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ABSTRACT 

Mg2Si1-xSnx solid solutions show enhanced thermoelectric performance when the 
Sn mole fraction x is approximately x = 0.7. This has been discussed in terms of 
complexity of the electronic structure arising from crossover of two bottom conduction 
bands, but direct detailed understanding of the origins and precise nature of this band 
convergence is limited. Here, we report first-principles calculations of the band edge 
changes analysed by band unfolding and crystal orbital Hamilton population techniques. 
We find that strain is particularly important at this crossing. Mg2Si and Mg2Sn show 
opposite trends in the conduction band edge shifts leading to a band crossover at x ~ 
0.625. However, there are also important effects due to disorder. Transport calculations 
show that enhancement of the figure of merit ZT value owes to the combined effects of 
lattice strain, band edge overlap, composition change and disorder.  

I. INTRODUCTION 
Thermoelectric materials are of importance for future energy technologies, for 

example conversion of converting waste heat into electricity [1]. This requires high 
performance thermoelectric materials. Performance in this context is measured by a 
dimensionless figure of merit ZT = S2σT/κ. Here T is the temperature, S is the Seebeck 
coefficient, σ is the electrical conductivity, and κ is the thermal conductivity. ZT limits 
the energy conversion efficiency [2], such that in the limit when ZT approaches infinity 
the conversion efficiency of a properly designed device approaches Carnot efficiency. 
Optimizing to obtain high ZT is complicated by the fact that the transport parameters 
entering this expression are usually counter-correlated, so that for example, 
combinations of high electrical conductivity and high Seebeck coefficient are unusual 
[2,3]. Similarly, high electrical conductivity and very low thermal conductivity is a 
combination that is difficult to achieve. However, various concepts for resolving these 
contradictions and materials embodying them have been developed, including for 
example the “phonon-glass electron crystal” (PGEC) materials [4] and materials where 
complex band structures of various types overcome the limitations imposed by the 
counter-correlation of σ and S [5,6].  

Mg2SixSn1-x materials are of particular interest for energy technology because of 
their combination of high ZT, high terrestrial elemental abundant, low cost, and non-
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toxic nature of its constituents. Mg2Si and Mg2Sn are indirect band gap semiconductors 
with similar band edge dispersions. Mg2Si1-xSnx shows high ZT values from 0.6 to 1.3 
in a mid-temperature range of 400-900 K, when appropriately doped, e.g. with Sb, to 
optimum carrier concentrations. This is understood as arising from a combination of 
alloy-disorder induced reduction in thermal conductivity and a complex band structure 
arising from convergence of the conduction band edges [6-10]. In this way, reasonable 
thermal conductivity, combined with high Seebeck coefficient and high electrical 
conductivity, can be simultaneously obtained [11-19]. Zaitsev et al. first pointed out the 
crossover of two conduction band edges in Mg2Si and Mg2Sn, which have relatively 
heavy or light effective masses, respectively [20]. Then, this idea was extended to their 
solid solutions of Mg2Ge or Mg2Sn with Mg2Si as well, although better thermoelectric 
system was still n-type doped Mg2Si1-xSnx [21] with a ZT of 1.1 at ~800 K. After that, 
an optimized ZT of 1.3 for x≈0.7 at 700 K was obtained in experiments [22]. This is a 
very desirable range for waste heat recovery, as it is in the range for high grade waste 
heat sources such as exhaust gas from internal combustion engines. In addition, a 
similar ZT of 1.3 was also reported in Mg2.16(Si0.4Sn0.6) with doping by 1.5% Sb [23].  

Theoretical work supports the high performance of this system [17,22], with a key 
reason being band overlap or degeneracy [24] at the conduction band edges in a range 
of x = 0.6-0.7. The dominant reason for this was ascribed to effective lattice strain in 
the alloy [25]. The Mg2Si and Mg2Sn materials may be regarded as experiencing tensile 
strain and compressive strain, respectively, in their solid solutions. Boltzmann transport 
theory calculations have been applied to show that both the Seebeck coefficient and 
electrical conductivity can be effectively enhanced by strain [19]. However, chemical 
effects other than strain and disorder could also be important. This motivates more 
detailed studies of the lattice strain effect on thermoelectric parameters of Mg2Si and 
Mg2Sn, in particular to understand the specific synergetic contributions of lattice strain, 
band overlap and composition to the enhancement of ZT. 

