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Abstract: Achieving a high-quality green transition has become an important way toward 

sustainable development in the world. In this study, we propose a measuring framework of green 

transition based on the entropy weight method. Then the driving factors of green transition are 

analyzed with a spatial Durbin model. Taking China as an empirical case study, the results showed 

that: (1) the overall level of green transition in China increased, but the green transition index 

(GTI) remained low. The GTIs’ means and growths of the eastern region exceeded those of both 

the central region and the western region. Moreover, the GTIs in 30 provinces were significant 

gaps. (2) China's GTIs showed a significant positive spatial dependence. Furthermore, the driving 

factors of reform and openness, investing capacity, government intervention, and environmental 

regulation positively impacted the green transition development; however, the industrial structure 

had a negative impact. (3) Reform and openness, as well as environmental regulation, exerted 

positive spillover effects on other provinces, while investing capacity and government intervention 

exerted negative spillover effects. Moreover, the spillover effect of the industrial structure was not 

significant. Relevant recommendations for green transition development are proposed. 

Keywords: green transition; energy transition; driving factors; spillover effect; entropy weight 

method; spatial Durbin model 

 

1. Introduction 

Green transition, including the energy transition, has become an important strategy for 

sustainable global development and global environmental governance. The “brown economy”, 

with its high energy consumption and high pollution, has caused many social, economic, and 

environmental problems. At the Global Environment Ministers’ Meeting in October 2008, the 

“Global Green New Deal” and “Developing a Green Economy” were proposed by the United 

Nations Environment Programme, thus calling for a global shift from a “brown economy” to a 

“green economy” (Mundaca and Markandya, 2016). Since then, under the connotation of the 

green economy (Pearce et al., 1989), a green transition is considered as a mode transition from 

high energy consumption and high emission to low energy consumption and low emission (Ringel 
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et al., 2016; Kemp and Never, 2017), thereby realizing the goals of sustainable economic 

development and environmental protection (Springer et al., 2019; Feng and Wang, 2019).  

Accelerating the process of green transition has been a hot issue for governments around the 

world (Kemp and Never, 2017; Lamperti et al., 2020). Green transition not only informs the 

development of global climate change policies and transition of the energy mix, but also suggest 

consumption side changes, such as low carbon lifestyle (Zhang et al., 2020), and therefore can 

provide a comprehensive framework for achieving carbon neutrality (Samper et al., 2021). The 

green transition can be affected by many factors and their effects are inconsistent (Kemp and 

Never, 2017; Shi et al., 2020). To provide a basis for decision-making in formulating effective 

green transition policies, it is necessary to measure the green transition and its driving factors 

accurately. 

Most existing studies focus on measuring green transition by calculating green total factor 

productivity or green efficiency with the environmental output. However, green transition 

emphasizes the changes of development patterns about the economy, technology, society, energy, 

and environment. Neither green total factor productivity nor green efficiency can reflect the 

characteristics of green transition comprehensively. Furthermore, many scholars use different 

methods to analyze the driving factors of green transition, which can be summarized as 

decomposition analysis methods (Su and Ang, 2016; Zhou and Ang, 2008) and econometric 

models (Zhang and Liu, 2015; Zhang et al., 2018; Yuan and Xiang, 2018). However, due to the 

inaccuracy of measuring the green transition, the analysis of the driving factors would be further 

incomplete and even misleading. Therefore, how to measure the green transition accurately is 

worth studying. 

Measuring the green transition is actually to calculate a comprehensive index from the 

multiple indicators of the economy, technology, society, energy, and environment. The entropy 

method can determine the weights of various indicators according to their values’ variations, and 

then obtain an objective and comprehensive evaluation value (Zou et al., 2006). This method 

considers the contribution of each indicator to the green transition, but also avoids subjectivity. 

Consequently, we propose a measuring framework of the green transition index (GTI) based on 

the entropy weight method. Furthermore, considering the spatial relevance of regional green 

transition, spatial Durbin model (SDM) is adopted to analyze the driving factors of the green 

transition. On this basis, taking China as the case study object, the policy implications of its green 

transition are come out. 

The contributions of this study mainly reflect two aspects. First, we propose a general method 

to measure GTI using the entropy weight method. The existing measurements of green transition, 

such as green efficiency and green index, cannot capture the comprehensiveness of green 

transition. Second, we demonstrated the spatiotemporal variation and driving factors of GTIs in 

China’s provinces from 2008 to 2017. The Moran index suggests a significant regional correlation 

of GTIs.  

The remainder of the paper is arranged as follows: Section 2 provides a literature review. 

Section 3 explains a methodology framework of entropy weight method for GTI and SDM for 

analyzing the driving factors. Section 4 provides the case study of China and its empirical results. 

The discussion and the conclusion are presented in Section 5 and Section 6. 

 

2. Literature review 
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With the problems caused by the increasingly severe global environmental pollution, the 

development of a green economy has become a trend of the new era (Pearce et al., 1989). Many 

scholars have studied the concepts of green development, green economy, and green transition. 

Today, the main subjects of related research are “sustainable development”, “green economy”, 

“green growth”, and “low-carbon cities”. 

Recently, the green transition development theory and practice are still at the exploratory 

stage, and no unified definition has been agreed upon. Since green transition is a new 

developmental approach proposed in recent years due to environmental pollution, it mainly 

addresses the constraints between resources and the environment in the process of sustainable 

development. Thomas (2015) argued that energy innovation would cause structural change and 

thus expand the green space to achieve sustainable development. This process was named green 

transition. Similarly, Ferguson (2015) pointed out green transition meant to improve resource 

productivity and achieve the transition of an unsustainable development to a sustainable 

development model. Bandyopadhyay (2017) evaluated sustainable development from three 

aspects: economic, social, and environmental development. Rodenburg et al. (2001) established 

urban economic indicators to evaluate green structure and green space and proposed a green 

development framework from four dimensions: environmental resource, urban welfare and quality, 

green financing, and government management. In addition, several scholars analyzed sustainable 

development from the perspective of green energy. Midilli et al. (2006) reported that public 

awareness, information, environmental education, financing, and evaluation tools were essential 

factors for green energy strategy, and proposed several green energy strategies for sustainable 

development. 

To measure green transition, many scholars focused on green development performance, 

green development index, and green growth efficiency. Feng et al. (2017) estimated the green 

development performance index and its influencing factors, using the DEA method. They found 

that a U-shaped environmental Kuznets curve (EKC) existed between the green development 

performance index and the economic development level. Moreover, living standards, energy 

structure, and oil price positively influenced the green development performance index, while 

ecological carrying capacity negatively influenced it. Kushwaha and Sharma (2016) proposed a 

green initiative based on exploratory research to analyze the relationship between the sustainable 

development of the automotive industry and its performance. To measure the green performance, 

Rashidi and Saen (2015) used the DEA method to calculate eco-efficiency indicators, and the 

results showed that the more energy is input, the more undesired the outputs will be. Zhao and 

Yang (2017) evaluated the green development performance of 286 cities in China using 

metafrontier-data envelopment analysis. Their results showed that the green growth efficiency of 

cities with different sizes and in different regions differed, which required environmental 

governance and government regulation. 

Related to the driving factors of green transition, Dincer and Rosen (2005) identified four 

factors that affect sustainable development: energy and resources, economy, environment, and 

society. Yuan and Xiang (2018) estimated the green total factor productivity (GTFP) indicator and 

used it as a measure of China's industrial green development profile. They furthermore used the 

extended CDM model to examine the impact of environmental regulation on both technological 

innovation and green development. Green environmental efficiency was identified to vary from 

region to region and also showed clear spatial dependence and spatial variation (Chen et al., 2019; 
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Shao et al., 2020). They found that regional green development was affected positively by 

openness degree, urbanization, industrial structure, and technological innovation. However, 

economic growth, corporate structure, fiscal policy, and foreign investment negatively affected 

regional green development. 

Furthermore, Choi et al. (2016) analyzed the new paradigm of sustainable challenges in 

Northeast Asia under the context of green growth policy and green strategy. They emphasized the 

key role of the government to stimulate green development governance. Similarly, Hamdouch and 

Depret (2010) described the leading role of the government in the green transition process. The 

government should make well-designed environmental and innovation policies, and obtain the 

support of both stakeholders and relevant organizations. However, Jorgenson and Wilcoxen (1990) 

demonstrated that the environmental policy increased the additional environmental costs of 

enterprises, thus resulting in insufficient investment in R&D and innovation, and exerting a 

significant negative effect on the growth of green total factor productivity. 

In summary, there are two gaps in the literature. First, there is not a direct measurement of 

green transition. The existing studies used either green index or green efficiency to quantify the 

green transition. However, neither green efficiency nor green index can capture the 

comprehensiveness of green transition. Further, the green transition is a comprehensive reflection 

of economic transition, technological transition, social transition, energy transition, and ecological 

transition. Calculating an index from these aspects could be useful to reflect the reality of regional 

green transition. Another gap is the spillover effect of green transition across regions. With regard 

to China, green transition in the local region usually affects the other neighboring regions for a 

number of reasons (Cabrer and Serrano, 2007; Zhang et al., 2018). Therefore, to explore the 

questions, this paper firstly analyzed the green transition index of China using the entropy weight 

method. Then SDM was used to analyze the driving factors of green transition and their spatial 

spillover effects. 

3. Measurement of green transition and its driving factors: a methodology framework 

3.1. Measurement of the green transition index (GTI) 

3.1.1 Entropy weight method 

Entropy is widely used to measure the degree of disorder in a system (Shannon, 1948). Hence, 

entropy weight, as an objective weighting method, also evaluates the degree of disorder in a 

system by using useful information (Zou et al., 2006). The larger the entropy weight, the more 

useful information of the index. By using the entropy weight method, the GTI was measured with 

the following steps. 

Step 1: Construct evaluation matrix R. 

11 12 1
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where rik represents the evaluation value of the k indictor for the i province, i = 1, 2, …, m, and k = 

1,2, …, n; 

Step 2: Normalizing the matrix R. If k is a benefit indictor, a larger k value indicates a greater 

positive effect on GTI; therefore, formula (2) was used to normalize k. If k is a cost indictor, the 

larger its value is, the greater the negative effect on GTI will be; therefore, formula (3) was used to 

normalize k. 
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Step 3: Assume that pik represents the converted value via Rik, which can be defined as Eq. 

(4).  
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                              (4) 

Step 4: Calculate the entropy eik of the k indicator for i province using Eq. (5), where   

represents the Boltzman’s constant,   = 1 / ln(n). 
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                          (5) 

Step 5: Provide the degree of diversification ek of the information by Eq. (6). 

1k kd e                                 (6) 

Step 6: The entropy weight wk of the k indicator is calculated by Eq. (7). 
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                                (7) 

Step 7: The green transition index 
i

GTI  of the ith province in China is calculated by Eq. (8). 
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n
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k

GTI R W


                              (8) 

3.1.2 Evaluation indicators of GTI 

To measure the GTI by the entropy weight method, the evaluation indicators first had to be 

chosen. In reference to literature by Guo and Zhou (2018), Rodenburg et al. (2001), and Hou et al. 

(2019), the following five dimensions of green transition are analyzed: economic transition, 

technological transition, energy transition, social transition, and environmental transition. 

Economic transition refers to the industrial structure, investment, and foreign trade development 

(Yu et al., 2021). Especially, China's industrial structure has been significantly changed since 

implementing economic reform and open up, which the tertiary industry has gradually replaced 

the dominant position of the secondary industry (Karl and Chen, 2010; Yin et al., 2019; Zhao and 

Lin, 2019). Therefore, economic transition can be measured from the per capita GDP, tertiary 

industry value added, total social investment in fixed assets, and total imports and exports 

indicators. Technological development is the crucial driving force for achieving green transition. 

