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Executive Summary 
This report presents results from the Shoalhaven and Crookhaven Rivers, one of the estuary 
systems selected as part of Stage 1 of the NSW Oyster Industry Transformation Project 2017- 
2021. To predict the impact of rainfall on potentially pathogenic bacteria, Harmful Algal 
Blooms (HABs) and oyster disease, precise environmental data with a high temporal 
frequency were collected and modelled. Combined with state-of-the-art molecular genetic 
methods, this information will help to improve efficiency and transparency in food safety 
regulation, provide predictive information and provide insights for more informed and 
responsive management of shellfish aquaculture. 

 
We installed a real-time sensor in the Shoalhaven and Crookhaven Rivers within Goodnight 
Island Harvest Area, recording high-resolution temperature, salinity and depth data. Oyster 
farmers collected weekly biological samples (666 environmental DNA samples and 276 
deployed/retrieved oysters for growth assessment) from the sensor site. We developed a 
rapid molecular qPCR (quantitative polymerase chain reaction) assay for E. coli, which could 
directly compare to the currently used plate count by commercial laboratories. We also 
developed specific qPCR assays that could determine which animals were contributing to the 
E. coli load in the river system. We used these assays to observe trends in faecal pollution and 
modelled these in relation to environmental variables (salinity, temperature, rainfall etc.), to 
develop predictive models. Finally, we developed and an additional model to link oyster 
growth with environmental variables and assessed its predictive capability. 
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1. Introduction 
1.1 Transforming Australian Shellfish Production 

The Transforming Australian Shellfish Production Project (TASPP) follows on from the success 
of the NSW Oyster Industry Transformation Project (NSWOITP), which is a UTS led, 
multidisciplinary collaboration between oyster farmers (NSW Farmers Association), 
researchers (UTS, DPI Aquaculture and Fisheries), regulators (DPI Biosecurity and Food Safety) 
and the Food Agility CRC. The project uses real time, high-resolution salinity, temperature and 
depth sensing, combined with novel molecular genetic methods (eDNA), to model oyster food 
safety, pathogenic bacteria, harmful algae, and oyster growth and disease, with the aim of 
changing harvest management and to reduce harvest closure days for farmers. 

 
As filter feeders, shellfish like oysters and mussels actively remove particles from surrounding 
waterways. Following high-risk events such as heavy rainfall or harmful algal blooms, 
regulators like the NSW Food Authority implement precautionary harvest area closures to 
manage potential food safety risks or implement shellfish movement restrictions to manage 
potential biosecurity risks. Shellfish farmers in Australia are not currently able to predict the 
likelihood of a harvest area closure due to these high-risk events. If farmers were aware of 
imminent closure, they could take meaningful action such as harvesting early, or moving stock 
to lower risk areas. The same environmental variables that influence food safety can also 
impact on oysters' health and can increase the risk of certain diseases. Understanding these 
relationships and monitoring these variables could be used to reduce the risk and severity of 
disease outbreaks. 

 
This project will deliver functioning, estuary-specific models relating to oyster growth, disease 
risk, harmful algal bloom risk, sources of contamination, and other supporting factors 
influencing industry productivity. Each of these models will relate biological data to high 
frequency water quality metrics as measured by real-time sensors deployed in situ. 

 
Stage 1 (2017-2021) of the project has been successfully completed, with ~5000 water and 
3000 oyster samples collected across 13 NSW estuaries engaged in the project. Stage 2 (2021- 
2024) is now underway, with two further NSW estuaries engaged, and expansion of the 
project into Western Australia. Sample processing, data analysis and report writing will 
continue during this second phase, with modelling to predict oyster growth and mortality 
rates, including key oyster diseases such as Marteilia sydneyi (QX) and Winter Mortality, and 
the intensity of harmful algal blooms planned. As part of these analyses, novel qPCR assays 
for E. coli (bird, cow, human) and harmful algal species (Pseudo-nitzschia spp., Dinophysis 
spp., P. minimum), which were developed during Phase 1, will also be implemented. 

 
Preliminary results from this high frequency data have already demonstrated the link 
between salinity levels related to rainfall and E. coli levels. In 2019, the NSW Shellfish 
Program's Annual Sanitary Survey Report (DPI) stated that using this real-time, high frequency 
environmental data, the project provided the basis for a change to the management plans for 
the Pambula River harvest area and the Cromarty Bay harvest area (Port Stephens). These 
management plan changes mean that harvest area openings and closures can be based on 
salinity-only data, with unnecessary extra harvest closure days avoided. As early adopters of 
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the technology for harvest area management, an independent economic assessment by NSW 
DPI completed in January 2021 evaluated Pambula River and Cromarty Bay. The report 
highlighted positive benefits for industry using salinity-based management plans. Focusing on 
the six-month period where oysters were at peak marketable condition, it was estimated that 
up to two extra weeks of harvest could be achieved, with a projected annual net profit boost 
of $15,344 (Cromarty Bay) and $95,736 (Pambula River) for the study areas, based on current 
lease area used. The full report is available on the NSW Food Authority website. 

 
Across the NSW shellfish industry, the potential economic benefit from the use of real-time 
sensors for harvest area management is conservatively estimated at up to $3 million annual 
farm gate value. Increased revenue will improve the confidence of the industry to further 
invest and drive more growth. As of August 2022, seventeen salinity-only management plans 
had been offered for harvest areas in participating NSW estuaries, with six being taken up and 
the remaining eleven under consideration. 

1.2 Shoalhaven and Crookhaven Rivers 

The Shoalhaven River (-34.86°S, 150.69°E) rises on the east side of the Great Diving Range and 
travels ~327 km east to Greenwell Point, where it meets the Crookhaven River (-34.92°S, 
150.73°E), and becomes an open mature wave dominated barrier estuary system (Fig. A1). 
The Shoalhaven River has a catchment area of ~7500 km2, an estuary area of ~32 km2, and a 
flushing rate of ~78.2 days (Roper et al. 2011). The Crookhaven River on the other hand, is 
significantly smaller, and has a water area of only ~8 km2. Both the Shoalhaven and 
Crookhaven Rivers are important mangrove (0.7 km2 and ~3 km2 for Shoalhaven and 
Crookhaven Rivers respectively), seagrass (0.3 km2 and 0.7 km2) and saltmarsh areas (0.15 
and 1.4 km2) (Roy et al. 2001). The land use surrounding the Shoalhaven-Crookhaven estuary 
is 63% forested, 32% rural and 3.5 % urban. In terms of estuary health, urban and agricultural 
runoff, soil erosion, sedimentation and nutrient/bacterial loads from riverbank cattle, are all 
major environmental problems (Shoalhaven CMP Scoping Study, Shoalhaven City Council 
2020). 

 
1.3 Oyster Production in the Shoalhaven and Crookhaven Rivers 

The Shoalhaven and Crookhaven Rivers are significant producers of Sydney Rock Oysters in 
Australia. Production values for 2020/21 financial year in the Crookhaven River is estimated 
to be $1.77 million (NSW DPI 2022). While production value in the Shoalhaven River is not 
available for confidentiality reasons (≤ 5 current permit holders in the estuary), the total 
production value across the 11 estuaries with ≤ 5 permit holders is estimated to be ~224,672 
dozens and valued at ~$2,208,619 (NSW DPI 2022). 

https://doc.shoalhaven.nsw.gov.au/Displaydoc.aspx?Record=D20/207815
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2. Findings 
2.1. The data assessment from this report supports implementing a harvest area management 
plan based on sensor salinity data for Goodnight Island harvest area, subject to the agreement by 
the local shellfish industry. Available data indicated that four harvest area closures and one 
harvest area downgrade could have potentially been avoided between December 2017 and June 
2020. More recent salinity data (July 2020 – May 2022) showed a higher level of variability due to 
more frequent rainfall events, and the relationship between salinity fluctuations and harvest area 
status was less clear. 

 
2.2. We developed rapid, efficient, and sensitive qPCR assays for E. coli, cow, bird, and human 
faecal indicators, and used these rapid genetic tools to track these sources of pollution in the 
Shoalhaven and Crookhaven Rivers over the biological sampling period, September 2018 to 
September 2020. 

 
2.3. The real time sensor data showed a substantially higher predictive capacity than rainfall 
data for all four faecal bacteria indicators. 