With this aim, we calculate the effective band structures of Mg2Si1-xSnx (0≤x≤1) 
solid solutions to confirm the crossover of conduction band edges accounting for the 
different chemical species (Si and Sn). We apply a band unfolding technique to extract 
the band information from a reduced Brillouin zone of the 2×2×2 supercell and project 
them into the first Brillouin zone of the primitive cell. This allows separation of the 
different contributions. After the analysis, we find that the overlap of band edges indeed 
happens when x ~ 0.625. The lattice strains corresponding to this composition ratio of 
0.625 are 4.3 % for Mg2Si and -2.6 % for Mg2Sn, respectively.  

Then, we separately investigate the tensile or compressive lattice strain effects of 
the Mg2Si and Mg2Sn. We apply a k-dependent crystal orbital Hamilton population 
(COHP) analysis [26-32] of the band structures, by which we straightforwardly follow 
the evolution process of the overlap of the first and second conduction bands [6]. We 
confirm that they both show the crossover of conduction band edges under a tensile 
strain of 2.1 % for Mg2Si or a compressive strain of -4.0 % for Mg2Sn. The changes of 
Seebeck coefficients, electrical conductivities, and ZT values caused by the lattice strain 
are then evaluated by performing additional Boltzmann transport theory calculations. 
Finally, combining the results for the two end-point compounds and their solid solutions, 
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we clarify the contributions of the lattice strain, band overlap, composition change and 
disorder to the enhanced thermoelectric performance. 

 
II. METHODS 

Our present calculations were performed within the framework of density 
functional theory using the projector-augmented wave (PAW) method [33] 
implemented in the Vienna ab initio simulation package (VASP) [34-36]. We used the 
Perdew-Burke-Ernzerhof (PBE) exchange correlation functional [37] with a plane 
wave cutoff of 520 eV. The relaxations of the supercells were done until the total energy 
converged within 10-6 eV and the force on each atom was less than 0.001 eV/Å. For 
most semiconductors standard semi-local density functionals, including PBE, are 
known to underestimate band gaps. We calculated the electronic structures using the 
modified Becke-Johnson (mBJ) meta-GGA potential [38,39]. This approach generally 
gives greatly improved band gaps, comparable to hybrid functional or GW methods but 
is computationally much less expensive [39-41]. This is important for transport 
calculations, which require electronic structures on very fine meshes within the 
Brillouin zone. 

A series of Mg2Si1-xSnx solid solution structures were constructed based on a 2×2×2 
supercell. The Sn concentration ratio x thereby could be 0, 0.250, 0.375, 0.500, 0.625, 
0.750, 0.875, and 1, covering the range of experimental measurements. The supercell 
band structure was unfolded to the first Brillouin zone of the pure compound using 
VASPKIT [42]. The band-resolved projected crystal orbital Hamilton populations 
(pCOHP) [29-31,43] were used to track the band crossover. The electrical transport 
property was calculated using Boltzmann transport theory as implemented in Transopt 
[44,45]. The Brillouin zone sampling was done using uniform k point meshes with 
spacings smaller than 2π×0.03Å-1 in order to converge the transport results.  

In the calculation, the Seebeck coefficient S can be obtained from the Boltzmann 
transport theory as implemented in the Transopt code, by using the constant relaxation 
time approximation (CRTA) [44,45] to treat τ as a constant. Therefore, the electrical 
conductivity (σ) is expressed in the form of the ratio σ/τ. However, if one wants to 
predict a thermoelectric property like ZT, knowing τ is a must. Also, to our knowledge, 
there are no published or accurate data on this property for Mg2Si and Mg2Sn. Then, a 
standard electron-phonon dependence of relaxation time τ on T and n was used, namely 
τ = CT−1n−1/3. Here, C is a constant determined form experimental data [46-48], to be 
5×10−6 s·K·cm and 4.45×10−5 s·K·cm for n-type Mg2Si and Mg2Sn, respectively. 

 
TABLE I. Calculated and experimental lattice constants a (Å) of Mg2X (X=Si, Sn). 

 Mg2Si  Mg2Sn  Mg2Si0.375Sn0.625 
 This 

work 
Other 
calc. 

