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ABSTRACT Point cloud data of cracks can be used for various purposes such as crack detection, depth calcu-
lation and crack segmentation. Upsampling low-density point clouds can help to improve the performance of
those tasks. Building on existing methods that upsample point clouds from low-resolution point cloud input,
to improve feature definition, this paper proposes a new method for upsampling low-density point clouds
using a combination of these point clouds and corresponding 2D images of the original objects as input data.
We use an architecture based on Generative Adversarial Networks (GAN) for training input point clouds
with additional information from the corresponding 2D images. The key idea is to exploit features from both
2D images and point clouds to enrich point clouds in both the training and testing phases. Our method takes
advantage of the combination of 2D images and point clouds using a GAN framework. Experimental results
show our proposed method achieves a higher effectiveness compared with previous upsampling methods.

INDEX TERMS Point cloud upsampling, generative adversarial network, crack point cloud, enrichment
point cloud, combining point clouds and images.

I. INTRODUCTION
A. RESEARCH BACKGROUND AND CHALLENGES
Crack detection and segmentation are essential for maintain-
ing civil constructions, such as roads, bridges, and buildings.
The application of digital imaging methods to this prob-
lem has resulted in significant advances. However, 2D crack
images do not contain the rich information of three dimen-
sional (3D) data such as point cloud data when examining
complex structure or thin cracks.

Reconstruction techniques that facilitate the creation of
high-resolution 3D data allow for in-depth and highly action-
able investigations of the development of cracks [1]. Crack
features such as crack width and crack depth can be character-
ized by using 3D data from a structured light scanner [2], but
any reconstruction technique requires high-resolution point
clouds to maximize utility.
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Using 3D data has the potential to significantly improve
crack detection and segmentation [3]. One of the difficulties
when processing point clouds is that the low density of points
limits the achievable resolution of features required for good
detection. Upsampling of the point cloud data offers the pos-
sibility of addressing this problem, but current upsampling
methods struggle to achieve the required fidelity.

Point cloud upsampling is a topic that challenges
researchers in computer vision, and has attracted increasing
interest in recent years [4]–[7]. In these papers, the authors
focus on upsampling low-resolution point clouds by learning
features from similar point clouds. The results from the above
work are effective for upsampling many kinds of point cloud
objects. However, there are some limitations that still need
to be addressed to make them useful for the analysis of
surfaces with cracks. Of particular importance is an ability to
handle very sparse point clouds particularly those containing
high spatial gradients or significantly non-uniform sampling
exhibiting voids.
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FIGURE 1. Proposed architecture for upsampling a point cloud by
combining a low-resolution point cloud with a 2D image. The input is the
combined data from high-resolution images and their matched point
clouds. The point cloud upsampling model is based on a GAN framework
that contains both generative and discriminative sub-models. The
expected output is a high-resolution point cloud.

This paper focuses on proposing a new method to cre-
ate high-resolution crack point clouds from the fusion
low-resolution point clouds and high resolution 2D images.
Our method supports many applications in civil engineering
that need to use high-resolution 3D crack data.

B. APPROACH AND CONTRIBUTIONS
In this paper, we combine information in low-resolution point
clouds with features derived from high-resolution 2D images
of the same subjectmatter to produce an upsampled version of
the low-resolution point clouds. Several different approaches
to the upsampling were explored, such as combining at
the point-pixel level, or using transfer learning to combine
at the feature level. Apart from improvements in the fidelity of
the upsampled point cloud, the method also seeks to increase
the uniformity of the sampling and fill voids in the point
cloud data.

Crack point clouds are considered as 2.5D point clouds as
they take the form of almost planar surfaces disturbed princi-
pally by the cracks. Similar 2.5D point clouds are important in
a range of different applications, from the construction indus-
try [8], [9] to health monitoring. However, high-density point
clouds or 3D data are expensive and sometimes impractical
to collect, so collecting low-density point clouds and then
upsampling them offers advantages in practice.

