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Abstract

The artificial bee colony (ABC) is a metaheuristic optimization algorithm
known for its simplicity, flexibility, and efficiency. The algorithm, however,
suffers from slow convergence due to a lack of a powerful local search ca-
pability. The Fibonacci indicator algorithm (FIA), on the other hand, is
a recently proposed derivative-free metaheuristic that incorporates a pow-
erful local search mechanism based on the line search method. This paper
proposes hybridizing the artificial bee colony with the Fibonacci indicator
algorithm to achieve strong exploration and highly efficient exploitation ca-
pabilities. We show that the hybrid algorithm is better than ABC and FIA
and delivers superior outcomes for various optimization functions widely used
in the literature, including 20 scalable basic and ten complex CEC2019 test
functions.

Keywords: Artificial bee colony algorithm, Fibonacci indicator algorithm,
Hybrid algorithms, Metaheuristics

1. Introduction

Many engineering problems are formulated as nonlinear mathematical
programs, which are generally challenging to optimize. Indeed, many nonlin-
ear optimization problems are NP-hard [1]. A nonlinear optimization prob-
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lem can be formulated as [2, 3]:

z = minx {f(x) : l ≤ x ≤ u}, (1)

where x = (x1, x2, . . . , xD) ∈ RD is a D-dimensional vector of decision
variables, f(x) is a nonlinear objective function, l = (l1, l2, . . . , lD) and
u = (u1, u2, . . . , uD) are the lower and upper limits for decision variables,
respectively.

Due to computational challenges of solving nonlinear optimization prob-
lems, various non-exact methods, such as metaheuristic algorithms, have
been developed to obtain “good” solutions instead of finding the global op-
timal solutions. Many metaheuristic algorithms are relatively easy to imple-
ment, and they do not require the problem’s gradient information. Further-
more, by employing stochastic operators [2, 4], the metaheuristic algorithms
will have the capability of escaping from the local optima, leading therefore
to obtaining solutions that are reasonably close to the global optima. Those
advantages have led the metaheuristics to be a common tool for solving not
only engineering optimization problems, but also problems in areas such as
finance and science [5, 6, 7, 8].

Among the metaheuristic optimization methods widely used for global
optimization, the artificial bee colony (ABC) algorithm and its variants have
been the most successful in solving various nonlinear optimization problems
[9]. The ABC algorithm has a powerful exploration ability, is easy to im-
plement, and benefits from a small number of parameters. A powerful ex-
ploration capability is critical for the non-exact algorithms because the lack
of a robust global search scheme in an algorithm increases the possibility
of getting trapped in low quality local optima [10, 11, 12, 13]. Compared
to other metaheuristics, e.g., the particle swarm optimization (PSO), the
ABC algorithm, however, has a slower convergence rate [14]. One strategy
to improve the slow convergence rate of the ABC algorithm without losing
its strong global search capability is through hybridizing the ABC with local
search algorithms such as the line search method [15].

The line search algorithm [16] is well-known for its high convergence
speed. In the line search method, first, a descent direction along which the
objective function is optimized (e.g., decreased for a minimization problem) is
identified. Then, the step size is calculated, either exactly or approximately,
to determine how far the candidate solution can move in the descent direction
[17]. Combining the line search with other algorithms has been shown to pro-
duce promising results [18, 19, 20]. Nonetheless, the line search method has
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certain limitations. For example, using an exact method in the line search
to identify the step size restricts the method’s usability on continuously dif-
ferentiable functions, i.e., on smooth functions. Further, computing the step
size exactly is computationally expensive, and as such, the line search usually
needs to be terminated early to reduce the cost of evaluating the objective
function.

The newly published Fibonacci indicator algorithm (FIA) [21] proposes
a new line search scheme based on the Fibonacci percentages. The FIA
does not suffer from the shortcomings of the original line search method,
and because the FIA applies different methods to avoid getting trapped in
low quality local optima, it may obtain superior results. The results in [21]
show an excellent performance for the FIA, along with a fast convergence
speed for FIA in optimizing a broad range of objective functions, which are
not restricted to smooth functions. Nonetheless, as discussed by [21], the
FIA has certain shortcomings. For example, the FIA may not be suitable
for solving high-dimensional multimodal functions, which demand a robust
exploration scheme. Also, the FIA may not deliver quality solutions for
functions with multiple local optima, and where a balanced exploration and
exploitation strategy is needed. The ABC’s robust global search capability
and the FIA’s fast convergence speed motivate us to hybridize the ABC and
FIA to improve the searchability of the FIA and the convergence speed of
the ABC algorithm.

The contributions of our study can be summarized as follows: (i) we
propose a strategy to hybridize the ABC and FIA methods; (ii) we show
that the hybridized method benefits from a fast convergence speed and a
robust search capability; and (iii) we show that the hybridized method leads
to quality solutions and can outperform the stand-alone ABC and FIA, as
well as the state-of-the-art variants of the ABC and a number of available
metaheuristics.

The remaining of the paper is organized as follows. In Section 2, we
present the related works to our research and explain the ABC algorithm.
In Section 3, we detail the operation of the FIA method. In Section 4,
we propose the hybridized algorithm, which we name ABFIA, and discuss
components of the hybrid ABFIA algorithm. In Section 5, We discuss setting
the parameters of the ABFIA and analyze its convergence behavior. We then
perform comprehensive computational experiments to assess the performance
of the ABFIA, in which we compare the ABFIA and some state-of-the-art
methods. The paper concludes in Section 6.
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2. Related work and background

In 1986, Fred Glover invented the term “metaheuristic” [22] to represent
a heuristic approach that is not problem-specific. Randomness is the key
feature of these algorithms to escape from the local optimal solutions and
plays a crucial role in solving most nonlinear optimization problems, which
are typically NP-hard [1]. However, the randomized structure of such meth-
ods can make them unreliable in producing a consistent result in each run
[23]. The “no free lunch” theorem proves that one metaheuristic cannot be
claimed as the best optimization algorithm in solving all types of problems
[24]. According to this theorem, one algorithm may be best suited for a
set of problems while showing poor results on another group of test prob-
lems. As a result, the research area of metaheuristics has been highly active,
competitive, and challenging [25].

In this section, we first discuss various groups of metaheuristic algorithms.
Then, we focus on the artificial bee colony metaheuristic algorithm and its
variants.

2.1. Four classes of metaheuristics

The metaheuristic algorithms can be classified into the following four groups
[26]:

Physical-based methods. Examples include simulated annealing (SA)
[27], gravitational search algorithm (GCA) [28] and galaxy-based search al-
gorithm (GbSA)[29]. In these methods, rules from physical phenomena are
used to guide the algorithm towards obtaining quality solutions. These algo-
rithms provide promising results in solving different optimization problems.
However, they are more efficient in optimizing unimodal problems, where
they show their strong local search capability [30]. The unimodal optimiza-
tion problems consist of objective functions with only one minimum or one
maximum value.

Evolutionary algorithms. These algorithms are inspired by laws of evolu-
tion in nature, are conceptually simple, and are easy to understand. These
algorithms are flexible in solving various types of optimization problems, in-
cluding nonlinear and NP-hard problems. A huge number of publications in
this area indicates the attractiveness of evolutionary algorithms [31]. The
evolutionary algorithms use a set of random populations to start searching
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the feasible area. By combining the best individuals to produce new gen-
erations, they obtain new solutions and continue the search. The genetic
algorithm (GA) [32], differential evolution (DE) [33] and the evolutionary
strategy (ES) [34] are among the most popular evolutionary algorithms in
solving various types of optimization problems. In comparison with the GA
in solving nonlinear optimization problems, the ES has the difficulty of at-
taining an optimal convergence rate if there is a large number of constraints
[35]. The DE may be chosen over the GA in solving multi-objective opti-
mization problems because the DE explores the search space more efficiently
[36].

Swarm intelligence methods. These methods, which are based on the
collaboration of simple agents to find quality solutions, are commonly in-
spired by the colonies and folks in nature. The ant colony optimization
(ACO) [37], the particle swarm optimization (PSO) [38] and the ABC al-
gorithm [39], which is inspired by the foraging behavior of honey bees, are
some of the most applied swarm intelligence methods. The ACO algorithm
is well suited for discrete optimization problems [40], and the PSO is used
in multi-objective, dynamic optimization, and constraint handling settings
[41]. Compared with the ABC, the PSO is a faster algorithm for solving non-
linear and high-dimensional optimization problems. The ABC, however, has
a robust global search ability and is suitable for problems with many local
optima [42]. Other recently proposed swarm intelligence algorithms such as
Dragonfly algorithm (DA) [43] Salp swarm algorithm (SSA) [44], the ant lion
optimizer (ALO) [45], the grey wolf optimizer (GWO) [25], and the whale
optimization algorithm (WOA) [26] have their own limitations.

For example, the ALO, which is inspired by the foraging behavior of ant
lion’s larvae, demands long run times because of the random walk process
incorporated in the algorithm [46]. The main drawback of the WOA, which is
inspired by the hunting behavior of humpback whales, is the poor exploration
capability [47]. The GWO is motivated by the hunting behavior of grey
wolves in nature. The main shortcomings of the GWO algorithm are slow
convergence rate and low accuracy of the algorithm [48].

Human-based algorithms. These algorithms are inspired by human be-
havior and are another category for metaheuristic algorithms. The harmony
search (HS) [49] and tabu search (TS) [50] are the most popular human-based
algorithms. The HS is influenced by musicians’ improvisational processes and
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offers many appealing features, including ease of implementation and a small
number of parameters. The main weakness in this algorithm is its premature
convergence [51]. Another human-based algorithm, the learner performance
based behavior algorithm (LPB), is inspired by the process of accepting grad-
uates from high schools at universities[52]. The recently published FIA [21]
is another human-based metaheuristic algorithm. The FIA was inspired by
the Fibonacci retracement, a characteristic that the stock market traders use
to predict the best moment to speculate in the market. Fluctuations in stock
prices in a time interval lead to a large number of local minima and maxima.
In the FIA, the objective function value is considered as the price of a stock,
and the aim is to predict the local optimum values of the objective function.

