of higher confidence are associated with less
uncertainty and therefore liable to derive more accurate results.

Algorithm 3 Confident Subgraph Extraction

Input: a bipartite graph, G(W,T ;E);
confidence scores, C = {c(o)|o ∈W ∪ T};
the number of iterations, k.

Output: updated G.
1: for (w, t) ∈ E do
2: ω(w, t)← c(w) + c(t)
3: end for
4: Initialize an empty graph G′

5: while fewer than ⌈|E|/k⌉ iterations and E ̸= ∅ do
6: e← argmax

(w,t)∈E∧(w∈W ′∨t∈T ′)

ω(w, t)

7: Add e to G′

8: Remove e from G
9: end while

10: return G

Based on this insight, given a worker-task bipartite graph, we
hypothesize that a confident subgraph can better approximate a
graph than a random or lower-confidence subgraph. Therefore,
it can derive a better estimation of workers’ reliability as well
as task results.

We define subgraph extraction as the problem of maximiz-
ing the total weights of edges, subject to a maximum number
of edges of the resulting subgraph:

argmax
E′⊆E∧|E′|=max(⌈|E|/k⌉,|E|)

∑
(w,t)∈E′

ω(w, t) (3)

s.t., G′(W ′, T ′;E′) is a connected graph

where the subgraph is formed by the selected edges and
their vertexes in the original graph; the weight of an edge
is calculated as the sum of confidence scores of both vertexes
of the edge.

This is a typical dense subgraph extraction problem and
can be solved by different state-of-the-art techniques such as
dynamic programming and evolutionary algorithms [34]. To
maximally preserve the efficiency of the GRA framework, we
design a heuristic algorithm to find an approximate solution.
Specifically, Algorithm 3 shows our proposed subgraph extrac-
tion procedure. First, each edge is assigned a weight equaling
the sum of confidence scores of both its vertexes (lines 1-3).
Then, a subgraph is initialized (line 4) and updated through
iterations until reaching a predefined size limit (lines 5-9). In
particular, each iteration adds a new edge to the subgraph.
The new edge meets two criteria: i) it connects with the
subgraph but is not a duplicate of an edge in the subgraph;
ii) it has the biggest edge weight in the input graph. After
the required number of edges are selected, they together form
a connected subgraph to be returned as the output of the
subgraph extraction algorithm (line 10).

C. Confidence-Aware Report Corroboration

Algorithm 4 shows the report corroboration procedure,
which takes the results from previous iterations of the pro-
gressive approach as inputs and uses them as priors in the



Algorithm 4 Report Corroboration

Input: a bipartite graph G⋆(W ⋆, T ⋆;E⋆);
a set of reports from workers V ;
prior reliability of workers R;
prior answer veracity of tasks F .

Output: estimated reliability of every worker and predicted
true answer for every task.

1: while convergence not reached do
2: for t ∈ T ⋆ do
3: for vt ∈ V (t) do
4: f(vt) ← estimate the veracity of vt based on R

smoothed by C
5: end for
6: end for
7: for w ∈W ⋆ do
8: r(w) ← estimate the reliability of w based on F

smoothed by C
9: end for

10: end while
11: return R, F .

subsequent iterations of Algorithm 1. It first initializes worker
reliability and answer veracity using the input variables R and
F , which contains either i) default values if the workers and
tasks are not involved in previous iterations of Algorithm 1),
or ii) the estimation results from the last previous iteration
otherwise (lines 3-5). Since all existing truth discovery meth-
ods follow a similar principle, i.e., inferring worker reliability
and answer veracity alternately from each other, here, we
show a general report aggregation procedure (lines 1-10) while
different methods may employ various techniques to conduct
the specific calculation (lines 4 & 8). Once new results are
obtained, they would be updated into F (line 4) and R (line
8) for subsequent iterations or deriving the final results. In
particular, each f(vt) ∈ F and r(w) ∈ R is smoothed as
follows:

f(vt) = c(vt) · f(vt) +
(
1− c(vt)

)
·
∑

v′
t∈V (t) f(v

′
t)

|V (t)|
(4)

r(w) = c(w) · r(w) +
(
1− c(w)

)
·
∑

w′∈W r(w′)

|W |
(5)

The above equations incorporate the influence of confi-
dence by giving more credit the the results related to higher-
confidence workers and tasks and tuning the results on lower-
confidence more towards the average results.

D. Time Complexity

Given the number of workers, |W |, the number of tasks,
|T |, and workers’ reports for tasks, |V |, suppose the iteration
times is M , then the time complexity of a traditional report
aggregation method is O(|W ||T ||V |M).