 This 
work 

Other 
calc. 

 This 
work  

Other 
calc.  

a 6.360 6.364a 
6.395b 

 6.810 6.805a 
6.856b 

 6.633 6.640c 

Expt. 6.338-6.391b  6.760-6.836b   
aRef. [16], bRef. [46], cRef. [47]. 
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TABLE   II. Calculated and experimental band gaps (eV) of Mg2X (X=Si, Sn).  
 Mg2Si Mg2Sn 

Functional This work Other calc. This work Other calc. 
mBJ 0.62 0.58-0.60cd 0.26 0.30d 
PBE 0.21 0.22f -0.20 -0.19f 

HSE06 0.59 0.49g 0.14 0.13g 
SCAN 0.47  0.01  
PBEsol 0.13  -0.18  
Expt. 0.69-0.78e 0.23-0.33e 

cRef. [16],  dRef. [48],  eRef. [14],  fRef. [49],  gRef. [11]. 
 

III. RESULTS AND DISCUSSION 
Mg2X (X=Si, Sn) occurs in a face centered cubic structure, space group Fm-3m.  

Figure 1a presents the structures of Mg2X (X=Si, Sn) in their primitive cell, 
translationally equivalent unit cell and in a 2×2×2 supercell. The equilibrium lattice 
constants of Mg2Si and Mg2Sn calculated by the PBE functional are 6.360 Å and 6.810 
Å, respectively, which are in excellent agreement with the experiments and previous 
calculations (see TABLE I ) [49]. Their fundamental electronic band gaps (listed in 
TABLE II) and band structures (shown in Figure S1) have been calculated with various 
functionals. The modified Becke Johnson (mBJ) potential [38,39] has been shown to 
give band gaps in good accord with experiment for a wide range of semiconducting 
materials. Importantly, we find mBJ band gaps of Mg2Si and Mg2Sn of 0.623 eV and 
0.261 eV, respectively. These are very close to the values from experiments or GW and 
HSE06 calculations [49]. We present mBJ electronic structures and base our transport 
calculations on them. 

 
FIG. 1. (a) The schematic diagrams of crystal structures: primitive cell, unit cell and 
supercell of Mg2X (X=Si, Sn). The projected (mBJ) band structures of (b) Mg2Si and 
(c) Mg2Sn from primitive cell calculations. The size of the colored dots indicates the 
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weights of different orbitals.  The font size of the writing should be larger than 7.5 pt at 
the size that the journal will use … 8 or 9 is good. 
 
 The mBJ band structures of Mg2Si and Mg2Sn are displayed in Figure 1b and 1c, 
with the atomic orbital projections. Both compounds show similar band dispersions, 
consistent with previous reports [16]. Their indirect band gaps are defined by the energy 
difference between the valence band maximum (VBM) at the Γ point and conduction 
band minimum (CBM) at the X point. The valence bands near the band edge are from 
Si or Sn p orbitals, while the conduction bands show much stronger orbital 
hybridization. There are two conduction bands near the minimum of conduction band. 
One is dominated mostly by the p or d orbital components with lighter effective mass 
(0.5 m0 for Mg2Si and 0.58 m0 for Mg2Sn), while the other mostly comes from s orbital 
components with a heavier effective mass (0.69 m0 for Mg2Si and 1.0 m0 for Mg2Sn). 
Interestingly, these two conduction bands with different characteristics, have opposite 
orders in Mg2Si and Mg2Sn. This is the basis of the band convergence in Mg2Si1-xSnx 
solid solutions. 

The effective Mg2Si1-xSnx solid solution band structures are shown in Figures 2 
and S2, The Bloch states in the supercell have been unfolded into the first Brillouin 
zone of primitive cell.  As expected, their band gaps monotonously decrease with 
increasing Sn content. These plots directly show the conduction band crossover at x = 
0.625. This composition is very close to the range around x=0.7 where high 
thermoelectric performance is found. The conduction band crossover leads to a 
significantly natural enhanced density-of-states effective mass, which gives rise to large 
absolute values of the Seebeck coefficient with no adverse effect on the carrier mobility 
[50], moreover, Mg2Si0.375Sn0.625 exhibits the lowest lattice thermal conductivity 
among all their solid solutions [17,22]. It consistent with the existing understanding 
that this convergence is important for the thermoelectric performance. 

