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Blood pressure (BP) is a vital biomedical feature for diagnosing hypertension and cardiovascular diseases. Traditionally, it is
measured by cuff-based equipment, e.g., sphygmomanometer; the measurement is discontinued and uncomfortable. A cuff-less
method based on different signals, electrocardiogram (ECG) and photoplethysmography (PPG), is proposed recently. However,
this method is costly and inconvenient due to the collections of multisensors. In this paper, a novel machine learning-based
systolic blood pressure (SBP) predicting model is proposed. The model was evaluated by clinical and lifestyle features (gender,
marital status, smoking status, age, weight, etc.). Different machine learning algorithms and different percentage of training,
validation, and testing were evaluated to optimize the model accuracy. Results were validated to increase the accuracy and
robustness of the model. The performance of our model met both the level of grade A (British Hypertension Society (BHS)
standard) and the American National Standard from the Association for the Advancement of Medical Instrumentation (AAMI)
for SBP estimation.

1. Introduction

Currently, hypertension or high blood pressure (BP) is one of
the riskiest factors that affect cerebrovascular (CVDs) and
cardiovascular diseases and causes around 31% of death in
the world [1]. World Health Organization (WHO) reported
9.4 million death from hypertension in the world health sta-
tistics in 2014 [2]. After diabetes, hypertension is known as
the second dangerous factor of cardiovascular disease [3].
Because many people unrealize the effect of hypertension
and do not control it, it is also named silent killer. BP is
one of the essential periodic features providing valuable med-
ical information to diagnostic cardiovascular diseases.
Diastolic blood pressure (DBP) is the lower bound of the
BP. Systolic blood pressure (SBP) is the upper bound of the
BP. The average BP is called mean arterial pressure (MAP)
in a cardiac cycle [4]. Hypertension occurs and affects the
internal body organs when the SBP is higher than 140mmHg
or the DSP is higher than 90mmHg [5]. The typical value of

MAP should stay between 70mmHg and 110mmHg [6].
Hypertension patients test BP occasionally. Incorrect mea-
surements are recorded with high possibility due to the BP
varies by eating habits, tobacco, stress, etc. Therefore, to
achieve an accurate diagnosis, continuous BP monitoring is
essential. Besides, the continuous BP record improves the
prescriptions of appropriate medicine and treatment by
doctors.

The most common and accurate BP measurement
methods are cuff-based or invasive [7]. However, the equip-
ment is limited to the health care centre and hospitals. The
most common devices used for BP measurement are based
on auscultatory and oscillometric methods, which determine
the values of SBP and DBP with no risk and pain. However,
the measurements from those devices are cuff-based and dis-
continuous. It is inconvenient to cuff inflation and deflation
repeat for the patients. The development of cuff-less BP
measurement has been proposed in the last decades [8].
The method based on pulse wave velocity (PWV) and pulse
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transit time (PPT) has been introduced to estimate the cuff-
less continuous BP [9]. Also, continuous wave radar
(CWR), bioimpedance (BImp), and electrocardiogram
(ECG) sensor are processed in BP estimation [10]. The most
common estimation method is based on photoplethysmogra-
phy (PPG) [7]. The pulse arrival time (PAT) can be calcu-
lated by PPG signal and ECG signal. Several challenges
were applied in these methods, such as implantation of arte-
rial wave propagation models, signal calibration, and various
parameters from difference signals [11]. Recently, machine
learning-based measurement methods are developed to
reduce the calibration processes by using the signals of PPG
and ECG [12]. BP is measured by a series of parameter of fea-
tures extracted from the signals of PPG and ECG by machine
learning. A single PPG signal-based measurement method is
also proposed due to its simplicity. This approach can gener-
ate estimated BP continuously [13]. This paper presents a
novel machine learning-based SBP predicted method by
several features and SBP values.

2. Materials and Methods

A novel modelling method is proposed to predict the estima-
tion of SBP in this paper. The proposed method is designed
by the extraction of clinical measurement and lifestyle vari-
ables with machine learning techniques. Figure 1 illustrates
the workflow of the SBP predicted method, which is
summarised below.