The time complexity of the GRA framework consists of two
parts: confidence computation and progressive iteration. Sup-
pose Algorithm 2 converges after N iterations, then the time
complexity of confidence computation is O(|W ||T |N). Given
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the iteration number k, the second part has the complexity
of O

(
|W ||T ||V |M

∑k
i=1 (

i
k )

3
)
≤ O

(
|W ||T ||V |Mk(kk )

3
)
=

O(k|W ||T ||V |M). Since k is manually defined and cannot
be excessively large, it can usually be regarded as a constant.
That reduces the time complexity to O(|W ||T ||V |M).

IV. EXPERIMENTS

In this section, we present our experiments to evaluate the
GRA framework against several state-of-the-art methods as
well as under different configurations.

A. Experimental Setup

1) Datasets: We employed four real-world crowdsourcing
datasets in our experiments.

• Bird recognition [35]. This is also a real crowdsourcing
dataset from Amazon Mechanical Turk. It contains 4,212
judgments of 39 workers on 108 images to distinguish
between two types of birds.

• Weather sentiment [36]. This is a real crowdsourcing
dataset from Amazon Mechanical Turk. It contains 6,000
classification judgments by 110 workers on weather-
related sentiment in 300 tweets. Each tweet belongs
to one of five classes: ‘negative’, ‘neutral’, ‘positive’,
‘irrelevant to weather’, and ‘can’t tell’.

• City population [18], [37]. This dataset contains people’s
editing records on the population sizes of cities as of



the year 2010 in Wikipedia. After discarding duplicate
and ambiguous reports, we obtained 51,761 reports from
4,264 users regarding the population sizes of 41,197
cities. We used the latest editing records as the ground
truth.

• Food nutrition. We prepared the fourth dataset by crawl-
ing 2,085,121 reports about 17 nutrition aspects (e.g.,
calories, dietary fiber, and total fat) of 630,567 foods con-
tributed by 9,896 users (i.e., workers) from myfitnesspal.
com. Each nutrition aspect measures the amount of a type
of nutrient contained in per serving or unit mass of food
items.

To gain a better understanding of the new dataset (food nu-
trition), we investigated the distributions of reports over users
and tasks, respectively. Both distributions show an evident
long-tail phenomenon—over 70% of the food items are cov-
ered by only one user, and 98% are covered by no more than
ten users (Fig. 4); similarly, over 33% users provide reports
on no more than ten food items (Fig. 5). These observations
imply that we may not be able to make confident evaluations
of many workers and tasks that make up the long tail and
further suggest the necessity of incorporating confidence in
report aggregation. Similar distributions were also observed
in the other datasets except the bird recognition dataset;
we particularly select this dataset as a contrary example to
explore the influence of considering confidence on datasets
with different report distributions in our experiments.

Besides, we pre-standardized the values in the numerical
dataset into z-scores to avoid bias caused by the different
value ranges of tasks. Besides, we executed all methods 20
runs under each configuration setting and used their average
performance for the evaluation.

2) Evaluation Metrics: For categorical datasets (the first
two datasets), we evaluate methods’ performance using ac-
curacy, i.e., the proportion of correct answers among all the
answers predicted by each method for all tasks. For numerical
datasets (the last two datasets), use Mean Absolute Mean Error
(MAE) and Root Mean Square Error (RMSE) to measure the
discrepancy of task results against ground truth. For accuracy,
a larger value indicates better performance; while for any
of the other two metrics, a smaller value indicates better
performance.

B. Evaluation of Methods

We evaluated the effectiveness of our GRA framework before
and after it is applied to four categories of methods:

• Primitive approach, i.e., Majority Voting (mVoting). For
each item, it predicts the answer provided by most
workers, or a random answer in case of a tie, as the truth.

• Iterative approach, including Sums [17], Avg-Log [18],
Invest [18], PooledInvest [18], Cosine [19], 2-
Estimates [19], and TruthFinder [20]. They estimate
worker reliability and answer veracity simultaneously
using different calculation methods.

• Optimization approach, i.e., the Conflict Resolution on
Heterogeneous Data (CRH) framework [21], which min-

imizes the difference between workers’ inputs and the
predicted answer to derive the true answer.

• Probabilistic approach, including AccuPr [27] and Gaus-
sian Truth Model (GTM) [29]. These methods use point
estimate and generative models, respectively, to infer
values’ a posterior truth probability.

• Confidence-Aware Truth Discovery (CATD) [11]. This
method gives workers with fewer reports smaller weights
but considers only worker confidence as a one-off, non-
generic approach.

