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Non‑invasive assessment 
of exfoliated kidney cells extracted 
from urine using multispectral 
autofluorescence features
Saabah B. Mahbub2,9*, Long T. Nguyen4,6,9, Abbas Habibalahi1,2, Jared M. Campbell1,2, 
Ayad G. Anwer1,2, Uzair M. Qadri3, Anthony Gill4,5,6, Angela Chou4,5,6, Muh Geot Wong4,7, 
Martin E. Gosnell8, Carol A. Pollock4,6, Sonia Saad4,6,10* & Ewa M. Goldys2,10*

Optimally preserved urinary exfoliated renal proximal tubule cells were assessed by multispectral 
imaging of cell autofluorescence. We demonstrated different multispectral autofluorescence signals 
in such cells extracted from the urine of patients with healthy or diseased kidneys. Using up to 10 
features, we were able to differentiate cells from individuals with heathy kidneys and impaired renal 
function (indicated by estimated glomerular filtration rate (eGFR) values) with the receiver operating 
characteristic area under the curve (AUC) of 0.99. Using the same method, we were also able to 
discriminate such urine cells from patients with and without renal fibrosis on biopsy, where significant 
differences in multispectral autofluorescence signals (AUC = 0.90) were demonstrated between 
healthy and diseased patients (p < 0.05). These findings show that multispectral assessment of the cell 
autofluorescence in urine exfoliated proximal tubule kidney cells has the potential to be developed as 
a sensitive, non-invasive diagnostic method for CKD.

Non-invasive molecular level assessment of deep organs such as kidneys remains a significant challenge. Standard 
magnetic resonance imaging (MRI), computed tomography (CT) scans and positron emission tomography (PET) 
and single photon positron emission tomography (SPECT) are principally limited to the detection of masses, 
density changes or morphology/texture with findings being impacted by poor image quality, motion artifacts 
or reliance on contrast agents1–3.

Multiple cells are exfoliated from the kidney into the urine daily4. These include podocytes, progenitor cells 
and proximal tubule epithelial cells (PTCs)5. The proximal tubules make up the majority of the kidney mass. 
Proximal tubule-related pathology is a hallmark of multiple kidney diseases and it correlates with future decline 
in kidney function6,7. This suggests that the biology of these non- invasively obtained cells could give a direct win-
dow into kidney pathology. Indeed, it has been established that a small number of exfoliated PTCs can be isolated 
and cultured on collagen plates for signal amplification8,9. The disadvantage of this approach is the loss of cellular 
properties during culture that could be pivotal for diagnosis. The currently available clinical methods to identify 
CKD are insufficient because the physiological markers used currently only become abnormal once significant 
pathology is evident. Hence non-invasive methods of diagnosing CKD are required and examination of cells 
exfoliated from the kidney using novel isolation and assessment techniques presents an attractive opportunity.

Cell autofluorescence originates from native fluorophores such as collagen, elastin, tryptophan and reduced 
nicotinamide adenine dinucleotide (phosphate) (NAD(P)H), and flavins10,11, which play a pivotal role in cell 
and tissue metabolism. Multispectral microscopy can be used to collect native emission data across a broad 
range of excitation wavelengths. This data yields the spectral profile of autofluorescent features for each cell, 
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including parameters such as average channel intensities, channel intensity ratio12, pixel standard deviations 
and skewness13. This gives each cell a unique signature, arising directly from its intracellular biochemistry and 
organisation, which has been used in the literature for the sensitive discrimination of specific cellular charac-
teristics, which have included cell cycle stage14, the presence of inflammatory disease15, levels of reactive oxygen 
species16, neoplasia10,17 and age18. We have previously demonstrated increased oxidative stress markers in the 
proximal tubules of animals with early diabetic or obesity related kidney disease19,20. Oxidative stress is a key 
factor affecting kidney function21,22. Multispectral assessment of cell autofluorescence has been specifically shown 
to be sensitive to metabolic changes and oxidative stress14,16. As such, it could be expected that the application of 
multispectral autofluorescence microscopy to exfoliated renal tubule cells will enable the sensitive, non-invasive 
characterisation of kidney dysfunction, providing a new window into physiology of this deep organ.