(1) Extract Data from Datasets. In this method, only 250
samples with low BP were implemented.

(2) Extract Features. There were 501 features, including
one target feature, SBP, 17 clinical features, and 483
genetic markers. This method initially covered 13
features. However, to increase the performance
accuracy, part of the features was unselected when
the model was evaluated.

(3) Algorithm Comparison. Machine learning methods,
such as linear regression (LR), support vector
machine (SVM), decision tree regression (DTR),
Gaussian process regression (GPR), and artificial
neural network (ANN), had been computed to
address the best approach for the model. The result
indicated that ANN was the best accurate method.

(4) In ANN, three different stages were designed to opti-
mize the performance of the network

(a) Three training algorithms, the Levenberg-
Marquardt Algorithm (LMA), the Bayesian
Regularization Algorithm (BRA), and the Scaled
Conjugate Gradient Algorithm (SCGA), had
been selected in the network

(b) Various percentage of training, validation, and
testing had been compared

(c) The different numbers of hidden neurons had
been adjusted

(5) When the model was evaluated, kept the training
algorithm, percentage of training, validation, and
testing, and the number of hidden neurons. In order
to validate the results by different features, the step of
feature extraction was operated again by unselecting
one of the features for each testing and validation.
The results indicated that all 12 features were suitable
for the model

(6) After the final model was evaluated, the result was
predictable with minimized errors

2.1. Datasets. The datasets we used in our research work are
from Dr. Raymond Lam, GlaxoSmithKline, which includes
eighteen feature variables and 500 subjects [14]. In this
research, 250 subjects indicated as high blood pressure
(hypertension) are higher than 140mmHg, and 250 subjects
are lower than 140mmHg. Eighteen feature variables contain
one response feature (SBP) and seventeen features (clinical
covariates). Due to some variables of features were ambigu-
ous classified and calculated, our research selected thirteen
variables for training, testing, and estimating.

2.2. Systolic Blood Pressure. SBP represents BP value which is
exerting against the walls of the artery when the heart is beat-
ing. SBP is an essential value for the BP measurement, and it
is an important feature to detect hypertension [4].

2.3. Gender. In the datasets, the variable of gender is in
binary. M denotes male, and F denotes female. The differ-
ences in gender indicate the difference in the regulation of
BP [15]. A study of ambulatory BP monitoring for 24 hours
has been presented recently [16]. The results have addressed
that men have more possibility to have cardiovascular disease
than age-matched women [17]. The BP in men is higher than
the BP in women [18].

2.4. Marital Status.Marital status is one of the variables from
the datasets. Y denotes married, and N denotes not married.
According to the previous research, it is shown that never-
married people have more risks of hypertension than mar-
ried people in men. However, never-married women are
associated with less risk of hypertension than married
women [19].

2.5. Smoking Status. In the smoking status, Y denotes smoker,
and N denotes nonsmoker. Research study indicates that the
artery walls become sticky when the inhaled cigarette chemi-
cals are absorbed into the bloodstream. The number of fatty
plaques sticks to the artery walls, called atherosclerosis lead-
ing to cardiovascular disease. When the artery walls become
narrower and narrower, the blood travels through the arteries
difficultly [20].

2.6. Age. Age plays a vital role in relation with BP [21–23].
When the age increases, the blood vessels become stiffer,
which can lead to a rise in BP as well as an increase in the risk
of hypertension. People aged 50 or higher are the most
prevalent hypertensions group, especially in isolated systolic
hypertension. Due to the change of artery structure
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associated with age increases, e.g., artery stiffness, the BP
increases cardiovascular risk [24, 25].

2.7. Weight/Overweight. Weight is a continuous variable in
the dataset; the unit is pound. The BP rises following by the
bodyweight increase. Overweight will increase the possibility
to develop hypertension [26]. In the datasets, three categories
are classified. 1 denotes normal, 2 denotes overweight, and 3
denotes obese.