Therefore, technological transition is measured by the expenditure for new product development 

and the number of patent applications (Feng et al., 2021). Moreover, achieving low carbon growth 

needs reduce the share of raw coal in energy production and increase the share of electricity in the 

total final energy consumption (IEA, 2020; GEDICO, 2021). For the energy transition, it is 

necessary to change the coal-based energy consumption structure and build a low carbon 

electricity-based power system (Zhao and You, 2020). Therefore, the energy transition is measured 

by raw coal consumption and electricity consumption. Further, green transition is also influenced 

by the changes in social production activities and behaviors (Bell, 2016). Therefore, the social 
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transition can be measured by the expenditure of residents per capita, public budget expenditure, 

and unemployment rate. Finally, environmental transition, as a goal of achieving green transition, 

is measured by the total investment in industrial pollution control and sulfur dioxide emissions 

(Zhu et al., 2019). Consequently, 13 indicators were selected as evaluation indicators to calculate 

green transition, as shown in Table 1.  

Table 1 Evaluation indicators of GTI 

First-level indicator Second-level indicator Third-level indicator 

Green transition 

Economic transition 

GDP per capita 

Tertiary industry added value 

Total social investment in fixed assets 

Total imports and exports 

Technological transition 
Expenditure for new product development 

Number of invention patent applications 

Energy transition 
Raw coal consumption 

Electricity consumption 

Social transition 

Consumption expenditure of residents per capita 

Public budget expenditure 

Unemployment rate 

Environmental transition 
Total investment in industrial pollution control 

Sulfur dioxide emissions 

3.2. The model of driving factor analysis 

3.2.1. Spatial correlation test 

Because of the complexity of the spatial econometric model, it is necessary to test the spatial 

correlation of variables before their empirical analysis. To determine whether the variables are 

spatially correlated, the common methods are Moran index test, Gillie index test, and Cetis index 

(Cabrer and Serrano, 2007). Among these, the Moran I index is widely used to measure the spatial 

correlation of variables. Its calculation formula is as follows: 

1 1
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1 1

'

m m

ij i j

i j

m m
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i j

w GTI GTI GTI GTI
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S w
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                      (9) 

where i and j represent the province i and j, GTI
——

 represents the mean of the GTI; 

2 1=

m

i

i

GTI GTI

S
m



 
 

 


——

 represents the variance in the sample; wij represents the spatial weight of the 

element (i, j) for measuring the distance between provinces i and j, and w represents the spatial 

weight matrix. 

The Moran I index ranges from -1 to 1. A value above 0 indicates that the GTI of the local 

province is positively related to its neighbors. The closer the value is to 1, the stronger the positive 

spatial correlation will be. However, values below 0 indicate that the GTI of the local province is 

negatively related to its neighbors. A value close to -1 indicates a stronger negative spatial 

correlation. When the value is 0, no spatial autocorrelation is present. 
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3.2.2. The set of the spatial weight matrix 

The spatial weight matrix reflects the interdependence of variables in different regions, which 

constitutes the premise of spatial correlation analysis (Chen et al., 2019). New economic 

geography believes that the spatial relationship between two elements will weaken when 

increasing their distance (Krugman, 1998). That is, as the distance between two provinces of 

mainland China increases, the spatial spillover effect of green transition will weaken. Therefore, 

the spatial weight matrix was established with the inverse distance between two provinces as Eq. 

(10). 

1 ,

0,

ij
ij

i j
dw

i j

 
 
 

                             (10) 

where 
ijd  is the straight-line distance between the province i  and j . 

3.2.3. The spatial Durbin model 

The flow of resources among provinces can easily affect the local province’s GTI, which 

causes it to be affected by the GTIs of its neighboring provinces. As to the potential spatial 

correlation of the GTI, a spatial panel model was constructed to analyze the driving factors of the 

GTI. According to existing research, the spatial panel models contain three types, namely spatial 

lag model (SLM), spatial error model (SEM), and SDM (Chen et al., 2019; Feng and Wang, 2019). 

The SLM is used to describe the existence of spatial autocorrelation. By adding the spatial lag 

term of GTI to the independent variables, the SLM can be expressed as Eq. (11). 

nGTI I WGIT X                               (11) 

where GTI is the dependent variable, representing the green transition index; X  is the 

independent variables, representing the driving factors of the green transition;   represents the 

spatial autocorrelation parameter; W  is the spatial weight matrix; WGTI  represents the spatial 

lag term of GTI.   represents the spatial regressive parameter. 
nI  is a 1n  vector associated 

with the intercept parameter  ;   is the normal error term. 

The SEM believes that the error item affected by GTI’s factors becomes strong relevant as 

the existing spatial relationship, therefore the SEM can be expressed as Eq. (12). 

nGTI I X

W

  

   

  

 
                            (12) 

where   is the error item with strong relevance;   represents the spatial regressive parameter. 

When the spatial lag items of the GTI and its influencing factors are all considered, the SDM 

is expressed as Eq. (13).  

nGTI I WGIT X WX                              (13) 

where WX represents the spatial lag terms of independent variables;   represents the spatial 

regressive parameters. 

Before choosing the SDM, it is necessary to use the Lagrange Multiplier Method to test 

whether the null hypothesis of SLM or SEM is true. If the null hypothesis of SLM or SEM is not 

rejected, then SLM or SEM is selected. If the null hypotheses of both SLM and SEM are rejected, 

then the SDM is chosen. 

4. A case study of China 

With the rapid economic growth, China has become the world's second-largest economy. 

However, relying on administrative and planning policies of the Chinese government, this growth 
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mode had the characteristics of high input, high consumption, and high pollution (Wang et al., 

2019; Song et al., 2020). This not only caused resource exhaustion, but also caused severe 

ecological and environmental problems. The latest data from the Global Carbon Project showed 

that China’s carbon dioxide emission increased by 4.7% in 2018, accounting for 27% of the global 

emissions (Ding et al., 2019). Therefore, the green transition of China plays a key role in 

promoting global sustainable development.  

In order to demonstrate our methodology, we use China as a case study. To properly promote 

green transition, the Chinese government has formulated the green development goal and direction 

in the 12th Five-Year Plan. More recently, China has pledged to peak emissions by 2030 and 

neutralize emissions by 2060. However, what about the status of China's green transition? Are 

there any links between the local province and neighboring provinces? What are the driving 

factors of green transition? Answer to these questions will help China to formulate the urgently 

needed transition roadmap that is appropriate to its level of economic development, energy mix, 

and regional heterogeneity (Shi et al., 2021; Shi, 2021).  

Therefore, this study comprehensively calculated the green transition index (GTI) of China 

from 2008 to 2017 from the following five aspects: economic transition, technological transition, 

energy transition, social transition, and environmental transition. Moreover, industry structure, 

reform and openness, investing capacity, government intervention, and environmental regulation 

were selected as driving factors. Furthermore, China's regional GTI and spatiotemporal variation 

were studied from a spatial econometric perspective, and the driving factors of green transition 

and their spillover effects were analyzed. Finally, several recommendations for green transition 

development were proposed. 

4.1. Variable selection and data source 

4.1.1. Driving factors 

According to economic theory, technological progress, structural change, environmental 

regulation, resources, and population are the main factors affecting sustainable economic 

development (Yang et al., 2021). Furthermore, the green economy is essentially a production path 

with high technology, low resource consumption, and low environmental pollution (Jin et al., 

2021). Therefore, the driving factors of the GTI were summarized as industrial structure, reform 

and openness, investing capacity, government intervention, and environmental regulation. 

(1) Industrial structure (IS). Fan et al. (2003) pointed out that structural change was a further 

source of economic growth. Changes in industrial structure actually indicated the reallocation of 

resources from low-productivity sectors to high-productivity sectors, thus contributing to the 

overall economic development (Zagler, 2009; Adom et al., 2012). At present, the advanced degree 

of the industrial structure is usually characterized by the level of regional green transition (Laitner, 

2010). The development of the tertiary industry has become an important indicator to evaluate the 

development level for a country. Increasing the proportion of the tertiary industry is conducive to 

stimulating economic development and accelerating the process of green development (Zhu et al., 

2019). Therefore, this study selected IS as the driving factor, which was measured by the 

proportion of tertiary industry output in the gross domestic product (GDP). 

(2) Reform and openness (RO). Since the reform and openness was proposed by the Chinese 

government, China's economic development has been greatly promoted (Kanbur and Zhang, 2001). 

Hye et al. (2016) developed a trade openness index for China and found that trade openness was 

positively related to economic growth in both the long run and the short run. Moreover, the deeper the 
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reform and openness, the more frequent the flow of funds, talents, and technology into a region, 

which contributed to regional green transition (Tisdell, 2009). Then, the actual amount of foreign 

investment utilized capital per capita (US$/Person) was used to express RO. 

(3) Investing capacity (IC). Governments around the world always emphasize the importance 

of investing capacity. This is the main driving force for accelerated economic development, and 

also an important tool for urban industrialization. Since green development has been proposed, 

Hall et al. (2017) showed that both finance and investment play an enormous role in facilitating 

transformative change. Moreover, Kemp-Benedict (2018) argued that private investment should be 

mobilized for a transition. The fixed-asset investment in the China Statistical Yearbook is a 

comprehensive indicator, including investment types of state-owned enterprises, collectives, 

individuals, and foreigners. Consequently, this study adopted fixed asset investment per capita 

(Thousand US$/Person) to measure IC. 

(4) Government intervention (GI). It is necessary to strengthen governmental intervention in 

the process of sustainable development (Kemp and Never, 2017). The focus of the local 

government on green transition presents a major influence on the overall quality of regional 

economic and social development (Droste et al., 2016). Especially when the transition is not 

interesting for enterprises and individuals, the government must enhance policy interventions to 

change this status (Owen et al., 2018; Xu et al., 2021). The power of governmental intervention is 

mainly related to local fiscal expenditure. Therefore, this study selected local fiscal expenditures 

per capita (US$/Person) as the indicator to measure GI. 

(5) Environmental regulation (ER). Strict environmental regulation is an important policy, 

which China will continue to implement for a long time to realize green development (Jaffe et al., 

1995; Liao and Shi, 2018). Environmental regulation is conducive to restraining high 

energy-consuming and high-polluting industries, which is one of the key driving factors for green 

transition (Wang et al., 2019; Zhai and An, 2020). Therefore, the indicator of environmental 

governance investment per capita (US$/Person) was used to denote ER in this paper. 

Explanations and symbols of the above variables are provided in Table 2. 

Table 2 Descriptive statistics for all variables. 

Variables Definition Unit Mean Min Max Obs 

GTI 

A comprehensive index 

from the multiple indicators 

of economy, technology, 

society, energy, and 

environment 

- 0.2397 0.0663 0.8156 300 

IS 
the proportion of tertiary 

industry output in the GDP 
% 43.1831  28.6 80.6 300 

RO 

Actual amount of foreign 

investment utilized capital 

per capita 

US$/Person 266.6088  4.3646 1808.893 300 

IC 
Fixed asset investment per 

capita 

Thousand 

US$/Person 
259.3316 4.5806 3762.6621 300 

GI 
Local fiscal expenditures 

per capita 
US$/Person 13.1558 0.2489 102.4267 300 

ER 
Environmental governance 

investment per capita 
US$/Person 1614.5723 4.1748 31065.2392 300 

Note: exchange rate used: 1US$=6.x RMB.  