This raises the question of the origin of this convergence.  In the following, we 
will clarify that this crossover is a result of the lattice strain rather just the chemical 
nature of the elements. This then leads to the expectation that other methods of applying 
strain can control the thermoelectric performance of these systems. 
 

 
FIG. 2. The mBJ band structures of Mg2Si1-xSnx solid solutions, which have been 
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unfolded into the first Brillouin zone of unit-cell along Γ-X-W. The Sn composition 
ratio x varies from 0 to 1.the writing is too small here too 
 
TABLE III. Calculated mBJ band gaps (eV) of Mg2X (X=Si, Sn) as function of artificial 
(isotropic strain) lattice constant a (Å). Here, I and XI represent the equilibrium lattice 
constants of Mg2Si and Mg2Sn respectively, II to X are for the extrapolated values 
between I and XI.  
 
 
 

 I II III IV V VI VII VIII IX X XI 

a (Å) 6.36 6.41 6.45 6.49 6.54 6.58 6.63 6.67 6.72 6.76 6.81 

Mg2Si 0.62 0.64 0.66 0.66 0.63 0.59 0.56 0.52 0.48 0.44 0.40 

Mg2Sn 0.38 0.41 0.44 0.46 0.46 0.42 0.39 0.36 0.32 0.29 0.26 

 
To separate the influence of chemical identity from strain, we start with the two 

end-point compounds, Mg2Si and Mg2Sn, which have different lattice constants. Then, 
we constructed a series of Mg2X (X=Si, Sn) structures with assumed lattice constants 
ranging from the value of 6.36 Å pertinent for Mg2Si, to the value of 6.81 Å pertinent 
for Mg2Sn, labeled in order by a set of Greek letters. The used lattice constants and the 
corresponding mBJ band gaps are summarized in Table III. The band gap of Mg2Si first 
increases  as the lattice constant is increased from 6.36 Å to 6.45 Å, and then decreases 
between 6.49 Å and 6.81 Å. Similar to this trend, the Mg2Sn band gap also first 
increases then decreases during these ranges.  This reflects the different behavior of the 
two bands near the conduction band minimum. 

We applied a band-resolved pCOHP analysis [31,43] shown in Figure 3 to clarify 
the band dependence. We focus on the Mg-3s character, which differs between the two 
bands and which is important in the band formation. This unoccupied s orbital is very 
sensitive to volume. The position of the Mg 3s dominated band relative to the other 
conduction band is opposite in the two compounds, and so while both Mg2Si and Mg2Sn 
show band crossover under strain, the sign of the lattice strain to achieve this band 
crossover is opposite. As a result, they coincidentally have the conduction band 
overlaps at a similar lattice constant near 6.49 Å and 6.54 Å. Thus, strain can play an 
essential role in the solid solutions for the enhanced thermoelectric properties and it can 
be expected that other chemical and/or physical methods of applying strain can improve 
the thermoelectric properties of these materials. 
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FIG. 3. The mBJ band structures along Γ-X-W of Mg2X (X=Si, Sn) with extrapolated 
lattice constants listed in Table III. The COHP of Mg-3s is indicated by the color bar, 
where the blue and red mean bonding and anti-bonding state contributions, respectively. 
Check font sizes 
 