In this work, we demonstrate that multispectral autofluorescence colour and colour-dependent morphology 
measured in a small number of exfoliated kidney cells (PTCs) reflects established markers of kidney disease 
determined by assessing estimated glomerular filtration rate (eGFR) and renal pathology (current gold stand-
ard measure obtained via invasive kidney biopsy)23. We also present an optimised protocol which enables the 
preservation and characterisation of exfoliated proximal tubule cells without the requirement of cell culture.

Materials and methods
Patients characteristics.  Participants of either sex aged between 18 and 75 years of age were included and 
informed consent was obtained from all participants involved in this study. The study was carried out in accord-
ance with relevant guidelines and regulations was approved by the human Ethic committee at Royal North 
Shore Hospital (Ref: HREC/17/HAWKE/471) and University of New South Wells, Sydney (Ref: HC180710). 
Two cohorts of patients were assessed in this study. The first cohort included 22 patients with Type 2 diabe-
tes with varying levels of eGFR. Patients were grouped as follows: Group 1 (preserved kidney function with 
eGFR > 60  ml/min/1.73  m2), Group 2—(impaired kidney function with eGFR < 60  ml/min/1.73  m2. Patients 
were included if they had a diagnosis of type 2 diabetes and had been receiving anti-diabetic treatment (diet 
controlled, oral hypoglycaemics and/or insulin) for at least 12 months prior to the procedure.

The second cohort included 10 patients undergoing nephrectomy or clinically indicated kidney biopsy. Renal 
tissue was assessed for objective markers of tubulointerstitial fibrosis in haematoxylin, Periodic Acid Schiff and 
Masson’s trichrome stained paraffin embedded tissue as per routine practice using semi- quantitative scores for 
each of the following parameters: tubular atrophy, interstitial fibrosis, arteriolar hyalinosis, interstitial inflam-
mation and arterial intimal fibrosis. The patients were grouped as follows: Group 1—Control with no renal 
interstitial fibrosis and tubular atrophy (IFTA) and Group 2—with detectable IFTA in the kidneys. Kidney pathol-
ogy was assessed in a blinded manner by 2 different pathologists as we have previously described19,24. Healthy 
tissues with no detectable IFTA were obtained from patients undergoing a nephrectomy generally undertaken 
for tumour resection, with the tissue analysed being remote from the tumour. Urine was collected for proximal 
tubule cells extraction prior to the nephrectomy or biopsy. Details of patient groups from the first and second 
cohort are provided in Supplementary Table 1a, b.

Extraction of proximal tubule cells.  Urine samples (100  ml) were collected from patients fulfilling 
the above criteria. The urine was placed on ice immediately after collection for transportation, then spun at 
4℃ before freezing it down and stored frozen prior to assessment. Renal proximal tubular cells were extracted 
from the thawed urine using immune- magnetic separation, anti-CD13 and anti-Sodium-glucose linked trans-
porter-2 (SGLT2) antibodies. Briefly, urine cells were spun at 3000/4000 rpm for 20 min (at 4  °C) and then 
washed twice with phosphate buffered-saline (PBS). Cells were stored at 4 °C overnight or − 80 °C in Dulbecco’s 
Modified Eagle Medium (DMEM), Hanks’ Balanced Salt solution (HBSS) or Phosphate buffer saline (PBS) with 
10% Dimethyl Sulfoxide (DMSO) to assess the optimal storage condition and maximal cell viability. On the day 
of the experiment, frozen cells were quickly thawed at 37 °C and then washed in PBS. Renal proximal tubule 
cells were then extracted following incubation with 5 µg of mouse anti-human CD13 antibody (Invitrogen) and 
2.5 µg of SGLT2 antibody (Abcam) for 1 h (at 4 °C) followed by 5 µl of CELLection Pan anti-mouse dynabeads 
(Invitrogen) for 30 min (at 4 °C). Specific proximal tubule cells bound to a magnet were then washed in PBS 
before elution from the beads according to the manufacturer’s instructions. The number of exfoliated proximal 
tubule cells in 100 ml urine is around 20–50 cells as previously demonstrated25. These cells were resuspended in 
50 μl of PBS on a 35 mm glass bottom petri dish (Cell E&G, USA, and # GDB0004-200) then assessed using a 
multispectral and brightfield microscopy. Due to field restriction, only a fraction of the total number of cells per 
sample can be imaged.