4.1.2. Data Source 

To analyze the driving factors of green transition, the panel data of 30 provinces in mainland 

China from 2008 to 2017 was utilized, except Tibet, due to a lack of data. The original data of 
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evaluation indicators for GTI and its driving factors were collected from the China Statistical 

Yearbooks (2009-2018), the China Energy Statistical Yearbooks (2009-2018), and the statistical 

yearbooks of the 30 provinces in mainland China. 

Furthermore, the spatial weight matrix was generated with the GeoDa software, and the data 

of the provincial latitude and longitude were collected from the national catalog service for 

geographic information. Moreover, the SDM model was realized with MATLAB software. To 

solve the heteroscedasticity of panel data and reduce data instability, the logarithm of driving 

factors was utilized in this paper. 

4.2. The overall trend of GTI 

Fig. 1 shows the overall trend of the GTI for mainland China from 2008 to 2017, and the 

regional GTI trends of the eastern region, central region, and western region. The GTI was lowest 

in 2012, and since then, has improved significantly. The overall GTI was still low and its mean 

was 0.240, which indicated that the GTI of the 30 provinces of mainland China was not effective. 

0.000
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0.200
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0.400

0.500

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

eastern region central region western region China

 
Fig. 1 GTI trends of China’s regions 

Table 3 describes the GTIs for selected years due to limited space. The GTIs in almost all 

provinces improved from 2008 to 2017, while there were significant gaps among them. In 2017, 

the GTIs in six provinces reached greater than 0.5, including Beijing, Shanghai, Jiangsu, Zhejiang, 

Guangdong, and Hainan. This means that the green development of these cities in China has 

reached a good level, however, it exists a great gap that the GTIs in other provinces are all below 

0.5. 

From the perspective of regional GTIs, the eastern region had a significantly higher GTI 

mean than both the central region and the western region. Fig. 2 shows the GTIs’ means of 

China’s 30 provinces from 2008 to 2017. The top five GTIs regions (according to their means) 

were Guangdong, Jiangsu, Beijing, Shanghai, and Zhejiang, which all belong to the eastern region. 

Particularly, the GTI means of Guangdong and Jiangsu reached 0.763 and 0.725, respectively. In 

the central region, the range of GTI means is between 0.125 and 0.238. Only the GTIs of Henan, 

Hubei, Anhui are greater than 0.2. However, in the western region, the GTIs in each province are 

lower than 0.2 except Sichuan.  

Further, by analyzing the GTIs changes of China’s 30 provinces from 2008 to 2017 as shown 

in Fig. 3, the GTI growth in the eastern region was higher than that in both the central region and 

the western region. The provinces with GTI growths greater than 0.1 were mainly concentrated in 

the eastern region, including Beijing, Tianjin, Shanghai, Jiangsu, Zhejiang, and Hainan. However, 

the growths of other provinces were less than 0.1. This result reflected the status of green 

transition in China. Compared with the central and western regions, the eastern region has the 

advantages of economic scale, industrial structure, and technological innovation. Furthermore, the 
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agglomeration effect of the cities belonging to the eastern region has gradually been formed, thus 

shaping into a better decoupling between the economic development and the load of resources and 

environment. The results imply that regional gaps in GTIs are widening. 

Table 3 The GTIs of the 30 provinces for selected years 

Regions No. Provinces 2008 2011 2014 2017 Means Growths 

Eastern region 

1 Beijing 0.489  0.519  0.659  0.763  0.606  0.274  

2 Tianjin 0.321  0.330  0.439  0.585  0.410  0.264  

3 Hebei 0.204  0.210  0.243  0.214  0.214  0.010  

6 Liaoning 0.267  0.264  0.263  0.272  0.267  0.005  

9 Shanghai 0.493  0.542  0.610  0.647  0.572  0.154  

10 Jiangsu 0.614  0.720  0.745  0.771  0.725  0.158  

11 Zhejiang 0.517  0.511  0.614  0.632  0.562  0.115  

13 Fujian 0.237  0.232  0.269  0.261  0.251  0.024  

15 Shandong 0.505  0.466  0.516  0.497  0.492  0.019  

19 Guangdong 0.816  0.728  0.735  0.806  0.763  0.011  

21 Hainan 0.380  0.524  0.600  0.637  0.545  0.257  

20 Guangxi 0.126  0.134  0.139  0.156  0.139  0.030  

Central region 

4 Shanxi 0.139 0.162 0.161  0.186  0.159  0.024  

5 Inner Mongolia 0.153  0.159 0.176  0.208  0.173  0.007  

7 Jilin 0.120 0.129  0.136  0.140 0.132  0.011  

8 Heilongjiang 0.100 0.125 0.131 0.132 0.125  0.031  

12 Anhui 0.164  0.181  0.205  0.234  0.202  0.070  

14 Jiangxi 0.121  0.144  0.138  0.158  0.139  0.037  

16 Henan 0.224  0.215  0.249  0.284  0.238  0.060  

17 Hubei 0.190  0.186  0.228  0.245  0.220  0.055  

18 Hunan 0.170  0.168  0.192  0.201  0.185  0.030  

Western region 

22 Chongqing 0.142  0.153  0.169  0.171  0.158  0.030  

23 Sichuan 0.198  0.190  0.215  0.223  0.204  0.025  

24 Guizhou 0.072  0.090  0.094  0.093  0.088  0.021  

25 Yunnan 0.110  0.104  0.116  0.119  0.113  0.008  

26 Shaanxi 0.139  0.164  0.175  0.172  0.170  0.033  

27 Gansu 0.098  0.089 0.103  0.103  0.103  0.014  

28 Qinghai 0.066  0.074  0.081 0.090 0.081  0.014  

29 Ningxia 0.078  0.070  0.075 0.090 0.079  0.020  

30 Xinjiang 0.104  0.120  0.133  0.125  0.120  0.022  
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Fig. 2 GTIs’ means of China’s 30 provinces from 2008 to 2017 

 

Fig. 3 GTIs’ growths of China’s 30 provinces from 2008 to 2017 

 

4.3. Model estimation of driving factors 

4.3.1. Spatial correlation test 

Table 4 shows the Moran’s I indices of GTIs for every year from 2008 to 2017. The Moran's I 

statistic values all exceeded 0, which demonstrated that the GTIs had a strong spatial correlation. 

Moreover, the statistic values of GTIs were significant at the 5% level. Therefore, a spatial 

econometric model was required to analyze the driving factors of the green transition of China. 

Furthermore, the local Moran’s I indices of 30 provinces were also calculated for mainland 

China from 2008 to 2017. Fig. 4 describes the Moran’s I scatter plots in 2008 and 2017. Most of 

the investigated provinces are located in the second and third quadrants over the past ten years, 

indicating that they had the characteristics of high-value and low-value aggregation as well as 

low-value and low-value aggregation. 
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Table 4 Moran’s I and its statistical test of GTIs from 2008 to 2017 

Years I z p-value 

2008 0.192 2.132 0.033 

2009 0.184 2.047 0.041 

2010 0.201 2.220 0.026 

2011 0.224 2.443 0.015 

2012 0.215 2.365 0.018 

2013 0.208 2.290 0.022 

2014 0.205 2.244 0.025 

2015 0.216 2.361 0.018 

2016 0.217 2.342 0.019 

2017 0.214 2.355 0.019 

Moran scatterplot (Moran's I = 0.204)
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Moran scatterplot (Moran's I = 0.218)
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(a) The Moran scatter plot for GTIs in 2008           (b) The Moran scatter plot for GTIs in 2017 

Fig. 4 The Moran’I scatter plots for GTIs in 2008 and 2017 

 (Note: The number denotes each province, and its meaning is shown in Table 3) 

4.3.2. Estimation results 

According to the comparison of non-spatial panel models, it could be further judged whether 

these models are suitable to build a spatial panel model, which is typically determined by 

Lagrange Multiplier (LM) test. Table 5 describes the estimation results of the Partial Least Squares 

(PLS) regression. It can be seen that reform and openness, investment capacity, government 

intervention, and environmental regulation affect GTI positively at 1% level. This shows that 

reform and openness, investment capacity, government intervention, and environmental regulation 

can promote green transition. However, the coefficient of industrial structure is negative, which 

exerts a significantly negative effect on green transition. Further, the results of the LM test and the 

Robust LM of the spatial lag panel were significant at 1% level, thus rejecting the null hypothesis 

of no spatial lag effect. Moreover, the statistics value of the LM test of spatial error panel rejected 

the null hypothesis of no spatial error effect at 1% level, while the statistics value of the Robust 

LM test could not reject the null hypothesis. Therefore, SDM is the better choice for analyzing 

GTI’s driving factors. 

By comparing the results of SLM, SEM, and SDM, the maximum likelihood method was 

adopted to estimate the three models. Since the panel model had two types, the random effect 

model and fixed effect model, it was necessary to choose whether the model contained random 

effects. This was done by the Hausman test. As shown in Table 6, the statistics of Hausman test 

significantly rejected the null hypothesis at 5% level. Hence, a spatial panel model with fixed 
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effect was built. 

Table 5 Estimation results of the PLS regression 

Variables PLS regression 

_cons -2.8759 (-16.92) 

IS -0.1964** (-3.12) 

RO 0.0429*** (3.82) 

IC 0.0821*** (6.73) 

GM 0.1733*** (3.54) 

ER 0.0506 ***(4.07) 

R2 0.6757 

F 122.53 

LM_spatial_lag 33.675*** 

Robust LM_spatial_lag  20.108*** 

LM_spatial_err 15.724*** 

Robust LM_spatial_err 0. 935 

Note: The t-statistics are given in parentheses; *** and **denote significance at 1% and 5% level, respectively. 

Table 6 Estimation results for the spatial panel regression model 

Spatial panel model 

with fixed effect  

SDM SLM SEM 

_cons - -2.8756 (-6.43) -0.0951 (-1.46) 

IS -0.0068**(-3.09) -0.0331** (-2.80) -0.0367* (-2.13) 

RO 0.0316*** (4.51) 0.0424*** (4.29) 0.0420***(7.26) 

IC 0.1055*** (5.64) 0. 1022*** (3.39) 0.0834*** (3.59) 

GM 0.0217*** (4.27) 0.0143** (2.82) 0.0416* (2.02) 

ER 0.1128*** (5.38) 0. 1246 ***(5.99) 0.0755*** (7.08) 

W*IS 0.0463*(1.98) - - 

W*RO 0.1875**(3.16) - - 

W*IC -0.0485***(-4.56) - - 

W*GM -0.0521***(-3.98) - - 

W*ER -0.0187**(-3.11) - - 

R2 0. 7984 0.7283 0.7515 

Log-likelihood 81.0866 62.6742 71.5401 

Lambda/Rho 0.0523***(5.47) 0.0148**（3.04） 0.1237 (1.55) 

sigma2_e 0.0025***(4.69) 0.0027***(11.60) - 

Wald spatial lag 22.3155*** - - 

LR spatial lag 11.4367** - - 

Wald spatial error 28.8414*** - - 

LR spatial error 10.9983** - - 

Hausman test 117.8827*** - - 

Notes: The t-statistics are given in parentheses; ***, **, and * denote significance at 1%, 5%, and 10% level, 

respectively. 

It can be inferred that the coefficient of industrial structure is -0.0068, which is negatively 

correlated with green transition at 5% level. This may relate to the unreasonable development of 

the tertiary industry. The coefficients of reform and openness, investment capacity, government 

intervention, and environmental regulation are 0.0316, 0.1055, 0.0217, and 0.1128, respectively. 