2.2. The artificial bee colony algorithm

The ABC algorithm was proposed by [39] to optimize numerical prob-
lems. The operation of the ABC is based on the behavior of honey bee
swarms in nature. A bee colony consists of “employed” bees, “onlooker”
bees, and “scout” bees. The onlooker and scout bees may be referred to as
the “unemployed” bees. The “employed” bees evaluate food sources based
on the quality and distance to the hive and share that information with the
unemployed bees within the dancing areas in the hive. Around 90-95% of the
unemployed bees are onlooker bees, who aim to improve the food sources.
The onlooker bees watch many dances in the hive to choose the best food
source and then employ themselves on that. The scout bees randomly search
the environment.

2.2.1. Operation of the ABC algorithm

There are four main phases in the ABC algorithm. In the first phase,
which is also called the “initialization” phase, the ABC creates a population
of SN solutions. Each solution xi = (xi1, x

i
2, . . . , x

i
D), i = 1, 2, . . . , SN is

called a food source with fitness value F (xi). The jth dimension of a food
source xi is generated by

xij = lj + rand[0, 1] · (uj–lj), j = 1, . . . , D (2)

In the second phase, which is called the “employed bee” phase, new so-
lutions are generated based on the current solutions. Let V i

j be the jth

dimension of the ith candidate solution. The ABC generates V i
j from the

previous solutions as follows:
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V i
j = xij + ψ(xij − xkj ), j = 1, 2, . . . , D, (3)

where k 6= i is randomly selected from {1, 2, . . . , SN}, and ψ is a uniform
random number in the range [−1, 1]. If the best solution is improved, the
employed bees update their position, i.e., the area they search, by replacing
xi by V i.

In the third phase of the ABC, which is called the “onlooker bee” phase,
solutions are analyzed and selected by the onlooker bees: A roulette wheel
selection mechanism is employed to select solution xi with probability.

Pi = 1− F (xi)∑SN
j=1 F (xj)

. (4)

According to Equation (4), the better the fitness value of the ith solution,
the greater chance of xi to be used to generate a new solution. Next, a
local search is performed around each of the selected solutions. Given the
ith solution is selected, the algorithm uses Equation (3) to perform the local
search around that solution, and once a superior solution (with an improved
fitness value) is obtained, the position of the solution is updated accordingly.
The local search is performed for a predetermined number of trials, and if the
local search fails to deliver a new solution, meaning that no updated position
is recorded, the ABC algorithm starts the fourth phase.

In the fourth phase, which is called the “scout bee” phase, the solution is
replaced with a new random solution generated according to Equation (2).
The pseudo-code of the ABC [6] is summarized in Algorithm 1.

2.2.2. Improving the ABC algorithm

This section discusses certain improvements to overcome the major limi-
tations of the ABC algorithm, which include poor searching strategy in the
onlooker bee phase and lack of an effective strategy to avoid being trapped
in low quality solutions in the scout bee phase.

Firstly, the ABC algorithm converges very slowly, and that the local and
global search abilities are not balanced [6, 53]. The poor exploitation and
slow convergence of the ABC roots in the execution of the scout bee phase
right after the local search performed by the onlooker bees, which disrupts the
convergence [54]. In the ABC algorithm, the onlooker bees aim to improve
the solutions by focusing on better solutions, i.e., the onlooker bees select
solutions according to their quality (see Equation 3).
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Algorithm 1: The ABC algorithm

1 Input: Objective function F (x), SN
2 Output: A feasible solution
3 Phase 1: Initialization
4 Use Equation 2 to create SN initial solution (food sources); set

triali = 0 for each solution.
5 while the stopping criterion is not met do
6 Phase 2: The employed bee phase
7 for i = 1, 2, . . . , SN do
8 Generate a new candidate solution V i using Equation (3);
9 if F (V i) ≤ F (xi) then xi = V i;

10 if F (V i) > F (xi) then triali = triali + 1;
11 else triali = 0;

12 Phase 3: The onlooker bee phase
13 Calculate the probability Pi for solution xi using Equation (4);
14 for i = 1, 2, . . . , SN do
15 if rand(0, 1) ≤ Pi then
16 Generate a new candidate solution V i using Equation (3)

for the onlooker bees;
17 if F (V i) ≤ F (xi) then xi = V i;
18 if F (V i) > F (xi) then triali = triali + 1;
19 else triali = 0;

20 Phase 4: The scout bee phase
21 for i = 1, 2, . . . , SN do
22 if triali > limit then
23 Replace xi by a new randomly produced candidate

solution using Equation (2);

24 Return: x;
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Because most onlooker bees concentrate on the neighborhood of high-
quality solutions, the remainder of the solutions might not be sought, im-
plying that the ABC may not effectively perform the search around other
solutions. Consequently, the exploration capability of the ABC algorithm is
adversely impacted [55], and this becomes worse when the algorithm finds
a solution with significantly superior fitness value during the onlooker bee
phase.

Secondly, the scout bee phase of the ABC algorithm performs a random
search. A random search usually demands a large number of trials and has
been documented not to be a successful strategy to escape from local optima
[56, 57].

To overcome those limitations, various techniques and hybridization meth-
ods were proposed to improve the ABC algorithm. For example, in what is
named the ABCx, the artificial bee colony algorithm was improved by em-
ploying novel search techniques in the employed and onlooker bee phases [58].
The improved ABC algorithm (IABC) uses the mutation and crossover op-
erations of a differential evolution (DE) algorithm to enhance the ABC’s ex-
ploitation capability [59], and the ABC based fitness weighted search (ABCFWS)
algorithm considers weights for fitness values of the food source and selected
neighbor food sources to obtain a more balanced exploration and exploita-
tion [60]. The global-best-solution guided ABC (GABC) by [61] aims to
improve the convergence rate and exploitation ability of the ABC towards
obtaining global optimum solutions. In that method, certain information of
the best solution is used during the search operation. Gao and Liu proposed
learning strategies in the modified ABC (MABC) algorithm [62]. They also
proposed novel search strategies to balance the original ABC algorithm’s ex-
ploration and exploitation capabilities. Based on the solution update rule of
DE algorithm, ABC-best has been proposed by [53].

In general, optimization algorithms can be hybridized to use the al-
gorithm’s advantages and eliminate the disadvantages of each algorithm.
For example, in [42], the PSO was used in the employed and onlooker bee
phases for continuous optimization problems. The resulting hybrid algorithm
showed promising results in unimodal problems compared to the stand-alone
ABC and PSO algorithms. In another attempt, the PSO and ABC were
used in the particle-bee algorithm [63] to solve the construction site layout
optimization problem. In what is called the velocity-based ABC algorithm,
which is proposed for high-dimensional continuous optimization problems,
the PSO algorithm was employed to guide the search in the onlooker bee
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phase [64]. In another attempt, the crossover operator of the GA was ap-
plied after the employed bee phase is performed to improve the solutions
before the onlooker bee phase starts [65].

To escape from being trapped in low-quality local optima, the simulated
annealing (SA) was applied to the employed bee phase to enhance the ex-
ploitation of the ABC algorithm [66]. That hybrid algorithm was also shown
to outperform the stand-alone ABC algorithm. In [9], a combination of the
ABC with SA was introduced in which the acceptance rule allows for accept-
ing inferior solutions with a controlled probability. During the algorithm’s
operation, the probability of accepting an inferior candidate solution is dy-
namically reduced.

The aforementioned studies show that hybridizing the ABC with existing
heuristics and metaheuristics is an effective strategy in improving the perfor-
mance of the ABC algorithm. In the present paper, we propose to hybridize
the ABC with the FIA, which has been shown to be an efficient and effective
algorithm in solving a wide range of optimization problems [21]. We will
discuss the FIA in Section 3 and the hybridization of the ABC with FIA in
Section 4.

3. The Fibonacci indicator algorithm

The FIA is a newly published metaheuristic optimization method [21],
which is inspired by the Fibonacci retracement method, a well-known tech-
nique used by stock market traders to predict highly volatile stock prices.

In the stock market, technical analysis support and resistance levels are
fixed levels for a stock price where it is assumed that the price would begin to
stop and reverse. At a support level, the stock price is likely to find support
when it falls, which means that rather than breaking through this support
level and falling again, the price is more likely to bounce off it. On the
contrary, as the price increases, it encounters opposition at the resistance
level. The Fibonacci retracement method forecasts a support level, which
acts as a local minimum for the stock price, and the resistance level, which
presents a local maximum for the stock price.

The above discussion follows that the FIA may predict the local minima
in the line search algorithm instead of performing the expensive complete
search. Assume that x and xbest are two different solutions, and we need to
perform a line search on the line defined by these two solutions. Let a fixed
number of five solutions be generated as
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xi = x+ τi(xbest–x), i = 1, . . . , 5, (5)

where {τi} = {50%, 73.6%, 88.2%, 111.8%, 150%} is the set of Fibonacci ra-
tios suggested in [21].

Figure 1 illustrates how the five candidate solutions are generated using x
and xbest. The solution with the best fitness value is selected as the result of
the line search. It can be seen that this method, which is called the Fibonacci
indicator (FI) method, focuses the search more around xbest than x.

Figure 1: Generating solutions (x1, x2, x3, x4, x5) using the FI method.

3.1. Operation of FIA
The FIA is a population-based metaheuristic algorithm, where an initial

population is comprised of N randomly generated solutions. Solutions in a
population are sorted in non-decreasing order of their fitness value (we solve
a minimization problem). The solution with the best fitness value is referred
to xbest with fitness value gbest.

The FIA generates a new solution by selecting two solutions, as parents,
from the current population and applying a line search to parent solutions.
The current best solution is consistently chosen as a parent, and the next
best solution in the population that has not yet been selected is considered
the second parent. If the fitness value of the new solution is superior to both
parents, we update the current population by adding the new solution to
the population and removing the worst solution from the population. When-
ever the current best solution is updated, all solutions in the population are
treated as “never have been chosen”. A new population is obtained when all
the solutions in the current population have been replaced. We refer to the
update of a population as Step 1.