 
2.4. The maximum predictive capability for each model/bacterial group were 23.9% for E. coli, 
34.8% for cow, 46.1% for bird, and 73% for human at the sensor site. E. coli most often 
increased with rainfall, while cow and human were more variable (sometimes becoming 
elevated with rainfall. On the other hand, bird bacteria increased seasonally, corresponding 
to warmer surface water temperatures. 

 
2.6. The greatest oyster growth rates in the Shoalhaven and Crookhaven Rivers occurred 
during the first 3 months of this experiment, with the best model explaining a moderate 
amount of the ~36.9% of the deviance. Strongest predictor variables were the daily average 
salinity (decreasing, with optimal growth at ~35.6 ppt) and weekly rainfall (optimal growth 
occurring when little rainfall occurred over the previous week). 

 
2.7. The cumulative mortality measured at the Shoalhaven River site between August 2018 
and February 2020 was 8.3% which was the lowest level recorded at all estuarine sites 
monitored in this study. 
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4. Feedback 
In May 2018, the Oyster Transformation Team held information workshops to allow farmers 
to have their say in the project. The workshops were held in Pambula (Pambula Fishing Club) 
and Bateman’s Bay (Catalina Country Club). 

Farmers were asked to rate the following factors in order of importance and benefit to their 
business operations (Fig. 4.1). In order of importance (highest to lowest) was the potential to 
predict algal blooms, longer harvest opening times, reduced stock mortality/disease, 
forecasting of harvest area closures, and access to real time tidal and monitoring data. 

Group discussions followed, whereby additional issues that farmers raised were: the 
suitability of the sensor location and BOM rainfall gauge; and the breakdown of bacterial data 
into human and animal sources. 

 

 

 
 
 

Figure 4.1. The importance of factors as rated by farmers in relation to their business operations. Green is 
most important and brown is least important. 



 

14 



15 
 

 
 

5. Results 
5.1 High resolution temperature and salinity data 

 
High-resolution real time data summaries for the Shoalhaven and Crookhaven Rivers sensor 
for the period 21 Dec 2017 to 31 Mar 2021 are shown in Figs. 5.1A-C. Depth recordings ranged 
from 0.15 m (22 Nov 2019) to 2.2 m (10 Feb 2020). The lowest and highest daily average 
salinity recordings were 1.4 ppt (12 Aug 2020) and 35.9 ppt (11 Jan 2020) respectively, while 
the lowest and highest daily average temperature recordings were 11.5℃ (9 Aug 2020) and 
26.0 ℃ (31 Jan 2020) respectively. 

 
 

Figure 5.1A-C. Real time sensor data from the Shoalhaven and Crookhaven Rivers 21 Dec 2017 to 31 Mar 2021 
A. Depth (m); B. Daily average salinity (ppt); and C. Daily average temperature (°C). 
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The maximum daily rainfall at the Greenwell Point Bowling Club rainfall gauge (BOM Station 
No. 068080, ~-34.158°S and 150.7312°E) occurred on 27 July 2020 and was reported as 129 
mm (Fig. 5.2). Rainfall data was absent from 1/5/2020 to 1/6/2020 from this rainfall gauge 
and in its place rainfall data was taken from Greenwell Point (Council) station no. 568180 for 
modelling purposes. 

 

 

Figure 5.2. Daily rainfall (mm) from the Greenwell Point Bowling Club rainfall gauge (BOM Station No. 068080 
from Dec 2017 to March 2021. 

 
5.2 Management Plan 

 
Salinity data recorded by the sensor between December 2017 and June 2020, indicated that 
there could have been less harvest area closures or downgrades since the sensor was 
installed, if closures were based on salinity sensor data. During that time period, there were 
six harvest area closures and six harvest area downgrades due to rainfall. Based on a 
management plan sensor salinity closure limit of 22 ‰, harvest area closures were reviewed 
focusing on available salinity sensor data and shellfish program microbiological results since 
December 2017. Twenty-seven harvest closure days occurred over four rainfall closures, 
although salinity sensor data did not decline below 22 ‰ and microbiological results from 
samples collected between 1-7 days post closure met Approved or Restricted harvest criteria. 
A review of salinity sensor data and shellfish program microbiological results indicated that 
there was one rainfall downgrade where salinity as reported by the sensor was higher than 
26 ‰ (downgrade salinity range 22-26 ‰), and microbiological results from samples collected 
5 days post downgrade met Approved harvest criteria. 

 
Salinity data recorded by the sensor from July 2020 onwards showed a higher level of 
variability due to more frequent rainfall events, and the relationship between salinity 
fluctuations and harvest area status was less clear. It should also be considered that there is 
some possible lag in salinity changes due to inputs from the larger catchment upstream of 
Goodnight Island harvest area, following severe wet weather events. Similarly, there may be 
groundwater inflows impacting the salinity profile of Goodnight Island harvest area after flood 
conditions. Available shellfish program data collected during various salinity conditions, 
including when salinity minima were below management plan limits, generally met 
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operational microbiological criteria. Time periods where salinity is variable or slower to 
recover may require additional sampling to meet management plan requirements. If a salinity 
sensor-based harvest management plan was in place in Goodnight Island harvest area 
between July 2020 and May 2022, it could have resulted in additional harvest area closures 
and/or a higher sampling frequency. The potential negative impact of this may be offset 
somewhat by more harvest days due to fewer closures over the longer term, and decisions 
on harvest area management following prolonged rainfall events would generally consider 
salinity trends rather than point in time measurements. 

 
The potential benefits of real-time salinity-based management plans to improve food safety 
outcomes while also providing lower total closure days during periods of low to moderate 
rainfall are clearly demonstrated by the data collected under this project. However, the 
operation of salinity only management plans in this estuary during periods of repeated severe 
wet weather events requires further exploration. 

 
5.3 Bacterial source tracking 

 
A total of 666 water samples and 276 oysters were collected over a two-year period (a subset 
of the entire sensor data collection time) from Sept 2018 to Sept 2020 from the sensor 
location in Shoalhaven and Crookhaven Rivers (Fig. A1). 

 
For Shoalhaven and Crookhaven Rivers the maximum E. coli reached 11,281 gene copies 100 
mL-1 on 30 Nov 2018, 2,010 copies 100 mL-1 for Helicobacter (bird) on 16 Mar 2019, 16,386 
gene copies 100 mL-1 for bovine faecal pollution (cow) on 30 Nov 2018, and finally, 2188 
copies 100 mL-1 for human faecal pollution on again on 30 Nov 2018 (Fig. 5.3 A-D). 
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Figure 5.3 A-D. Weekly E. coli data from the sensor location, Shoalhaven and Crookhaven Rivers, using A. E. coli 
assay; B. Bird assay; C. Cow assay; and D. Human assay. Purple bars represent rainfall events that were sampled. 
Dotted lines in Fig. A at 14 and 70 cfu/100 mL are the operational limits for direct or restricted (oysters must 
meet depuration requirement) harvest, respectively, depending on individual harvest area classification. 
Goodnight Island harvest area is classified as Conditionally Approved Dual Management 
https://www.foodauthority.nsw.gov.au/sites/default/files/_Documents/industry/shellfish_industry_manual.p 
df. 

https://www.foodauthority.nsw.gov.au/sites/default/files/_Documents/industry/shellfish_industry_manual.pdf
https://www.foodauthority.nsw.gov.au/sites/default/files/_Documents/industry/shellfish_industry_manual.pdf
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Figure 5.4 Weekly faecal coliform counts (cfu/100 mL) from water samples collected by DPI Food Authority at 
three sites in the Shoalhaven and Crookhaven Rivers compared to Oyster Transformation Project weekly 
sampling results (including rainfall sampling). Dotted lines at 14 and 70 cfu/100 mL are the operational limits for 
direct or restricted (oysters must meet depuration requirement) harvest, respectively, depending on individual 
harvest area classification (see above). 

 
Faecal coliform counts in samples from the current project samples generally corresponded 
to DPI Food Authority counts when collected at the same time (Fig. 5.4). There was one 
occasion (Jun 2019), when the DPI samples were elevated (Jun 2019), but this was not 
observed in the current project’s samples. The reason for this may be that the current project 
sampled on the 24 Jun, while the DPI sampling occurred the day after. In between these two 
sampling days significant rainfall (34 mm) fell, which may have resulted in the subsequent 
spikes in E. coli at the DPI sites. 