Flow cytometry.  Cell viability was assessed by flow cytometry (LSRFortessa, BD Bioscience, MA, USA) 
using either 7- Aminoactinomycin D (7-AAD) or propidium iodide (PI) staining as previously described26. 
Briefly, urine cells were collected as described above and washed twice with PBS before incubation with either 
5 μl of 7-AAD (BD Bioscience, MA, USA) or 5–10 μl of PI (Invitrogen, CA, USA) for 10 min at room tempera-
ture in the dark. Human kidney (HK2) cells were used as a positive control. In a separate experiment, urinary 
exfoliated cells were collected, and cells were incubated with 5 μl of PE-conjugated anti-CD13 antibody (Invit-
rogen, CA, USA), an epithelial marker, and 2 μl of FITC conjugated anti-SGLT2 antibody (Abcam, Cambridge, 
UK), a proximal tubule marker, for 1 h at room temperature in the dark. Cells were then washed and resus-
pended in PBS and subjected to the flow cytometer for fluorescence analysis. The population has been gated to 
exclude the debris and dead cells. We also added EDTA to the washing buffer to dissolve precipitates.
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Confocal microscopy.  Similar to flow cytometry, urinary exfoliated cells were incubated with CD13, 
SGLT2 and angiotensinogen (AGT) at 4  °C overnight, washed with PBS and stained with fluorophore-con-
jugated secondary antibodies when necessary. The cells were washed twice with ice cold PBS, stained with 1 
drop of nuclear dye (Hoechst 33342, Invitrogen, CA, USA) and loaded onto 35 mm coverslip-bottom dishes for 
imaging. Fluorescent signals before and after proximal tubular cell enrichment was assessed using a confocal 
microscope (Olympus FV3000, Shinjuku, Tokyo, Japan).

Multispectral and brightfield imaging system.  A custom-made autofluorescence microscopy 
system11,12,27 was built by adapting a standard fluorescence microscope (Olympus iX83™). Multispectral excita-
tion lamp (from Quantative™, AU) has been applied to excite the single photon-excited autofluorescence signal 
of cell samples in a number of defined narrowband (± 5  nm) excitation wavelength ranges provided by low 
power LEDs and several epifluorescence filter cubes to produce defined spectral channels (34 channels). The 
channels span wide excitation (340–510 nm) and emission (420–650 nm) wavelength ranges (channel details 
are given in Supplementary Table 1). For imaging we used a 40× water (NA 1.15) objective, with transmission 
in the UV range. All images were captured by Photometrics Prime95B™ sCMOS camera (Sensor: GPixel GSense 
144 BSI CMOS Gen IV, Teledyne Photometrics, AZ, US) operated below − 30 °C to reduce sensor-induced noise. 
The image size of the camera is 1200 × 1200 pixels. We used image acquisition times of up to 5 s per channel, 
with multiple averaging (3 times) to optimise image quality (i.e. SNR). A sequence of fluorescence images was 
performed of the same sample area in each of these spectral channels (collectively named a “data block”). Each 
data block is supplemented by a brightfield image of the sample area which is used as a broad reference. Repre-
sentative bright field and spectral channel cell images from each group are presented in Supplementary Fig. 3 
l. Imaging of the native fluorescence emission of the cell samples and reference images were carried out: dark, 
water, and calibration fluid (30 µM NADH mixed with 18 µM FAD) in multiple distinctive spectral channels. 
Details of spectral channels are given in Supplementary Table 2. For cell segmentation, brightfield images were 
used as a reference to create masks for the proximal tubule cells. Approximately 2–4 cells were selected from each 
image, and multiple multispectral images were taken for each patient.