There are two main types of 3D scanning technologies
used for crack analysis. The first type is light amplification
by stimulated emission of radiation (laser) triangulation 3D
scanning technology and the second type is structured light
3D scanning technology. Crack 3D data can be collected
using terrestrial laser scanning [10], [11] or a mobile laser
scanning [12]. The laser technique is limited in resolution,
so 3D data from laser data sources is used to detect surface
distresses more than 1 cm wide [10]. Therefore, cracks that
are smaller than 1 cm should be detected on upsampled data
point clouds. The ground truth 3D data used in this paper are
collected by a scanner using the structured light 3D scanning
technology that has accuracy at 0.1 mm. The structured light
3D scanner has an advantage in resolution, but setting up

these systems for capture can sometimes be impractical in
real world applications. Therefore, collecting high-resolution
point clouds for training and using upsampled point clouds
for real world applications has beneficial applications in real
world scenarios.

Figure 1 shows our idea for applying transfer learning
between point clouds and images in a type of GAN architec-
ture with two parts; the generative model and discriminative
model [13] for crack point cloud upsampling. The point cloud
samples and image samples are created and matched one by
one. Image features, extracted from images by a crack detec-
tion model, are combined with point cloud features before
becoming input data for a GAN architecture. The output is a
high-resolution uniformly sampled point cloud.

Our main contributions are:

• Wepropose a novel approach based onGANand transfer
learning that is effective for upsampling sparse point
clouds.

• We show that 2D images can enrich the low-resolution
point clouds, and the performance of this architecture is
superior to architectures that use point clouds only.

• Our model achieves a superior performance compared
to prior art point cloud upsampling approaches, demon-
strating that our specifically tailored combination of 2D
images and point clouds takes advantage of features
from both images and point clouds.

• We present a new dataset of concrete crack point clouds
and their corresponding images that will be made avail-
able to the research community.

II. RELATED WORK
Significant advances have been made in the upsampling of
point cloud data in recent years [5]–[7]. There are several
methods for upsampling point cloud, including traditional
methods and more recent methods based on convolutional
neural networks.

A. TRADITIONAL METHODS
Traditional methods such as interpolation between input
points, have some disadvantages, arising principally from the
fact that point clouds often do not have any spatial order or a
regular structure [5]. In amethod for extraction of break-lines
and ground points from LiDAR point clouds [14], experi-
ments showed that interpolation errors are mainly distributed
around the break-lines. This strongly suggests that interpola-
tion methods may not be effective for crack point clouds pro-
cessing. Some previous experiments [5], [15] also indicated
that methods based on neural networks demonstrated superior
performance compared with the traditional methods. Hence,
we focus on these advanced methods using Convolutional
Neural Networks (CNNs) for upsampling point clouds.

B. METHODS BASED ON CONVOLUTIONAL NEURAL
NETWORKS
Methods based on CNNs have been used bymany researchers
for upsampling point clouds [5]–[7], [16]–[18]. These
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methods often have two parts. The first part extracts features
from point clouds, and the second part reconstructs points
from feature expansion and optimizes the output by compar-
ison with ground truth point clouds.

PU-Net [5] used a network architecture that has four
components; patch extraction, point feature embedding, fea-
ture expansion, and coordinate reconstruction. The advantage
of this model is that it can learn both local features and
global features of a point cloud. The PU-Net is considered a
multi-stage technique that notably improves the result, how-
ever this model shows more artifacts in high ratio upsampled
results. This problem may be because the PU-Net model tries
to correct the mistakes generated in earlier stages.

PU-GAN [6] is a proposal for upsampling point clouds
using a GAN framework and demonstrates improvements
in the quality of the resulting point clouds compared to
earlier approaches. The PU-GAN method was evaluated
using experiments that were implementedmostly on synthetic
scanned data. On real point clouds such as LiDAR point
clouds, the method of PU-GAN cannot fill some holes and
cannot produce a high level of uniformity in the upsampled
results.

A multi-step upsampling network is proposed by
Yifan et al. [17]. The key idea of Yifan et al. is the use of
a multistep patch-based network. The patch size is adaptive
to the present step. The experiments in that work were imple-
mented on synthetic point cloud data and not real scanned
data. The multi-step method upsamples the point clouds in
many steps, so has the disadvantage of also requiring many
levels of ground truth resolution.