Note that, GTM is only applicable to numerical datasets;
our GRA framework was not applied to CATD as it already
considered the notion of confidence in a different way. The
convergence of these methods has been either proved or em-
pirically evaluated before; therefore, we re-implemented all the
methods in Python and configured them with the optimal pa-
rameter values suggested by their original authors. Meanwhile,
we set the number of iterations k = 4 for our GRA framework.
All experiments were conducted on a PC with Intel® Core™
i7-4790 processors (3.6GH×8) and 16GB RAM. We avoided
incorporating more features that are available to some of
these methods such as input transformation [30] and source
dependence [27] to ensure a fair comparison.

Table II shows the performance of methods before and
after applying our framework on the four datasets, where
¬GRA and GRA represent the performance (in terms of either
accuracy or errors) before and after applying our framework,
respectively. The results show that our framework improves
the accuracy or reduces the errors of all methods significantly,
in many cases by half, on all datasets excluding the bird
recognition dataset. The reason is that we have specially
chosen this dataset, where the reports are distributed evenly
among all workers and all tasks. Under this circumstance, our
confidence-aware approach degrades into a simple iterative
approach that extracts random subgraphs each time. The
results show the random method does not have a significant
impact on the result accuracy. Another observation is that
the improvement is more evident on the larger dataset (e.g.,
food nutrition) than on smaller datasets (the others). This
observation implies that our framework favors large datasets
from the accuracy standpoint.

C. Evaluation of Configuration Settings

In this section, we report the performance of the GRA
framework under different confidence computation methods,
progressive strategy, and parameter settings. To ease illus-
tration, we use TruthFinder as an example to demonstrate
the evaluation results; all the other methods draw similar
conclusions. In all the tables showing the evaluation results,
we show the best performing methods/strategies with a gray
background and the best performance values in boldface.

1) Confidence Computation Method: To evaluate the im-
pact of confidence computation to our GRA framework, in
this experiment, we kept all the other configuration aspects
unchanged while evaluating the performance under different
confidence computation methods as follows:



TABLE II: Accuracy of methods before and after applying our framework, indicated by ¬GRA and GRA, respectively. The
best performance values are in boldface

Method
Bird recognition Weather sentiment City population Food nutrition

Accuracy Accuracy MAE RMSE MAE RMSE
¬GRA GRA ¬GRA GRA ¬GRA GRA ¬GRA GRA ¬GRA GRA ¬GRA GRA

mVoting 0.69 0.69 0.77 0.85 10,327 9,072 126,217 123,426 356 208 469 276
Sums 0.72 0.72 0.79 0.82 3,026 2,645 17,023 15,738 316 164 412 227

Avg-Log 0.74 0.74 0.79 0.82 2,923 2,623 16,923 15,624 316 164 413 228
Invest 0.74 0.74 0.74 0.82 1,787 1,622 9,797 9,501 320 165 417 229

PooledInvest 0.74 0.74 0.74 0.85 1,792 1,653 9,901 9,589 327 167 421 230
Cosine 0.72 0.72 0.72 0.77 1,695 1,609 9,329 8,623 316 163 413 228

2-Estimates 0.76 0.76 0.79 0.87 1,652 1,542 9,058 8,342 316 163 412 227
TruthFinder 0.74 0.74 0.82 0.87 1,633 1,489 8,823 8,018 315 163 412 227

AccuPr 0.74 0.74 0.82 0.85 1,639 1,505 8,898 8,190 306 157 398 223
CRH 0.72 0.74 0.79 0.85 1,636 1,502 8,864 8,123 304 157 394 222
GTM — — — — 41,623 1,463 8,582 7,636 306 164 412 227
CATD 0.74 0.74 0.82 — 1,594 — 7,740 — 306 — 412 —

• Source popularity-based method. This method measures
each source’s confidence by its popularity, i.e., the num-
ber of tasks on which the source provides reports.

• Item popularity-based method. This method measures
each worker’s confidence by its popularity, i.e., the
number of workers that provide reports on this task.

• Two-sided popularity-based method. This method con-
siders the confidence of both workers and tasks in terms
of their popularity.

• HITS-based method. This is our method, which propa-
gates confidence among workers and tasks based on a
variant of HITS (Section III-A).

The results (Table III) show that our propagation-based
method always yields highest accuracy and smallest errors
among all methods, which demonstrates the advantages of
propagated confidence over the alternative measure of pop-
ularity (i.e., direct report count).

2) Seeding Strategy: Table IV shows the performance of
our approach following different seeding strategies to extract
subgraphs. The extracted subgraphs will be used as seeds to
improve the accuracy of methods on the unexplored workers
and tasks.

• Non-progressive strategy. This strategy considers con-
fidence but performs one-off report aggregation using
predefined values to initialize the methods.

• Random seeding. This strategy randomly selects workers
and tasks from the unexplored workers and tasks to par-
ticipate in the next iteration of the progressive procedure.

