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Waste‑Derived Catalysts for Water Electrolysis: 
Circular Economy‑Driven Sustainable Green 
Hydrogen Energy

Zhijie Chen1, Sining Yun2 *, Lan Wu1, Jiaqi Zhang1, Xingdong Shi1, Wei Wei1, 
Yiwen Liu1, Renji Zheng3, Ning Han4, Bing‑Jie Ni1 *

HIGHLIGHTS

• Critical strategies for converting wastes to catalysts are summarized.

• Applications of waste‑derived catalysts in hydrogen evolution reaction, oxygen evolution reaction, and overall water electrolysis are 
comprehensively reviewed.

• Perspectives in the development of waste‑derived catalysts are analyzed.

ABSTRACT The sustainable production of green hydrogen via water 
electrolysis necessitates cost‑effective electrocatalysts. By following the 
circular economy principle, the utilization of waste‑derived catalysts sig‑
nificantly promotes the sustainable development of green hydrogen energy. 
Currently, diverse waste‑derived catalysts have exhibited excellent catalytic 
performance toward hydrogen evolution reaction (HER), oxygen evolution 
reaction (OER), and overall water electrolysis (OWE). Herein, we system‑
atically examine recent achievements in waste‑derived electrocatalysts for 
water electrolysis. The general principles of water electrolysis and design 
principles of efficient electrocatalysts are discussed, followed by the illustra‑
tion of current strategies for transforming wastes into electrocatalysts. Then, 
applications of waste‑derived catalysts (i.e., carbon‑based catalysts, transi‑
tional metal‑based catalysts, and carbon‑based heterostructure catalysts) in 
HER, OER, and OWE are reviewed successively. An emphasis is put on cor‑
relating the catalysts’ structure–performance relationship. Also, challenges 
and research directions in this booming field are finally highlighted. This review would provide useful insights into the design, synthesis, and 
applications of waste‑derived electrocatalysts, and thus accelerate the development of the circular economy‑driven green hydrogen energy scheme.
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1 Introduction

The utilization of traditional carbon‑based fuels (e.g., 
natural gas, coal, oil) has given rise to serious concerns 
about environmental pollution and climate change [1, 2]. 
Additionally, the ever‑climbing global energy demand is 
essential to sustain the development of our human society. 
As such, it is imperative to explore sustainable and clean 
energy systems to meet these energy‑related challenges. 
Featuring zero carbon footprint, earth abundance, and 
high gravimetric energy density, hydrogen fuel is one of 
the most promising candidates to revolutionize the global 
energy system [3–5]. The complete industrial chain of 
hydrogen energy contains hydrogen production, storage, 
transportation, and application. A prerequisite for the sus‑
tainable development of hydrogen economy is the large‑
scale and clean production of hydrogen gas. Currently, 
conventional fossil fuels are responsible for the majority 
of  H2 production, and about 71.27% of  H2 is generated 
from natural gas, 27.27% from coal, 0.7% from petroleum, 
and the remaining 0.7% from water splitting. However, 
fossil reformation‑based hydrogen production techniques 
are neither renewable nor carbon neutral as the produc‑
tion process involves high greenhouse gas footprints [6]. 
Hence, water electrolysis, which only involves the conver‑
sion of hydrogen and oxygen elements has attracted broad 
interest in the world [7, 8]. Although water electrolysis 
attains a high technology readiness level (9–10), the rela‑
tively low energy efficiency (61–82%), and high levelized 
cost of hydrogen ($4.78 −  5.84/kg  H2, alkaline water 
electrolyzers) remain great challenges for the large‑scale 
industrial application of water electrolysis technique [9].