The key idea of Yifan et al. is using a multi-step patch-
based network. The patch size is adaptive to the present
step. The experiments in this paper are implemented on point
clouds data that are made by software and are not real scanned
data. The multi-step method upsamples point clouds in many
steps, so this method also needs many levels of ground truth
resolution. It is a disadvantage of Yifan’s method.

In [7], a method called Point Cloud Super Resolu-
tion (PCSR) used Adversarial Residual Graph Networks for
upsampling point clouds. Their experiments show that the
residual blocks are effective in offering better performance
and stable training. However, this approach has some dis-
advantages. These models cannot fill large holes or missing
parts, and are also not effective for very small structures. The
method we propose, based on CNN and the combination of
point clouds and images, improves the quality of upsampled
point clouds and solves the problem of filling voids in the
point cloud data. We implement our method on real scanned
data.

C. METHODS COMBINING 2D IMAGES AND 3D DATA
There are existing point cloud processing methods using a
combination of 2D images and 3D data. Based on the level
of features used for combination, these works can be divided
into two main types: Low-level feature combination and
high-level feature combination.

1) LOW-LEVEL FEATURE COMBINATION
In this method of feature combination, the low-level fea-
tures collected by simple transforms are combined with point
clouds or 3D data. Image features such as grayscale pixels and
entropy values have been combined with depth information
from point clouds for upsampling point clouds [19], [20].
In these works, the depth values for locations in the point
cloud are assigned to corresponding pixels of an image, and
then the upsampled point clouds are created by interpolation
using the local entropy of pixels around the current pixel
being processed. The simple combination of the depth value
of each point and the grayscale image data may lead to
aliasing errors due to the inconsistencies in the directions of
gradients in the depth data.

2) HIGH-LEVEL FEATURES COMBINATION
High-level image features can be extracted by convolutional
neural networks and used to enrich point clouds. In a pro-
posal for LiDAR Point Cloud Segmentation [21], an effective
fusion method of RGB data and LiDAR was developed to
combine features from color images with features from point
clouds to segment the 2.5D point clouds. The idea of com-
bining features from images and 3D data was used for object
reconstruction [22]. In this work, Yang et al. used images
for reconstructing 3D objects, and showed that features from
images could be concatenated with features from 3D data.
The combination of different kinds of features such as image
features and point cloud features can be considered as a form
of transfer learning [23].

This paper proposes two methods of point cloud and image
combination. One method uses low-level image features and
the other uses high-level image features.

D. CRACK 3D DATA PROCESSING
Crack point clouds are used for crack detection and segmen-
tation [24]–[29]. However, the effectiveness of these methods
depends on the quality of point clouds. To enhance the point
cloud quality and improve the accuracy of the crack detection
and segmentation, our approach uses upsampling of the crack
point cloud.

III. PROPOSED METHOD
Our proposed method aims to create high-density point
clouds from sparse point clouds and their corresponding
images. We require the output point clouds to contain a high
number of points, and have a uniform distribution of points
in order to support the subsequent crack analysis. To do
that, we propose an architecture based on GAN and use a
combination of point clouds and images as input data.

In this section, we focus on two main parts. The first part is
the proposed method for combining images and point clouds.
We present in detail how images and point clouds are aligned
and combined to become input data to a GAN model. The
second part is the proposed GAN model based which uses
the combined data from images and point clouds to upsample
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the low-resolution point clouds. The three major compo-
nents of this model are the generative model, discriminative
model, and the loss functions. Each of these components are
illustrated in this section. The generative model takes input
from one of two feature combination methods; point-pixel
and feature-feature combination and generates an upsampled
version of the point cloud. The discriminative model ensures
the fidelity of the upsampled point cloud by comparing the
characteristics of the upsampled point cloud to that of the
ground truth. Both the generative and discriminative models
work together through the formulation of an appropriate loss
function as will be described below.

A. COMBINING IMAGES AND POINT CLOUDS
In this work, we propose two ways to combine image data
and point cloud data. The first approach we call “point-
pixel combination”, and the second we call “feature-feature
combination”.