If the population cannot be updated, i.e., at least one solution in the
population cannot be removed after all solutions in the population have been
attempted as parents, a new population is randomly generated.
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After obtaining a new population in Step 1, the FIA performs Step 2. The
FIA picks two solutions, as parents, to generate a new solution using the FI
method. The best solution is always selected as one parent. With probability
1 − p, where p is a given parameter, the second parent is selected from the
remaining solutions in the order of non-increasing objective function values.
With probability p, the second parent x will be generated by the crossover
operation defined as

x = (xr11 , x
r2
2 , . . . , x

rD
D ), (6)

where ri, i = 1, . . . , D, is an integer number randomly selected between 1 and
N . Step 2 is indeed designed to maintain the diversification of the population
by randomly generating some solutions using (6) while keeping all solutions
generated by line search. This mechanism ensures a good trade-off between
global exploration and local exploitation of the FIA.

If the best solution is not improved after C ∈ Z+ consecutive trials of
Steps 1 and 2, the search is restarted by generating a new population com-
prised of the current best solution xbest and N − 1 randomly generated solu-
tions.

The algorithm terminates if the number of function evaluations reaches
a threshold, which is a parameter of the algorithm. The pseudo-code of the
FIA is shown in Algorithm (2).
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Algorithm 2: The FIA [21].

1 Input: Objective function F (x), Parameters N , p, C;
2 Output: A feasible solutions.
3 Set I = 0;
4 Randomly generate a population of size N ;
5 while stopping criterion is not met do
6 while I < C do
7 Search phase:
8 Perform Step 1: Improve the population focusing on

exploitation;
9 Perform Step 2: Improve the population with a balance of

exploration and exploitation;
10 I = I + 1;
11 if the current best solution was updated then I = 0;

12 Set I = 0, and generate a population of size N , including the
current best solution and N − 1 random solutions;

13 Return: x;

3.2. Motivations to hybridize FIA with ABC

The FIA has been shown superior performance on convergence speed,
and solution quality over an extensive range of optimization problems [21].
However, we will later show (in Section 5) that the FIA converges very slowly
in solving high-dimensional multimodal problems compared to the ABC and
its variants.

The reason could be that after a restart, the population is randomly gen-
erated without taking advantage of the information from previous iterations
other than the current best solution. On the contrary, when the ABC restarts
the search in the scout bee phase, only one solution is randomly generated
while the others are retained.

Another possible reason is that the best solution is consistently selected
as one parent in the FIA. However, in the ABC algorithm, the onlooker bees
randomly select the candidate solutions for the local search, leading to a
more robust global convergence.

The strong exploration ability of the ABC algorithm and the fastness of
the FIA motivates us to hybridize the FIA with the ABC algorithm. We
expect that hybridization can enhance the performance of FIA to solve chal-
lenging problems such as the high-dimensional multimodal problems, while
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at the same time, the FIA can guide the ABC to attain a faster convergence.
Next, we are discussing hybridizing the ABC with the FIA.

4. Hybridizing the ABC with FIA: The ABFIA

We propose to hybridize the ABC and FIA by integrating the FIA with
the ABC in the exploitation process, i.e., during the onlooker bee phase and
in the scout bee phase, as an effective strategy to escape from local optima.
We name the resulting algorithm the ABFIA. The scheme to hybridize the
ABC with FIA is illustrated in Figure 2. The details of each component of
ABFIA are explained in the following sections.

Figure 2: The conceptual diagram of the ABFIA hybrid algorithm.

4.1. Initialization

Initialization of the ABFIA is the same as in the original ABC algorithm.
Accordingly, in the initialization phase, the ABFIA generates SN random
solutions using Equation (2).
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4.2. The employed bee phase

The employed bee phase of the ABFIA is the same as in the original
ABC algorithm. In the employed bee phase, each employed bee is sent to
one solution (food source). If an employed bee obtains a better solution in
the neighborhood of the current solution, the current solution is updated
according to Equation (3).

4.3. The onlooker bee phase

The onlooker bee phase consists of two different strategies. In the first
strategy, for a given parameter POnlooker percent of iterations, the onlooker
bee phase is the same as in the original ABC algorithm. However, in the
second strategy, for 1− POnlooker percent of iterations, the onlooker bees use
the FIA to search the feasible space.In the first strategy, the neighborhood of
each of the selected solutions by the roulette wheel mechanism (see Equation
4) is searched (see Equation (3)). The food source is updated when a solution
with better fitness is obtained within its neighborhood. Otherwise, the trial
counter is increased by 1.
In the second strategy, the solution will be attempted by the FIA. Here,
an initial population of the FIA is comprised of the target solution and
N − 1 solutions, which are randomly selected from the remaining SN − 1
solutions. The ABC suffers from getting trapped in a local optimum due
to the roulette wheel mechanism, which favors solutions with low fitness
values. The ABFIA overcomes this shortcoming by randomly selecting N−1
solutions and the search methods of the FIA. The methods of selecting the
worst of remaining solutions as a parent and performing a crossover between
solutions to generate a parent improve the diversification of the solutions.
The improved diversification is not at the expense of solution quality because
strong local search capability is embedded within the FIA.

4.4. The scout bee phase

The main goal of the scout bee phase in the ABFIA is to escape from
local optima. In this phase, each solution with more than limit trials, for
PScout percent of iterations, is replaced by a solution found by the FIA. The
FIA is initialized with a random population to maintain the diversity of the
current population.
The scout bee phase in the ABC is a restart strategy that replaces the current
solutions with randomly generated solutions. Therefore, the scout bee phase
is not an effective mechanism for escaping from local optima. That leads to
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slow convergence of the ABC [56]. The ABFIA employs the original scout bee
phase for 1−PScout percent of iterations and for other iterations employs the
original FIA in the scout bee phase to find a better solution than randomly
generating a solution, which leads to improving the convergence rate of the
ABFIA against the ABC. On the other hand, the FIA in the scout bee phase
employs far fewer iterations than the original FIA [21].

5. Computational experiments

To assess the performance of the proposed ABFIA, we compare the per-
formance of the ABFIA over several benchmark functions, and that of ABC
and certain variants of the ABC, such as the GABC [61], two modified ABC
algorithms, namely the ABC-Best 1 and ABC-Best 2 [53], the MABC [62],
the ABCx [58], and the ABCFWS [60], and with FIA, the grey wolf opti-
mizer (GWO) [25], the whale optimization algorithm (WOA) [26], the hybrid
of GWO with WOA (WOAGWO) [67], the dragonfly algorithm (DA) [43],
the salp swarm algorithm (SSA) [44], and the learner performance based be-
havior algorithm (LPB) [52]. We use Matlab R2020a version 9.8.0.1323502
under Windows 10 operating system, and all experiments are conducted on
a personal machine with an Intel(R) CoreTM i7 clocked at 2 GHz, and 6 GB
of memory. All tested functions are of type minimization.

Next, we explain the benchmark functions, followed by tuning the param-
eters of algorithms in Section 5.2 and the convergence analysis of the ABC,
FIA and ABFIA in Section 5.3. In Sections 5.4 to 5.7, we detail outcomes of
the computational experiments.

5.1. Benchmark problems

It is important to benchmark the performance of heuristic and meta-
heuristic optimization algorithms on problems with different characteristics.
The main characteristics that shape the problem’s landscape are modality,
dimensionality, separability, and basins.

The peaks in the landscape, which represent global or local minimum
areas (for a minimization problem), are defined by modality. The unimodal
functions with one global minimum are suitable to test the exploitation and
local search abilities of an optimization algorithm. However, multimodal
functions contain many local minimum areas and are commonly used to test
the exploration ability of the algorithms [68]. Both unimodal and multimodal
functions are often rotated to add complexity in the landscape [69]. Table 1
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Algorithm 3: The ABFIA.

1 Input: Objective function F (x), Parameters
SN, limit1, limit2, N, p, C.

2 Output: A feasible solution.
3 Phase 1: Initialization
4 Generate random solutions xi, i = 1, 2, . . . , SN by using Equation

(2);
5 Set triali = 0, i = 1, 2, . . . , SN ;
6 while stopping criterion for the ABFIA is not met do
7 Phase 2: The employed bee phase (from the ABC

algorithm)
8 Search around all existing solutions and update trial accordingly;
9 Phase 3: The onlooker bee phase

10 if rand < POnlooker then
11 First strategy: The onlooker bee phase (from the ABC

algorithm):
12 Search around solutions selected by the roulette wheel

mechanism and update trial accordingly;

13 else
14 Second strategy:
15 for i = 1, 2, . . . , SN do
16 Generate a population T of size N including xi and

(N − 1) solutions randomly selected from remaining
solutions;

17 Generate a new candidate solution V i using FIA with T
as the initial population;

18 if F (V i) ≤ F (xi) then xi = V i;
19 if F (V i) > F (xi) then triali = triali + Number of

function evaluations within FIA;
20 else triali = 0;

21 Phase 4: The scout bee phase
22 for i = 1, 2, . . . , SN do
23 if triali > limit then
24 if rand < PScout then
25 xi=FIA(Objective function F (x),N, p, C);
26 triali = 0;

27 else
28 The scout bee phase (from the ABC algorithm):
29 Replace xi by a new randomly produced candidate

solution using Equation (2);

30 Return: x;
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presents 20 well-known basic benchmark functions including 8 unimodal and
12 multimodal functions that we investigated in the present study.