 
Eleven rainfall events (3 days sampled) were also sampled across the study period in the 
Shoalhaven and Crookhaven Rivers (see purple bars in Fig 5.3 A-D). These were: 28-30 Nov 
2018, 16-18 Mar 2019, 5-7 Apr 2019, 6-8 Jun 2019, 17-19 Sep 2019, 17-19 Jan 2020, 21-23 Jan 
2020, 21-23 May 2020, 14-17 Jul 2020, 27-29 Jul 2020, and 9-12 Aug 2020 (Fig. 5.5 A-K). E. 
coli concentrations were highly variable across rainfall events, with peak concentrations 
observed on day 1, day 2 or day 3 depending on the event. Without further sample collection, 
it is unclear how quickly the high concentrations on day 3 would dissipate. Bird bacteria 
generally remained low during rainfall events, while cow bacteria showed one significant peak 
on day 3 of a Nov 2018 rainfall event. Similarly, human bacteria peaked on day 1 of a rainfall 
event in Jun 2019, but remained low during all other events (Fig. 5.4 D). 
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Figure 5.5 A-F. Sensor site (Shoalhaven and Crookhaven Rivers) rainfall events sampled for E. coli assays. Green 
bar = 16S E. coli; blue bar = bird assay; purple bar – cow assay; red bar = human assay. Dotted line is rainfall (mm) 
obtained from the closest rainfall station (Greenwell Point BOM Station No. 068080). All bars are the mean value 
of nine replicate samples (3 biological x 3 technical) and the error bars are the standard error of all nine 
replicates. 
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Figure 5.5 G-K. Sensor site (Shoalhaven and Crookhaven Rivers) rainfall events sampled for E. coli assays. Green 
bar = 16S E. coli; blue bar = bird assay; purple bar – cow assay; red bar = human assay. Dotted line is rainfall (mm) 
obtained from the closest rainfall station (Greenwell Point BOM Station No. 068080). All bars are the mean value 
of nine replicate samples (3 biological x 3 technical) and the error bars are the standard error of all nine 
replicates. 

 
5.4 Phytoplankton enumeration and HAB events 

 
The maximum phytoplankton cell concentration across the sampling period (Dec 2017 to 
March 2021) occurred on 16 Sept 2020 (Fig. 5.6). Total cell concentrations reached 4.4E +06 
cells L-1 and sample was dominated by planktonic diatoms (Melosira, Chaetoceros) and 
flagellates (cryptomonads, dinoflagellates, prasinophytes, and prymnesiophytes). The sample 
also contained sediment and organic detritus. This bloom did not coincide with any significant 
rainfall event. 

 
A water sample collected on 22 Oct 2018 revealed elevated concentrations of the toxic 
dinoflagellate A. pacificum at 1400 cells L-1. On 10 April 2019, another toxic dinoflagellate 
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Dinophysis acuminata increased in cell density, reaching 500 cells L-1. In Oct 2019, A. pacificum 
(700-1100 cells L-1), D. acuminata (450-1500 cells L-1), and a third species Dinophysis caudata 
(200 cells L-1) all reached elevated concentrations on the same sampling day (17 Oct 2019). A 
few days later (22 Oct 2019), A. pacificum was still elevated across sites (520-750 cells L-1). 
Two weeks on, these species decreased in cell densities, and the potentially toxic diatom 
Pseudo-nitzschia fraudulenta/australis became elevated, reaching a maximum cell 
concentration of 5.2E +04 cells L-1 on 4 Dec 2019. The NSW Food Authority’s Phytoplankton 
Action Limits to trigger biotoxin testing are 50,000 cells L-1 for Pseudo-nitzschia (australis & 
multiseries), 200 cells L-1 for Alexandrium pacificum and 500 cells L-1 for Dinophysis acuminata 
(NSWFA 2015). No biotoxins were detected in association with shellfish samples collected 
during the Pseudo-nitzschia or Dinophysis blooms noted above. Positive detections of 
paralytic shellfish toxins (PSTs) of 0.26 and 0.23 saxitoxin equivalent (STX eq.) mg/kg total PST 
were reported in shellfish samples collected 24 and 29 Oct 2018 coinciding with the bloom A. 
pacificum during Oct 2018. Shellfish samples collected 5 Nov 2018 were negative for PSTs. 
Positive detections of PSTs of 0.11, 0.16, 0.11 and 0.048 saxitoxin equivalent (STX eq.) mg/kg 
total PST were reported in shellfish samples collected 10, 17, 22 and 28 Oct 2019 coinciding 
with the bloom A. pacificum during Oct 2019. Shellfish samples collected 14 Nov 2019 were 
negative for PSTs. 

 
 

 
Figure 5.6 Log abundance of total phytoplankton sampled approximately fortnightly from 27 Dec 2017 to 10 
March 2021. 

 
5.6 Oyster Growth and Mortality 

 
5.6.1 Oyster Growth 

 
Oyster whole weight increased by 28 g in the experimental period (August 2018 to June 2020) 
(Fig. 5.7 A). Oyster whole weight increases were greatest in the final 3 months of this 
experiment (February 2020 to June 2020) when oysters increased their average weight by 
10.3 g. Average oyster whole weight was 50.6 ± 1.4 g at the end of the experiment (June 
2020). Oysters deployed in Shoalhaven River reached the large size grade (> 50 g whole 
weight) in June 2020 (50.6 g) and were 42 mo on this date. 
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Oyster shell length was 53 ± 2 mm at the start of the experiment and increased to 69 ± 1 mm 
in June 2020 (Fig. 5.7 B). The greatest increase in shell length in the Shoalhaven River was 
recorded from August to October 2018. The increase in size through this period was 11 mm. 
Shell lengths were measured more frequently than whole weight and fluctuated throughout 
the experiment. Periods of shell length decreases were recorded between October 2018 and 
November 2018, January and February 2019, September and November 2019 as well as 
December 2019 and February 2020. 

 
5.6.3 Mortality 

 
Low levels of mortality were recorded throughout the experiment (Fig 5.7 C-D). The period 
where the highest levels of oyster mortality occurred was between September and December 
2019. However, the maximum number of dead oysters removed from a basket on a sample 
date was two in November 2019 and June 2020. Oyster mortality over the study period in 
Shoalhaven River did not exceed background Sydney Rock Oyster farming mortality (~10% per 
annum). Oysters from this site remain frozen for future analyses. 

 
 

 
Figure 5.7 A-D. Oysters deployed at the sensor site, Shoalhaven and Crookhaven Rivers. A. whole weight; B. 
shell height; C. cumulative mortality, and D. monthly mortality. 

 
5.7 Modelling 

 
5.7.1 Modelling of bacterial data 

 
Summary statistics for all bacterial concentrations and environmental variables used in the 
general additive models are shown in Appendix 2A-B. Correlation coefficients were calculated 
among every pair of environmental variables and suggested very few strong positive 
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relationships (r > 0.7) overall. A total of 4 models were developed for each of the bacterial 
sources: sensor only; sensor and total phytoplankton (logged or unlogged); rainfall only; and 
rainfall and total phytoplankton. Depth and week were included as response variables in all 
models. The maximum predictive capability for each bacterial group at the sensor site were 
all best explained by the sensor models as compared to the rainfall models: 23.9% for E. coli 
(sensor + total phytoplankton), 34.8% for cow (sensor + total phytoplankton), 46.1% for bird 
(sensor + total phytoplankton) and 73% for human (sensor + total phytoplankton) (Table 1A). 
Conversely, rainfall models only explained 8.66% of the deviance for E. coli, 4.38% for cow, 
8.88% for bird, and 17.4% for human bacterial loads. 

 
Peak abundance of E. coli at the sensor site was linked decreasing salinity over the 72 hours 
prior to sampling, and a surface water temperature between ~20-24℃ (Table 1 A-B) (Figures 
5.7 A-D, 5.8 A-D). 

 
Cow bacteria was also linked to decreasing salinity (again over the previous 72 hours), with a 
peak in E. coli observed at 22 ppt and a surface water temperature of 19℃ (Table 1A). 

 
Faecal contamination from birds was linked with salinity (variable), but increased with an 
increasing surface water temperature, with maximum load corresponding to >24℃ (Table 
1A). 

 
An increase in human bacteria was linked to rainfall on one occasion, but across all samples 
was best predicted by a salinity of 20-22 ppt and a surface water temperature of 18-20℃ 
(Table 1A). 