That means they are all beneficial for green transition by decreasing carbon emissions and energy 

consumption. Subsequently, indicated by the estimation results of the three spatial models above, 

the Lambda/Rho shows that both SDM and SLM passed the significance test at the 5% level, 

while SEM is not significant. From the perspective of R-squared and Log-likelihood, SDM is 

better than SLM. Moreover, both the Wald test and the LR test reject the null hypothesis; therefore, 

the SDM could not be simplified to SLM or SEM. In summary, based on the above analysis, the 
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SDM may better express the spatial dependence of the driving factors of green transition. 

4.3.3. Robustness test 

The robustness of SDM is tested by two methods. The first method is to compare the 

estimation results of different models, which are shown in Tables 5 and 6. The coefficients of 

driving factors on GTI are consistent under the PSL regression and the spatial panel data models, 

only differ insignificance. Thereby, it can be inferred the results in this paper are robust. 

The second method is to use different spatial matrices. The economic-geographical weight 

matrix was selected for comparison with the results of the geography distance matrix. With the 

convenience of transportation and the popularity of communication, economic distance should be 

studied when constructing a spatial weight matrix (Zhang et al., 2018). Due to the economic and 

geographical factors, the economic-geographical weight matrix is built in this paper and is 

expressed as Eq. (14). 

2* / ,

0,

i j ij

ij

GDP GDP d i j
w

i j

 
 



                        (14) 

where 
iGDP  and jGDP  represent the GDPs of provinces i and j. ijd  represents the distance 

between provinces i and j. 

Therefore, the estimation results with the economic-geographical weight matrix are shown in 

Table 7. Compared with the results in Table 6, the estimated coefficients of these five driving 

factors and their significance levels do not obviously change. This shows that the results in the 

paper are robust. 

Table 7 Estimation results with the economic-geographical weight matrix 

Spatial panel model 

with fixed effect  

SDM SLM SEM 

_cons - -1.6548 (-3.65) -0.1264 (-1.64) 

IS -0.0058**(-2.83) -0.0405** (-2.69) -0.0259* (-2.27) 

RO 0.0269*** (4.74) 0.0518*** (5.16) 0.0361***(6.42) 

IC 0.1556*** (5.26) 0. 1086*** (4.27) 0.0863*** (3.66) 

GM 0.0865*** (3.92) 0.0262* (2.28) 0.0435* (2.36) 

ER 0. 1226*** (6.41) 0.0817 ***(3.86) 0. 1024*** (5.62) 

W*IS 0.0461*(2.21) - - 

W*RO 0.1746*** (3.25) - - 

W*IC -0.0722***(-6.13) - - 

W*GM -0.0381***(-3.86) - - 

W*ER -0.0167**(-2.88) - - 

R2 0. 8134 0.7168 0.7260 

Log-likelihood 81.9342 66.3802 74.2283 

Lambda/Rho 0.0529***(4.68) 0.01741**(3.07) 0.0424** (2.76) 

sigma2_e 0.0024***(3.79) 0.0031***(6.52) 0.0029***(5.38) 

Wald spatial lag 26.1724*** - - 

LR spatial lag 12.0431** - - 

Wald spatial error 29.6634*** - - 

LR spatial error 10.7208** - - 

Notes: The t-statistics are given in parentheses; ***, **, and * denote significance at 1%, 5%, and 10% level, 

respectively. 

4.4. Spatial spillover effects of driving factors 

The change of one or more driving factors not only affected the green transition of the local 

province directly, but also indirectly affected the green transition of the neighboring provinces. 
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Consequently, the estimation results of SDM could not accurately reflect the influence of driving 

factors on the green transition. 

Therefore, the partial differential method was used to decompose the spatial spillover effect 

of the SDM into three parts: direct effect, indirect effect, and total effect (Lesage and Pace, 2009). 

The direct effects represented the influences of driving factors on the green transition of a local 

province. The indirect effects represented the influences of driving factors on the green transition 

of neighboring provinces. The total effects reflected the average influences of driving factors on 

both the local provinces and their neighboring provinces. Table 8 displays the results of direct, 

indirect, and total effects for the driving factors. 

Table 8 Direct effects, indirect effects, and total effects of the SDM on GTI 

variables Direct effect Indirect effect Total effect 

IS -0.0125 (-3.13)** 0.0082 (2.11) * -0.0043 (-1.98)* 

RO 0.0317 (6.15) *** 0.0224 (3.20) ** 0.0541 (6.13) *** 

IC 0.0879 (4.28) *** -0.1237 (-4.64) *** 0.0043 (3.88) *** 

GM 0.0783 (3.99) *** -0.1237 (-3.87) *** -0.0454 (-2.95) ** 

ER 0.0175 (4.26) *** -0.0092 (-2.03) * 0.0083 (2.14) * 

Notes: The t-statistics are given in parentheses; ***, **, and * denote significance at 1%, 5%, and 10% level, 

respectively. 

It can be found that the results of both direct and indirect effects were lined with the 

corresponding regression results in Table 6, illustrating that the results were steady and effective. 

Moreover, it demonstrated the rationality of using SDM to explore the spatial spillover of driving 

factors. 

5. Discussion 

With regard to direct effects, reform and openness, investing capacity, government 

intervention, and environmental regulation were significant at 1% level, and they positively 

impacted the green transition of China. The coefficients were (in descending order) investing 

capacity, government intervention, reform and openness, and environmental regulation. Fu and 

Balasubramanyam (2005) pointed out that reform and openness attracted advanced technology 

and promoted the development of both import and export trade. This also brought advantageous 

resources together to develop green transition (Holz, 2008). Moreover, similar to the work by 

DeLonge et al. (2016), investing could provide sufficient financing support for the green transition 

to optimize industrial structure. Moreover, the government, as a guide of China’s green transition, 

plays an important role in promoting green transition. By formulating policies related to tax, 

innovation, and funding, the government can guide and encourage manufacturing enterprises to 

realize green transition (Kemp and Never, 2017). Furthermore, environmental regulation can 

strengthen the optimal allocation of various resources to explore green technology, green 

processes, and green development, which thus promotes green transition (Wang and Shao, 2019; 

Pan et al., 2019). 

However, the direct effect of industrial structure on green transition was significant at 5% 

level, and exerted a significant negative effect on green transition. These results were consistent 

with the research by Wang et al. (2019). Currently, the tertiary industry in China has grown fast 

and its proportion of GDP gradually increased. However, the tertiary industry is mainly dominated 

by traditional service industries, including commerce, catering, and transportation. Emerging 

industries, such as information, consulting, technology, and financing, have insufficient 
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development momentum, which led to small industry outputs and unreasonable industry structure. 

Using the express delivery industry in China as an example, it has developed rapidly since 

e-commerce was booming, but it has brought a serious environmental burden due to consuming a 

large amount of express packaging materials (Fan et al., 2017). This may be the reason why the 

industrial structure exerts a negative impact on green transition. 

Furthermore, from the perspective of indirect effects, the driving factors of investing capacity 

and government intervention were both significant at 1% level. This indicates that they exerted 

spatial spillover effects on the GTIs of neighboring provinces through spatial transmission channel. 

However, they generated negative externalities, i.e., when the invested capacity in the local 

province increased, the investing capacity in the neighboring provinces would decrease and form a 

‘closure effect’. Moreover, when the local government issued policies to develop green transition, 

this would attract more resources into the local province (Huang et al., 2019). Consequently, this 

caused the resources to flow out from neighboring provinces. Moreover, the driving factor of 

reform and openness was significant at 5% level, which exerted a positive impact on the green 

transition in the neighboring provinces. Because the local government intensified the reform and 

openness, this enhanced the reform and openness of neighboring provinces and thus attracted 

resources (Kanbur and Zhang, 2001). In addition, the driving factor of industrial structure was 

significant at 10% level, and exerted a positive impact on the green transition of neighboring 

provinces. Furthermore, the driving factor of environmental regulation was significant at 10% 

level, but exerted a negative impact on neighboring provinces. 

In addition, according to the total effects of these five driving factors, the reform and 

openness was significant at 1% level and its coefficient value was largest. This implied that reform 

and openness promoted the green transition of 30 provinces in mainland China through spillover 

effects, and the driving force was stronger than that of other factors. The statistics value of 

governmental intervention was significant at 5% level and its coefficient value was negative, 

indicating that the negative diffusion effect of governmental intervention on green transition 

exceeded its direct effect. This is because when the local government formulates macroeconomic 

policies to promote green transition, it attracts the governments in neighboring provinces to learn 

and imitate, which can easily cause policy overlap to hinder green transition (Giri et al., 2019). 

Moreover, both investing capacity and environmental regulation were significant at 10% level, 

and both their direct effects exceeded their indirect effects (An et al., 2021). This demonstrated 

that their direct impact on green transition of China exceeded the negative effect on the 

neighboring provinces. 

 

6. Conclusion and Policy Implications 

To explore the status quo of China's green transition development, this paper used the entropy 

weight method to calculate the GTIs of 30 provinces of China. On the basis, SDM was used to 

analyze the driving factors and spillover effects of China's green transition. The main conclusions 

are as follows: 

(1) The overall level of China's green transition increased, but there is still enormous 

potential for improvement. China's GTI was low from an overall perspective and the gaps among 

provinces are widening. From the perspective of geographical distribution, the GTIs in the eastern 

region of China were much higher than those in both the central and western regions.  

(2) The regional GTI in China had significant positive spatial dependence. Consequently, the 
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green transition of local provinces positively affected the development of neighboring provinces, 

showing that the spatial linkage effect has steadily developed. 

(3) The results of the SDM showed that reform and openness, investing capacity, government 

intervention, and environmental regulation significantly promoted the green transition 

development in China. Among these, reform and openness had the greatest influence on green 

transition. However, the industrial structure harmed the green transition. 

All factors exerted both direct and indirect impacts on the green transition development of 

China. How to realize high-quality green transition and coordinate the development among 

different regions has become the key for China's current development. Based on the main 

conclusions above, the following lists several implications for China's policy formulation toward 

the realization of the green transition and regional coordinated development: 

(1) The positive space spillover effect of the reform and openness and environmental 

regulation should be fully utilized when China’s government plans for the green transition 

development. It is centrally important to increase the depth and intensity of the reform and 

openness. The cooperation and trust between provincial governments should be strengthened. 

Instead of narrow regional thinking, provincial governments need to fully account for regional 

agglomeration effects. Moreover, appropriate national coordination is needed to narrow the GTI 

development gaps among provinces.  

(2) When promoting the regional green transition, the provincial governments of China must 

further strengthen the rationalization of the industrial structure. Moreover, emerging industries 

such as information, consulting, technology, and finance need to be vigorously developed, to 

increase the total tertiary industry. Furthermore, the governments should broaden the idea of green 

transition, and use the enterprises as the main bodies to mobilize their enthusiasm for the green 

transition. In addition, public awareness of green consumption and green behavior should be 

raised. 

(3) With regard to the negative spatial spillover effect of investing capacity and government 

intervention, positive measures should be formulated to attract investment from large and 

medium-sized enterprises. In this process, the advantages of location and resources should also be 

fully utilized. Simultaneously, to realize a high-quality green transition, governments should 

further optimize the investment environment and improve the hard environment such as 

infrastructure and geographical environment. Moreover, the soft environment, including finance, 

talent, and technological innovation, needs to be improved. 