1) POINT-PIXEL COMBINATION
Point clouds often have no regular structure, however, images
have a regular order, and if their matched point clouds belong
to a 2.5D surface such that the implicit surface is single-
valued, then there is an alignment of the point cloud and
the image such that each point in the point cloud can be
matched to a pixel in the image unambiguously. An image
has no explicit information about the depth of an object,
but the image pixel’s intensity often contains implicit depth
information. In the case of crack images darker areas in a
crack often correspond to the deepest parts of the crack. For
this reason, we expect that the information from an image can
be combined with point cloud information as an additional
channel. The additional channel can be built from the image
grayscale value or can be created from other features derived
from the image.

For Point-pixel combination, we create a four-channel
point cloud from each low-resolution point cloud input and
its corresponding image. From each point (xpck , y

pc
k , z

pc
k ) in

the input point cloud sample, we find the matched pixel
(x imk , y

im
k ) (where the grayscale value is img[x imk , y

im
k ]) in the

corresponding image. The new point contains four channels,
(xpck , y

pc
k , z

pc
k , img[x

im
k , y

im
k ]).

We have also implemented additional channel using other
image features. The first kind of feature is the Sobel gradient
feature. Sobel features are produced by applying a Sobel
operator [30] to the image. Gamma features extracted from
the image using Gamma filters [31], [32] are also used in
our experiments with γ = 0.2. Gamma features are strong
features utilized in image enhancement. The last kind of
image feature we use are Difference of Gaussians (DoG)
features [33], [34]. DoG is used in various methods of image
processing such as edge detection and image matching.

2) FEATURE-FEATURE COMBINATION
To implement feature-feature combination, we transfer
knowledge from the image domain, and then combine it with

knowledge from the point cloud domain by a layer concatena-
tion operation.We use two different models to extract features
from point clouds and from images. Point cloud features
are extracted from the same model that is used from Point-
pixel combination. Image features are extracted from a crack
detection model that was pre-trained in a previous model
for crack detection [35]. This model is better suited for the
method presented in this paper than other existing models
for image features extraction because it was trained from a
crack dataset. To take image features from the crack detection
model, we freeze the first layers and only retrain the features
from the last max-pooling layer.

The features from images provide extra useful information
for the point cloud features. The image feature extraction
component extracts features that can enhance the point cloud
feature extraction such as crack edge features. Using transfer
knowledge from a crack detection model has another advan-
tage, it saves training time, because it uses the concept that has
already been learnt from an existing model and learns from
the last layer features with more complex representations
specifically suited to the upsampling problem.

While the “point-pixel combination” method can be con-
sidered as the combination of point clouds and the local
image features, the “feature-feature combination” method is
the combination of global point cloud features and the global
image features.

Figure 2 shows the architecture for feature extraction. The
workflow in figure 2a is used for point-pixel combination, and
figure 2b shows our proposed network for combining point
clouds and images at the feature level.

In the point pixel combination architecture as shown in
figure 2a, the input can be considered as a 4-channel point
cloud. The first three channels are from the point cloud,
and the fourth channel is an additional channel that comes
from the matched image such as the grayscale value or
other features. Point cloud features are extracted from the
4-channel point clouds by a convolutional neural network.
We use twelve convolutional layers with an increment of the
number of kernels. There are four concatenated layers placed
after each three-layer of CNN to improve the global features
by combining with local features.

Figure 2b shows the combination of point cloud fea-
tures and image features. The point cloud samples and their
matched 2D images are processed separately by the point
cloud extractor and the 2D image extractor. Then, we com-
bine global point cloud features and global image features
following the two feature extraction models. The output of
the feature-feature combination is the combined features with
a diversity of the features from both point clouds and 2D
images.

B. UPSAMPLING MODEL BASED ON GAN
1) GENERATIVE MODEL
In a general GAN architecture, the generative model aims
to generate new data from input data. While some other
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FIGURE 2. Two proposed methods for point cloud and image combination. (a) Point-pixel combination
combines image and point clouds to create 4-channel input data and then extracts features from the
4-channel data. (b) Point cloud feature - Image feature combination combines point clouds and images by
concatenating features that have been extracted separately from point clouds and images.

FIGURE 3. Point cloud upsampling framework using the combination of point clouds and images based on a GAN
architecture. The generative model takes point clouds and images as inputs and comprises components for feature
extraction, feature expansion and point reconstruction. The output of the generative model and the ground truth point
clouds are inputs to the discriminative model that comprises a feature transform layer, Multi-Layer Perceptrons (MLPs)
module, max pooling and global features extraction module.

upsampling data proposals based on GAN use only the
low-resolution data as input data [6], [36], we use the com-
bination of point clouds and images as the input. The upper
part of figure 3 shows our model for the generator.