 
5.7.2 Modelling of oyster growth and mortality 

 
While there was insufficient oyster weight data to model (only 4 data points across the 
sampling period), there was sufficient shell length data to model. The best model explained a 
moderate ~36.9% of the deviance, with the strongest predictor variables being the daily 
average salinity (decreasing, with optimal growth at ~35.6 ppt) and weekly rainfall (optimal 
growth occurring when little rainfall occurred over the previous week). 
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Table 1 A. Modelling results for bacterial source tracking at the sensor site in the Shoalhaven 
and Crookhaven Rivers. Only significant variables are shown for each model. 

 

Bacteria Variables No. of 
observations 

Significant Variables Deviance 
Explained 

E. coli Salinity, Depth, Temp 125 Depth72**, 
Salinity72***, 
Temp72*** 

23% 

E. coli Salinity, Depth, Temp, 
logPhytoplankton 

125 logPhytoplankton ***, 
depth**, 
salinity***, 
temp*** 

23.9% 

E. coli Rainfall72 111 Rainfall72*** 7.49% 
E. coli Rainfall72, 

logPhytoplankton 
111 Rainfall72***, 

logPhytoplankton *** 
8.66% 

Bird Salinity, Depth, Temp 125 Salinity***, Depth***, 
Temp*** 

45.9% 

Bird Salinity, Depth, Temp, 
logPhytoplankton 

125 Salinity***, Depth***, 
Temp***, 
logPhytoplankton *** 

46.1% 

Bird Rainfall72 111 Rainfall72*** 6.93% 
Bird Rainfall72, 

logPhytoplankton 
111 Rainfall72***, 

logPhytoplankton*** 
8.88% 

Cow Salinity, Depth, Temp 125 Salinity***, Depth***, 
Temp*** 

34.7% 

Cow Salinity, Depth, Temp, 
logPhytoplankton 

125 Salinity***, Depth***, 
Temp***, 
logPhytoplankton*** 

34.8% 

Cow Rainfall24 119 Rainfall48*** 3.38% 
Cow Rainfall24, 

logPhytoplankton 
119 Rainfall48***, 

logPhytoplankton*** 
4.38% 

Human Salinity, Depth, Temp 125 Salinity***, Depth***, 
Temp*** 

62.5% 

Human Salinity, Depth, Temp, 
logPhytoplankton 

125 Salinity***, Depth***, 
Temp***, 
logPhytoplankton*** 

73% 

Human Rainfall24 111 Rainfall24*** 11.3% 
Human Rainfall24, 

logPhytoplankton 
111 logPhytoplankton*** 17.4% 
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Figure 5.7 A-D. Data points (black dots), average (blue line) and standard error (shaded area) of A. E. coli, B. 
Bird, C. Cow, and D. Human bacterial load as measured by weekly sampling at the sensor site, Shoalhaven and 
Crookhaven Rivers. 
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Figure 5.8 A-D. Data points (black dots), average (blue line) and standard error (shaded area) of A. Rainfall, B. 
Depth, C. Salinity, and D. Temperature values measured in at the sensor site, Shoalhaven and Crookhaven 
Rivers. 
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6. Discussion 
6.1 High Resolution Sensor Data and Management Plan 

 
Analysis of sensor data during the annual review process demonstrated that there is potential 
to implement a salinity sensor-based management plan for Goodnight Island harvest area, 
but a distinct pattern was apparent between drought and flood conditions. Data collected 
prior to July 2020, during a drought period, indicated that up to four harvest area closures 
and one harvest area downgrade could have potentially been avoided. Salinity data from July 
2020 onwards showed a higher level of variability due to more frequent rainfall events, and 
the relationship between salinity fluctuations and harvest area status was less clear. Further 
data collection may provide insight to support management plan changes in estuaries that 
have substantial fresh water impacts. Shoalhaven and Crookhaven Rivers Shellfish Program 
(SCRSP) were consulted about the option of a salinity-only management plan for Goodnight 
Island harvest area following previous annual reviews, but a decision has not yet been 
reached. If SCRSP did not wish to pursue the implementation of a management plan that is 
based on sensor salinity, or if the salinity sensor data were not accessible, the Goodnight 
Island harvest area management plan would revert to the current management plan that is 
based on both rainfall and salinity closure limits. 

 
6.2 Phytoplankton and HABs 

 
Pseudo-nitzschia is a high-risk HAB group in SE Australia for the shellfish aquaculture industry, 
and both estuaries and coastal waters in this area remain under threat (Ajani et al., 2013a, 
2020). Blooms within the Hawkesbury River estuary (~290 km north of the Shoalhaven and 
Crookhaven Rivers), a high-risk area in SE Australia for HAB events, recently experienced a 
very dense bloom of P. delicatissima gp., with one out of seven strains isolated to produce 
domoic acid (Ajani, 2020). Fifteen years of modelled data in the Hawkesbury River estuary 
revealed that Pseudo-nitzschia was linked to an increase in soluble reactive phosphorus and 
a decrease in nitrogen at all six sites sampled (via rainfall/nutrient runoff). There is contrasting 
evidence, however, of which environmental conditions promote the blooming of the different 
species complexes (Dermastia et al., 2020). In response to a toxic bloom of Pseudo-nitzschia 
delicatissima gp. (dominated by P. cf. cuspidata) in Wagonga Inlet in April 2019, we have now 
successfully developed a rapid, sensitive and efficient quantitative real-time polymerase chain 
reaction (qPCR) assay to detect P. pseudodelicatissima complex Clade I, to which P. cf. 
cuspidata belongs (Ajani et al. 2021). 

 
Another HAB species that bloomed in the Shoalhaven and Crookhaven Rivers during this study 
was Alexandrium pacificum. Approximately 33 species of Alexandrium have been recorded 
worldwide, of which around 10 species can potentially produce Paralytic Shellfish Toxins 
(PSTs). These are A. affine, A. andersonii, A. pacificum (= A. catenella Group IV ribotype); A. 
australiense (= A. tamarense Group V ribotype), A. minutum, A. ostenfeldii, A. catenella, A. 
tamiyavanichii and A. taylori (Anderson et al. 2012, Tomas et al. 2012, John et al. 2014). PSP 
was first reported in Australia in 1935, when typical PSP symptoms were observed following 
the consumption of wild mussels collected from Batemans Bay, NSW (Le Messurier et al. 
1935). In 1986, the first PSP outbreak in Australia was recorded in Port Philip Bay, Victoria, 
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with A. pacificum (as A. catenella) as the causative organism (Hallegraeff et al. 1992). A. 
pacificum is also the main causative agent of PSTs in NSW (Ajani et al. 2013). In October 2016, 
high cell densities of this species were detected in the coastal waters of Twofold Bay, NSW, 
an unprecedented event for this location in south eastern Australia. With a maximum cell 
density (89,000 cells L-1) and a concentrations of 7.2 mg/kg PST STX equivalent in blue mussels 
(Mytilus galloprovincialis) from the bay, a four-month shellfish harvest closure ensued (Barua 
et al. 2020). Another unprecedented bloom of this species occurred early in Tasmania in 2010. 
This toxic event led to a worldwide product recall and it was estimated that this toxic event 
cost the Australian industry AUD ~$23 M in lost revenue (Campbell et al. 2013). 

 
Another HAB group to watch in NSW is the toxic dinoflagellate genus Dinophysis. Species 
belonging to this genus (and more rarely benthic Prorocentrum) are the most problematic 
Diarrhetic Shellfish Toxin (DSTs) producers worldwide. With over 100 species represented 
worldwide, ten have been unambiguously found to be toxic (Dinophysis acuminata, D. acuta, 
D. caudata, D. fortii, D. infundibulum, D. miles, D. norvegica, D. ovum, D. sacculus and D. 
tripos), producing DSTs (okadaic acid and dinophysistoxins) even at low cell densities (<103 
cells L-1) (Reguera et al., 2014; Reguera et al., 2012; Simoes et al., 2015). 

 
Dinophysis is common in Australian waters, with 36 species reported (Ajani et al., 2011; 
Hallegraeff and Lucas, 1988; McCarthy, 2013). Toxic species include D. acuminata, D. acuta, 
D. caudata, D. fortii, D. norvegica, and D. tripos. There have been three serious human DSP 
poisoning events in Australia. The first episode was caused by contamination of Pipis 
(Plebidonax deltoides) in New South Wales in 1997 (NSW) by D. acuminata (Quaine et al., 
1997). One hundred and two people were affected and 56 cases of gastroenteritis reported. 
A second episode occurred again in NSW in March 1998, this time with 20 cases of DSP 
poisoning reported (Madigan et al., 2006). The final event occurred in Queensland in March 
2000, when an elderly woman became seriously ill after eating local Pipis (Burgess and Shaw, 
2001). While no human fatalities from DSP are known globally, DSTs continue to be a major 
food safety challenge for the shellfish industry. In response to elevated cell densities of a toxic 
algal species Dinophysis in February 2019 in the Manning River, we have also successfully 
developed a rapid qPCR assay to detect species belonging to the genus Dinophysis in 
environmental samples (Ajani et al. 2022). 