Although this study has obtained several valuable conclusions, some limitations could be 

improved in further work. First, the GTI is affected by many factors, including resource, 

environment, economy, policies, etc., some of these perspectives were not well captured due to the 

data limitation. Second, the driving factors of GTI and their spatial spillover effects are discussed 

using the SDM. However, the economic development and resource condition of each region differ 

greatly, thus their heterogeneities need to be further explored in future research. 
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Abstract: Achieving a high-quality green transition has become an important way toward 

sustainable development in the world. In this study, we propose a measuring framework of green 

transition based on the entropy weight method. Then the driving factors of green transition are 

analyzed with a spatial Durbin model. Taking China as an empirical case study, the results showed 

that: (1) the overall level of green transition in China increased, but the green transition index 

(GTI) remained low. The GTIs’ means and growths of the eastern region exceeded those of both 

the central region and the western region. Moreover, the GTIs in 30 provinces were significant 

gaps. (2) China's GTIs showed a significant positive spatial dependence. Furthermore, the driving 

factors of reform and openness, investing capacity, government intervention, and environmental 

regulation positively impacted the green transition development; however, the industrial structure 

had a negative impact. (3) Reform and openness, as well as environmental regulation, exerted 

positive spillover effects on other provinces, while investing capacity and government intervention 

exerted negative spillover effects. Moreover, the spillover effect of the industrial structure was not 

significant. Relevant recommendations for green transition development are proposed. 

Keywords: green transition; energy transition; driving factors; spillover effect; entropy weight 

method; spatial Durbin model 

 

1. Introduction 

Green transition, including the energy transition, has become an important strategy for 

sustainable global development and global environmental governance. The “brown economy”, 

with its high energy consumption and high pollution, has caused many social, economic, and 

environmental problems. At the Global Environment Ministers’ Meeting in October 2008, the 

“Global Green New Deal” and “Developing a Green Economy” were proposed by the United 

Nations Environment Programme, thus calling for a global shift from a “brown economy” to a 

“green economy” (Mundaca and Markandya, 2016). Since then, under the connotation of the 

green economy (Pearce et al., 1989), a green transition is considered as a mode transition from 

high energy consumption and high emission to low energy consumption and low emission (Ringel 
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et al., 2016; Kemp and Never, 2017), thereby realizing the goals of sustainable economic 

development and environmental protection (Springer et al., 2019; Feng and Wang, 2019).  

Accelerating the process of green transition has been a hot issue for governments around the 

world (Kemp and Never, 2017; Lamperti et al., 2020). Green transition not only informs the 

development of global climate change policies and transition of the energy mix, but also suggest 

consumption side changes, such as low carbon lifestyle (Zhang et al., 2020), and therefore can 

provide a comprehensive framework for achieving carbon neutrality (Samper et al., 2021). The 

green transition can be affected by many factors and their effects are inconsistent (Kemp and 

Never, 2017; Shi et al., 2020). To provide a basis for decision-making in formulating effective 

green transition policies, it is necessary to measure the green transition and its driving factors 

accurately. 

Most existing studies focus on measuring green transition by calculating green total factor 

productivity or green efficiency with the environmental output. However, green transition 

emphasizes the changes of development patterns about the economy, technology, society, energy, 

and environment. Neither green total factor productivity nor green efficiency can reflect the 

characteristics of green transition comprehensively. Furthermore, many scholars use different 

methods to analyze the driving factors of green transition, which can be summarized as 

decomposition analysis methods (Su and Ang, 2016; Zhou and Ang, 2008) and econometric 

models (Zhang and Liu, 2015; Zhang et al., 2018; Yuan and Xiang, 2018). However, due to the 

inaccuracy of measuring the green transition, the analysis of the driving factors would be further 

incomplete and even misleading. Therefore, how to measure the green transition accurately is 

worth studying. 

Measuring the green transition is actually to calculate a comprehensive index from the 

multiple indicators of the economy, technology, society, energy, and environment. The entropy 

method can determine the weights of various indicators according to their values’ variations, and 

then obtain an objective and comprehensive evaluation value (Zou et al., 2006). This method 

considers the contribution of each indicator to the green transition, but also avoids subjectivity. 

Consequently, we propose a measuring framework of the green transition index (GTI) based on 

the entropy weight method. Furthermore, considering the spatial relevance of regional green 

transition, spatial Durbin model (SDM) is adopted to analyze the driving factors of the green 

transition. On this basis, taking China as the case study object, the policy implications of its green 

transition are come out. 

The contributions of this study mainly reflect two aspects. First, we propose a general method 

to measure GTI using the entropy weight method. The existing measurements of green transition, 

such as green efficiency and green index, cannot capture the comprehensiveness of green 

transition. Second, we demonstrated the spatiotemporal variation and driving factors of GTIs in 

China’s provinces from 2008 to 2017. The Moran index suggests a significant regional correlation 

of GTIs.  

The remainder of the paper is arranged as follows: Section 2 provides a literature review. 

Section 3 explains a methodology framework of entropy weight method for GTI and SDM for 

analyzing the driving factors. Section 4 provides the case study of China and its empirical results. 

The discussion and the conclusion are presented in Section 5 and Section 6. 

 

2. Literature review 
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With the problems caused by the increasingly severe global environmental pollution, the 

development of a green economy has become a trend of the new era (Pearce et al., 1989). Many 

scholars have studied the concepts of green development, green economy, and green transition. 

Today, the main subjects of related research are “sustainable development”, “green economy”, 

“green growth”, and “low-carbon cities”. 

Recently, the green transition development theory and practice are still at the exploratory 

stage, and no unified definition has been agreed upon. Since green transition is a new 

developmental approach proposed in recent years due to environmental pollution, it mainly 

addresses the constraints between resources and the environment in the process of sustainable 

development. Thomas (2015) argued that energy innovation would cause structural change and 

thus expand the green space to achieve sustainable development. This process was named green 

transition. Similarly, Ferguson (2015) pointed out green transition meant to improve resource 

productivity and achieve the transition of an unsustainable development to a sustainable 

development model. Bandyopadhyay (2017) evaluated sustainable development from three 

aspects: economic, social, and environmental development. Rodenburg et al. (2001) established 

urban economic indicators to evaluate green structure and green space and proposed a green 

development framework from four dimensions: environmental resource, urban welfare and quality, 

green financing, and government management. In addition, several scholars analyzed sustainable 

development from the perspective of green energy. Midilli et al. (2006) reported that public 

awareness, information, environmental education, financing, and evaluation tools were essential 

factors for green energy strategy, and proposed several green energy strategies for sustainable 

development. 

To measure green transition, many scholars focused on green development performance, 

green development index, and green growth efficiency. Feng et al. (2017) estimated the green 

development performance index and its influencing factors, using the DEA method. They found 

that a U-shaped environmental Kuznets curve (EKC) existed between the green development 

performance index and the economic development level. Moreover, living standards, energy 

structure, and oil price positively influenced the green development performance index, while 

ecological carrying capacity negatively influenced it. Kushwaha and Sharma (2016) proposed a 

green initiative based on exploratory research to analyze the relationship between the sustainable 

development of the automotive industry and its performance. To measure the green performance, 

Rashidi and Saen (2015) used the DEA method to calculate eco-efficiency indicators, and the 

results showed that the more energy is input, the more undesired the outputs will be. Zhao and 

Yang (2017) evaluated the green development performance of 286 cities in China using 

metafrontier-data envelopment analysis. Their results showed that the green growth efficiency of 

cities with different sizes and in different regions differed, which required environmental 

governance and government regulation. 

Related to the driving factors of green transition, Dincer and Rosen (2005) identified four 

factors that affect sustainable development: energy and resources, economy, environment, and 

society. Yuan and Xiang (2018) estimated the green total factor productivity (GTFP) indicator and 

used it as a measure of China's industrial green development profile. They furthermore used the 

extended CDM model to examine the impact of environmental regulation on both technological 

innovation and green development. Green environmental efficiency was identified to vary from 

region to region and also showed clear spatial dependence and spatial variation (Chen et al., 2019; 
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Shao et al., 2020). They found that regional green development was affected positively by 

openness degree, urbanization, industrial structure, and technological innovation. However, 

economic growth, corporate structure, fiscal policy, and foreign investment negatively affected 

regional green development. 

Furthermore, Choi et al. (2016) analyzed the new paradigm of sustainable challenges in 

Northeast Asia under the context of green growth policy and green strategy. They emphasized the 

key role of the government to stimulate green development governance. Similarly, Hamdouch and 

Depret (2010) described the leading role of the government in the green transition process. The 

government should make well-designed environmental and innovation policies, and obtain the 

support of both stakeholders and relevant organizations. However, Jorgenson and Wilcoxen (1990) 

demonstrated that the environmental policy increased the additional environmental costs of 

enterprises, thus resulting in insufficient investment in R&D and innovation, and exerting a 

significant negative effect on the growth of green total factor productivity. 

In summary, there are two gaps in the literature. First, there is not a direct measurement of 

green transition. The existing studies used either green index or green efficiency to quantify the 

green transition. However, neither green efficiency nor green index can capture the 

comprehensiveness of green transition. Further, the green transition is a comprehensive reflection 

of economic transition, technological transition, social transition, energy transition, and ecological 

transition. Calculating an index from these aspects could be useful to reflect the reality of regional 

green transition. Another gap is the spillover effect of green transition across regions. With regard 

to China, green transition in the local region usually affects the other neighboring regions for a 

number of reasons (Cabrer and Serrano, 2007; Zhang et al., 2018). Therefore, to explore the 

questions, this paper firstly analyzed the green transition index of China using the entropy weight 

method. Then SDM was used to analyze the driving factors of green transition and their spatial 

spillover effects. 

3. Measurement of green transition and its driving factors: a methodology framework 

3.1. Measurement of the green transition index (GTI) 

3.1.1 Entropy weight method 

Entropy is widely used to measure the degree of disorder in a system (Shannon, 1948). Hence, 

entropy weight, as an objective weighting method, also evaluates the degree of disorder in a 

system by using useful information (Zou et al., 2006). The larger the entropy weight, the more 

useful information of the index. By using the entropy weight method, the GTI was measured with 

the following steps. 

Step 1: Construct evaluation matrix R. 

11 12 1

21 22 2

1 2
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n

m m mn m n

r r r

r r r
R

r r r


 
 
 
 
 
 

L

L

M M L M
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                            (1) 

where rik represents the evaluation value of the k indictor for the i province, i = 1, 2, …, m, and k = 

1,2, …, n; 

Step 2: Normalizing the matrix R. If k is a benefit indictor, a larger k value indicates a greater 

positive effect on GTI; therefore, formula (2) was used to normalize k. If k is a cost indictor, the 

larger its value is, the greater the negative effect on GTI will be; therefore, formula (3) was used to 

normalize k. 
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Step 3: Assume that pik represents the converted value via Rik, which can be defined as Eq. 

(4).  
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                              (4) 

Step 4: Calculate the entropy eik of the k indicator for i province using Eq. (5), where   

represents the Boltzman’s constant,   = 1 / ln(n). 
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Step 5: Provide the degree of diversification ek of the information by Eq. (6). 

1k kd e                                 (6) 

Step 6: The entropy weight wk of the k indicator is calculated by Eq. (7). 
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                                (7) 

Step 7: The green transition index 
i

GTI  of the ith province in China is calculated by Eq. (8). 

1

n

i ik k

k

GTI R W


                              (8) 

3.1.2 Evaluation indicators of GTI 

To measure the GTI by the entropy weight method, the evaluation indicators first had to be 

chosen. In reference to literature by Guo and Zhou (2018), Rodenburg et al. (2001), and Hou et al. 

(2019), the following five dimensions of green transition are analyzed: economic transition, 

technological transition, energy transition, social transition, and environmental transition. 

Economic transition refers to the industrial structure, investment, and foreign trade development 

(Yu et al., 2021). Especially, China's industrial structure has been significantly changed since 

implementing economic reform and open up, which the tertiary industry has gradually replaced 

the dominant position of the secondary industry (Karl and Chen, 2010; Yin et al., 2019; Zhao and 

Lin, 2019). Therefore, economic transition can be measured from the per capita GDP, tertiary 

industry value added, total social investment in fixed assets, and total imports and exports 

indicators. Technological development is the crucial driving force for achieving green transition. 