Theoretically, a low thermodynamic potential of 
1.23 V (at standard conditions) is needed to drive the 
water‑splitting process [10]. Nevertheless, a considerable 
overpotential (η) is generally required for practical water 
electrolysis due to the system hindrance and sluggish 
reaction kinetics [11]. To reduce energy consumption, 
efforts have been made to advance high‑performance 
electrocatalysts. Although precious metal‑based cata‑
lysts (e.g.,  IrO2,  RuO2, Pt, and Pd) exhibit high catalytic 
activities and durability for oxygen evolution reaction 
(OER) and hydrogen evolution reaction (HER), their high 
cost profoundly restrains their industrial applications [12, 
13]. Surprisingly, many well‑designed earth‑abundant 

transitional metals (e.g., Ni, Fe, Mn, Cu, Co, Mo) and 
carbon‑based materials also show high performance 
for OER, HER, and overall water electrolysis (OWE) 
[14–18]. Electrocatalysts with diverse structural fea‑
tures have gained great interest, such as metal–organic 
frameworks [19, 20], covalent‑organic frameworks [21], 
two‑dimensional (2D) materials [22], and hierarchically 
structured materials [23, 24]. The implementation of 
these low‑cost electrocatalysts would largely cut the run‑
ning cost of water electrolysis systems.

Of note, the aforementioned electroactive transitional 
metals and carbon are rich in typical wastes, such as elec‑
tronic wastes, biowastes, and wastewater. From a circu‑
lar economy perspective, reutilizing these wastes in the 
development of new products can achieve the close‑loop 
utilization of substances, which would not only reduce 
the cost of preparing new products but also benefit the 
waste management system [25–28]. Compared with linear 
and recycling economy approaches, the circular economy 
route could reduce resource market dependence and low‑
ers waste disposal costs. Additionally, it is suggested that 
the implementation of a circular economy in all sectors 
can help to limit carbon emissions by 45% by 2030, and 
to achieve carbon neutrality by 2050 [29]. Thus, devel‑
oping functional materials from wastes is a sensible way 
to realize the circular economy and minimize the carbon 
footprint of materials preparation [30–32]. Recently, syn‑
thesizing electrocatalysts from wastes has gained increas‑
ing scientific attention thanks to the huge economic and 
environmental benefits [33–37]. For example, Cao and 
coworkers employed bean sprouts to design a N, S self‑
doped porous carbon catalyst for HER via pyrolysis [38]. 
The obtained carbon catalyst exhibits an acceptable HER 
activity (η10 = 413 mV, Tafel slope = 98 mV  dec−1) in 
acidic media. Aside from the pyrolysis method which is 
usually used for converting biowastes into carbon‑based 
catalysts, other sophisticated methods like electrochemical 
synthesis [39], wet‑chemical synthesis [40], and micro‑
wave synthesis [41] are also capable of constructing waste‑
derived electrocatalysts for water electrolysis. Generally, 
there are three categories of electrocatalysts derived from 
various wastes, namely carbon‑based materials (mainly 
refer to pure carbon and heteroatom‑doped carbon materi‑
als), transitional metal‑based catalysts, and carbon‑based 
composite catalysts.
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To ameliorate the catalytic performance of waste‑derived 
catalysts, diverse strategies have been performed to regulate 
the physicochemical and electronic properties of catalysts, 
such as heteroatom doping, nanostructure control, defect/
vacancy engineering, and heterostructure construction [18, 
42–44]. Many engineered waste‑derived catalysts exhibit 
good performance for HER, OER, and OWE, and some 
of them even outperform noble metal‑based counterparts 
[45–49]. Hence, waste‑derived efficient electrocatalysts for 
water electrolysis can promote the circular economy‑driven 
green hydrogen energy system (Scheme 1). Currently, a 
comprehensive review of the speedily flourishing applica‑
tions of waste‑derived electrocatalysts in water electrolysis 
is still lacking. Accordingly, it is emergency to systemati‑
cally summarize remarkable breakthroughs in waste‑derived 
water electrolysis catalysts for guiding future research.