 
Quantitative PCR is an efficient and powerful tool to identify and enumerate HAB species, 
especially those that are difficult to distinguish using routine methods (Handy et al. 2008, 
Penna and Galluzzi 2013). For this reason, this method is used routinely in certain monitoring 
programs around the world (Clarke & Gilmartin 2020). We have now developed qPCR assays 
for Alexandrium (sxtA gene) (Ruvindy et al. 2018), Dinophysis spp. (Ajani et al. 2022) and 
Pseudo-nitzschia pseudodelicatissima complex Clade 1 (Ajani et al. 2021). The qPCR assays 
can be used on-farm, allow for automation, are easy to use without specialist knowledge, and 
provide an early warning that harmful algae are present in the water column. It is envisaged 
that high-resolution, real-time environmental data, combined with sensitive, specific and 
efficient molecular tools such as we have developed in the current study, will enable us to 
effectively predict and manage these blooms into the future. 



31 
 

 
 

6.3 Assay Development and Faecal Pollution in the Shoalhaven and Crookhaven Rivers 
 

Molecular assays for the detection of faecal bacterial contamination in the Shoalhaven and 
Crookhaven Rivers were determined with two main aims. The first was to design a faster method 
for the currently used place count methodologies for the detection of faecal indicator bacteria by 
commercial laboratories and secondly, for source tracking. This later assay would be used to 
identify which animals might be contributing to any E. coli in the river system. Assays needed to 
be sufficiently specific to only the target organism, to have a sufficiently low level of detection, 
and finally have a high level of efficiency, in line with the best practice guidelines for qPCR assays 
(Bustin et al. 2009). 

 
E. coli is the primary faecal indicator bacterial species, and is most commonly used for detecting 
faecal contamination using culture-based methods (Odonkor & Ampofo 2013, NHMRC 2008, 
2011). Although there are assays that target genes that detect faecal coliforms (Isfahani 2017), 
genetic variability between coliforms makes it a challenge for accurate assessment (Maheux et al. 
2014). As E. coli is tested for in oyster meat (NSWFA 2015, 2017), E. coli was considered to be a 
more targeted approach to also detect in estuarine waters. In this study, several primer pairs were 
trialled which targeted 3 different genes within E. coli, with the final E. coli assay selected being 
the most efficient and specific only to the target organism (Tesoreiro 2020). 

 
The second group of assays developed were those that were microbial source tracking as they 
detect bacteria of faecal origin specifically associated with a group of animals, i.e. bird, cow and 
human. Birds are a significant source of faecal contamination in estuarine/marine waters during 
dry periods, and increase FIB load in watersheds (Araujo et al. 2014, Converse et al. 2012). The 
marker we used was 100% avian specific, with gulls, geese, ducks and chickens being tested 
(Green et al. 2012), and has been successfully used in watersheds across different continents 
(Ahmed et al. 2016, 2019; Li et al. 2019, Vadde et al. 2019). Our source tracking assay for cows 
had 100% sensitivity to bovine faecal samples, with little cross reactivity to other species (93% 
specific). When tested at a rural watershed, a high proportion of faecal contamination was 
attributable to cattle (Layton 2006). Finally, the human marker we used has demonstrated the 
best performance for the detection of human faecal contamination compared to all other assays 
since it was developed in 2000 (Boehm 2013, Shanks 2010). 

 
In most coastal and estuarine systems, an increase in bacterial load is usually linked to an increase 
in rainfall and a decrease in water salinity. These events most likely lead to a concomitant increase 
in nutrients entering the waterway (Amato et al. 2020, Abimbola et al. 2021, Liang et al. 2019, 
Buszka & Reeves 2021), providing bioavailable nutrient forms for phytoplankton growth. E. coli 
pollution entering a waterway can also induce nutrient recycling and accelerate the 
decomposition of other organics like aquatic plants, further releasing nutrients into the system 
(Wu et al. 2021). The survival and proliferation of E. coli in the aquatic systems have also been 
found to be strain specific, with hydrological conditions, differing sources of pollution, selective 
pressures in the waters, and various land uses, all contributing to the community structure and 
diversity of E. coli in a waterway (Bong et al. 2021). 

 
E.coli, cow and human bacterial contamination were all (in most cases) linked to decreasing 
salinity (increased rainfall) with the sensor being significantly more sensitive to this change in the 
water characteristics than rainfall data. The exception to this was faecal contamination from birds 
which again, was significantly more predictable using the sensor data compared to the rainfall 
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data, but was also linked to water temperature, with the warmer waters of summer and autumn 
revealing high loads. 

 
Similarly, avian faecal pollution in the Manning River and Wagonga Inlet was linked to increasing 
salinity and temperature, but was observed to peak during the autumn and summer months. Peak 
levels in all these estuaries coincided with the Australian forest mega-fires of 2019/2020 (Boer et 
al. 2020), whereby coastal areas may have been a relatively safer refuge during that extreme 
period. The molecular marker used in this study, however, does not discriminate between avian 
species (gulls, geese, chickens, ducks etc), so it is uncertain what percentage of the bacterial load 
is attributable to terrestrial birds and that of aquatic birds. Further discrimination into the 
breakdown of the faecal load would be required for this elucidation. 

 
While levels of human bacterial contamination observed in this study are variable, the link of 
elevated concentrations to rainfall in Nov 2018 may suggest that water quality management 
efforts in regard to sources of human contamination in this estuary should be reviewed. Sewer 
overflows and septic tank seepage present the highest impact/risk for human contamination in 
the Shoalhaven/Crookhaven Rivers. After an outbreak of hepatitis A which was linked to the 
consumption of oysters from Wallis River in 1997 (via a sewage spill), a wide range of human 
enteric viruses were detected in a large number of oyster and sediment samples at this location. 
Since this time, new legislation which tightens controls over septic maintenance was created, new 
sewerage management plans were developed, and a mandatory notification system for sewage 
overflows introduced. Following this, mandatory membership for industry to Shellfish Quality 
Assurance Programs was implemented and an estuary classification system introduced (Conaty et 
al. 2000). 

 
The future use of molecular tools such as qPCR for the detection and quantification of bacteria or 
HABs would require further validation in accordance with the Association of Official Agricultural 
Chemists (AOAC) procedures for the validation of such tests. This would include the validation of 
the sensitivity, precision and reliability of methods and a rigorous comparison to existing 
methods. Methodology and protocols for sampling accreditation and assurance of independence 
in testing and reporting for on farm testing would then follow. 

 
Increases in whole oyster weight in the Shoalhaven River were greatest during the last 3 months 
of this experiment (February 2020 to June 2020). Growth, in terms of shell length, was greatest in 
the first 3 months of the experiment (August to October 2018). This was a period characterised by 
high salinity (> 32 ppt) and increasing water temperature levels. Higher salinities increase 
seawater alkalinity providing more calcium carbonate available for oyster shell deposition. The 
salinity level that promotes the greatest growth rates in Sydney Rock Oyster spat is 30 ppt for 
small spat (1.3 mg) and 35 ppt for larger spat (0.61 g) (Nell and Holliday, 1988). Fastest growth of 
Sydney Rock Oyster spat occurs at 30 °C. However, the optimal water temperature and salinity 
combination for spat survival is 23 °C and 30 ppt, respectively (Dove and O’Connor, 2009). 

 
Survival of oysters during the experiment was very high from deployment in August 2018 through 
to February 2020. Cumulative mortality through this period was 8.3% which was the lowest level 
recorded for all sites monitored and was below the background farming mortality (approximately 
10% per annum) commonly experienced when farming Sydney Rock Oysters. The cumulative 
mortality measured in the Shoalhaven River was comparable to cumulative mortality measured 
in Wagonga Inlet (10.7%) over the study period. Cumulative mortality measured in the 
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Shoalhaven River in a previous study was 20% over a 26-month period from April 2004 to June 
2006 (Dove and O’Connor, 2009). 