Because the lattice strain can effectively change the band structure, it should have 
direct effects on the Seebeck coefficient S and electrical conductivity σ. The strain 
dependences of S and σ are displayed in Figures S3-S9. These two parameters are 
calculated using Boltzmann transport equations with relaxation time approximation 
[45]. The final thermoelectric property is determined by the optimal value of ZT that 
reflects the effectiveness of the material. As mentioned in the introduction, ZT is 
inversely proportional to the thermal conductivity κ which depends on both temperature 
T and carrier concentration n. It is never easy to predict κ from ab initio calculations or 
molecular simulations, which may even involve the effect of strain in the study. The 
thermal conductivities are therefore adopted to the experimental values as summarized 
in Table SI. A temperature of 700 K and an electron density of n = 1.8 × 1020 cm−3 are 
used to allow comparison with experiments. Finally, the strain dependence of 
thermoelectric ZT value of both Mg2Si and Mg2Sn is displayed in Figures 4, S10-S11. 
We obtain optimal ZT values of 0.13 (Mg2Si) and 0.97 (Mg2Sn) with lattice constants 
of 6.49 Å and 6.54 Å, respectively. It is clear that the lattice strain can enhance their 
thermoelectric performance at the same time as achieving the band crossover. The 
lattice strain (or band crossover) is able to enhance the ZT value of Mg2Si form 0.13 
(6.36 Å) to 0.16 (6.49 Å), with an increase about 23 %. Remarkably, the ZT value of 
Mg2Sn is enhanced from 0.44 (6.81 Å) to 0.97 (6.54 Å) with a dramatic increase about 
220 %. Thereby, Mg2Sn shows both higher natural thermoelectric performance and 
larger turnability than the Mg2Si from an electronic point of view. 
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FIG. 4. Calculated ZT values of Mg2Si (I) and Mg2Sn (XI) as function of artificial lattice 
constant at the temperature fixed to 700 K. A, B and E indicate Mg2Si, Mg2Sn and 
Mg2Si0.375Sn0.625 at their respective relaxed equilibrium lattice constants. C and D 
represent constrained “Mg2Si0.375Sn0.625” with lattice constants fixed to that of Mg2Si 
(A), and Mg2Sn (B) respectively. The error bars are from the influence of local atomic 
arrangements of Si and Sn in the Mg2Si0.375Sn0.625 supercell.  
 

In order to separate the composition effect and the lattice strain effect, we consider 
in Figure 4 optimized Mg2Si0.375Sn0.625 systems (E), as well as systems with the lattice 
constants constrained to the values appropriate for Mg2Si (A) and for Mg2Sn (B). The 
transport parameters at different temperatures for Mg2Si0.375Sn0.625 disordered 
structures (Figure S12), taking the lattice constants into account, are shown in Figures 
S13-S25. For better comparison, we also use this set of lattice parameters to calculate 
ZT values for Mg2Si and Mg2Sn, where the relaxation time was an average value taken 
from Ref [17]. Is the above rewording correct? We found that the strain-free structure 
has a ZT value in the range of 0.52-0.60. The uncertainty comes from the disorder effect, 
i.e. there are various local atomic orderings of Si and Sn atoms in the supercell. The 
disorder can also play an important role in their thermoelectric performance, both from 
the point of view of the effect on electronic structure and presumably from alloy 
scattering of phonons. 

 
To understand impacts of highly disordered structure and lattice strain for Mg2Si1-

xSnx, the band structures of Mg2Si0.375Sn0.625 under different lattice constants are shown 
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in Figures S26-28. When the lattice is fixed to the lattice constant of Mg2Si, the 
calculated ZT values of the solid solutions are reduced to the range of 0.34-0.41. When 
the lattice is fixed to the lattice constant of Mg2Sn, the calculated ZT values of the solid 
solutions are in the range of 0.35-0.38. By comparing relaxed Mg2Si and constrained 
Mg2Si0.375Sn0.625 under the same lattice constants of Mg2Si in Figure 4,  By comparing 
(Figure 4) Mg2Si and Mg2Si0.375Sn0.625 at the lattice structure appropriate for Mg2Si, 
one finds that a composition change form x = 0 to x = 0.625 enhances the ZT value by 
about 3 fold. On the other hand, by comparing (Figure 4) Mg2Sn and Mg2Si0.375Sn0.625 
at the lattice constants appropriate for Mg2Sn, the composition change form x = 1 to x 
= 0.625 decreases the ZT value by about 17%. These changes are not mainly due to the 
conduction band overlap as this is absent in relaxed Mg2Si, Mg2Sn and constrained 
Mg2Si0.375Sn0.625. The contribution of lattice strain can be determined by comparing 
relaxed and constrained Mg2Si0.375Sn0.625. The relaxed Mg2Si0.375Sn0.625 has overlap of 
the bands at the conduction band edge. Thus, based on the calculated results, both strain 
and band overlap are important this solid solution system.  
 