2.8. Height. A study proposed an inverse linear relationship
between SBP and height. Lower SBP was associated with
greater height [27]. In the datasets, height is a continuous
variable with the unit (inches).

2.9. Body Mass Index (BMI). BMI is a measurement index
indicating whether the body is obese or overweight [28].
The categories have been classified as follows:

(1) Underweight. Less than 20

(2) Normal Weight. 20-25

(3) Overweight. 26-30

(4) Obese. 30-above

It is calculated by weight and height.

Weight
Height2

∗ 703: ð1Þ

2.10. Exercise Level. According to the research, exercise accel-
erates the heart pump. The faster the heart pumps, the higher
SBP rises. During the exercise, the expected level of SBP is
between 160mmHg and 220mmHg [29]. In this paper, the
exercise level has been divided into three. 1, 2, and 3 denote
low, medium, and high, respectively.

2.11. Alcohol Consumption. A recent clinical study has sug-
gested that alcohol consumption can raise BP rapidly [30].
A single drink of alcohol affects an acute BP rise for 2 hours
[31]. Moreover, a sustained BP rise can be caused by alcohol
consumption for a few days. Long-time alcohol consumption
links to risk factors, such as cardiovascular disease and high
blood pressure [32]. In datasets, the alcohol consumption
level is defined by 1, 2, and 3, which denote low, medium,
and high, respectively.

2.12. Stress Level. The body generates a surge of hormones
when they are in stressful situations. This action causes the
heart to pump faster, and the blood vessels become narrow,
which leads to spike in BP temporarily. The research finds
that reducing stress can lower body BP [33]. We also have
three levels of stress in datasets: 1 denotes low, 2 denotes
medium, and 3 denotes high.

2.13. Salt (NaCl) Intake Level. High sodium or salt intake can
contribute to high BP and speed up the risk of cardiovascular
disease [34]. WHO reports that 5 grams or less salt intake for
adults helps decrease BP and the risk of heart disease [35].
However, most people take 9-12 grams daily on average
[36, 37]. This amount of salt consumption is twice the recom-
mended maximum level. The member states of WHO agree
to reduce world population’s salt consumption by 30% before
2025, which prevents 2.5 million deaths caused by high
sodium consumption [38].
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Figure 1: Workflow diagram for SBP predicted model.

Table 1: Machine learning algorithms.

Algorithm MAE (mmHg)

Linear regression (LR) 13.18

Support vector machine (SVM) 13.13

Decision tree regression (DTR) 14.82

Gaussian process regression (GPR) 12.92

Artificial neural network (ANN) 10.78
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From the datasets, due to several variables of features are
ambiguous, only 13 variables with 250 nonhypertension
samples had been selected in the model. In order to predict
the most accurate estimated SBP, an algorithm comparison
had been designed. Algorithms such as LR, SVM, GPR, and
ANN had been processed to generate the most optimized
result. The outcomes from the algorithms had been recorded
in Table 1.

After computing five machine learning methods, as the
Table 1 shown, the ANN method had the best performance;
the mean average error (MAE) was about 10.78mmHg,
which was lower than other methods. Therefore, the ANN
was the primary method for our research to predict the SBP.

2.14. Training Algorithm

2.14.1. Levenberg-Marquardt. The LMA provides the solu-
tion to minimize the nonlinear least-squares problem [39].

It is one of the most popular algorithms for optimization
[40]. In several kinds of problems, LMA generates better
results than gradient descent and other conjugate gradient
techniques [41]. It is a blended method of Gauss-Newton
and vanilla gradient descent iteration [42]. If the solution is
far from the true result, the algorithm acts like a gradient
descent method: slow, ensures the converge. If the current
solution is close to the true result, it acts like a Gauss-
Newton method [43].

2.14.2. Bayesian Regularization. Bayesian regularization has
also been named Bayesian regularized artificial neural net-
works (BRANNs), which is more reliable than the classical
ANN backpropagation nets, with no need for prolix cross-
validation. It is a machine learning algorithm that converts
a nonlinear regression into a ridge regression [44].