There are three transformations in our generative model:
data feature extraction, feature expansion, and data recon-
struction. A three-transformation generative model was also
used in other works for upsampling point clouds such as in

PU-GAN [6], and for upsampling images [37], [38]. We use
convolutional neural networks for three operations. The main
role of each part is:

• Feature extraction extracts features from low-resolution
point clouds. Each feature is represented by a high-
dimensional vector. All high-dimensional vectors com-
bine together and produce feature maps PFeatures. The
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number of features in PFeatures is equal to the number of
points in a low-resolution input point cloud.

• Feature expansion based on deconvolution operation is
a transformation that expands the feature maps PFeatures
to a set of new feature maps PExpandedF eatures with a
higher number of features. The number of features in
PExpandedF eatures is similar to the number of points in the
target point cloud.

• Point Reconstruction is the last phase in the genera-
tive model that regresses and aggregates features from
PExpandedF eatures to build a high-resolution point cloud
with a given ratio. In this part, we use the Farthest
Point Sampling method [39], [40] to optimize the uni-
formity of points in the output point cloud. The expected
output point cloud is a high-density uniform point
cloud.

2) DISCRIMINATIVE MODEL
The discriminative model aims to distinguish the ground truth
point clouds and the generated high-resolution point clouds,
so it works as a classification model. The discriminator uses
the ground truth point clouds as positive samples, and the gen-
erated point clouds as negative samples.We use theMLP [41]
for point cloud feature extraction. The MLP is also used in
other proposals for point cloud upsampling [6] and point
cloud classification [4]. We also use a feature transform block
to improve the accuracy of point cloud classification [4].
Before the last activation layer, a max-pooling layer is used
for collecting global features. The output of the discriminative
model is a decision that indicates whether an input point cloud
is a real or artificially generated point cloud. The lower part
of figure 3 shows the basic framework for the discriminative
model.

In the training phase, the generator and discriminator are
trained alternately. In each epoch of the training phase, the
generator is kept constant while the discriminator is trained,
and then the discriminator is kept constant while the generator
is trained. The distribution of the ground-truth point cloud is
x, and the input data is a low-resolution point cloud and an
image, (z, img). Then, the generator space is G((z, img), θg),
where G is a generative function represented by a network
with parameters θg, and the discriminator space is D(y, θd ),
where D(x) is the probability that x came from the real data
rather than (z, img) andD(x) is represented by a network with
parameters θd .
While the generator tries to minimize the difference

between the created point cloud and the ground truth point
cloud, the discriminator tries to maximize the probability of
assigning the correct label to ground truth examples and sam-
ples from G. Finally, the value function V(D, G) is optimized
as equation 1:

min
G

max
D

V (D,G)

= Ex∼px (x) [logD(x)]

+E(z,img)∼pinput (z,img) [log(1− D(G(z, img)))] (1)

3) LOSS FUNCTIONS
Our method aims to upsample point clouds using a GAN
architecture, wherein the output point clouds should be uni-
form, and each point should be on the underlying object
surfaces. So, the final loss function has contributions from
three terms corresponding to each of the above three goals.
Least Squares loss function for Generative Adversarial

Networks. Least-squared loss is a loss function for GAN
architectures that was proposed by [42]. Least-squared loss
avoids the problem of vanishing gradients. Equation 2 and 3
show the loss functions for the generator part and discrimina-
tor parts of our system.