IV. CONCLUSIONS 
In this work, we have performed first principles calculations to understand the 

large enhancement of thermoelectric performance in Mg2Si1-xSnx solid solutions, in 
particular in relation to the evolution of the band structure. Band unfolding and COHP 
confirm the band crossover in Mg2Si, Mg2Sn and their solid solutions and the origin of 
this. The ZT values were calculated using Boltzmann transport theory and are consistent 
with experimental reports. Compared to Mg2Si, intrinsically Mg2Sn has much higher 
natural thermoelectric performance and larger turnability. We conclude that the 
enhancement of ZT value in Mg2Si0.375Sn0.625 is a collective result of lattice strain, band 
edge overlap, composition change and disorder, and not just the band convergence itself. 
  

ACKNOWLEDGEMENTS 
This work was supported by the National Natural Science Foundation of China 

(Grants No. 12074241, No. 11929401, No. 52130204), the Science and Technology 
Commission of Shanghai Municipality (Grants No. 19010500500, No. 20501130600, 
and No. 21JC1402600), Key Research Project of Zhejiang Lab (No. 2021PE0AC02), 
and High Performance Computing Center, Shanghai University.  
 
 
REFERENCE 
[1] Lon E. Bell, Science 321, 1457 (2008). 

[2] C. Wood, Reports on Progress in Physics 51, 459 (1988). 

[3] Boris Kozinsky and David J. Singh, Annual Review of Materials Research 51, 565 

(2021). 

[4] G. S. Nolas, D. T. Morelli, and T. M. Tritt, Annual Review of Materials Science 

29, 89 (1999). 

[5] Guangzong Xing, Jifeng Sun, Yuwei Li, Xiaofeng Fan, Weitao Zheng, and David J. 

Singh, Physical Review Materials 1, 065405 (2017). 



10 

 

[6] Jiong Yang, Lili Xi, Wujie Qiu, Lihua Wu, Xun Shi, Lidong Chen, Jihui Yang, 

Wenqing Zhang, Ctirad Uher, and David J Singh, npjComputational Materials 2, 15015 

(2016). 

[7] LiDong Zhao, ShihHan Lo, Yongsheng Zhang, Hui Sun, Gangjian Tan, Ctirad Uher, C. 

Wolverton, Vinayak P. Dravid, and Mercouri G. Kanatzidis, Nature 508, 373 (2014). 

[8] G. Jeffrey Snyder and Eric S. Toberer, Nature Materials 7, 105 (2008). 

[9] Yinglu Tang, Zachary M. Gibbs, Luis A. Agapito, Guodong Li, Hyun-Sik Kim, Marco 

Buongiorno Nardelli, Stefano Curtarolo, and G. Jeffrey Snyder, Nature Materials 14, 

1223 (2015). 

[10] Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, Nature 473, 66 

(2011). 

[11] Kim Chang-Eun, Soon Aloysius, and Stampfl Catherine, Physical Chemistry Chemical 

Physics  18, 17 (2015). 

[12] G. Busch and U. Winkler, Physica 20, 1067 (1954). 

[13] Peter M. Lee, Physical Review 135, A1110 (1964). 

[14] M. Y. Au-Yang and Marvin L. Cohen, Physical Review 178, 1358 (1969). 

[15] J. L. Corkill and M. L. Cohen, Physical Review B 48, 17138 (1993). 

[16] J. J. Pulikkotil, D. J. Singh, S. Auluck, M. Saravanan, D. K. Misra, A. Dhar, 

and R. C. Budhani, Physical Review B 86, 155204 (2012). 

[17] X. J. Tan, W. Liu, H. J. Liu, J. Shi, X. F. Tang, and C. Uher, Physical Review 

B 85, 205212 (2012). 

[18] K. Kutorasiński, J. Tobola, and S. Kaprzyk, Journal of Computational Chemistry 

87, 195205 (2013). 

[19] N. Hirayama, Y. Imai, and N. Hamada, Journal of Applied Physics 127, 205107 

(2020). 

[20] M. I. Fedorov V. K. Zaitsev, A. T. Burkov, E. A. Gurieva, I. S. Eremin, P. P. 

Konstantinov, S. V. Ordin, S. Sano, and M. V. Vedernikov, in Proceedings of the 24th 

International Conference on Thermoelectrics (IEEE), 151 (2002). 

[21] V. K. Zaitsev, M. I. Fedorov, E. A. Gurieva, I. S. Eremin, P. P. Konstantinov, 

A. Yu Samunin, and M. V. Vedernikov, Physical Review B 74, 045207 (2006). 

[22] Wei Liu, Xiaojian Tan, Kang Yin, Huijun Liu, Xinfeng Tang, Jing Shi, Qingjie 

Zhang, and Ctirad Uher, Physical Review Letters 108, 166601 (2012). 