2.14.3. Scaled Conjugate Gradient. As a supervised learning
algorithm for feedforward neural network, SCG is one of
the conjugate gradient algorithms. The operation of SCG is
smoother and faster than the standard backpropagation nets.
The training algorithm from SCG has benchmarked perfor-
mance against the classical BP algorithm. BP utilizes the opti-
mization theory of gradient descent with the selected variable
from the user. The offline trained network uses a fixed vari-
able, whereas the SCG algorithm uses these variables as the

Table 2: Artificial neural network training algorithm.

Training algorithm MAE (mmHg) STD (mmHg)

LMA 11.13 13.77

BRA 6.28 10.51

SCGA 9.51 12.32

Table 3: Different percentage of data training, validation, and
testing.

Percentage of data training,
validation, and testing

MAE (mmHg) STD (mmHg)

70% training, 15% validation,
15% testing

6.28 10.51

80% training, 10% validation,
10% testing

5.85 8.78

90% training, 5% validation,
5% testing

5.16 7.66

Input layer ∈ R12 Hidden layer ∈ R10 Output layer ∈ R1

Figure 2: The structure of an artificial neural network.

Table 4: Different numbers of hidden neurons.

Number of hidden neurons MAE (mmHg) STD (mmHg)

4 hidden neurons 10.05 12.61

5 hidden neurons 9.99 12.71

6 hidden neurons 9.87 12.55

7 hidden neurons 7.44 9.65

10 hidden neurons 5.16 7.66

11 hidden neurons 4.97 7.63

15 hidden neurons 3.03 6.11

16 hidden neurons 6.86 9.06

20 hidden neurons 9.11 12.06

Table 5: 12 different features.

ID Feature

1 Gender

2 Marital status

3 Smoking status

4 Age

5 Weight

6 Overweight

7 Height

8 Body mass index (BMI)

9 Exercise level

10 Alcohol consumption

11 Stress level

12 Salt (NaCl) intake level
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second-order approximation. Less learning iterations occur
to accelerate the learning process.

The ANN method in this paper had been separated into
three different training methods, LMA, BRA, and the SCGA.
We initially set the number of hidden neurons as 10, 80%
data for training, 10% data for validation, and 10% data for
testing to address the best training algorithm. The results
had been illustrated in Table 2:

From Table 2, the results indicated that the BRA training
method was the most accurate method.

In the next step, we adjusted the percentage of the train-
ing data and compared the result in Table 3.

According to Table 3, the most accurate result was gener-
ated by 90%, 5%, and 5% for training, validation, and testing,
respectively.

Figure 2 presents the structure of ANN, the input layer
contained 12 features, and the output layer contained 1 fea-
ture which was SBP. The training performance was evaluated
by changing the number of hidden neurons on the hidden
layer. In our model, as displayed in Figure 2, only one hidden
layer applied. Initially, the hidden neurons had been set up as
10, and the different numbers of hidden neurons had been
trained to determine the most accurate network structure.

As Table 4 presented, the best accurate model was with
15 hidden neurons. Therefore, the ANN applied the BRA
training method with 90% training, 5% validating, and 5%
testing, with 15 hidden neurons generated the most accurate
results.

3. Results and Discussion

In Results and Discussion, as mentioned, several features
were ambiguous. It is possible to generate more errors in
the system. Several tests had been completed to compare
the performance in order to avoid these ambiguous features.
We validated that all the features used in the model were suit-
able to generate the result. The result validation process is
presented as follows.

In Table 5, the above 12 features had been trained, vali-
dated, and tested in the ANN with the target feature, SBP.
To validate the results, we unselected one of the features for
each training. For instance, in the first training, the feature
ID 1, gender, was excluded in the 12 features; therefore, only
11 features were operated in the first training. For each train-
ing, different error levels (from 5mmHg to 30mmHg) had
been recorded in Table 6.