Therefore, technological transition is measured by the expenditure for new product development 

and the number of patent applications (Feng et al., 2021). Moreover, achieving low carbon growth 

needs reduce the share of raw coal in energy production and increase the share of electricity in the 

total final energy consumption (IEA, 2020; GEDICO, 2021). For the energy transition, it is 

necessary to change the coal-based energy consumption structure and build a low carbon 

electricity-based power system (Zhao and You, 2020). Therefore, the energy transition is measured 

by raw coal consumption and electricity consumption. Further, green transition is also influenced 

by the changes in social production activities and behaviors (Bell, 2016). Therefore, the social 
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transition can be measured by the expenditure of residents per capita, public budget expenditure, 

and unemployment rate. Finally, environmental transition, as a goal of achieving green transition, 

is measured by the total investment in industrial pollution control and sulfur dioxide emissions 

(Zhu et al., 2019). Consequently, 13 indicators were selected as evaluation indicators to calculate 

green transition, as shown in Table 1.  

Table 1 Evaluation indicators of GTI 

First-level indicator Second-level indicator Third-level indicator 

Green transition 

Economic transition 

GDP per capita 

Tertiary industry added value 

Total social investment in fixed assets 

Total imports and exports 

Technological transition 
Expenditure for new product development 

Number of invention patent applications 

Energy transition 
Raw coal consumption 

Electricity consumption 

Social transition 

Consumption expenditure of residents per capita 

Public budget expenditure 

Unemployment rate 

Environmental transition 
Total investment in industrial pollution control 

Sulfur dioxide emissions 

3.2. The model of driving factor analysis 

3.2.1. Spatial correlation test 

Because of the complexity of the spatial econometric model, it is necessary to test the spatial 

correlation of variables before their empirical analysis. To determine whether the variables are 

spatially correlated, the common methods are Moran index test, Gillie index test, and Cetis index 

(Cabrer and Serrano, 2007). Among these, the Moran I index is widely used to measure the spatial 

correlation of variables. Its calculation formula is as follows: 

1 1

2

1 1

'

m m

ij i j

i j

m m
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i j

w GTI GTI GTI GTI
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S w
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where i and j represent the province i and j, GTI
——

 represents the mean of the GTI; 

2 1=

m

i

i

GTI GTI

S
m



 
 

 


——

 represents the variance in the sample; wij represents the spatial weight of the 

element (i, j) for measuring the distance between provinces i and j, and w represents the spatial 

weight matrix. 

The Moran I index ranges from -1 to 1. A value above 0 indicates that the GTI of the local 

province is positively related to its neighbors. The closer the value is to 1, the stronger the positive 

spatial correlation will be. However, values below 0 indicate that the GTI of the local province is 

negatively related to its neighbors. A value close to -1 indicates a stronger negative spatial 

correlation. When the value is 0, no spatial autocorrelation is present. 

Jo
urn

al 
Pre-

pro
of



 

7 

3.2.2. The set of the spatial weight matrix 

The spatial weight matrix reflects the interdependence of variables in different regions, which 

constitutes the premise of spatial correlation analysis (Chen et al., 2019). New economic 

geography believes that the spatial relationship between two elements will weaken when 

increasing their distance (Krugman, 1998). That is, as the distance between two provinces of 

mainland China increases, the spatial spillover effect of green transition will weaken. Therefore, 

the spatial weight matrix was established with the inverse distance between two provinces as Eq. 

(10). 

1 ,

0,

ij
ij

i j
dw

i j

 
 
 

                             (10) 

where 
ijd  is the straight-line distance between the province i  and j . 

3.2.3. The spatial Durbin model 

The flow of resources among provinces can easily affect the local province’s GTI, which 

causes it to be affected by the GTIs of its neighboring provinces. As to the potential spatial 

correlation of the GTI, a spatial panel model was constructed to analyze the driving factors of the 

GTI. According to existing research, the spatial panel models contain three types, namely spatial 

lag model (SLM), spatial error model (SEM), and SDM (Chen et al., 2019; Feng and Wang, 2019). 

The SLM is used to describe the existence of spatial autocorrelation. By adding the spatial lag 

term of GTI to the independent variables, the SLM can be expressed as Eq. (11). 

nGTI I WGIT X                               (11) 

where GTI is the dependent variable, representing the green transition index; X  is the 

independent variables, representing the driving factors of the green transition;   represents the 

spatial autocorrelation parameter; W  is the spatial weight matrix; WGTI  represents the spatial 

lag term of GTI.   represents the spatial regressive parameter. 
nI  is a 1n  vector associated 

with the intercept parameter  ;   is the normal error term. 

The SEM believes that the error item affected by GTI’s factors becomes strong relevant as 

the existing spatial relationship, therefore the SEM can be expressed as Eq. (12). 

nGTI I X

W

  

   

  

 
                            (12) 

where   is the error item with strong relevance;   represents the spatial regressive parameter. 

When the spatial lag items of the GTI and its influencing factors are all considered, the SDM 

is expressed as Eq. (13).  

nGTI I WGIT X WX                              (13) 

where WX represents the spatial lag terms of independent variables;   represents the spatial 

regressive parameters. 

Before choosing the SDM, it is necessary to use the Lagrange Multiplier Method to test 

whether the null hypothesis of SLM or SEM is true. If the null hypothesis of SLM or SEM is not 

rejected, then SLM or SEM is selected. If the null hypotheses of both SLM and SEM are rejected, 

then the SDM is chosen. 

4. A case study of China 

With the rapid economic growth, China has become the world's second-largest economy. 

However, relying on administrative and planning policies of the Chinese government, this growth 
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mode had the characteristics of high input, high consumption, and high pollution (Wang et al., 

2019; Song et al., 2020). This not only caused resource exhaustion, but also caused severe 

ecological and environmental problems. The latest data from the Global Carbon Project showed 

that China’s carbon dioxide emission increased by 4.7% in 2018, accounting for 27% of the global 

emissions (Ding et al., 2019). Therefore, the green transition of China plays a key role in 

promoting global sustainable development.  

In order to demonstrate our methodology, we use China as a case study. To properly promote 

green transition, the Chinese government has formulated the green development goal and direction 

in the 12th Five-Year Plan. More recently, China has pledged to peak emissions by 2030 and 

neutralize emissions by 2060. However, what about the status of China's green transition? Are 

there any links between the local province and neighboring provinces? What are the driving 

factors of green transition? Answer to these questions will help China to formulate the urgently 

needed transition roadmap that is appropriate to its level of economic development, energy mix, 

and regional heterogeneity (Shi et al., 2021; Shi, 2021).  

Therefore, this study comprehensively calculated the green transition index (GTI) of China 

from 2008 to 2017 from the following five aspects: economic transition, technological transition, 

energy transition, social transition, and environmental transition. Moreover, industry structure, 

reform and openness, investing capacity, government intervention, and environmental regulation 

were selected as driving factors. Furthermore, China's regional GTI and spatiotemporal variation 

were studied from a spatial econometric perspective, and the driving factors of green transition 

and their spillover effects were analyzed. Finally, several recommendations for green transition 

development were proposed. 

4.1. Variable selection and data source 

4.1.1. Driving factors 

According to economic theory, technological progress, structural change, environmental 

regulation, resources, and population are the main factors affecting sustainable economic 

development (Yang et al., 2021). Furthermore, the green economy is essentially a production path 

with high technology, low resource consumption, and low environmental pollution (Jin et al., 

2021). Therefore, the driving factors of the GTI were summarized as industrial structure, reform 

and openness, investing capacity, government intervention, and environmental regulation. 

(1) Industrial structure (IS). Fan et al. (2003) pointed out that structural change was a further 

source of economic growth. Changes in industrial structure actually indicated the reallocation of 

resources from low-productivity sectors to high-productivity sectors, thus contributing to the 

overall economic development (Zagler, 2009; Adom et al., 2012). At present, the advanced degree 

of the industrial structure is usually characterized by the level of regional green transition (Laitner, 

2010). The development of the tertiary industry has become an important indicator to evaluate the 

development level for a country. Increasing the proportion of the tertiary industry is conducive to 

stimulating economic development and accelerating the process of green development (Zhu et al., 

2019). Therefore, this study selected IS as the driving factor, which was measured by the 

proportion of tertiary industry output in the gross domestic product (GDP). 

(2) Reform and openness (RO). Since the reform and openness was proposed by the Chinese 

government, China's economic development has been greatly promoted (Kanbur and Zhang, 2001). 

Hye et al. (2016) developed a trade openness index for China and found that trade openness was 

positively related to economic growth in both the long run and the short run. Moreover, the deeper the 
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reform and openness, the more frequent the flow of funds, talents, and technology into a region, 

which contributed to regional green transition (Tisdell, 2009). Then, the actual amount of foreign 

investment utilized capital per capita (US$/Person) was used to express RO. 

(3) Investing capacity (IC). Governments around the world always emphasize the importance 

of investing capacity. This is the main driving force for accelerated economic development, and 

also an important tool for urban industrialization. Since green development has been proposed, 

Hall et al. (2017) showed that both finance and investment play an enormous role in facilitating 

transformative change. Moreover, Kemp-Benedict (2018) argued that private investment should be 

mobilized for a transition. The fixed-asset investment in the China Statistical Yearbook is a 

comprehensive indicator, including investment types of state-owned enterprises, collectives, 

individuals, and foreigners. Consequently, this study adopted fixed asset investment per capita 

(Thousand US$/Person) to measure IC. 

(4) Government intervention (GI). It is necessary to strengthen governmental intervention in 

the process of sustainable development (Kemp and Never, 2017). The focus of the local 

government on green transition presents a major influence on the overall quality of regional 

economic and social development (Droste et al., 2016). Especially when the transition is not 

interesting for enterprises and individuals, the government must enhance policy interventions to 

change this status (Owen et al., 2018; Xu et al., 2021). The power of governmental intervention is 

mainly related to local fiscal expenditure. Therefore, this study selected local fiscal expenditures 

per capita (US$/Person) as the indicator to measure GI. 

(5) Environmental regulation (ER). Strict environmental regulation is an important policy, 

which China will continue to implement for a long time to realize green development (Jaffe et al., 

1995; Liao and Shi, 2018). Environmental regulation is conducive to restraining high 

energy-consuming and high-polluting industries, which is one of the key driving factors for green 

transition (Wang et al., 2019; Zhai and An, 2020). Therefore, the indicator of environmental 

governance investment per capita (US$/Person) was used to denote ER in this paper. 

Explanations and symbols of the above variables are provided in Table 2. 

Table 2 Descriptive statistics for all variables. 

Variables Definition Unit Mean Min Max Obs 

GTI 

A comprehensive index 

from the multiple indicators 

of economy, technology, 

society, energy, and 

environment 

- 0.2397 0.0663 0.8156 300 

IS 
the proportion of tertiary 

industry output in the GDP 
% 43.1831  28.6 80.6 300 

RO 

Actual amount of foreign 

investment utilized capital 

per capita 

US$/Person 266.6088  4.3646 1808.893 300 

IC 
Fixed asset investment per 

capita 

Thousand 

US$/Person 
259.3316 4.5806 3762.6621 300 

GI 
Local fiscal expenditures 

per capita 
US$/Person 13.1558 0.2489 102.4267 300 

ER 
Environmental governance 

investment per capita 
US$/Person 1614.5723 4.1748 31065.2392 300 

Note: exchange rate used: 1US$=6.x RMB.  