[23] Wei Liu, Xinfeng Tang, Han Li, Kang Yin, Jeff Sharp, Xiaoyuan Zhou, and Ctirad 

Uher, Journal of Materials Chemistry 22, 13653 (2012). 

[24] Yabei Wu, Weiyi Xia, Weiwei Gao, Wei Ren, and Peihong Zhang, Physical Review 

Applied 8, 034007 (2017). 

[25] Chang-Eun Kim, Aloysius Soon, and Catherine Stampfl, Physical Chemistry Chemical 

Physics 18, 939 (2016). 

[26] V. Popescu and A. Zunger, Physical Review Letters 104, 236403 (2010). 

[27] Voicu Popescu and Alex Zunger, Physical Review B 85, 085201 (2012). 

[28] W. Ku, T. Berlijn, and C. C. Lee, Physical Review Letters 104, 216401 (2010). 

[29] V. L. Deringer, AL Tchougréeff, and R. Dronskowski, The Journal of Physical 

Chemistry A 115, 5461 (2011). 

[30] Richard Dronskowski and Peter E. Bloch, The Journal of Physical Chemistry 97, 



11 

 

8617 (1993). 

[31] S. Maintz, V. L. Deringer, AL Tchougréeff, and R. Dronskowski, Journal of 

Computational Chemistry 34, 2557 (2013). 

[32] Xin Sun, Xin Li, Jiong Yang, Jinyang Xi, Ryky Nelson, Christina Ertural, Richard 

Dronskowski, Weishu Liu, Gerald J. Snyder, David J. Singh, and Wenqing Zhang, Journal 

of Computational Chemistry 40, 1693 (2019). 

[33] P. E. Blochl, Physical Review B 50, 17953 (1994). 

[34] G. Kresse and J. Hafner, Physical Review B 47, 558 (1993). 

[35] G. Kresse and J. Hafner, Physical Review B 49, 14251 (1994). 

[36] G. G. Kresse and J.J. Furthmüller, Physical Review B 54, 11169 (1996). 

[37] G. Kresse and D. Joubert, Physical Review B 59, 1758 (1999). 

[38] Axel D. Becke and Erin R. Johnson, The Journal of Chemical Physics 124, 221101 

(2006). 

[39] F. Tran and P. Blaha, Physical Review Letters 102, 226401 (2009). 

[40] David Koller, Fabien Tran, and Peter Blaha, Physical Review B 83, 195134 (2011). 

[41] David J. Singh, Physical Review B 82, 205102 (2010). 

[42] Vei Wang, Nan Xu, Jincheng Liu, Gang Tang, and Wentong Geng, Computer Physics 

Communications 267, 108033 (2021). 

[43] R. Nelson, C. Ertural, J. George, V. L. Deringer, G. Hautier, and R. Dronskowski, 

Journal of Computational Chemistry 41, 1931 (2020). 

[44] Jiong Yang, L. Xi, W. Zhang, L. D. Chen, and Jihui Yang, Journal of Electronic 

Materials 38, 1397 (2009). 

[45] Xin Li, Zhou Zhang, Jinyang Xi, David J. Singh, Ye Sheng, Jiong Yang, and Wenqing 

Zhang, Computational Materials Science 186, 110074 (2021). 

[46] Aleksandr Chernatynskiy and Simon R. Phillpot, Physical Review B 92, 064303 

(2015). 

[47] Xiaojian Tan, Yinong Yin, Haoyang Hu, Yukun Xiao, Zhe Guo, Qiang Zhang, Hongxiang 

Wang, Guoqiang Liu, and Jun Jiang, Annalen der Physik 532, 1900543 (2020). 

[48] P. Boulet and M. C. Record, The Journal of Chemical Physics 135, 234702 (2011). 

[49] Byungki Ryu, Sungjin Park, Eun-Ae Choi, Johannes de Boor, Pawel Ziolkowski, 

Jaywan Chung, and Su Dong Park, Journal of the Korean Physical Society 75, 144 (2019). 

[50] H. Tamaki, H. K. Sato, and T. Kanno, Adv Mater 28, 10182 (2016). 

 