• Low-confidence seeding. This strategy always selects the
source and tasks with the lowest confidence among the
unexplored workers and tasks for the next iteration.

• High-confidence seeding. This is the strategy adopted in
the proposed approach, which always selects the workers
and tasks with the highest confidence among the unex-
plored workers and tasks for the next iteration.

The results (Table IV) show that high-confidence seeding
outperforms the other strategies, demonstrated by the higher
accuracy on categorical datasets and smaller MAE and RMSE
on numerical datasets. In contrast, inappropriate strategies,

such as random and low-confidence seeding, could produce
worse results than the traditional non-progressive approach.

To further investigate the optimization process of the pro-
gressive approach under different strategies, Fig. 6 shows the
average MAE over all the explored tasks calculated for each
of the ten iterations of our approach. For high-confidence
seeding, we observed that earlier subgraphs (formed by higher-
confidence workers and tasks) generally yielded smaller er-
rors. Although the overall error increased when more low-
confidence workers/items were involved, the previous com-
putation seemed to prevent it from growing excessively. In
contrast, both random seeding and low-confidence seeding
found more subgraphs useful for reducing their average errors.
This observation aligns with our intuitions that more evidence
generally yields better predictions when we have no prior
knowledge about the dataset (as in random seeding) and better
evidence leads to better predictions (as in low-confidence
seeding). Since a traditional method does not employ the
progressive approach, its error remains unchanged in Fig. 6.

3) Parameter Setting: In this section, we study the impact
of subgraph number, k, on the framework’s performance,
where we used TruthFinder and the food nutrition dataset
as examples to discuss the results. In particular, when k=1,
the approach degrades to the non-progressive approach. The
results (Fig. 7) show that the computation time grows ap-
proximately linearly with k, indicating the predictable time
cost of our approach. A small k significantly reduced the
MAE, but it started to increase beyond some point (e.g., 7 in
this experiment). This reveals the importance of configuring a
proper value of k. Specifically, we set k = 4 throughout our
experiments for the best performance, and automatic selection
of k should be a topic of future research.

D. Scalability Studies

Further, Fig. 8 and Fig. 9 shows the comparison of different
methods concerning computation time on the food nutrition
dataset and weather sentiment dataset, respectively. We omit
the results on the biography dataset as they are similar to
those on the food nutrition dataset. The results show that our



TABLE III: Performance of our framework using different confidence computation methods.

Strategy Bird recognition Weather sentiment City population Food nutrition
Accuracy Accuracy MAE RMSE MAE RMSE

Worker popularity-based 0.74 0.82 1,621 8,748 307 401
Task popularity-based 0.74 0.82 1,610 8,699 265 352

Two-sided popularity-based 0.74 0.85 1,548 8,336 252 308
HITS-based method 0.74 0.87 1,489 8,018 163 227

TABLE IV: Performance of our framework under different progressive strategies.

Strategy Bird recognition Weather sentiment City population Food nutrition
Accuracy Accuracy MAE RMSE MAE RMSE

Non-progressive (traditional) 0.74 0.82 1,633 8,823 315 412
Random seeding 0.74 0.82 16,766 14,682 423 928

Low-confidence seeding 0.74 0.77 16,473 14,398 437 940
High-confidence seeding 0.74 0.87 1,489 8,018 163 227
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approach may take additional time to complete, but the effect
is specific to the datasets. Another observation is that the time
increase is less evident for larger datasets. The reason may
lie in that the amount of extra time caused by our approach
is relatively stable. Thus the additional time cost immedi-
ately becomes marginal when the original methods (i.e., the
methods without adopting our framework) themselves require
a considerable amount of time by themselves. Indeed, for
both the biography and food nutrition datasets, all progressive
versions of the methods incurred similar or only slightly longer
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Fig. 8: Computation time on food nutrition dataset
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Fig. 9: Computation time on weather sentiment dataset

time than their original implementations. Some even incurred
less time than their original versions on both datasets. This
may imply that our proposed approach not only improves the
accuracy but also, in many cases, preserves the efficiency of
methods if configured properly.

V. CONCLUSION

In this paper, we have proposed a general report aggregation
framework, which employs confidence propagation and a
progressive approach to derive more accurate results. To the
best of our knowledge, this is the first work that recognizes



the interaction among the confidence of workers and tasks
in crowdsourcing scenarios; it is also the first to progressively
take into account more confident workers and tasks to improve
the accuracy for those less confident workers and tasks. The
proposed approach can mitigate the uncertainty brought by
data sparsity and continuously improve the priors of existing
methods. It is generic enough to be applied to various existing
methods. Experiments on four real-world datasets demonstrate
the effectiveness of our approach. Our future work would
involve developing more sophisticated implementations of our
approach and evaluating the framework with more datasets.
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