Table 1: The basic numeric functions

Test Function Name Search Range C Function

F1 Sphere [-100,100] US f(x1 · · ·xn) =
∑n

i=1 x
2
i

F2 Elliptic [-100,100] UN f(x1 · · ·xn) =
∑n

i=1 (106)
(i−1)/(n−1)

x2i
F3 Sumsquars [-10,10] US f(x1 · · ·xn) =

∑n
i=1 ix

2
i

F4 SumPower [-10,10] MS f(x1 · · ·xn) =
∑n

i=1 |xi|i+1

F5 schwefel2.22 [-10,10] UN f(x1, ..., xn) =
∑n

i=1 |xi|+
∏n

i=1 |xi|
F6 Quartic [-1.28,1.28] US f(x0 · · ·xn) =

∑n
i=0 ix

4
i + random[0, 1)

F7 Rosenbrock [-10,10] UN f(x) = f(x1, ..., xn) =
∑n−1

i=1 [b(xi+1 − x2i )2 + (a− xi)2]
F8 Rastrigin [-5.12,5.12] MS f(x1 · · ·xn) = 10d+

∑n
i=1(x

2
i − 10cos(2πxi))

F9 Griewank [-600,600] MN f(x1 · · ·xn) = 1 + 1
4000

∑n
i=1 x

2
i −

∏n
i=1 cos(

xi√
i
)

F10 schwefel2.26 [-500,500] MN f(x) = f(x1, x2, ..., xn) = 418.9829n−
∑n

i=1 xisin(
√
|xi|)

F11 Ackley [-32,32] MN f(x1 · · ·xn) = −20exp(−0.2
√

1
n

∑n
i=1 x

2
i )−

exp( 1
n

∑n
i=1 cos(2πxi)) + 20 + e

F12 Alpine [-10,10] MS f(x1 · · ·xn) =
∑n

i=1 xisin(xi) + 0.1xi

F13 Schaffer [-100,100] MN f(x1 · · ·xn) = 0.5 +
sin2
√∑n

i=1 x
2
i−0.5

(1+0.001(
∑n

i=1 x
2
i ))

2

F14 Himmelblau [-5,5] MS f(x1 · · ·xn) = 1
n

∑n
i=1(x

4
i − 16x2i + 5xi)

F15 Shifted Rastrigin [-5.12,5.12] MS f(x1 · · ·xn) = 10d+
∑n

i=1(z
2
i − 10cos(2πzi)), z = x− o

F16 Shifted Griewank [-600,600] MN f(x1 · · ·xn) = 1 + 1
4000

∑n
i=1 z

2
i −

∏n
i=1 cos(

zi√
i
), z = x− o

F17 Shifted Ackely [-32,32] MN f(x1 · · ·xn) = −20exp(−0.2
√

1
n

∑n
i=1 z

2
i )−

exp( 1
n

∑n
i=1 cos(2πzi)) + 20 + e, z = x− o

F18 Shifted Alpine [-10,10] MN f(x1 · · ·xn) =
∑n

i=1 zisin(zi) + 0.1zi, z = x− o
F19 Discus [-5.12,5.12] US f(x1 · · ·xn) = 106x21 +

∑n
i=2 x

2
i

exp( 1
n

∑n
i=1 cos(2πzi)) + 20 + e, z = x− o

F20 Schwefel2.20 [-10,10] US f(x1, ..., xn) =
∑n

i=1 |xi|

The other main characteristic of benchmark functions is separability. Op-
timization problems in which each variable is independent of other variables
are called separable. Separable benchmark functions are relatively easy to
solve. The optimum value for each variable can be found by solving an in-
dependent optimization process. Non-separable functions, e.g., Griewangk,
Ackley, and Alpine function, include variables related to each other, and as
such, the variables cannot be optimized independently.

The other characteristic that shapes the problem’s landscape is basins.
A basin is a sharp falling area surrounding a wide region. Optimization
algorithms are typically attracted to such regions, and it is challenging for
those algorithms to escape from there. In multimodal problems, e.g., in the
Ackley function, which contains a narrow, deep basin in the middle [69],
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Table 2: The 100-Digit Challenge Test Functions

Test Function Name C D Search Range
F21 Storn’s Chebyshev Polynomial Fitting Problem MN 9 [-8192,8192]
F22 Inverse Hilbert Matrix Problem MN 16 [-16384,16384]
F23 Lennard-Jones Minimum Energy Cluster Problem MN 18 [-4,4]
F24 Shifted and Rotated Rastrigin’s Function MN 10 [-100,100]
F25 Shifted and Rotated Griewank’s Function MN 10 [-100,100]
F26 Shifted and Rotated Weierstrass Function MN 10 [-100,100]
F27 Shifted and Rotated Schwefel’s Function MN 10 [-100,100]
F28 Shifted and Rotated Expanded Schaffer’s F6 Function MN 10 [-100,100]
F29 Shifted and Rotated Happy Cat Function MN 10 [-100,100]
F30 Shifted and Rotated Ackley Function MN 10 [-100,100]

finding the basin of global minima and avoiding the basin of local minima is
usually challenging for metaheuristic algorithms.

Increasing dimensionality of the instances exponentially enlarges the land-
scape, which leads to an increase in local optimum areas. Low-dimensional
instances are relatively easy to solve, and as such highly dimensional instances
are suitable for evaluating the performance of optimization algorithms. Our
experiments consider various functions representing the those characteris-
tics, including 30-, 60- and 200-dimensional benchmark functions. As an
additional evaluation on the ABFIA, a set of 10 modern CEC2019 bench-
mark test functions, which designed to be used in 2019 annual optimization
contest is used [70]. Table 2 shows these test functions, which are known
as ”The 100-Digit Challenge” and include multimodal, unimodal, expanded
multimodal, and hybrid composition functions. In the table, functions F21
to F23 have different dimensions, and function F24 to F30 are shifted and
rotated. We refer the interested reader to [70] for details.

5.2. Parameter settings

There are three groups of parameters in the hybrid ABFIA algorithm, i.e.,
parameters for the FIA component, parameters for the ABC component, and
parameters due to the hybridization. In this section, we discuss setting the
value of those parameters.
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Parameters setting for FIA

There are three parameters in this group, i.e., C (the search restart con-
trol), N (the population size) and p (the probability for crossover) in Algo-
rithm 2. In the present study, the value of all parameters for the FIA are as
suggested by [21]. More precisely, we set p = 0.25. As for the stopping crite-
rion, we note that setting a large value for the stopping criterion of the FIA
within the ABFIA means that the FIA component is preferred heavily (com-
pared to the ABC component). Following some preliminary experiments, for
each iteration, we set the stopping criterion for the FIA within ABFIA equal
to 12 function evaluations and C = 5 which is less than half of the stopping
criterion.

Parameters setting for ABC

The best outcome in the ABC algorithm is obtained when the number of
solutions is equal to the number of employed and onlooker bees[71]. In all
experiments conducted in the present paper, the same number of employed
and onlooker bees are used, both of which are equal to the number of solutions
(denoted as SN) and are set to 100. The parameter limit, which determines
the maximum number of trials for a solution to be abandoned, is set according
to sixty percent of the problem dimensions multiplied by the number of
employed bees, i.e., 0.6× SN ×D.

Parameters setting for ABFIA

The maximum number of iterations, run time, and the maximum number
of function evaluations (FEs) are commonly used as stopping criteria for
heuristic algorithms.

To have a fair comparison when reporting the results of ABFIA, the
stopping criterion changed according to the study that we report their results.
In experiments 1 and 2, the maximum number of function evaluations is
considered as the stopping criterion, and the maximum number of iterations
is used in experiment 3.

The parameters POnlooker and PScout in the ABFIA are set to balance
between the first and second strategies of the onlooker bee phase and restart
procedure in the scout bee phase. Parameter POnlooker in the ABFIA is the
probability of using the original onlooker bee phase from ABC and increasing
this parameter up to 1, decreases the probability of using FIA within this
phase. Parameter PScout determines the probability of using FIA in the scout
bee phase. To tune parameters POnlooker and PScout we use F20, which is a
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Table 3: The impact of parameter POnlooker on different benchmark functions. PScout = 0.

POnlooker 30D 60D 200D Average

0 1.02E+01 7.45E+01 7.87E+06 2.62E+06
0.10 2.22E-03 2.78E-01 1.22E+00 5.01E-01
0.20 1.20E-04 2.85E-01 1.76E-01 1.54E-01
0.30 7.12E-07 9.29E-04 4.83E-02 1.64E-02
0.40 1.09E-07 1.00E-04 1.40E-02 4.69E-03
0.50 4.09E-08 4.65E-05 2.03E-03 6.93E-04
0.60 1.29E-08 7.08E-06 9.30E-04 3.12E-04
0.70 3.33E-09 2.24E-05 3.52E-04 1.25E-04
0.80 3.27E-09 4.20E-06 4.00E-05 1.47E-05
0.90 4.60E-09 9.89E-06 2.27E-04 7.89E-05
1.00 7.79E-09 3.52E-05 2.95E-04 1.10E-04

unimodal function, and F9 and F12, which are two multimodal benchmark
functions. For different values of POnlooker between zero and one, we report
the average of the results of solving those three test functions for each 30-, 60-,
and 200-dimension instances. The maximum number of function evaluations
is set to 1000×D. Table 3 shows the impact of POnlooker on the results while
PScout = 0 which means the scout bee phase is the same as original ABC.

The parameter PScout is then tuned while using the best value for the
POnlooker. the average of three independent runs is considered per instance,
meaning that we run the ABFIA three times, and we report the average
results over those three runs. According to Table 3, we set POnlooker = 0.8
for all instances and solve the same test functions for different values of
PScout between zero and one. Table 4 shows that for 30-dimensional problems
PScout = 0.1 provides the best results and for 60- and 200-dimensional test
functions PScout = 0.2 leads to the best value. Based on these experiments, in
this research we set POnlooker = 0.8 and PScout = 0.2 for all of the experiments.

5.3. Convergence comparison

In order to assess the convergence behavior of the ABFIA, we compare
the ABFIA and the ABC and FIA on the 100-dimensional Griewangk and
10-dimensional Discus functions. The details of setting the parameters are
explained in section 5.2.
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Table 4: The impact of parameter PScout on different benchmark functions. POnlooker =
0.8.