Lgan(G) =
1
2
[D(Q)− 1]2 (2)

Lgan(D) =
1
2
[D(Q)2 + (D(Q̃)− 1)2] (3)

where D(Q) is is the confidence value predicted by D from
the generator output Q, and Q̃ is the fake sample.
Uniform loss aims to increase the uniformity of the dis-

tribution of points in the generated point cloud. We require
uniformity of the output point cloud both globally and locally.
To optimise the global uniformity, we take a number of
random points, and from each random point we generate
an area (denoted as Ai) on the underlying surface, and then
optimise the number of points on each area. To optimise the
local uniformity in each small areaAi, we optimise the nearest
distance from point to point.
Reconstruction loss aims to encourage the generated points

to lie on the target surface. Consider Q as the ground truth
point cloud. Then Q has the same number of points as the
fake point cloud Q̃. The reconstruction loss uses the Earth
Mover’s [43] distance as per equation 4.

d(Q, Q̃) = min
ϕ:Q→Q̃

∑
pi⊂Q

‖pi − ϕ(pi)‖ (4)

where ϕ : Q→ Q̃.
Finally, the model is trained by minimizing Lgan(G) which

combines the adversarial, uniform distribution and recon-
struction loss terms with weights ωgan, ωuni, ωrec, respec-
tively as shown in equation 5.

Lgan = ωganLgan(G)+ ωuniLuni + ωrecLrec (5)

IV. EXPERIMENTS AND RESULTS
A. DATA PREPARATION
There is no available crack point cloud dataset or dataset
with point clouds and corresponding images. We implement
our proposed method on a crack dataset we have collected
ourselves. This dataset has two parts. The first part consists
of point clouds, and the second part consists of images corre-
sponding to each point cloud. Point clouds and images were
collected in our laboratory. We used concrete blocks with
dimensions 10cm × 10cm × 30cm from which we captured
point clouds using an EinScan-SD scanner, and captured 2D
images using a Canon EOS 5D Mark IV camera.
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1) GROUND TRUTH POINT CLOUDS
The original point clouds from the scanner are very large.
We divide the original 20 scans of individual concrete
blocks into nearly 2000 point clouds for training and
200 point clouds for testing. Each divided point cloud con-
tains 4096 points and one or more cracks.

2) INPUT POINT CLOUDS
The ground truth point clouds are down-sampled randomly to
sparse point clouds that each contain 512 points. Our method
aims to upsample these down-sampled point clouds by a
factor of 8 to match the sampling of the original point cloud.

3) IMAGES
From the original images and original point clouds, we used
Meshlab [44] to align the images with the corresponding
point clouds. The output of the alignment process is a point
cloud and its matched image. For each point cloud tile
obtained by dividing the original large point cloud, a corre-
sponding tile of the pre-aligned image of the concrete block
is extracted by cropping.

Some examples of point clouds and their corresponding
images are shown in figure 4.

B. EVALUATION METRICS
We used two evaluation metrics to assess and compare our
method with other point cloud upsampling methods.

Chamfer distance (CD) is an evaluation metric for assess-
ing the similarity of two point clouds. It was defined and used
in previous work [43], PU-GAN [6]. We used this distance
measure to compare point clouds and assess the model.

Given two point sets P = {p1, p2, . . . , pn} and Q =
{q1, q2, . . . , qm}, the CD is calculated as equation 6.

CD(P,Q) =
1
P

∑
p∈P

min
q∈Q
||p− q| |22 +

1
Q

∑
q∈Q

min
p∈P
||p− q| |22

(6)

Hausdorff distance (HD) was introduced by Haus-
dorff [45]. Berger [46] describes the application of HD to
surface reconstruction in an upsampling proposal, and HD
was also used to evaluate a method for upsampling point
clouds [6]. HD measures how far two non-empty subsets are
from each other. HD is the greatest of all the distances from
a point in one set to the closest point in the other set. In point
cloud comparison, given two point sets P = {p1, p2, . . . , pn}
and Q = {q1, q2, . . . , qm}. Hausdorff distance from A to B is
defined as in equation 7.

H (P,Q) = max
p∈P

min
q∈Q
||p− q| | (7)

Uniformity measure To calculate the uniformity of gener-
ated point clouds from all methods, we calculate the standard
deviation of the number of points belonging to equal areas
on the point cloud surface. To do that, for each generated
point cloudwe randomly sample 1000 points. Then from each
pointOj, we count the number of points inside a circle defined

by (Oj, radius). A point cloud has a higher uniformity if the
standard deviation of the counted number of points is small.
We evaluate the uniformity of point clouds with two values
of radius, r = 0.4 and r = 0.5. Our method achieves a better
uniformity by this measure and this is qualitatively evident in
the visualization shown in figure 6.
Based on the metrics presented above, we compare the

performance of our method to that of a number of other estab-
lished point cloud upsamplingmethods [5]–[7]. The results of
this comparison are summarised in table 1. The lower values
of CD,HD, and uniformity of ourmethod clearly demonstrate
the superior performance of our approach compared to these
methods. Figure 5 shows some examples of the image input,
low-resolution point cloud input, ground truth point cloud,
and the generated point clouds from the PU-Net, PU-GAN,
PCSR, and our method.