Cellular image analysis.  After obtaining the spectral images, they were prepared for subsequent quantita-
tive analysis using a multistep procedure to minimize sources of errors such as Poisson’s noise, dead or saturated 
pixels, background fluorescence and uneven illumination of the field of view, as reported in detail in10,28. Each 
multispectral image is pre-processed by using reference images (water, and calibration fluid images) as described 
in27–29. The uneven illumination of the field of view was then flattened, separately in each channel by using 
the image of the calibration fluid whose spectrum spans across all 34 spectral channels. Further image pre-
processing steps comprised image equalization, primary denoising by removing undetectable pixels and outliers 
(spikes or dips)27,28. Furthermore, cells were manually segmented from the channel images to produce single-cell 
images30. During this segmentation process data register (image number, pixel coordinates, spectral channel 
etc.) were separately preserved for indexing the cell samples. Following image preparation and segmentation 
segmented single-cell images were used to extract the channel image features. These features include average 
channel intensity per cell, and associated measures such as channel intensity ratio, as defined in Reference12.

Analysis of patient groups and statistics.  Following the calculation of the cell image features, they 
were then scored to evaluate how well they differentiate the patient groups under consideration, and ranked 
using an independent evaluation criterion for binary classification (minimum attainable classification error)31 in 
Matlab 2019b. The best n cellular features were chosen for further analysis. This number of features, n, was kept 
lower than the number of cells in each group (N) to reduce the possibility of overfitting. To visualise the separa-
tion of different patient groups, the data points corresponding to n-dimensional feature vectors for each cell were 
first projected onto an optimal two-dimensional (2-D) space created by discriminative analysis32,33. This space 
was spanned by two canonical variables given by a specific linear combination of cellular features34. This space 
maximizes between-group distance while minimizing within-group variance32. We then developed a classifier 
to predict the pre-defined cell labels corresponding to the patients groups35, and the classifier performance was 
evaluated by using a ROC curve35. Nested cross validation was applied to validate our classifier for separating 
the groups which provides an unbiased performance assessment, by using external validation test36 (details are 
provided in Supplementary Material Section 1). The classified data have been additionally projected onto an 
optimally selected single dimension to produce maximally separated histograms. These data have also been 
visualised using boxplots. After confirming the non-parametric distribution of the data, the Mann–Whitney U 
test (two-tailed test) has been performed by using Matlab 2019b. Significant differences have been marked with 
*(for alpha < 0.05), **(for alpha < 0.01) and ***(for alpha < 0.001).

Results
Optimisation of cell storage condition.  We have demonstrated that urinary exfoliated cells contain suf-
ficient living cells (Fig. 1). Optimal storage conditions for cell viability were assessed and human kidney (HK2) 
cells were used as positive control. Our results demonstrated that either leaving the cells at 4 °C overnight or 
freezing them at − 80 °C in different buffers (DMEM, HBSS or PBS + 10% DMSO) led to similar levels of cell 
death and apoptosis.

We have additionally demonstrated that HK2 cells cryopreserved in the standard condition 
(DMEM + 10%DMSO) contained 22.6% dead cells, 11.5% apoptotic cells and nearly 50% live cells (Fig. 2). In 
comparison, urinary exfoliated cells are mostly composed of apoptotic cells (53.3%) and similar proportions 
of dead and live cells. Cryopreservation of urinary cells in PBS + 10%DMSO slightly increased the transition of 
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apoptotic cells to dead cells yet maintained the same level of living cells, hence PBS was used for the rest of the 
experiment.