PScout 30D 60D 200D Average

0 1.60E-12 1.53E-09 4.84E-09 2.12E-09
0.1 5.06E-13 1.05E-08 4.71E-08 1.92E-08
0.2 6.34E-13 7.61E-11 4.80E-10 1.86E-10
0.3 6.64E-13 8.24E-10 2.20E-08 7.59E-09
0.4 1.91E-13 9.31E-10 7.39E-09 2.77E-09
0.5 9.72E-13 1.77E-09 1.07E-08 4.16E-09
0.6 2.88E-13 4.06E-09 4.98E-09 3.01E-09
0.7 3.50E-13 3.14E-09 2.20E-08 8.39E-09
0.8 3.22E-13 5.76E-09 4.66E-09 3.47E-09
0.9 1.82E-13 3.73E-10 1.36E-08 4.67E-09
1 2.62E-13 3.37E-09 7.89E-09 3.75E-09

Figure 3 demonstrates that the ABC algorithm converges slowly in com-
parison to the FIA and ABFIA on both functions. In solving the Discus
function, the FIA converges faster than other algorithms. However, the AB-
FIA obtains better solutions. In the Griewangk function, ABFIA converges
faster than other algorithms and delivers solutions closer to the global op-
tima. As shown in Figure 3, the FIA converges faster than the ABC but gets
trapped in poorer local optima.
Next, we detail the outcomes of the computational experiments.

5.4. Experiment 1: Unimodal benchmark test functions

In this section, the performance of ABFIA is evaluated on various uni-
modal 30- and 60-dimensional test functions.

As shown in Tables 5 and 6 we compare the outcomes of ABFIA, and
those of FIA, ABC, and basic ABC variants which taken from [58] and [60].
In all algorithms, the stopping criterion is set to 5000×D number of function
evaluations, and the objective function values of less than 1E − 60 are set
to zero. For each function, the first and second rows of the tables present
the mean and standard deviation of the best values of ten independent runs.
The third row shows the rank of each algorithm in this experiment. The
algorithms are ranked according to the average objective function values for
each test function. For 30-dimensional functions of F1, F5, F6, and F7,
the ABFIA outperforms all other algorithms. The ABCx and ABCFWS in
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Figure 3: Convergence curves for the ABC, FIA and ABFIA.

F2 and F3 functions, and ABC-Best 1 in F3 provide better solutions than
ABFIA.

For solving 60-dimensional instances, the ABFIA outperforms all other
algorithms, and ABCFWS and ABCx are ranked second and third, respec-
tively (see Table 6). The results clearly show that the ABFIA outperforms
the stand-alone ABC and FIA in all unimodal test functions, as well as the
tested algorithms. To show the scalability of our algorithm, we also increased
the dimension of the test functions up to 200. Table 9 includes the results
of 200-dimensional unimodal test functions and shows the ability of the AB-
FIA in dealing with high-dimensional problems. We note that we use the
maximum number of function evaluations as the stopping criterion for a fair
comparison and not the computation time.

5.5. Experiment 2: Multimodal benchmark test functions

In the second experiment, the performance of ABFIA is investigated over
a set of 30-, 60- and 200- dimensional multimodal test functions.

Tables 7 and 8 represent the results of 30- and 60-dimensional instances,
respectively. The maximum number of function evaluations in all runs is set
to 5000 × D. Results are averaged over ten independent runs, and values
less than 1E − 60 are set to zero. In the tables, for each test function the
first and second rows show the average and standard deviation of the best
results, and the third row represents the rank of each algorithm. According
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Table 5: Average results of ten runs for 30-dimensional unimodal functions
Test Function ABFIA FIA ABC GABC ABCBest1 ABCBest2 MABC ABCX ABCFWS

Ave 0.00E+00 6.92E-29 5.10E-16 4.62E-16 3.11E-47 5.96E-35 9.43E-32 0.00E+00 0.00E+00
Std 0.00E+00 7.56E-29 8.40E-17 7.12E-17 3.44E-47 3.61E-35 6.67E-32 0.00E+00 0.00E+00F1
Rank 1.00E+00 7.00E+00 9.00E+00 8.00E+00 4.00E+00 5.00E+00 6.00E+00 1.00E+00 1.00E+00
Ave 2.59E-31 3.14E-17 4.79E-16 3.62E-16 5.35E-24 1.70E-28 3.66E-28 0.00E+00 0.00E+00
Std 6.49E-31 5.44E-17 9.88E-17 7.88E-17 4.91E-24 2.35E-28 5.96E-28 0.00E+00 0.00E+00F2
Rank 3.00E+00 7.00E+00 9.00E+00 8.00E+00 6.00E+00 4.00E+00 5.00E+00 1.00E+00 1.00E+00
Ave 6.40E-38 3.25E-16 5.06E-16 4.55E-16 6.50E-48 5.55E-36 2.10E-32 0.00E+00 0.00E+00
Std 9.05E-38 5.12E-16 9.20E-17 7.00E-17 6.04E-48 3.36E-36 1.56E-32 0.00E+00 0.00E+00F3
Rank 4.00E+00 7.00E+00 9.00E+00 8.00E+00 3.00E+00 5.00E+00 6.00E+00 1.00E+00 1.00E+00
Ave 0.00E+00 9.37E-03 1.28E-15 1.35E-15 2.10E-25 1.36E-18 2.40E-17 1.84E-05 1.85E-03
Std 0.00E+00 4.55E-03 1.44E-16 1.36E-16 9.08E-26 4.27E-19 9.02E-18 6.62E-06 2.53E-04F5
Rank 1.00E+00 9.00E+00 5.00E+00 6.00E+00 2.00E+00 3.00E+00 4.00E+00 7.00E+00 8.00E+00
Ave 0.00E+00 2.54E-17 2.01E-16 1.21E-16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 4.13E-16 4.74E-17 3.99E-17 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00F6
Rank 1.00E+00 7.00E+00 9.00E+00 8.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
Ave 8.53E-11 3.43E-06 4.32E-02 3.21E-01 1.49E+01 5.45E+00 6.11E-01 3.08E+01 2.89E+00
Std 8.95E-11 3.24E-06 4.71E-02 8.21E-01 2.87E+01 8.40E+00 4.55E-01 2.12E+01 2.02E+00F7
Rank 1.00E+00 2.00E+00 3.00E+00 4.00E+00 8.00E+00 7.00E+00 5.00E+00 9.00E+00 6.00E+00
Average Rank 1.83E+00 6.50E+00 7.33E+00 7.00E+00 4.00E+00 4.17E+00 4.50E+00 3.50E+00 3.00E+00

Table 6: Average results of ten runs for 60-dimensional unimodal functions
Test Function ABFIA FIA ABC GABC ABCBest1 ABCBest2 MABC ABCx ABCFWS

Ave 0.00E+00 3.21E-02 1.24E-15 1.06E-15 3.92E-44 4.82E-33 6.03E-29 0.00E+00 0.00E+00
Std 0.00E+00 5.21E-02 1.16E-16 1.21E-16 2.64E-44 2.59E-33 4.31E-29 0.00E+00 0.00E+00F1
Rank 1.00E+00 9.00E+00 8.00E+00 7.00E+00 4.00E+00 5.00E+00 6.00E+00 1.00E+00 1.00E+00
Ave 0.00E+00 4.11E-16 1.15E-15 8.97E-16 1.70E-41 5.86E-27 3.51E-25 0.00E+00 0.00E+00
Std 0.00E+00 7.49E-16 1.50E-16 9.29E-17 9.16E-42 1.13E-26 2.72E-25 0.00E+00 0.00E+00F2
Rank 1.00E+00 7.00E+00 9.00E+00 8.00E+00 4.00E+00 5.00E+00 6.00E+00 1.00E+00 1.00E+00
Ave 0.00E+00 9.81E-12 1.21E-15 1.04E-15 2.06E-44 9.10E-34 1.39E-29 0.00E+00 0.00E+00
Std 0.00E+00 5.37E-12 1.59E-16 1.27E-16 1.83E-44 3.87E-34 8.84E-30 0.00E+00 0.00E+00F3
Rank 1.00E+00 9.00E+00 8.00E+00 7.00E+00 4.00E+00 5.00E+00 6.00E+00 1.00E+00 1.00E+00
Ave 4.40E-57 5.76E-01 2.80E-15 2.96E-15 8.48E-24 1.58E-17 6.96E-16 5.71E-02 1.62E-01
Std 6.22E-57 6.21E-01 2.40E-16 1.85E-16 2.31E-24 3.32E-18 1.20E-16 1.08E-02 2.14E-02F5
Rank 1.00E+00 9.00E+00 5.00E+00 6.00E+00 2.00E+00 3.00E+00 4.00E+00 7.00E+00 8.00E+00
Ave 0.00E+00 7.21E-09 4.89E-16 3.73E-16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 2.61E-09 6.20E-17 6.67E-17 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00F6
Rank 1.00E+00 9.00E+00 8.00E+00 7.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
Ave 1.41E-16 6.47E-02 9.28E-02 3.30E+00 5.04E+01 5.10E+01 1.51E+00 7.17E+01 4.34E+01
Std 1.92E-16 7.43E-02 1.37E-01 1.28E+01 5.46E+01 3.77E+01 1.34E+00 2.54E+01 1.32E+01F7
Rank 1.00E+00 2.00E+00 3.00E+00 5.00E+00 7.00E+00 8.00E+00 4.00E+00 9.00E+00 6.00E+00
Average Rank 1.00E+00 7.50E+00 6.83E+00 6.67E+00 3.67E+00 4.50E+00 4.50E+00 3.33E+00 3.00E+00

to Table 7, and Table 8 except for functions F9, F12, and F16, the ABFIA
outperforms all other algorithms in both 30- and 60-dimensional test func-
tions. According to the average rank of the algorithms, the ABFIA shows the
best performance, which proves the advantage of hybridizing the ABC with
FIA. The results of tests on 200-dimensional benchmark functions are also
provided in Table 9, which further show the ability of our proposed algorithm
in solving high dimensional multimodal problems.
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Table 7: Average results of ten runs for 30-dimensional multimodal functions
Test Function ABFIA FIA ABC GABC ABCBest1 ABCBest2 MABC ABCX ABCFWS