The CD and HD value of the PU-Net model is very large
as compared to other methods as shown in table 1. The
PU-Net model used a feature aggregation method that does
not consider spatial information when performing the feature
expansion operation [5]. We speculate that this is the reason
that the PU-Net model produces eight disjoint point clusters
when used to upsample our dataset, resulting in very poor
performance (the fourth column in figure 5). As a result, the
PU-Net model obtained a very high value of CD and HD.
So, we do not further compare the PU-Net model with other
methods. Figure 5 shows our results when using point-pixel
combination with DoG features from images.

Our point cloud data are 2.5D point sets that describe
the surface of concrete blocks. However, the generated point
clouds from the PCSR [7] are watertight in some areas,
resulting in the cracks of the generated point clouds from
PCSR being filled over with points, so they do not show the
correct surface of the concrete in the vicinity of the cracks.

The PU-GAN model [6] achieved good results in our
experiments. However, the fusion of high-resolution image
data achieved by our approach significantly improves upon
the results from the PU-GAN method. By combining point
cloud and image data at two levels (point-pixel level and
feature-feature level) we achieve better results against the CD
and HD distance metrics. Our method also generates point
clouds with more uniformly distributed samples.

Our method is better in filling the gaps on the point cloud
surface as shown in figure 7. We take examples from PU-
GAN, the PCSR method, and our method using “point-pixel
combination” with DoG features. Two sides of a crack are
often sparser than other areas. We compare the areas sur-
rounded by black circles in the figure. On the ground truth
surface, this area is sparse, on the point cloud generated by
PU-GAN, there is a hole. Our method can generate this area
with a higher point density.

In the “point-pixel combination”, we use grayscale and
other features from images such as Sobel, Gamma, DoG
features. In comparison to the “feature-feature combina-
tion”, the “point-pixel combination” is the better combination
method. Among the “point-pixel combination” options, the
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FIGURE 4. Examples of images and their corresponding point clouds. The first column shows the
original images. The second and the third columns show ground-truth point clouds viewed from the top
and an oblique angle respectively. The last two columns show input low-resolution point clouds viewed
from the top and an oblique angle respectively.

TABLE 1. Comparisons of chamfer distance and hausdorff distance measurements.

FIGURE 5. Examples of generated point clouds from five different methods and three different sets of
input data. The two first columns contain input images and input low-resolution point clouds. The third
column contains ground truth point clouds. The subsequent three columns are results from three
previous methods, PU-Net, PCSR and PU-GAN. The last two columns are results from the proposed
method with the two different approaches for combining image and point cloud information in the GAN
architecture.

combination of point cloud with a channel of DoG features
extracted from the images is the best combination for upsam-
pling.

To assess the impact of the point cloud’s resolution on point
cloud classification, we implement the Pointnet architec-

ture [4] for classifying the crack point clouds and non-crack
point clouds in low-resolution and high-resolution. Positive
samples are point clouds that contain crack points, negative
samples do not contain crack points. The Pointnet network
takes a point cloud as input, then followed by a feature
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FIGURE 6. Examples of generated point clouds with different uniformities created using two existing
methods and our method compared with the ground truth. The first column shows results from the
PCSR method, the second column shows results from the PU-GAN method. The third column shows our
results using point-pixel combination, and the last column shows the ground truth point clouds.

TABLE 2. Classification results of low-resolution and high-resolution crack point clouds.

transform between two MLPs and then aggregates point
features by a max-pooling layer. The classification output
is the score for the two classes of crack point cloud or
non-crack point cloud. The low-resolution point clouds con-
tain 512 points as the input of the upsampling model. The
high-resolution point clouds containing 4096 points are the
ground truth point clouds, and the generated point clouds
from the different upsampling methods. Table 2 shows our
results for the classification of point clouds. We use precision
(Pr), recall (Re), F-score, and accuracy to evaluate the clas-
sification model. The results indicate that the high-resolution
point clouds can be classified better than the low-resolution
point clouds. The generated point clouds from our method are
better for classification than other upsampling methods.