 
The batch of oysters used for this experiment were a random mix of families taken from the 2016- 
year class of the Sydney Rock Oyster Breeding program. This particular year class had 86% of the 
parents selected from wild and QX disease resistant genetic groups. Only 14% of the parents for 
this year class were sourced from the fast growth genetic group. It took this year class 3 years and 
6 months to reach the large oyster size grade (> 70 mm total length or > 50 g whole weight). 
Estuaries where this same batch of oysters reached the large oyster size grade benchmark at the 
same time were Hastings River (52.5 g), Port Stephens (58.5 g), Wallis Lake (50.6 g) and Pambula 
River (59.4 g). 

 
When oyster growth measured at the conclusion of the experiment (June 2020) was compared 
between the twelve estuarine sites in this study, the Shoalhaven River ranked 10th and 9th in terms 
of whole oyster weight and shell length, respectively. The growth of oysters in Shoalhaven River 
was very similar to what was measured in Wallis Lake during this experiment. 

 
The Shoalhaven/Crookhaven River is the 9th largest oyster producing estuary in NSW (NSW DPI 
2022) with Sydney Rock Oyster production worth approximately $1.6 million in the 2020/21 
financial year (NSW DPI 2022). Most Sydney Rock Oysters produced in this estuary are sold as a 
medium size grade. Triploid Pacific Oysters are also produced in Crookhaven River and 
contributed an extra $160,000 to farm gate income. 

 
 

6.5 Outreach 
 

Outreach and project materials developed during Stage 1 of this project include two scientific 
publications - Harmful Algae (international scientific journal) and The Conversation, and a further 
one in preparation; one Department of Primary Industry Report; three newsletters/factsheets; 
sixteen seminars/conferences/workshop presentation and four videos/YouTube posts (Appendix 
3). Regular program progress reports were provided to the NSW Shellfish Committee and the NSW 
Aquaculture Research Advisory Committee. 
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7. Conclusions 
The data assessment from this report suggested that the current harvest area management plan 
salinity may be conservative after some rainfall events. Implementing a harvest area management 
plan based on sensor salinity data for Goodnight Island harvest area, subject to the agreement by 
the local shellfish industry is possible. Available data indicated that up to four harvest area 
closures and one harvest area downgrade could have potentially been avoided between 
December 2017 and June 2020. From July 2020 onwards, the relationship between salinity 
fluctuations and harvest area status was less clear, and the local program should consider that 
more closures or additional testing may be necessary depending on the severity of rainfall events. 
As of August 2022, seventeen salinity-only management plans had been offered for harvest 
areas in participating NSW estuaries, with six being taken up and the remaining eleven under 
consideration. 

 

Compared to the other monitoring sites in NSW, oyster growth in the Shoalhaven River ranked 
10th and 9th in terms of whole oyster weight and shell length, respectively. The Shoalhaven River 
had the best oyster survival out of all estuarine sites that were monitored for this study. 

 
The pollution source tracking results were highly variable across the study period, most likely 
attributable to the extreme variation in environmental conditions experienced (drought, bush 
fires, floods). Real time sensor data however, showed a significantly higher predictive capability 
than rainfall for all of the four faecal indicator bacteria. Furthermore, while contamination from 
bird sources was observed at low levels, a distinct presence throughout the black summer 
bushfires 2019-2020 was observed. 

 
PCR based assays demonstrate significant potential to supplement and/or replace classical 
environmental sample analytical methods. The benefits of PCR based analysis includes reduced 
cost, faster sample turnaround time and potentially the ability to analyse samples on-site, 
removing the need for the cost and delay of sample transport. Sample transport often comprises 
>50% of the delay between sample collection and result reporting. These delays cost industry 
money and reduce the utility of samples for risk management purposes. Future work should focus 
on validating qPCR methods in accordance with AOAC procedures. 

 
Overall these results demonstrate the utility of salinity-based management plans for predicting 
potential contamination events and managing water quality risks. Real time sensor data, 
combined with rapid molecular tools, can help predict optimal conditions for harvesting and 
growth. This has the potential to improve regulatory and management outcomes and enhance 
the productivity and profitability of oyster farming in the Shoalhaven and Crookhaven Rivers. 
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9. Appendices 

A1. Methods 
A1.1 Sampling locations in the Shoalhaven and Crookhaven Rivers 

 
Data used in this report originates from locations within the Shoalhaven and Crookhaven Rivers over 
the period Sept 2017 to March 2021. High-resolution temperature, salinity and depth data were 
obtained from a sensor location from 21 Dec 2017 to 31 March 2021 (Fig. A1). At this location, oysters 
were both deployed and retrieved, and water samples for eDNA were collected. From here on, this 
location is referred to as the ‘sensor site’. Phytoplankton was also collected at a second sampling 
location established as part of the DPI’s Shellfish Quality Assurance program (Fig. A1). 

 

Figure A1: Map of the Shoalhaven and Crookhaven Rivers highlighting the sensor location (black square) and 
the phytoplankton sampling location (black circle). 

 
A1.2 High-resolution sensor data 

 
High-resolution temperature (℃), salinity and water depth (m) data were collected from the sensor 
site using Seabird SBE 37-SM/SMP/SMP-ODO MicroCAT high accuracy conductivity, temperature and 
depth (CTD) field sensor. This sensor was deployed using a fixed installation, with the inlet 60 cm 
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above the seabed and at least 30 cm below the estimated Lowest Astronomical Tide (LAT) (Fig. A2). 
This fully autonomous instrument collected and transmitted data every 10 minutes (24 h day-1) to 
Microsoft Azure cloud storage before downstream quality checking and analysis. Sensor data was then 
packaged into RO-Crates by the e-Research team at UTS, which are then uploaded to an Arkisto-based 
website. This website allows for the filtering and downloading of these crates based on both time and 
location, for use in research and analysis (Fig. A3). Finally, rainfall data were obtained from the closest 
BOM rainfall gauge at Greenwell Point (068080, -36°56'29.78"S and 149°48'37.73"E). 

 

Figure A2 Seabird MicroCAT high accuracy conductivity, temperature and depth (CTD) field sensor deployed in 
the Shoalhaven and Crookhaven Rivers. Image supplied by Angela Riepsamen. 

 

 
Figure A3. Shoalhaven and Crookhaven Rivers data provenance chain from source of data (sensors), via quality 
assurance processes, data analyses, to consumers. 
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A1.3 DPI Management Plan review 
 

Evaluation of the harvest area management plans for each NSW harvest area occurs annually. This is 
carried out by the NSW Shellfish Program (NSW DPI Food Authority). The date of the Shoalhaven and 
Crookhaven Rivers annual review is 1 July. As part of the most recent (2022) annual review for 
Goodnight Island harvest area, all salinity data from the monitoring sensors during the 2018, 2019, 
2020, 2021 and 2022 annual review periods were assessed in relation to microbiological samples 
collected by the local shellfish program during the same period. Data via a new sensor and provider 
commenced on 15 April 2021. During the transition period, there was a gap in data between 1 and 15 
April 2021. During the 2022 annual review period there were occasional and sporadic gaps in data 
collection due to telecommunications issues. After 1 January 2022, there were occasional spikes in 
salinity data to above 35 ‰. It is likely that these data were a result of debris during large freshwater 
events impacting sensor readings. These points have not been removed from the dataset, so that the 
salinity profile from that time onwards could be examined, however, the high values should be 
interpreted with caution. Salinity data were unavailable due to instrument error after 1 June 2022. 

 
A1.4 Biological sampling and eDNA extraction 

 
Estuarine water samples were collected weekly by oyster farmers working at Broadwater Oysters from 
September 2018 - September 2020 for both phytoplankton and bacteria. For algal samples, 3L sub- 
surface water samples (0.5 m, in triplicates) were collected and filtered using a specially made PVC 
sampler. Samples were then stored at 4 ℃ until further downstream processing. DNA was then 
extracted using the DNeasy 96 PowerSoil Pro QIAcube HT Kit (Qiagen) and DNA stored at -20℃ until 
further analysis. 

 
In the case of a rainfall event, water samples were collected for bacterial analysis (only) every 24 h 
over a two-day period commencing on the first day of rainfall and processed as described above. Daily 
rainfall measurements were taken from the closest available weather stations at PLSP, Lot 5 Robinson 
Road Lochiel 2549, NSW, which is approximately ~8 km from the of sensor site. 

 
A1.5 qPCR assays for bacterial source tracking 

 
Realtime qPCR tests were carried out on all water samples in triplicate for bacterial source tracking of 
E. coli, bird, cow and human faecal indicators. 