Ave 0.00E+00 4.13E-07 2.85E-17 1.64E-17 0.00E+00 3.00E-46 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 3.21E-07 9.69E-18 8.07E-18 0.00E+00 1.07E-45 0.00E+00 0.00E+00 0.00E+00F4
Rank 1.00E+00 9.00E+00 8.00E+00 7.00E+00 1.00E+00 6.00E+00 1.00E+00 1.00E+00 1.00E+00
Ave 0.00E+00 3.13E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 7.89E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00F8
Rank 1.00E+00 9.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
Ave 3.56E-20 5.72E-19 7.62E-11 3.70E-17 0.00E+00 1.81E-08 0.00E+00 0.00E+00 0.00E+00
Std 4.94E-20 2.66E-19 4.18E-10 5.32E-17 0.00E+00 6.29E-08 0.00E+00 0.00E+00 0.00E+00F9
Rank 5.00E+00 6.00E+00 8.00E+00 7.00E+00 1.00E+00 9.00E+00 1.00E+00 1.00E+00 1.00E+00
Ave 4.44E-15 5.64E-05 1.09E-12 9.42E-02 1.33E-12 1.76E-12 1.21E-13 5.23E-09 7.07E-06
Std 5.95E-15 3.11E-05 9.06E-13 5.16E-01 8.18E-13 3.32E-13 4.53E-13 2.86E-08 2.38E-05F10
Rank 1.00E+00 8.00E+00 3.00E+00 9.00E+00 4.00E+00 5.00E+00 2.00E+00 6.00E+00 7.00E+00
Ave 2.18E-24 4.32E-12 3.79E-14 3.20E-14 3.01E-24 3.07E-14 4.13E-14 1.04E-14 2.38E-14
Std 1.03E-24 2.44E-12 3.99E-15 3.36E-15 2.91E-15 3.43E-15 2.17E-15 3.08E-15 3.38E-15F11
Rank 1.00E+00 9.00E+00 7.00E+00 6.00E+00 2.00E+00 5.00E+00 8.00E+00 3.00E+00 4.00E+00
Ave 2.78E-26 9.33E-10 8.82E-10 3.41E-09 4.74E-16 9.47E-16 1.58E-16 9.68E-58 1.57E-32
Std 3.95E-27 6.70E-10 2.19E-09 1.13E-08 1.80E-15 2.46E-15 2.48E-16 1.52E-57 5.57E-48F12
Rank 3.00E+00 8.00E+00 7.00E+00 9.00E+00 5.00E+00 6.00E+00 4.00E+00 1.00E+00 2.00E+00
Ave 9.70E-04 9.10E-03 3.27E-01 2.66E-01 2.39E-01 2.81E-01 2.95E-01 8.36E-02 1.81E-01
Std 1.30E-05 3.50E-04 4.44E-02 4.39E-02 6.13E-02 3.92E-02 3.17E-02 2.23E-02 3.72E-02F13
Rank 1.00E+00 2.00E+00 9.00E+00 6.00E+00 5.00E+00 7.00E+00 8.00E+00 3.00E+00 4.00E+00
Ave -7.83E+01 -7.70E+01 -7.83E+01 -7.83E+01 -7.83E+01 -7.83E+01 -7.83E+01 -7.83E+01 -7.83E+01
Std 5.11E-12 4.01E-02 1.02E-10 2.94E-14 6.68E-12 4.86E-09 2.06E-07 -1.07E-01 8.25E-14F14
Rank 1.00E+00 9.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
Ave 0.00E+00 2.45E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 5.32E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00F15
Rank 1.00E+00 9.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
Ave 6.55E-20 9.53E-10 8.17E-10 3.33E-17 8.81E-16 1.46E-07 0.00E+00 0.00E+00 1.54E-04
Std 6.32E-20 3.43E-10 4.47E-09 5.17E-17 3.38E-15 7.78E-07 0.00E+00 0.00E+00 2.57E-04F16
Rank 3.00E+00 7.00E+00 6.00E+00 4.00E+00 5.00E+00 8.00E+00 1.00E+00 1.00E+00 9.00E+00
Ave 9.64E-15 5.92E-12 3.73E-14 3.20E-14 2.89E-14 3.01E-14 4.92E-14 1.39E-14 1.61E-14
Std 6.74E-15 1.89E-11 4.45E-15 2.80E-15 2.59E-15 3.70E-15 5.31E-15 2.16E-15 2.23E-15F17
Rank 1.00E+00 9.00E+00 7.00E+00 6.00E+00 4.00E+00 5.00E+00 8.00E+00 2.00E+00 3.00E+00
Ave 2.89E-19 9.43E-08 1.35E-09 6.65E-08 1.50E-16 1.33E-13 1.38E-16 1.09E-16 8.30E-06
Std 7.12E-18 5.77E-08 3.48E-09 2.39E-07 2.48E-16 4.89E-13 8.11E-17 7.76E-17 5.84E-06F18
Rank 1.00E+00 8.00E+00 6.00E+00 7.00E+00 4.00E+00 5.00E+00 3.00E+00 2.00E+00 9.00E+00
Average Rank 1.67E+00 7.75E+00 5.33E+00 5.33E+00 2.83E+00 4.92E+00 3.25E+00 1.92E+00 3.58E+00

5.6. Experiment 3: CEC2019

In experiment 3, the ABFIA is examined on CEC2019 test functions.
These benchmark functions allow investigating the exploration and exploita-
tion abilities of the algorithms.

Table 10 reports computational results of DA, WOA, LPB, WOAGWO,
GWO, and also the average of the best results for ten runs of ABFIA and
the stand-alone FIA for each benchmark function. To have a fair comparison
with the results of other algorithms, the maximum number of iterations in
each run is set to 500. As the table shows, the ABFIA produces superior
solutions in 7 out of 10 tested functions, demonstrating the ABFIA’s ability
to balance exploration and exploitation. Comparing the results of the ABFIA
with ABC and FIA shows the impact of hybridization of these two algorithms,
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Table 8: Average results of ten runs for 60-dimensional multimodal functions
Test Function ABFIA FIA ABC GABC ABCBest1 ABCBest2 MABC ABCx ABCFWS

Ave 0.00E+00 1.23E-01 4.31E-17 2.85E-17 0.00E+00 7.53E-39 3.00E-59 0.00E+00 0.00E+00
Std 0.00E+00 9.34E-02 1.47E-17 1.01E-17 0.00E+00 3.95E-38 3.87E-59 0.00E+00 0.00E+00F4
Rank 1.00E+00 9.00E+00 8.00E+00 7.00E+00 1.00E+00 6.00E+00 5.00E+00 1.00E+00 1.00E+00
Ave 0.00E+00 2.56E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 4.25E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00F8
Rank 1.00E+00 9.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
Ave 1.17E-19 9.46E-11 3.74E-16 2.47E-04 0.00E+00 3.96E-09 0.00E+00 0.00E+00 0.00E+00
Std 1.65E-19 6.73E-11 2.92E-16 1.35E-03 0.00E+00 2.04E-08 0.00E+00 0.00E+00 0.00E+00F9
Rank 5.00E+00 7.00E+00 6.00E+00 9.00E+00 1.00E+00 8.00E+00 1.00E+00 1.00E+00 1.00E+00
Ave 4.44E-14 4.25E-04 9.55E-01 3.97E+01 3.99E-11 3.95E+00 3.56E-11 7.90E+00 4.72E-05
Std 5.85E-14 3.43E-04 5.23E+00 6.47E+01 3.64E-12 2.16E+01 2.18E-12 3.00E+01 7.73E-05F10
Rank 1.00E+00 5.00E+00 6.00E+00 9.00E+00 3.00E+00 7.00E+00 2.00E+00 8.00E+00 4.00E+00
Ave 1.04E-21 8.33E-11 8.68E-14 7.31E-14 6.93E-14 7.47E-14 1.37E-13 2.74E-14 5.44E-14
Std 1.44E-21 5.33E-11 8.48E-15 5.57E-15 5.00E-15 4.12E-15 1.24E-14 3.86E-15 3.86E-15F11
Rank 1.00E+00 9.00E+00 7.00E+00 5.00E+00 4.00E+00 6.00E+00 8.00E+00 2.00E+00 3.00E+00
Ave 9.41E-22 3.20E-09 2.31E-07 7.34E-07 5.29E-16 2.23E-11 8.20E-16 2.04E-17 1.83E-26
Std 1.31E-22 9.20E-09 7.68E-07 1.70E-06 1.25E-15 3.77E-11 4.69E-16 1.11E-16 2.04E-26F12
Rank 2.00E+00 7.00E+00 8.00E+00 9.00E+00 4.00E+00 6.00E+00 5.00E+00 3.00E+00 1.00E+00
Ave 8.30E-03 3.99E-02 4.76E-01 4.62E-01 4.61E-01 4.68E-01 4.84E-01 2.87E-01 3.93E-01
Std 4.90E-04 4.52E-02 7.84E-03 1.79E-02 1.15E-02 9.17E-03 3.62E-03 2.67E-02 6.73E-02F13
Rank 1.00E+00 2.00E+00 8.00E+00 6.00E+00 5.00E+00 7.00E+00 9.00E+00 3.00E+00 4.00E+00
Ave -7.83E+01 -7.52E+01 -7.83E+01 -7.83E+01 -7.83E+01 -7.83E+01 -7.83E+01 -7.83E+01 -7.83E+01
Std 4.65E-09 9.31E-01 5.77E-09 4.89E-14 3.71E-11 1.76E-08 2.40E-07 8.85E-02 2.11E-13F14
Rank 1.00E+00 9.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
Ave 0.00E+00 4.79E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 1.29E-02 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00F15
Rank 1.00E+00 9.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00
Ave 5.54E-19 1.14E-10 2.63E-16 6.66E-17 0.00E+00 1.44E-08 0.00E+00 0.00E+00 0.00E+00
Std 3.66E-19 6.73E-11 2.71E-16 1.08E-16 0.00E+00 7.17E-08 0.00E+00 0.00E+00 0.00E+00F16
Rank 5.00E+00 8.00E+00 7.00E+00 6.00E+00 1.00E+00 9.00E+00 1.00E+00 1.00E+00 1.00E+00
Ave 1.42E-14 7.76E-11 8.38E-14 7.54E-14 6.90E-14 7.39E-14 2.00E-13 3.45E-14 3.88E-14
Std 6.32E-14 2.94E-11 7.20E-15 5.00E-15 4.82E-15 3.54E-15 3.07E-14 3.97E-15 2.27E-15F17
Rank 1.00E+00 9.00E+00 7.00E+00 6.00E+00 4.00E+00 5.00E+00 8.00E+00 2.00E+00 3.00E+00
Ave 2.66E-17 2.54E-08 1.04E-07 1.24E-05 1.80E-16 2.53E-10 9.71E-16 3.80E-16 4.59E-05
Std 3.41E-17 4.32E-08 2.24E-07 5.65E-05 1.17E-16 1.17E-09 5.70E-16 3.09E-16 2.78E-05F18
Rank 1.00E+00 6.00E+00 7.00E+00 8.00E+00 2.00E+00 5.00E+00 4.00E+00 3.00E+00 9.00E+00
Average Rank 1.75E+00 7.42E+00 5.58E+00 5.67E+00 2.33E+00 5.17E+00 3.83E+00 2.25E+00 2.50E+00

and according to the average rank of the algorithms, ABFIA outperforms all
other methods.