Identification of PTCs in patients’ urine by CD13 and SGLT2 labelling.  The urine can contain 
different types of cells including podocytes, stem/progenitor cells, extracellular vesicles, distal cells, epithelial 
cells, bladder and collecting ducts cells37. Our result shows that CD13, Angiotensinogen (AGT) and SGLT2 are 
uniquely expressed on PTCs (as expected) and not in other epithelial cell types such as squamous and transi-
tional epithelial cells that are present in the urine (Fig. 3a). Using flow cytometry, we demonstrated that sufficient 
numbers of CD13(+)/SGLT2(+) cells can be detected in the urine from different patients (Supplementary fig-
ure 1). According to supplementary figure 1, the majority of CD13-positive cells are also positive for SGLT2 but 
not necessarily vice versa. Kidney cells exfoliated into the urine from normal individuals and diabetic patients 
were labelled with CD13 and the proximal tubule marker SGLT2 then flow cytometry and confocal immuno-
fluorescence analysis were carried out for cell characterisation. Our data demonstrated that isolated cells are not 

Figure 1.   The effects of storage conditions on urinary cell viability. Cells are stored at different conditions and 
stained with 7-AAD. (a) Positive staining control: Starved HK2 cells; (b) Urinary cells kept at 4 °C overnight; 
(c–e) Urinary cells stored at − 80 °C in DMEM, HBSS and PBS + 10% DMSO respectively. (f) is the relative 
quantitation of b–e.

Figure 2.   Cell viability. (a) HK2 cells cryopreserved in standard (DMEM + 10%DMSO); (b) Fresh urinary cells; 
(c) Urinary cells kept at − 80 °C in PBS + 10% DMSO.
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only enriched with CD13-positive cells (Fig. 3b) but also expressed specific markers of PTCs including AGT and 
SGLT2 (Fig. 3c).

Our data showed that exfoliated renal PTCs (which are positive to CD13 and SGLT2) were detectable in 
normal individuals and diabetic patients with and without CKD (Fig. 4). This demonstrated the proof of con-
cept that diabetic patients with and without CKD secrete viable exfoliated proximal tubule cells38 in the urine 
in sufficient amounts for further study.

Differences in multispectral autofluorescence of exfoliated proximal tubule cells from diabetic 
patients with differing eGFR values.  Urinary proximal tubule cells were extracted from the urine in 
the first cohort of diabetic patients with varying eGFR, indicating the presence of alterations in kidney func-

Figure 3.   Urinary exfoliated cell characterisation before and after isolation (a) Immunofluorescence images 
showing only PTCs are positive for CD13, AGT and SGLT2; (b) Flow cytometry showing enrichment of 
CD13( +) cells before and after cell isolation; (c) Isolated cells have strong expression of PTC-specific markers.

Figure 4.   Flow cytometry showing that renal proximal tubule cells are present in the urine in normal subjects 
and diabetic patients with and without CKD. Human proximal tubule cells are in the right upper quadrant 
(positive for SLGT2 and CD13). The percentage of proximal tubule cells within total urinary exfoliated cells are 
shown, n = 3.
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tion. Hyperspectral imaging and analysis performed as described in the Methods revealed significant differences 
in hyperspectral cellular feature patterns between cells from diabetic patients with eGFR > 60 ml/min/1.73 m2 
(referred to as “high”) compared to those from patients with eGFR < 60 ml/min/1.73 m2 (referred to as “low”) 
as shown in Figs. 5 and 6. In Fig. 5 we have first limited our analysis to six cellular features selected only from 
among channel intensities and their ratios whose biological relevance can be identified. By using this approach, 
we were able to categorise cells with eGFR lower than 60 ml/min/1.73 m2 from eGFR > 60 ml/min/1.73 m2 with 
the area under the curve, AUC = 0.75 (Fig. 5a,b). Figure 5c shows the histograms for the datapoint shown in 
Fig. 5a produced by projection of data from Fig. 5a onto an optimised single direction. The same datapoints have 
been represented in boxplots in Fig. 5d which shows statistical differences between both groups of cells. The 
features applied in this conservative model (Fig. 5) are listed in Supplementary Table 3.

Figure 5.   Differentiation of cells from patients with low and high eGFR levels by using six features selected 
from channel intensities and their ratios. (a) Clustering of cells in the two cell groups (group 1: n = 41 cells and 
group 2: n = 84 cells) under investigation. Symbols represent individual cells. (b) ROC curve for our obtained 
cell classifier (AUC = 0.75), (c) cell distribution histogram. (d) Boxplots corresponding to the cell classifier 
evaluated in (b). Symbols represent individual cells, p < 0.001.