 
A1.6 Phytoplankton enumeration 

 
Water samples (500 mL) were collected at approximately 2-weekly intervals from a depth of 0.5 m 
closest to the sensor for microscopic phytoplankton identification and enumeration in accordance 
with the NSW Marine Biotoxin Management Plan (NSW MBMP) and the Australian Shellfish Quality 
Assurance Program (ASQAP). Once collected, samples were immediately preserved with 1% Lugol's 
iodine solution, and returned to the laboratory for concentration using gravity-assisted membrane 
filtration. Detailed cell examination and counts were then performed using a Sedgewick Rafter 
counting chamber and a Zeiss Axiolab or Standard microscope equipped with phase contrast. Cells 
were identified to the closest taxon that could be accurately identified using light microscopy 
(maximum magnification x1000). Cell counts were undertaken to determine the abundance of 
individual HAB species and total phytoplankton cell (>5 mm) numbers. Dinophysis cells were counted 
to a minimum detection threshold of 50 cells L-1 while all other species were counted to a minimum 
detection threshold of 500 cells L-1. 
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A1.7 Oyster Growth and Mortality 
 

At the sensor site, we also deployed two types of experimental Sydney Rock Oysters (Saccostrea 
glomerata). The first group of oysters were all the same age and used to collect weekly samples at the 
sensor site when water samples were collected for downstream processing. Three oysters were 
removed on each sampling occasion and placed whole and live into a freezer for preservation. 

 
The second group of experimental oysters were obtained from the NSW DPI Sydney Rock Oyster 
Breeding Program and were deployed at the sensor site to measure shell length (Fig. A4), whole weight 
and mortality. These oysters were from the 2016-year class and were the same age, size and 
originated from a single genetic group. Three replicate floating baskets were placed on the designated 
oyster sampling lease and each replicate unit contained approximately 70 oysters. 

 
A1.8.1 Oyster Whole Weight 

 
Whole weight was measured in August 2018, February 2019, August 2019, February 2020 and finally 
in June 2021. Thirty randomly sampled oysters from each replicate were pooled and weighed on each 
sampling date using a calibrated weight balance to the nearest 0.1 g. The average whole weight of 
oysters at the start of the experiment in August 2018 was 22.6 ± 1.4 g. 

 
A1.8.2 Shell Length 

 
Oyster shell length was measured ~monthly from August 2018 to June 2020 (Fig. A4). A subsample of 
30 oysters from each replicate were measured on each sampling occasion. The 30 oysters from each 
replicate were arranged on a measuring board that included a scale bar. A digital image was taken and 
GrabIt software (MyCommerce Inc, Minnetonka, MN, USA) was used to estimate the shell length (mm) 
of oysters in the images provided. 

 
 

 
 

Figure A4. Oyster shell dimensions (Carriker 1996) 
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A1.8.3 Oyster Mortality 
 

Oyster mortality was calculated by counting the number of empty oyster shells in each replicate 
approximately each month from August 2018 to February 2020. After empty oyster shells were 
counted, they were removed from the experimental baskets. Oyster farmers performed the counts 
and recorded this information during the experiment. 

 
A1.8 Modelling 

 
To model the relationship between pathogens and oyster growth in this estuary, a series of models 
were run to investigate firstly the predictors of faecal bacteria abundance and secondly, oyster growth. 

 
Daily averages for all sensor measurements taken on a calendar day, midnight to midnight, were then 
calculated. A simple unweighted average was taken over all observations. Data for a day was regarded 
as missing if fewer than 96 observations were made. 24 h, 48 h, 72 h and weekly salinity and 
temperature averages were then calculated by taking the simple unweighted averages of each day’s 
daily average. Where a day’s data were missing, all other variables which relied on this were classified 
as missing. For example, if no observations were recorded on 1 June, then the 1 June 24 h average 
was missing, the 1 June and 2 June 48 h average was missing, the 1 June, 2 June and 3 June 72 h 
average were missing (Appendix 2). 

 
Rainfall data from the closest BOM rainfall gauge at Greenwell Point Bowling Club (~-34.158°S and 
150.7312°E), which was the official management plan gauge for this harvest area, were averaged over 
the 24 h, 48h, 72 h and 7 days prior to the water sampling each day, to incorporate a measure of 
exposure of the bacterial community and deployed oysters. Total phytoplankton (and log transformed 
total phytoplankton) from microscopic phytoplankton enumeration was also included in the modelling 
as a potential predictor variable. Finally, week of the year and water depth were included in the 
models to understand any seasonality or tidal variability that was present in the data. 

 
To model the relationship between bacteria (E. coli, bird, cow, human) abundance and/or oyster 
growth (response variables) and environmental variables (temperature, salinity, week, depth, total 
phytoplankton, rainfall) at the sensor location within Wagonga Inlet, correlation analyses were initially 
undertaken to explore the relationships between variables. Generalised additive models (GAMs) were 
then applied to the data. GAMs allow abundance data to be treated as count data (discrete integer 
values), and as such can handle zero counts. GAMs also allow for smoother functions to be 
incorporated into each model for the environmental variables that had a non-linear relationship with 
bacterial abundance. 

 
Input data (predictor variables) were the sensor observations for both salinity and temperature, 
including aggregation over several different time periods, including depth, week and total 
phytoplankton (logged or unlogged). For comparison to current (non-sensor-based) practice, models 
were also run using only rainfall data. Again, these included depth, week and total phytoplankton. As 
total phytoplankton data is not available in real time, and therefore not considered a predictor variable 
by definition, models were run both with and without this variable. In summary, four models were 
developed for each of the bacterial sources: rainfall only, rainfall and total phytoplankton; sensor only; 
and sensor and total phytoplankton. 

 
To model the relationship between oyster growth various GAMs models were also investigated using 
the sensor/total phytoplankton/rainfall data for the same time period. These models were then fitted 
in version 3.4.3 of the R statistical package (Team R Core, 2013), using the GLM function in version 
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1.8–22 of the ‘mgcv’ package (Wood, 2006). Models were then compared using the Akaike 
information criterion (AIC) and the model with the lowest AIC selected. 

 
Appendix 2A. Summary Statistics for Bacterial Modelling – Sensor site, Shoalhaven and 
Crookhaven Rivers 

 
 

Variable 
 

Mean 
Standard 

Error 
 

Median 
Standard 
Deviation 

 
Minimum 

 
Maximum 

 
Count 

 
Missing 

average_cfu 8.72 1.22 3.27 13.76 0.00 106.71 127 0 
bird 188.03 30.27 31.94 341.16 0.00 2010.37 127 0 
cow 340.77 154.15 0.00 1737.17 0.00 16386.03 127 0 
depth24 0.90 0.01 0.88 0.13 0.69 1.67 127 0 
depth48 0.90 0.01 0.89 0.11 0.71 1.35 127 1 
depth72 0.90 0.01 0.88 0.10 0.74 1.23 127 2 
ecoli 1190.00 133.44 692.63 1503.78 0.00 11281.13 127 0 
human 48.51 24.81 0.00 279.59 0.00 2188.15 127 0 
logPhytoplankton 13.85 0.04 13.91 0.48 12.58 15.25 127 0 
Phytoplankton 1172755.91 60171.57 1100000.00 678099.21 290000.00 4200000.00 127 0 
rainfall24 7.91 1.86 0.00 20.95 0.00 129.00 127 8 
rainfall48 8.03 1.50 0.70 16.87 0.00 120.50 127 12 
rainfall72 8.05 1.26 1.87 14.17 0.00 80.33 127 16 
salinity24 30.80 0.65 33.11 7.38 1.37 35.84 127 0 
salinity48 30.82 0.63 33.10 7.09 1.64 35.81 127 1 
salinity72 30.84 0.61 33.01 6.86 2.13 35.51 127 2 
temp24 18.49 0.31 18.43 3.52 11.52 25.60 127 0 
temp48 18.51 0.31 18.51 3.46 11.74 24.89 127 1 
temp72 18.52 0.30 18.73 3.44 11.89 24.80 127 2 
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Appendix 3. Outreach: Summary of project related publications, seminars, workshops, 
conference presentations and other project related public presentations. 