5.7. Statistical analysis

We conduct non-parametric statistical test, including Friedman test [72]
and then Holm’s post-hoc test[73] as suggested in [74], to show the efficiency
of the ABFIA in comparison to other methods tested in the present paper in
solving the challenging CEC2019 test functions (see Section 5.6).

We employ the Friedman statistical test with the null hypothesis (H0) of
no significant differences among the compared algorithms, and the alternative
hypothesis (H1) of existence of a significant difference among the algorithms’
performance. We choose a typical significant level of 5%, i.e., α = 0.05.

The Friedman test is a multiple comparison test that aims to detect signif-
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Table 9: Average results of ten runs for 200-dimensional functions
Test Function Unimodal functions Test Function Multimodal functions

Ave 2.55E-43 Ave 4.31E-55
F1

Std 3.54E-43
F4

Std 6.71E-55
Ave 2.37E-41 Ave 0.00E+00

F2
Std 2.61E-41

F8
Std 0.00E+00

Ave 3.47E-23 Ave 2.45E-18
F3

Std 5.23E-23
F9

Std 3.52E-18
Ave 3.99E-34 Ave 4.94E-08

F5
Std 4.93E-34

F10
Std 8.85E-08

Ave 4.68E-15 Ave 5.39E-15
F6

Std 6.65E-15
F11

Std 6.61E-15
Ave 4.68E-09 Ave 5.22E-18

F7
Std 5.42E-09

F12
Std 4.32E-18
Ave 1.10E-02

F13
Std 2.50E-03
Ave -7.83E+01

F14
Std 7.74E-09
Ave 3.99E-12

F15
Std 5.11E-12
Ave 9.73E-23

F16
Std 4.65E-23
Ave 3.23E-06

F17
Std 4.34E-06
Ave 4.11E-15

F18
Std 5.72E-15

icant differences between the results of two or more algorithms. The average
rank of algorithms and p-value obtained from the Friedman test are shown
in Table 11.

The p-value of the Friedman statistical test is equal to 3.00E− 06, which
suggests rejecting the null hypothesis, showing therefore significant differ-
ences among the tested algorithms. The Friedman statistical test, however,
can only conclude significant differences over multiple comparisons and can-
not establish superiority of a particular algorithm. Therefore, we use Holm’s
post-hoc test method to compare ABFIA and other algorithms. Table 11
shows that in all experiments except for the LPB algorithm, the null hy-
pothesis is rejected (p-value < 0.005). Therefore, hybridizing ABC and FIA
is superior than the stand-alone ABC and FIA. Also, the results show that
the ABFIA is significantly superior to all tested algorithms except the LPB.
For the LPB algorithm ,test did not reject the null hypothesis.
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Table 10: Average results of ten runs for CEC2019 functions
Test Function ABFIA ABC FIA DA WOA SSA LPB WOAGWO GWO

F21
Ave 2.92E+05 6.35E+07 1.25E+08 5.43E+10 4.11E+10 6.05E+10 7.49E+09 4.76E+04 2.13E+08
Std 8.42E+05 5.49E+07 1.21E+08 6.69E+10 5.42E+10 4.75E+10 8.14E+09 5.19E+03 3.07E+08
Rank 2.00E+00 3.00E+00 4.00E+00 8.00E+00 7.00E+00 9.00E+00 6.00E+00 1.00E+00 5.00E+00

F22
Ave 1.73E+01 1.83E+01 1.73E+01 7.80E+01 1.73E+01 1.83E+01 1.76E+01 1.83E+01 1.83E+01
Std 7.14E-15 4.64E-03 1.88E-03 8.78E+01 4.50E-03 5.00E-04 3.19E-01 4.72E-04 3.04E-04
Rank 1.00E+00 5.00E+00 1.00E+00 9.00E+00 1.00E+00 5.00E+00 4.00E+00 5.00E+00 5.00E+00

F23
Ave 1.27E+01 1.37E+01 1.37E+01 1.37E+01 1.37E+01 1.37E+01 1.27E+01 1.37E+01 1.37E+01
Std 1.88E-15 5.47E-07 3.92E-09 7.00E-04 0.00E+00 3.00E-04 0.00E+00 1.83E-05 1.92E+00
Rank 1.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 1.00E+00 3.00E+00 3.00E+00

F24
Ave 2.08E+01 3.24E+02 5.35E+02 3.44E+02 3.95E+02 4.17E+01 7.79E+01 2.54E+02 3.01E+02
Std 1.07E+01 4.35E+02 1.10E+02 4.14E+02 2.49E+02 2.22E+01 2.99E+01 5.39E+02 6.87E+02
Rank 1.00E+00 6.00E+00 9.00E+00 7.00E+00 8.00E+00 2.00E+00 3.00E+00 4.00E+00 5.00E+00

F25
Ave 1.08E+00 1.17E+00 1.91E+00 2.56E+00 2.73E+00 2.21E+00 1.19E+00 2.43E+00 2.43E+00
Std 4.38E-02 4.53E-01 7.18E-02 3.25E-01 2.92E-01 1.06E-01 1.09E-01 2.62E-01 2.52E-01
Rank 1.00E+00 2.00E+00 4.00E+00 8.00E+00 9.00E+00 5.00E+00 3.00E+00 6.00E+00 7.00E+00

F26
Ave 6.46E+00 1.12E+01 2.33E+01 9.90E+00 1.07E+01 6.08E+00 3.74E+00 1.14E+01 1.19E+01
Std 3.71E+00 5.42E+00 5.69E+00 1.64E+00 1.03E+00 1.49E+00 8.23E-01 1.64E+00 7.31E-01
Rank 3.00E+00 6.00E+00 9.00E+00 4.00E+00 5.00E+00 2.00E+00 1.00E+00 7.00E+00 8.00E+00

F27
Ave 4.03E+01 2.77E+02 3.66E+02 5.79E+02 4.91E+02 4.10E+02 1.45E+02 5.88E+02 5.35E+02
Std 1.17E+02 1.56E+02 1.64E+02 3.29E+02 1.95E+02 2.91E+02 1.78E+02 3.49E+02 2.92E+02
Rank 1.00E+00 3.00E+00 4.00E+00 8.00E+00 6.00E+00 5.00E+00 2.00E+00 9.00E+00 7.00E+00

F28
Ave 4.36E+00 6.46E+00 4.94E+00 6.87E+00 6.91E+00 6.37E+00 4.89E+00 5.59E+00 5.40E+00
Std 5.45E-01 1.56E+00 3.65E+00 5.02E-01 4.27E-01 5.86E-01 6.79E-01 1.02E+00 9.94E-01
Rank 1.00E+00 7.00E+00 3.00E+00 8.00E+00 9.00E+00 6.00E+00 2.00E+00 5.00E+00 4.00E+00

F29
Ave 2.35E+00 3.15E+00 6.84E+00 6.05E+00 5.94E+00 3.67E+00 2.89E+00 5.67E+00 1.47E+01
Std 1.02E-01 3.66E+00 4.35E-01 2.87E+00 1.66E+00 2.36E-01 2.31E-01 8.81E-01 5.00E+01
Rank 1.00E+00 3.00E+00 8.00E+00 7.00E+00 6.00E+00 4.00E+00 2.00E+00 5.00E+00 9.00E+00

F30
Ave 1.58E+01 2.11E+01 2.14E+01 2.13E+01 2.13E+01 2.10E+01 2.00E+01 2.16E+01 2.15E+01
Std 9.07E+00 5.64E-02 5.04E-02 1.72E-01 1.11E-01 7.80E-02 2.33E-03 9.22E-02 6.85E-02
Rank 1.00E+00 4.00E+00 7.00E+00 5.00E+00 6.00E+00 3.00E+00 2.00E+00 9.00E+00 8.00E+00

6. Concluding remarks

In this paper, a hybrid optimization algorithm called ABFIA was pro-
posed. This algorithm is a combination of the FIA and ABC algorithms
and uses the powerful exploration capability of ABC and the fast conver-
gence ability of FIA. The proposed ABFIA was tested on various benchmark
functions with up to 200 dimensions. According to the outcomes of the com-
prehensive experimental tests, the hybridization of ABC and FIA ensures
an excellent trade-off between exploration and exploitation of the ABC, im-
proves the global exploration of the FIA, and reinforces the local exploitation
ability of the ABC. Our results demonstrate that the ABFIA is a leading
method for solving the tested functions.

Future research directions may include utilizing learning methods to im-
prove parameter tuning of the proposed ABFIA. Also, binary and multi-
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Table 11: Results of the statistical test while comparing ABFIA and other optimization
algorithms on CEC2019 functions

Algorithm Average rank Holm p-value (vs. ABFIA)

ABFIA 1.30E+00 -
LPB 2.70E+00 0.1224985
ABC 4.20E+00 0.0035477
SSA 4.60E+00 0.0012617
FIA 5.30E+00 0.0001049
WOAGWO 5.60E+00 3.66E-05
WOA 6.00E+00 7.50E-06
GWO 6.20E+00 3.52E-06
DA 6.80E+00 2.41E-07
Friedman test p-value 3.00E-06 -

objective versions of the ABFIA method can be investigated. Finally, com-
bining the FIA with other metaheuristics to further examine the added ben-
efits of the FIA to these metaheuristics is of particular research interest.
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[36] T. Tušar, B. Filipič, Differential evolution versus genetic algorithms in multiobjec-
tive optimization, in: Evolutionary Multi-Criterion Optimization, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2007, pp. 257–271.