Figure 6.   Differentiation of cells from patients with low and high eGFR levels using ten features. (a) Clustering 
of cells in the two cell groups (group1 and 2 has 41 cells and 84 cells respectively) under investigation. Symbols 
represent individual cells. (b) ROC curve for our obtained cell classifier (AUC = 0.99), (c) cell distribution 
histogram, (d) boxplots corresponding to the cell classifier evaluated in (b). Symbols represent individual cells, 
p < 0.001.
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To explore the potential upper limit of multispectral analysis’ ability to classify cells into low eGFR (< 60 ml/
min/1.73 m2) and high eGFR (> 60 ml/min/1.73 m2), a second analysis was performed where we used up to 
ten features and we included features which do not currently have a biologically interpretable meaning. This 
resulted in excellent separation of these two classes of cells and an AUC of 0.99 (Fig. 6a,b). The corresponding 
histograms and boxplots are shown in Fig. 6c,d. Features applied in this expanded model (Fig. 6) are detailed 
in Supplementary Table 4.

Differences in multispectral autofluorescence of exfoliated proximal tubule cells from patients 
without and with different stages of renal structural pathology.  Kidney fibrosis in patients’ cohort 
2 was directly assessed through pathological examination of kidney biopsies. In order to detect the correspond-
ing changes in multispectral autofluorescence images, we employed a six feature model with features limited to 
channel intensities and their ratios, similar to those used for the classification of patients with respect to their 
value of eGFR previously shown in Fig. 5. We found that cells from patients with no observed renal fibrosis 
could be separated from those with any renal fibrosis with AUC = 0.85 (Figs. 7a,b). The corresponding histogram 
and boxplots are shown in Fig. 7c,d. The second, alternative analysis with an extended set of 8 features (Fig. 8) 
achieved the AUC of 0.90. The spectral features used are listed in Supplementary Table 5 for the conservative 
model from Fig. 7 and Supplementary Table 6 for the extended model from Fig. 8.

Discussion
Cells represent a rich source of information for monitoring dynamic processes in the living body. While circulat-
ing cells are already widely used for cancer diagnostics, the analysis of renal cells exfoliated into the urine has the 
potential to provide a novel window into the physiology of otherwise inaccessible organs such as kidneys. The 
data presented here focuses on renal health, but the approach to diagnose exfoliated cells is likely to extend to 
other targets. This is the first time that detailed high-content imaging has been systematically applied to kidney 
cells in an attempt to probe the cellular morphology of autofluorescence in this chronic disease. Multispectral 
characteristics of autofluorescence has the advantage that single exfoliated cells can be analysed; this is important 
as the number of kidney cells which can be extracted from urine may be low.

In this work we have developed a long-term cryopreservation protocol for urinary exfoliated cells. We also suc-
cessfully isolated human PTCs from the urine using CD13 and SGLT2 antibodies as previously demonstrated25. 
SGLT2 is known to be expressed in the S1 segment of human PTCs39,40. We have also additionally demonstrated 
that sufficient PTCs are exfoliated in the urine from patients with healthy or diseased kidneys. We also explored 
whether eGFR changes, and, separately, kidney tissue pathology changes, both related to kidney disease have 
the potential to be reflected in autofluorescence properties of kidney cells exfoliated in the urine. Such in-depth 
analysis is important in CKD because the alternative approach of counting urinary kidney cells does not always 
correspond to the degree of kidney dysfunction5. Autofluorescence sensitively reflects cellular processes, most 
notably metabolism11,15, but also physiologically significant measures such as cellular levels of reactive oxygen 
species16. Cell conditions which are as physiologically authentic as possible allow more accurate autofluorescence 
diagnostics. However, in clinical settings, it is not always feasible for samples to be assessed immediately, and 