The experiments in this paper show that the number of
points in the point cloud affects the accuracy of crack detec-
tion. The experiment with a small number of points (512
points for each cloud) got a lower accuracy (63%). The
experiment with a higher number of points (4096 points for
each cloud) got a higher accuracy (up to 81%). In recent
multispectral LiDAR point cloud classification research [47],
the experiments also show that the higher number of points,
the better the accuracy of the point cloud classification. Point
cloud data that has a high uniformity where the number of
points is large enough to represent small details will give
the best results. The number of points should be optimized
depending on the dataset and the number of points should

accurately capture the shape of the object [4]. Our ground
truth data and our upsampled data display a high uniformity
and sufficient density to achieve a reasonable accuracy in
crack detection.

C. DISCUSSION
While there is some existing work that combines 2D images
and 3D data for other applications, there are no contributions
using the combination of 2D and 3D data for upsampling
point clouds. We have proposed such a method and demon-
strate significantly better results than existing point cloud
upsampling methods.

A GAN architecture is employed for the combination in
two ways: the first one integrates points from 3D space and
the corresponding pixels from 2D space, the second one
integrates point cloud features and image features that are
transferred from different models. Our proposed method also
illustrates that images and point clouds can be combined at
both the low-level and high-level feature stages. The gener-
ated high-resolution point clouds show that the combination
of low-level features first, followed by the extraction of high-
level features, is more effective than combining the high-level
features that have been extracted separately.

The experiments in this paper generate high-resolution
point clouds with high uniformity. We use the Chamfer and
Hausdorff standard distance measures for evaluating point
clouds and the proposed method obtains superior results
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FIGURE 7. Comparing results from our method and other methods in terms of filling a
gap in the point clouds. The first column shows ground truth point clouds, the second
shows results obtained by PU-GAN, and the last column shows results obtained from
the proposed method. The ground truth in figure (a) shows a visible gap on the edge of
the crack, while the ground truth in figure (b) shows a sparse crack edge.

compared with current state of the art methods. In terms of
the detection of cracks in the point clouds, the up-scaled
point clouds from our method perform better in terms of
classification compared to other methods.

The high-resolution point clouds are generated from
low-resolution point clouds, so they save cost in the collection
and storage of the point clouds before evaluating and allow for
the use of less expensive and more practical scanning equip-
ment. The generated point clouds are also shown to improve
the detection of cracks in the point clouds. The proposed
method can be used in different 2.5D point clouds of other
constructions and surfaces such as concrete or steel bridges
and tunnels in both upsampling and classification. We feel
this method has the potential to contribute significantly to
civil engineering applications.

The proposed method is tailored for 2D images and associ-
ated 2.5D point clouds. In this paper, we have not investigated
combining images and full 3D point clouds. The extension to
3D point clouds with complex structure is complicated by the
difficulty of capturing the necessary structural information
in a 2D image. However, with further work, this method

could be adapted to more general 3D point clouds if the 3D
object can be treated as a set of 2.5D surfaces with associated
point clouds and images. In future work we will consider the
extension of our approach to point clouds of more complex
3D structures.

V. CONCLUSION
We proposed a new method for upsampling crack point
clouds using a combination of point clouds and two dimen-
sional images as input data. We use a GAN architecture and
combine point clouds and images in two ways: the first way
is concatenating points from 3D space and the correspond-
ing pixels from 2D space. The second way is concatenating
point cloud features and image features that are transferred
from different models. Comparisons of our approach to other
established methods based on both distance metrics and a
measures of uniformity of the point samples in the point
cloud demonstrates that the combination of point clouds and
images can improve the performance of upsampling of very
low density point clouds. Our focus in this paper is on crack
point clouds such as those from concrete bridges, and road
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pavements, but the approach could be generalised to other
2.5D point cloud datasets and with further work may be
applied tomore general 3D data sets.Wewill make the dataset
used in this paper available to the research community.
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