[37] M. Dorigo, C. Blum, Ant colony optimization theory: A sur-
vey, Theoretical Computer Science 344 (2005) 243 – 278. URL:
http://www.sciencedirect.com/science/article/pii/S0304397505003798.
doi:https : //doi.org/10.1016/j.tcs.2005.05.020.

[38] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: MHS’95.
Proceedings of the Sixth International Symposium on Micro Machine and Human
Science, 1995, pp. 39–43.

[39] D. Karaboga, An idea based on honey bee swarm for numerical optimization, tech-
nical report - tr06, Technical Report, Erciyes University (2005).

32



[40] M. Dorigo, G. Di Caro, L. M. Gambardella, Ant algorithms for discrete
optimization.” artificial life 5, 137-172, Artificial Life 5 (1999) 137–172.
doi:10.1162/106454699568728.

[41] V.Selvi, R.Umarani, Comparative analysis of ant colony and particle swarm opti-
mization techniques, International Journal of Computer Applications 5 (2010) 1–6.
doi:10.5120/908-1286.

[42] M. El-Abd, A hybrid abc-spso algorithm for continuous function optimiza-
tion, in: 2011 IEEE Symposium on Swarm Intelligence, 2011, pp. 1–6.
doi:10.1109/SIS.2011.5952576.

[43] S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization technique for
solving single-objective, discrete, and multi-objective problems, Neural Computing
and Applications 27 (2015) 1053–1073.

[44] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, S. M. Mir-
jalili, Salp swarm algorithm: A bio-inspired optimizer for engineering de-
sign problems, Advances in Engineering Software 114 (2017) 163–191. URL:
https://www.sciencedirect.com/science/article/pii/S0965997816307736.
doi:https://doi.org/10.1016/j.advengsoft.2017.07.002.

[45] S. Mirjalili, The ant lion optimizer, Ad-
vances in Engineering Software 83 (2015) 80–98. URL:
https://www.sciencedirect.com/science/article/pii/S0965997815000113.
doi:https://doi.org/10.1016/j.advengsoft.2015.01.010.

[46] K. C. Kilic Haydar., Yuzgec Ugur., A novel improved antlion optimizer algorithm
and its comparative performance, Neural Computing and Applications 32 (2020)
3803–3824.

[47] S. Mostafa Bozorgi, S. Yazdani, Iwoa: An improved whale
optimization algorithm for optimization problems, Journal of
Computational Design and Engineering 6 (2019) 243–259. URL:
https://www.sciencedirect.com/science/article/pii/S2288430018301994.
doi:https://doi.org/10.1016/j.jcde.2019.02.002.

[48] L. S.-X. Wang Jie-Sheng., An Improved Grey Wolf Optimizer Based on Differential
Evolution and Elimination Mechanism, Scientific Reports 9 (2019) 71–81.

[49] Z. W. Geem, J. Kim, G. V. Loganathan, A new heuristic optimization algorithm:
Harmony search, Simulation 76 (2001) 60 – 68.

[50] F. Glover, M. Laguna, Tabu Search, Kluwer Academic Publishers, USA, 1997.

[51] P. F. Pai, W. Sun, X. Chang, Comparative analysis of ant colony and particle swarm
optimization techniques, Journal of Electrical and Computer Engineering 2015 (2015)
712–753. doi:10.1155/2015/753712.

33



[52] C. M. Rahman, T. A. Rashid, A new evolutionary algorithm: Learner performance
based behavior algorithm, Egyptian Informatics Journal 22 (2021) 213–223. URL:
https://www.sciencedirect.com/science/article/pii/S1110866520301419.
doi:https://doi.org/10.1016/j.eij.2020.08.003.

[53] W. Gao, S. Liu, L. Huang, A global best artificial bee
colony algorithm for global optimization, Journal of Computa-
tional and Applied Mathematics 236 (2012) 2741 – 2753. URL:
http://www.sciencedirect.com/science/article/pii/S0377042712000246.
doi:https://doi.org/10.1016/j.cam.2012.01.013.

[54] K. Hussain, M. N. Mohd Salleh, S. Cheng, Y. Shi, R. Naseem, Artificial bee colony
algorithm: A component-wise analysis using diversity measurement, Journal of King
Saud University - Computer and Information Sciences 32 (2020) 794–808. URL:
https://www.sciencedirect.com/science/article/pii/S1319157818302039.
doi:https://doi.org/10.1016/j.jksuci.2018.09.017.

[55] S. Imamura, T. Kaihara, N. Fujii, D. Kokuryo, , A. Kitamura, Characteristic
analysis of artificial bee colony algorithm with network-structure, Journal of Ad-
vanced Computational Intelligence and Intelligent Informatics 21 (2017) 496–506.
doi:10.20965/jaciii.2017.p0496.

[56] D. Yazdani, M. R. Meybodi, A novel artificial bee colony algorithm for global opti-
mization, in: 2014 4th International Conference on Computer and Knowledge Engi-
neering (ICCKE), 2014, pp. 443–448. doi:10.1109/ICCKE.2014.6993393.

[57] S. Anuar, A. Selamat, R. Sallehuddin, A modified scout bee for artificial bee
colony algorithm and its performance on optimization problems, Journal of King
Saud University - Computer and Information Sciences 28 (2016) 395 – 406. URL:
http://www.sciencedirect.com/science/article/pii/S1319157816300039.
doi:https://doi.org/10.1016/j.jksuci.2016.03.001.

[58] H. Hakli, M. Kıran, An improved artificial bee colony algorithm for balancing lo-
cal and global search behaviors in continuous optimization, International Journal
of Machine Learning and Cybernetics 11 (2020) 2051–2076. doi:10.1007/s13042-020-
01094-7.

[59] X. He, W. Wang, J. Jiang, L. Xu, An improved artificial bee colony algorithm and
its application to multi-objective optimal power flow, Energies 8 (2015) 2412–2437.
doi:10.3390/en8042412.

[60] Y. Celik, An enhanced artificial bee colony algorithm based
on fitness weighted search strategy, Automatika 62 (2021) 300–
310. URL: https://doi.org/10.1080/00051144.2021.1938477.
doi:10.1080/00051144.2021.1938477. arXiv:https://doi.org/10.1080/00051144.2021.1938477.

34



[61] G. Zhu, S. Kwong, Gbest-guided artificial bee colony algorithm for numerical function
optimization, Applied Mathematics and Computation 217 (2010) 3166–3173. URL:
https://www.sciencedirect.com/science/article/pii/S0096300310009136.
doi:https://doi.org/10.1016/j.amc.2010.08.049.

[62] W. feng Gao, S. yang Liu, A modified artificial bee colony algo-
rithm, Computers & Operations Research 39 (2012) 687–697. URL:
https://www.sciencedirect.com/science/article/pii/S0305054811001699.
doi:https://doi.org/10.1016/j.cor.2011.06.007.

[63] L.-C. Lien, M.-Y. Cheng, A hybrid swarm intelligence based
particle-bee algorithm for construction site layout optimization, Ex-
pert Systems with Applications 39 (2012) 9642 – 9650. URL:
http://www.sciencedirect.com/science/article/pii/S0957417412003971.
doi:https://doi.org/10.1016/j.eswa.2012.02.134.

[64] N. Imanian, M. E. Shiri, P. Moradi, Velocity based artificial bee colony
algorithm for high dimensional continuous optimization problems, Engi-
neering Applications of Artificial Intelligence 36 (2014) 148 – 163. URL:
http://www.sciencedirect.com/science/article/pii/S0952197614001808.
doi:https://doi.org/10.1016/j.engappai.2014.07.012.

[65] S. Kumar, V. Kumar Sharma, R. Kumari, A Novel Hybrid Crossover based Artificial
Bee Colony Algorithm for Optimization Problem, International Journal of Computer
Applications 82 (2013) 18–25. doi:10.5120/14136-2266. arXiv:1407.5574.

[66] S.-M. Chen, A. Sarosh, Y.-F. Dong, Simulated annealing based ar-
tificial bee colony algorithm for global numerical optimization, Ap-
plied Mathematics and Computation 219 (2012) 3575–3589. URL:
https://www.sciencedirect.com/science/article/pii/S0096300312009514.
doi:https://doi.org/10.1016/j.amc.2012.09.052.

[67] H. Mohammed, T. Rashid, A novel hybrid gwo with woa for global numerical op-
timization and solving pressure vessel design, Neural Computing and Applications
(2020) 14701–14718. doi:10.36227/techrxiv.11916369.v1.

[68] M. Jamil, X. Yang, A literature survey of benchmark functions for global optimisation
problems, ArXiv abs/1308.4008 (2013).

[69] K. Hussain, M. Salleh, S. Cheng, R. Naseem, Common benchmark functions for meta-
heuristic evaluation: A review, International Journal on Informatics Visualization 1
(2017) 218–223. doi:10.30630/joiv.1.4-2.65.

[70] K. V. Price, N. H. Awad, M. Z. Ali, P. N. Suganthan, The 100-Digit Challenge:
Problem Definitions and Evaluation Criteria for the 100-Digit Challenge Special Ses-
sion and Competition on Single Objective Numerical Optimization, Technical Report,
School Elect. Electron. Eng., Nanyang Technol. Univ., Singapore, 2018.

35



[71] D. Karaboga, B. Akay, A comparative study of artificial bee colony algo-
rithm, Applied Mathematics and Computation 214 (2009) 108 – 132. URL:
http://www.sciencedirect.com/science/article/pii/S0096300309002860.
doi:https://doi.org/10.1016/j.amc.2009.03.090.

[72] M. Friedman, A comparison of alternative tests of significance for the problem of
$m$ rankings, Annals of Mathematical Statistics 11 (1940) 86–92.

[73] S. Holm, A simple sequentially rejective multiple test procedure, Scandinavian Jour-
nal of Statistics 6 (1979) 65–70.
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