From Tables 6, 12 different features had been unselected
one by one. The higher the error percentage was, the higher
the accuracy was. When we unselected feature ID 3, smoking
status, the results (26%, 58%, and 78%) were lower than any
other results in the table, which meant the values of feature
ID 3 were more significant than other values of features.
However, if we unselected feature ID 2, marital status, the
results (57%, 85%, and 95%) were higher than any other
results in the table. Therefore, the values of feature ID 2 were
less vital than any other values of features in the table. From
Table 7, the error percentage after training 12 features were
67%, 89%, and 97% for error less than 5mmHg, 10mmHg,
and 15mmHg, respectively, whose accuracy was higher than
any others in Table 6. Therefore, it is unnecessarily to unse-
lect any feature in the training process, and all the 12 features
should be trained.

Figure 3 presents the error histogram with 20 bins; the
orange line indicates zero error, the blue bar represents train-
ing errors, and the test errors are red. The figure illustrated
that the most significant number of errors are near the
orange line, zero error; the number of errors decreased when
the error became larger.

The results from Table 7 illustrated that our prediction
model had 67%, 89%, and 97% accuracy when an error was
less than 5mmHg, 10mmHg, and 15mmHg, respectively.
Comparing to the British Hypertension Society (BHS) stan-
dard [45], the performance of our model met the level of
grade A (BHS standard) for SBP estimation.

Moreover, Table 8 illustrated the American National
Standard from the Association for the Advancement of Med-
ical Instrumentation (AAMI). According to the standard, the

Table 6: Cumulative error percentage with excluded feature.

Feature 1 2 3 4 5 6 7 8 9 10 11 12
Excluded

Error (mmHg)

<5 38% 57% 26% 32% 40% 44% 41% 31% 29% 29% 51% 40%

<10 68% 85% 58% 58% 72% 72% 70% 60% 58% 62% 80% 68%

<15 89% 95% 78% 78% 89% 88% 88% 78% 78% 79% 93% 86%

Table 7: Comparison of performance on different error stages.

Error < 5mmHg Error < 10mmHg Error < 15mmHg

Results 67% 89% 97%

BHS

Grade A 60% 85% 95%

Grade B 50% 75% 90%

Grade C 40% 65% 85%
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BP estimation method for noninvasive should less than 5
mmHg and 8mmHg for MAE and STD. Our results were
3.03mmHg (MAE) and 6.11mmHg (STD), which met the
AAMI standard [46].

4. Conclusions

In this paper, we proposed a novel model based on machine
learning algorithm to predict SBP. The model included three
stages, which were input, calibration process, and output.

In the first stage, datasets associated with clinical and life-
style features were selected and extracted. Values of 13 fea-
tures, including SPB values, had been selected as training
data. Five machine learning algorithms, such as LR, SVM,
DTR, GPR, and ANN, had been compared in this stage.
The result indicated that ANN had the best accuracy.

The calibration process was the second stage. Three dif-
ferent training algorithms, LMA, BRA, and SCGA, had been
trained in ANN. After comparing with the value of MAE and
STD, BRA was addressed as the best training algorithms. In
the next step, the comparison of different percentage of data
training, validation, and testing had been completed. The
most accurate result was generated by 90%, 5%, and 5% for
training, validation, and testing, respectively. The next step
was to adjust the structure of ANN; we assumed that the
ANN included one hidden layer, which initially contained
10 hidden neurons. Several different hidden neurons were
applied to discover that the ANN generated the most accu-
rate results in the condition of 15 hidden neurons.

In the third stage, the model was evaluated by amending
inputted data of features. To validate the results, values of

feature with significant uncertainties were unselected in the
model. The accumulated error percentage of the evaluated
model meets grade A in BHS standard and AAMI standard
in estimating SBP. Therefore, our proposed predicted model
was accurate and reliable. Nevertheless, the model would be
optimized further if the data of the features were more
robust.

Data Availability

The data used are from R. Lam, “Blood Pressure.” These are
available at http://www.math.yorku.ca/Who/Faculty/Ng/
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