4.1.2. Data Source 

To analyze the driving factors of green transition, the panel data of 30 provinces in mainland 

China from 2008 to 2017 was utilized, except Tibet, due to a lack of data. The original data of 
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evaluation indicators for GTI and its driving factors were collected from the China Statistical 

Yearbooks (2009-2018), the China Energy Statistical Yearbooks (2009-2018), and the statistical 

yearbooks of the 30 provinces in mainland China. 

Furthermore, the spatial weight matrix was generated with the GeoDa software, and the data 

of the provincial latitude and longitude were collected from the national catalog service for 

geographic information. Moreover, the SDM model was realized with MATLAB software. To 

solve the heteroscedasticity of panel data and reduce data instability, the logarithm of driving 

factors was utilized in this paper. 

4.2. The overall trend of GTI 

Fig. 1 shows the overall trend of the GTI for mainland China from 2008 to 2017, and the 

regional GTI trends of the eastern region, central region, and western region. The GTI was lowest 

in 2012, and since then, has improved significantly. The overall GTI was still low and its mean 

was 0.240, which indicated that the GTI of the 30 provinces of mainland China was not effective. 

0.000

0.100

0.200

0.300

0.400

0.500

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

eastern region central region western region China

 
Fig. 1 GTI trends of China’s regions 

Table 3 describes the GTIs for selected years due to limited space. The GTIs in almost all 

provinces improved from 2008 to 2017, while there were significant gaps among them. In 2017, 

the GTIs in six provinces reached greater than 0.5, including Beijing, Shanghai, Jiangsu, Zhejiang, 

Guangdong, and Hainan. This means that the green development of these cities in China has 

reached a good level, however, it exists a great gap that the GTIs in other provinces are all below 

0.5. 

From the perspective of regional GTIs, the eastern region had a significantly higher GTI 

mean than both the central region and the western region. Fig. 2 shows the GTIs’ means of 

China’s 30 provinces from 2008 to 2017. The top five GTIs regions (according to their means) 

were Guangdong, Jiangsu, Beijing, Shanghai, and Zhejiang, which all belong to the eastern region. 

Particularly, the GTI means of Guangdong and Jiangsu reached 0.763 and 0.725, respectively. In 

the central region, the range of GTI means is between 0.125 and 0.238. Only the GTIs of Henan, 

Hubei, Anhui are greater than 0.2. However, in the western region, the GTIs in each province are 

lower than 0.2 except Sichuan.  

Further, by analyzing the GTIs changes of China’s 30 provinces from 2008 to 2017 as shown 

in Fig. 3, the GTI growth in the eastern region was higher than that in both the central region and 

the western region. The provinces with GTI growths greater than 0.1 were mainly concentrated in 

the eastern region, including Beijing, Tianjin, Shanghai, Jiangsu, Zhejiang, and Hainan. However, 

the growths of other provinces were less than 0.1. This result reflected the status of green 

transition in China. Compared with the central and western regions, the eastern region has the 

advantages of economic scale, industrial structure, and technological innovation. Furthermore, the 
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agglomeration effect of the cities belonging to the eastern region has gradually been formed, thus 

shaping into a better decoupling between the economic development and the load of resources and 

environment. The results imply that regional gaps in GTIs are widening. 

Table 3 The GTIs of the 30 provinces for selected years 

Regions No. Provinces 2008 2011 2014 2017 Means Growths 

Eastern region 

1 Beijing 0.489  0.519  0.659  0.763  0.606  0.274  

2 Tianjin 0.321  0.330  0.439  0.585  0.410  0.264  

3 Hebei 0.204  0.210  0.243  0.214  0.214  0.010  

6 Liaoning 0.267  0.264  0.263  0.272  0.267  0.005  

9 Shanghai 0.493  0.542  0.610  0.647  0.572  0.154  

10 Jiangsu 0.614  0.720  0.745  0.771  0.725  0.158  

11 Zhejiang 0.517  0.511  0.614  0.632  0.562  0.115  

13 Fujian 0.237  0.232  0.269  0.261  0.251  0.024  

15 Shandong 0.505  0.466  0.516  0.497  0.492  0.019  

19 Guangdong 0.816  0.728  0.735  0.806  0.763  0.011  

21 Hainan 0.380  0.524  0.600  0.637  0.545  0.257  

20 Guangxi 0.126  0.134  0.139  0.156  0.139  0.030  

Central region 

4 Shanxi 0.139 0.162 0.161  0.186  0.159  0.024  

5 Inner Mongolia 0.153  0.159 0.176  0.208  0.173  0.007  

7 Jilin 0.120 0.129  0.136  0.140 0.132  0.011  

8 Heilongjiang 0.100 0.125 0.131 0.132 0.125  0.031  

12 Anhui 0.164  0.181  0.205  0.234  0.202  0.070  

14 Jiangxi 0.121  0.144  0.138  0.158  0.139  0.037  

16 Henan 0.224  0.215  0.249  0.284  0.238  0.060  

17 Hubei 0.190  0.186  0.228  0.245  0.220  0.055  

18 Hunan 0.170  0.168  0.192  0.201  0.185  0.030  

Western region 

22 Chongqing 0.142  0.153  0.169  0.171  0.158  0.030  

23 Sichuan 0.198  0.190  0.215  0.223  0.204  0.025  

24 Guizhou 0.072  0.090  0.094  0.093  0.088  0.021  

25 Yunnan 0.110  0.104  0.116  0.119  0.113  0.008  

26 Shaanxi 0.139  0.164  0.175  0.172  0.170  0.033  

27 Gansu 0.098  0.089 0.103  0.103  0.103  0.014  

28 Qinghai 0.066  0.074  0.081 0.090 0.081  0.014  

29 Ningxia 0.078  0.070  0.075 0.090 0.079  0.020  

30 Xinjiang 0.104  0.120  0.133  0.125  0.120  0.022  
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Fig. 2 GTIs’ means of China’s 30 provinces from 2008 to 2017 

 

Fig. 3 GTIs’ growths of China’s 30 provinces from 2008 to 2017 

 

4.3. Model estimation of driving factors 

4.3.1. Spatial correlation test 

Table 4 shows the Moran’s I indices of GTIs for every year from 2008 to 2017. The Moran's I 

statistic values all exceeded 0, which demonstrated that the GTIs had a strong spatial correlation. 

Moreover, the statistic values of GTIs were significant at the 5% level. Therefore, a spatial 

econometric model was required to analyze the driving factors of the green transition of China. 

Furthermore, the local Moran’s I indices of 30 provinces were also calculated for mainland 

China from 2008 to 2017. Fig. 2 describes the Moran’s I scatter plots in 2008 and 2017. Most of 

the investigated provinces are located in the second and third quadrants over the past ten years, 

indicating that they had the characteristics of high-value and low-value aggregation as well as 

low-value and low-value aggregation. 
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Table 4 Moran’s I and its statistical test of GTIs from 2008 to 2017 

Years I z p-value 

2008 0.192 2.132 0.033 

2009 0.184 2.047 0.041 

2010 0.201 2.220 0.026 

2011 0.224 2.443 0.015 

2012 0.215 2.365 0.018 

2013 0.208 2.290 0.022 

2014 0.205 2.244 0.025 

2015 0.216 2.361 0.018 

2016 0.217 2.342 0.019 

2017 0.214 2.355 0.019 

Moran scatterplot (Moran's I = 0.204)
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Moran scatterplot (Moran's I = 0.218)
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(a) The Moran scatter plot for GTIs in 2008           (b) The Moran scatter plot for GTIs in 2017 

Fig. 2 The Moran’I scatter plots for GTIs in 2008 and 2017 

 (Note: The number denotes each province, and its meaning is shown in Table 3) 

4.3.2. Estimation results 

According to the comparison of non-spatial panel models, it could be further judged whether 

these models are suitable to build a spatial panel model, which is typically determined by 

Lagrange Multiplier (LM) test. Table 5 describes the estimation results of the Partial Least Squares 

(PLS) regression. It can be seen that reform and openness, investment capacity, government 

intervention, and environmental regulation affect GTI positively at 1% level. This shows that 

reform and openness, investment capacity, government intervention, and environmental regulation 

can promote green transition. However, the coefficient of industrial structure is negative, which 

exerts a significantly negative effect on green transition. Further, the results of the LM test and the 

Robust LM of the spatial lag panel were significant at 1% level, thus rejecting the null hypothesis 

of no spatial lag effect. Moreover, the statistics value of the LM test of spatial error panel rejected 

the null hypothesis of no spatial error effect at 1% level, while the statistics value of the Robust 

LM test could not reject the null hypothesis. Therefore, SDM is the better choice for analyzing 

GTI’s driving factors. 

By comparing the results of SLM, SEM, and SDM, the maximum likelihood method was 

adopted to estimate the three models. Since the panel model had two types, the random effect 

model and fixed effect model, it was necessary to choose whether the model contained random 

effects. This was done by the Hausman test. As shown in Table 6, the statistics of Hausman test 

significantly rejected the null hypothesis at 5% level. Hence, a spatial panel model with fixed 
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effect was built. 

Table 5 Estimation results of the PLS regression 

Variables PLS regression 

_cons -2.8759 (-16.92) 

IS -0.1964** (-3.12) 

RO 0.0429*** (3.82) 

IC 0.0821*** (6.73) 

GM 0.1733*** (3.54) 

ER 0.0506 ***(4.07) 

R2 0.6757 

F 122.53 

LM_spatial_lag 33.675*** 

Robust LM_spatial_lag  20.108*** 

LM_spatial_err 15.724*** 

Robust LM_spatial_err 0. 935 

Note: The t-statistics are given in parentheses; *** and **denote significance at 1% and 5% level, respectively. 

Table 6 Estimation results for the spatial panel regression model 

Spatial panel model 

with fixed effect  

SDM SLM SEM 

_cons - -2.8756 (-6.43) -0.0951 (-1.46) 

IS -0.0068**(-3.09) -0.0331** (-2.80) -0.0367* (-2.13) 

RO 0.0316*** (4.51) 0.0424*** (4.29) 0.0420***(7.26) 

IC 0.1055*** (5.64) 0. 1022*** (3.39) 0.0834*** (3.59) 

GM 0.0217*** (4.27) 0.0143** (2.82) 0.0416* (2.02) 

ER 0.1128*** (5.38) 0. 1246 ***(5.99) 0.0755*** (7.08) 

W*IS 0.0463*(1.98) - - 

W*RO 0.1875**(3.16) - - 

W*IC -0.0485***(-4.56) - - 

W*GM -0.0521***(-3.98) - - 

W*ER -0.0187**(-3.11) - - 

R2 0. 7984 0.7283 0.7515 

Log-likelihood 81.0866 62.6742 71.5401 

Lambda/Rho 0.0523***(5.47) 0.0148**（3.04） 0.1237 (1.55) 

sigma2_e 0.0025***(4.69) 0.0027***(11.60) - 

Wald spatial lag 22.3155*** - - 

LR spatial lag 11.4367** - - 

Wald spatial error 28.8414*** - - 

LR spatial error 10.9983** - - 

Hausman test 117.8827*** - - 

Notes: The t-statistics are given in parentheses; ***, **, and * denote significance at 1%, 5%, and 10% level, 

respectively. 

It can be inferred that the coefficient of industrial structure is -0.0068, which is negatively 

correlated with green transition at 5% level. This may relate to the unreasonable development of 

the tertiary industry. The coefficients of reform and openness, investment capacity, government 

intervention, and environmental regulation are 0.0316, 0.1055, 0.0217, and 0.1128, respectively. 