 
Author(s) Title Bibliographic details Status 

(Submitted, 
Accepted, 
Published) 

Penelope Ajani, 
Hernan Henriquez- 
Nunez, Arjun 
Verma, Satoshi 
Nagai, Matthew 
Tesoriero, Hazel 
Farrell, Anthony 
Zammit, Steve Brett 
and Shauna 
Murray 

Mapping the 
development of 
Dinophysis spp. HABs 
using a novel molecular 
qPCR assay 

Harmful Algae 116 (2022) 102253 Published 

DPI Food Authority Foodwise - Issue 60 https://www.foodauthority.nsw.gov.au 
 
Winter 2022 

Published 

Penelope Ajani, 
Arjun Verma, Jin Ho 
Kim, Hazel Farrell, 
Anthony Zammit, 
Steve Brett & 
Shauna Murray 

Using qPCR and high- 
resolution sensor data to 
model a multi-species 
Pseudo-nitzschia 
(Bacillariophyceae) bloom 
in southeastern Australia 

Harmful Algae 108 (2021) 102095 Published 

DPI Food Authority Foodwise - Issue 56 https://www.foodauthority.nsw.gov.au 
 
Autumn 2021 

Published 

NSW DPI Net Returns of Real-Time 
Sensors and Salinity- 
Based Management Plans 
in NSW Oyster Production 
- Report 

https://www.foodauthority.nsw.gov.au/about- 
us/science/science-in-focus/real-time-sensors- 
shellfish-harvest-area-management 

Published 

NSW DPI Net Returns of Real-Time 
Sensors and Salinity- 
Based Management Plans 
in NSW Oyster Production 
- Factsheet 

https://www.foodauthority.nsw.gov.au/about- 
us/science/science-in-focus/real-time-sensors- 
shellfish-harvest-area-management 

Published 

The Team Oyster Transformation 
Project 

NSW Oyster Newsletter 
 
https://www.nswoysters.com.au/nsw-oyster- 
newsletter.html 
 
July 2020 

Published 

DPI Food Authority Foodwise - Issue 46 https://www.foodauthority.nsw.gov.au 
 
Feb 2018 

Published 

Shauna Murray & 
Penelope Ajani 

Ah shucks, how bushfires 
can harm and even kill our 
delicious oysters 

The Conversation Published 

https://www.foodauthority.nsw.gov.au/
https://www.foodauthority.nsw.gov.au/
http://www.foodauthority.nsw.gov.au/about-
http://www.foodauthority.nsw.gov.au/about-
http://www.foodauthority.nsw.gov.au/about-
http://www.foodauthority.nsw.gov.au/about-
https://www.nswoysters.com.au/nsw-oyster-newsletter.html
https://www.nswoysters.com.au/nsw-oyster-newsletter.html
https://www.foodauthority.nsw.gov.au/
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  https://theconversation.com/ah-shucks-how- 
bushfires-can-harm-and-even-kill-our-delicious- 
oysters-131294 Aug 2020 

 

 
 
 

Appendix 4. Summary of project related seminars, workshops and conference 
presentations 

 
Presenter(s) Event/Activity Presentation title 
Matthew Tesoriero 
 
(Supervisors: Arjun Verma 
and Shauna Murray) 

Final Hons Seminar, 
 
School of Life Sciences, UTS, 
2020 

Abundance and distribution of pathogenic bacteria 
in NSW oyster producing estuaries 

Shauna Murray, Penelope 
Ajani, Arjun Verma, Rendy 
Ruvindy, Jin Ho Kim & Kate 
McLennan 

Australasian Society for 
Phycology and Aquatic Botany 
Annual Conference 2020 

Using molecular genetic techniques to detect 
harmful algal bloom-forming species impacting 
aquaculture 

Arjun Verma & Matt 
Tesoriero 

Catchment, Estuary and 
Wetland Mapping, Modelling 
and  Prioritisation  Workshop 
2020 

Oyster Transformation Project 

Shauna Murray & Matt 
Tesoriero 

Manning River Estuary CMP 
Discussion Group - Sewerage 
and  Septic  Pathogen  Risks 
2020 

Discussion Group 

Wayne O’Connor Aust & NZ Biotechnology 
Conference, May, 2019, 
Sydney 

Plenary Address: The future of NSW Aquaculture: 
the need for clever solutions 

Shauna Murray, Arjun 
Verma, Swami Palanisami & 
Penelope Ajani 

Australia New Zealand Marine 
Biotechnology Conference 
(ANZMBS) 2019 

The use of eDNA and arrays for precise estuarine 
water quality assessment 

Arjun Verma, Swami 
Palanisami, Penelope Ajani 
& Shauna Murray 

Australian Marine Science 
Association Conference 2019 

Novel molecular ecology tools to predict harmful 
algal blooms in oyster- producing estuaries 

Arjun Verma and Matthew. 
Tesoriero 

Trade table,  NSW Oyster 
Conference, Forster  NSW 
2019 

Oyster Transformation Project 

Penelope Ajani, Arjun 
Verma & Shauna Murray 

NSW Oyster Conference, 
Forster  NSW  (Poster 
Presentation) 2019 

Common harmful algae in the oyster growing 
estuaries of New South Wales. 

Wayne O’Connor DPI, Senior Scientist 
Symposium. EMAI, Camden, 
November 2018 

Overview and Progress – Oyster Transformation 
Project 

Penelope Ajani, Michaela 
Larsson, Ana Rubio, 
Stephen Bush, Steve Brett, 
Stephen Woodcock, Hazel 
Farrell & Shauna Murray 

Estuarine Coastal Shelf Science 
Conference 2018 

Modelling harmful algal blooms in 
the Hawkesbury River, Australia 

Wayne O’Connor Macquarie University, 
Microbiomes Workshop, 
Epping, November 2018 

Overview and Progress – Oyster Transformation 
Project 

https://theconversation.com/ah-shucks-how-bushfires-can-harm-and-even-kill-our-delicious-oysters-131294
https://theconversation.com/ah-shucks-how-bushfires-can-harm-and-even-kill-our-delicious-oysters-131294
https://theconversation.com/ah-shucks-how-bushfires-can-harm-and-even-kill-our-delicious-oysters-131294
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Shauna Murray, Arjun 
Verma, Penelope Ajani, 
Anthony Zammit, Hazel 
Farrell, Swami Palanisami & 
Wayne O’Connor 

Australian Shellfish Quality 
Assurance Advisory 
Committee Science Day 2018 

Building profitability and sustainability in the NSW 
oyster industry 

Penelope Ajani, Michaela 
Larsson, Ana Rubio, 
Stephen Bush, Steve Brett, 
Stephen Woodcock, Hazel 
Farrell & Shauna Murray 

Australian Shellfish Quality 
Assurance Advisory 
Committee Science Day 2018 

Modelling harmful algal blooms in 
the Hawkesbury River, Australia 

Hazel Farrell, Grant 
Webster, Phil Baker, 
Anthony Zammit, Penelope 
Ajani,  Shauna Murray & 
Steve Brett 

Australian Shellfish Quality 
Assurance Advisory 
Committee Science Day 2018 

Developing phytoplankton and biotoxin risk 
assessments for both shellfish aquaculture and wild 
harvest shellfish in New South Wales. 

Wayne O’Connor SIMS, July 2017 Oyster Research Overview Presentation 
 
 
 

Presenter(s) Event Presentation title 
Shauna Murray & Arjun 
Verma 

https://www.youtube.com/watch?v=cfAyjjnASy0&t=154s Sept. 2019: PROJECT 
NEWS: Can World 
Leading Research 
Transform the NSW 
Oyster Industry? 

Shauna Murray https://www.youtube.com/watch?v=4NM_U_lKCEE&t=1s Sept. 2020: Food 
Agility CRC – 
Cooperative Research 
Centre customer story 

Arjun Verma & Penelope 
Ajani 

https://www.youtube.com/watch?v=iRcRZkptpOY&t=46s Feb. 2020: Food 
Agility Summit 2020: 
WE LOVE SCIENCE! 

Anthony Zammit https://www.cnbc.com/video/2017/03/05/one-of-the-most- 
sustainable-farming-enterprises-meets-hi-tech.html 

Mar 2017: One of the 
most sustainable 
farming enterprises’ 
meets hi-tech 

 

https://www.youtube.com/watch?v=cfAyjjnASy0&t=154s
https://www.youtube.com/watch?v=4NM_U_lKCEE&t=1s
https://www.youtube.com/watch?v=iRcRZkptpOY&t=46s
https://protect-au.mimecast.com/s/jVdMCr81YNH380D1h7VvYG?domain=cnbc.com
https://protect-au.mimecast.com/s/jVdMCr81YNH380D1h7VvYG?domain=cnbc.com
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