Figure 7.   Correlation between multispectral changes in proximal tubule cells from patients with and without 
renal pathology. (a) Cluster formed using six feature analysis to separate cells from patients with no observed 
fibrosis (n = 41 cells) from those with any fibrosis (mild and moderate/severe, n = 95 cells). Symbols represent 
individual cells.; (b) corresponding ROC analysis indicating AUC = 0.85. (c) Cell distribution histogram, (d) 
boxplots corresponding to the cell classifier evaluated in (b). Symbols represent individual cells, p < 0.001.
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long-term storage is usually preferred. Inappropriate storage and shipment conditions could impair cellular 
viability and otherwise alter cells, thus it is important to ensure temperature and buffer for storage are optimised. 
In this study we determined the optimal conditions for the extraction of urinary exfoliated proximal tubule cells 
for multispectral assessment of cell autofluorescence.

We then isolated cells from the urine of patients with diabetes mellitus with different levels of eGFR indicat-
ing varying degrees of kidney dysfunction and from patients from whom kidney biopsies had been taken and 
assessed for fibrosis (the gold standard for diagnosis of kidney dysfunction). We were successful in categorising 
these cells using their autofluorescent characteristics assessed through multispectral microscopy and related 
these characteristics to a binary kidney health status based on eGFR values and, separately, on kidney pathology 
determined from biopsies. This was explored in two models: a more conservative model with a smaller number 
of cell features drawn from channel intensities and their ratios, and an extended model where more features and 
also additional types of mathematically abstract features were allowed (e.g. kurtosis). Limiting the features used 
to channel intensities and ratios allows the features to be more closely related to biological properties such as 
the content of individual fluorophores, some of whom tend to dominate specific spectral channels (for exam-
ple intensity in channel 2 is predominately related to NAD(P)H content and intensity in channels 15 and 32 is 
dominated by flavins11,41. The contribution of pure fluorophores to specific channels may be further exacerbated 
by thresholding the signal and taking top 10% of the pixels, as this may reflect localisation of such fluorophores 
in specific cellular compartments such as mitochondria. Similarly, the ratio of intensities of some channels (e.g. 
channel 2/channel 32) is related to the cellular redox ratio11,41. Thus, by using the conservative model we increased 
the likelihood of the observed changes to be underpinned by defined and known biological changes in cells as 
kidney dysfunction develops.

Low sample size limited the complexity of the models we were able to apply due to the risks of overfitting, 
however in secondary analyses, when the restrictions on the models were loosened, very high accuracy was 
achieved. Greater accuracy was achieved in a cohort where cells were assessed relative to the status of kidney 
biopsies. This is not surprising as the proximal tubule cells which we examined by multispectral assessment 
originated directly from the kidney cells and their characteristics should directly reflect the biological status of 
the kidneys, more so than a secondary measure like eGFR. A further limitation of this study is that we are unable 
to relate any changes in autofluorescence to other potential factors of influence, limiting any causal relationships 
which could be determined based on our data. Putative parameters potentially affecting cell autofluorescence 
may include age (through cell senescence) and sex, while the potential clinical factors may include eGFR, urinary 
protein, HbA1c etc. Among these factors, age and sex were matched between first and second cohort, while the 
levels of eGFR were independently analysed. We are mindful that the difference in eGFR in the second cohort 
could have an impact on autofluorescence instead of fibrosis. A larger cohort is required in order to match eGFR 
levels in for cohort 2 to confirm whether the levels of renal fibrosis are responsible for changes in hyperspectral 
autofluorescence independent of eGFR levels. Taken together, our findings indicate that multispectral measure-
ment of proximal tubule cell autofluorescence—autofluorescence colour—is different in healthy and diseased 
kidneys.

Materials and correspondence
The data that support the findings of this study are available from the corresponding author on request.

Figure 8.   Correlation between multispectral changes in proximal tubule cells from patients with and without 
renal pathology. (a) Cluster formed with 8 features to separate cells from patients with no observed fibrosis 
(n = 41 cells) from those with fibrosis (n = 95 cells). Symbols represent individual cells. (b) ROC curve for our 
obtained cell classifier (AUC = 0.90). (c) Cell distribution histogram. (d) Boxplots corresponding to the cell 
classifier evaluated in (b). Symbols represent individual cells, p < 0.001.
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