That means they are all beneficial for green transition by decreasing carbon emissions and energy 

consumption. Subsequently, indicated by the estimation results of the three spatial models above, 

the Lambda/Rho shows that both SDM and SLM passed the significance test at the 5% level, 

while SEM is not significant. From the perspective of R-squared and Log-likelihood, SDM is 

better than SLM. Moreover, both the Wald test and the LR test reject the null hypothesis; therefore, 

the SDM could not be simplified to SLM or SEM. In summary, based on the above analysis, the 

Jo
urn

al 
Pre-

pro
of



 

15 

SDM may better express the spatial dependence of the driving factors of green transition. 

4.3.3. Robustness test 

The robustness of SDM is tested by two methods. The first method is to compare the 

estimation results of different models, which are shown in Tables 5 and 6. The coefficients of 

driving factors on GTI are consistent under the PSL regression and the spatial panel data models, 

only differ insignificance. Thereby, it can be inferred the results in this paper are robust. 

The second method is to use different spatial matrices. The economic-geographical weight 

matrix was selected for comparison with the results of the geography distance matrix. With the 

convenience of transportation and the popularity of communication, economic distance should be 

studied when constructing a spatial weight matrix (Zhang et al., 2018). Due to the economic and 

geographical factors, the economic-geographical weight matrix is built in this paper and is 

expressed as Eq. (14). 

2* / ,

0,

i j ij

ij

GDP GDP d i j
w

i j

 
 



                        (14) 

where 
iGDP  and jGDP  represent the GDPs of provinces i and j. ijd  represents the distance 

between provinces i and j. 

Therefore, the estimation results with the economic-geographical weight matrix are shown in 

Table 7. Compared with the results in Table 6, the estimated coefficients of these five driving 

factors and their significance levels do not obviously change. This shows that the results in the 

paper are robust. 

Table 7 Estimation results with the economic-geographical weight matrix 

Spatial panel model 

with fixed effect  

SDM SLM SEM 

_cons - -1.6548 (-3.65) -0.1264 (-1.64) 

IS -0.0058**(-2.83) -0.0405** (-2.69) -0.0259* (-2.27) 

RO 0.0269*** (4.74) 0.0518*** (5.16) 0.0361***(6.42) 

IC 0.1556*** (5.26) 0. 1086*** (4.27) 0.0863*** (3.66) 

GM 0.0865*** (3.92) 0.0262* (2.28) 0.0435* (2.36) 

ER 0. 1226*** (6.41) 0.0817 ***(3.86) 0. 1024*** (5.62) 

W*IS 0.0461*(2.21) - - 

W*RO 0.1746*** (3.25) - - 

W*IC -0.0722***(-6.13) - - 

W*GM -0.0381***(-3.86) - - 

W*ER -0.0167**(-2.88) - - 

R2 0. 8134 0.7168 0.7260 

Log-likelihood 81.9342 66.3802 74.2283 

Lambda/Rho 0.0529***(4.68) 0.01741**(3.07) 0.0424** (2.76) 

sigma2_e 0.0024***(3.79) 0.0031***(6.52) 0.0029***(5.38) 

Wald spatial lag 26.1724*** - - 

LR spatial lag 12.0431** - - 

Wald spatial error 29.6634*** - - 

LR spatial error 10.7208** - - 

Notes: The t-statistics are given in parentheses; ***, **, and * denote significance at 1%, 5%, and 10% level, 

respectively. 

4.4. Spatial spillover effects of driving factors 

The change of one or more driving factors not only affected the green transition of the local 

province directly, but also indirectly affected the green transition of the neighboring provinces. 
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Consequently, the estimation results of SDM could not accurately reflect the influence of driving 

factors on the green transition. 

Therefore, the partial differential method was used to decompose the spatial spillover effect 

of the SDM into three parts: direct effect, indirect effect, and total effect (Lesage and Pace, 2009). 

The direct effects represented the influences of driving factors on the green transition of a local 

province. The indirect effects represented the influences of driving factors on the green transition 

of neighboring provinces. The total effects reflected the average influences of driving factors on 

both the local provinces and their neighboring provinces. Table 8 displays the results of direct, 

indirect, and total effects for the driving factors. 

Table 8 Direct effects, indirect effects, and total effects of the SDM on GTI 

variables Direct effect Indirect effect Total effect 

IS -0.0125 (-3.13)** 0.0082 (2.11) * -0.0043 (-1.98)* 

RO 0.0317 (6.15) *** 0.0224 (3.20) ** 0.0541 (6.13) *** 

IC 0.0879 (4.28) *** -0.1237 (-4.64) *** 0.0043 (3.88) *** 

GM 0.0783 (3.99) *** -0.1237 (-3.87) *** -0.0454 (-2.95) ** 

ER 0.0175 (4.26) *** -0.0092 (-2.03) * 0.0083 (2.14) * 

Notes: The t-statistics are given in parentheses; ***, **, and * denote significance at 1%, 5%, and 10% level, 

respectively. 

It can be found that the results of both direct and indirect effects were lined with the 

corresponding regression results in Table 6, illustrating that the results were steady and effective. 

Moreover, it demonstrated the rationality of using SDM to explore the spatial spillover of driving 

factors. 

5. Discussion 

With regard to direct effects, reform and openness, investing capacity, government 

intervention, and environmental regulation were significant at 1% level, and they positively 

impacted the green transition of China. The coefficients were (in descending order) investing 

capacity, government intervention, reform and openness, and environmental regulation. Fu and 

Balasubramanyam (2005) pointed out that reform and openness attracted advanced technology 

and promoted the development of both import and export trade. This also brought advantageous 

resources together to develop green transition (Holz, 2008). Moreover, similar to the work by 

DeLonge et al. (2016), investing could provide sufficient financing support for the green transition 

to optimize industrial structure. Moreover, the government, as a guide of China’s green transition, 

plays an important role in promoting green transition. By formulating policies related to tax, 

innovation, and funding, the government can guide and encourage manufacturing enterprises to 

realize green transition (Kemp and Never, 2017). Furthermore, environmental regulation can 

strengthen the optimal allocation of various resources to explore green technology, green 

processes, and green development, which thus promotes green transition (Wang and Shao, 2019; 

Pan et al., 2019). 

However, the direct effect of industrial structure on green transition was significant at 5% 

level, and exerted a significant negative effect on green transition. These results were consistent 

with the research by Wang et al. (2019). Currently, the tertiary industry in China has grown fast 

and its proportion of GDP gradually increased. However, the tertiary industry is mainly dominated 

by traditional service industries, including commerce, catering, and transportation. Emerging 

industries, such as information, consulting, technology, and financing, have insufficient 
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development momentum, which led to small industry outputs and unreasonable industry structure. 

Using the express delivery industry in China as an example, it has developed rapidly since 

e-commerce was booming, but it has brought a serious environmental burden due to consuming a 

large amount of express packaging materials (Fan et al., 2017). This may be the reason why the 

industrial structure exerts a negative impact on green transition. 

Furthermore, from the perspective of indirect effects, the driving factors of investing capacity 

and government intervention were both significant at 1% level. This indicates that they exerted 

spatial spillover effects on the GTIs of neighboring provinces through spatial transmission channel. 

However, they generated negative externalities, i.e., when the invested capacity in the local 

province increased, the investing capacity in the neighboring provinces would decrease and form a 

‘closure effect’. Moreover, when the local government issued policies to develop green transition, 

this would attract more resources into the local province (Huang et al., 2019). Consequently, this 

caused the resources to flow out from neighboring provinces. Moreover, the driving factor of 

reform and openness was significant at 5% level, which exerted a positive impact on the green 

transition in the neighboring provinces. Because the local government intensified the reform and 

openness, this enhanced the reform and openness of neighboring provinces and thus attracted 

resources (Kanbur and Zhang, 2001). In addition, the driving factor of industrial structure was 

significant at 10% level, and exerted a positive impact on the green transition of neighboring 

provinces. Furthermore, the driving factor of environmental regulation was significant at 10% 

level, but exerted a negative impact on neighboring provinces. 

In addition, according to the total effects of these five driving factors, the reform and 

openness was significant at 1% level and its coefficient value was largest. This implied that reform 

and openness promoted the green transition of 30 provinces in mainland China through spillover 

effects, and the driving force was stronger than that of other factors. The statistics value of 

governmental intervention was significant at 5% level and its coefficient value was negative, 

indicating that the negative diffusion effect of governmental intervention on green transition 

exceeded its direct effect. This is because when the local government formulates macroeconomic 

policies to promote green transition, it attracts the governments in neighboring provinces to learn 

and imitate, which can easily cause policy overlap to hinder green transition (Giri et al., 2019). 

Moreover, both investing capacity and environmental regulation were significant at 10% level, 

and both their direct effects exceeded their indirect effects (An et al., 2021). This demonstrated 

that their direct impact on green transition of China exceeded the negative effect on the 

neighboring provinces. 

 

6. Conclusion and Policy Implications 

To explore the status quo of China's green transition development, this paper used the entropy 

weight method to calculate the GTIs of 30 provinces of China. On the basis, SDM was used to 

analyze the driving factors and spillover effects of China's green transition. The main conclusions 

are as follows: 

(1) The overall level of China's green transition increased, but there is still enormous 

potential for improvement. China's GTI was low from an overall perspective and the gaps among 

provinces are widening. From the perspective of geographical distribution, the GTIs in the eastern 

region of China were much higher than those in both the central and western regions.  

(2) The regional GTI in China had significant positive spatial dependence. Consequently, the 
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green transition of local provinces positively affected the development of neighboring provinces, 

showing that the spatial linkage effect has steadily developed. 

(3) The results of the SDM showed that reform and openness, investing capacity, government 

intervention, and environmental regulation significantly promoted the green transition 

development in China. Among these, reform and openness had the greatest influence on green 

transition. However, the industrial structure harmed the green transition. 

All factors exerted both direct and indirect impacts on the green transition development of 

China. How to realize high-quality green transition and coordinate the development among 

different regions has become the key for China's current development. Based on the main 

conclusions above, the following lists several implications for China's policy formulation toward 

the realization of the green transition and regional coordinated development: 

(1) The positive space spillover effect of the reform and openness and environmental 

regulation should be fully utilized when China’s government plans for the green transition 

development. It is centrally important to increase the depth and intensity of the reform and 

openness. The cooperation and trust between provincial governments should be strengthened. 

Instead of narrow regional thinking, provincial governments need to fully account for regional 

agglomeration effects. Moreover, appropriate national coordination is needed to narrow the GTI 

development gaps among provinces.  

(2) When promoting the regional green transition, the provincial governments of China must 

further strengthen the rationalization of the industrial structure. Moreover, emerging industries 

such as information, consulting, technology, and finance need to be vigorously developed, to 

increase the total tertiary industry. Furthermore, the governments should broaden the idea of green 

transition, and use the enterprises as the main bodies to mobilize their enthusiasm for the green 

transition. In addition, public awareness of green consumption and green behavior should be 

raised. 

(3) With regard to the negative spatial spillover effect of investing capacity and government 

intervention, positive measures should be formulated to attract investment from large and 

medium-sized enterprises. In this process, the advantages of location and resources should also be 

fully utilized. Simultaneously, to realize a high-quality green transition, governments should 

further optimize the investment environment and improve the hard environment such as 

infrastructure and geographical environment. Moreover, the soft environment, including finance, 

talent, and technological innovation, needs to be improved. 

Although this study has obtained several valuable conclusions, some limitations could be 

improved in further work. First, the GTI is affected by many factors, including resource, 

environment, economy, policies, etc., some of these perspectives were not well captured due to the 

data limitation. Second, the driving factors of GTI and their spatial spillover effects are discussed 

using the SDM. However, the economic development and resource condition of each region differ 

greatly, thus their heterogeneities need to be further explored in future research. 
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