Herein, we comprehensively summarize recent achieve‑
ments in applying waste‑derived electrocatalysts for water 
electrolysis. The general principles of water electrolysis and 
high‑performance electrocatalyst design are analyzed. Then, 
we introduce the main strategies for transforming wastes 
into catalysts, such as pyrolysis, electrochemical synthe‑
sis, wet‑chemical synthesis, as well as microwave synthe‑
sis and beyond. Consequently, the applications of waste‑
derived carbon‑based catalysts, transitional metal‑based 
catalysts, and carbon‑based heterostructural catalysts in 
HER, OER, and OWE are detailed separately. The catalysts’ 

structure–catalytic performance relationship is emphasized. 
At last, perspectives in this field are also pointed out. We 
hope this timely review would provide guidance to the 
design of waste‑derived high‑performance electrocatalysts 
for water electrolysis, and stimulate further studies on the 
development of low‑cost green hydrogen production.

2  General Principles of Water Electrolysis 
and Electrocatalyst Design

Water electrolysis involves the splitting of  H2O molecules 
into  H2 and  O2 gases under potential biases (Fig. 1a). The 
hydrogen gas production efficiency is influenced by the 
electrolyzer systems, including electrolytes, catalysts/elec‑
trodes, applied potentials, etc. Herein, the general princi‑
ples of water electrolysis and design principles of efficient 
catalysts are discussed to provide an overview of the water 
electrolysis system.

2.1  General Principles of Water Electrolysis

Water electrolysis consists of HER at the cathode and OER 
at the anode. Both HER and OER follow different pathways/
mechanisms in various electrolytes. Currently, HER mecha‑
nisms have been well disclosed by experimental and compu‑
tational investigations. Generally, HER obeys the Volmer/
Tafel or Volmer/Heyrovsky routes. In alkaline media, there 
are four elementary steps (i.e.,  H2O adsorption,  H2O disso‑
ciation,  OH− adsorption, and  H2 generation) (Fig. 1b) [50]. 
Of note, the  H2O adsorption and dissociation steps in alka‑
line HER show higher energy barriers than  H3O+ adsorption 
in acidic HER. As a result, the activity of some catalysts 
(e.g., Pd, Pt) for acidic HER is theoretically much higher 
than that for alkaline HER [51]. It is suggested that HER 
catalysts with strong abilities to adsorb and dissociate  H2O 
and bind protons would exhibit improved HER activities in 
alkaline media [52].

Different from the 2‑electron HER process, the mecha‑
nism of the 4‑electron OER is more complicated. Currently, 
the most acceptable OER pathways include the adsorbate 
evolution mechanism (AEM) and the lattice oxygen partici‑
pation mechanism (LOM) [3]. As depicted in Fig. 1c, AEM 
for alkaline OER generally follows four steps. First, the 
oxidation of  OH− on the electrocatalytically active site (M) 
forms the intermediate M–OH. Then, the M–OH becomes 

Scheme  1  Diagram of circular economy‑driven green hydrogen 
energy assisted by waste‑derived electrocatalysts for water electroly‑
sis
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M–O through a proton coupling‑electron transfer process. 
The M–O further transforms into the M–OOH intermediate 
via an  OH− coupled with 1‑electron oxidation and eventu‑
ally initiates another proton‑coupled electron transfer pro‑
cess to generate  O2 molecules. Different from alkaline OER, 
the first step of AEM for acidic OER is the adsorption of a 
 H2O molecule on M (Fig. 1d). Then, the dissociation of a 
 H+ leads to the generation of M–OH, which is followed by 
the release of the second  H+ to produce M–O. After that, 
M–OOH is formed after the nucleophilic attack of another 
 H2O molecule. The final step is the desorption of the formed 
 O2 molecule and the fourth proton coupling.

Recently, growing studies have focused on determining 
the origin of oxygen in  O2 products, and some studies found 
that catalysts’ lattice oxygen participates in the OER pro‑
cess, namely the LOM‑driven OER [53–55]. Taking LOM 
for alkaline OER as an illustration (Fig. 1e),  OH− is first 

adsorbed on the oxygen vacancy  (Ov)‑coordinated active 
site (M–OH/Ov). Subsequently, the  Ov site near M adsorbs 
an additional  OH− and forms the M–OH/–OH species, 
which is followed by a dehydrogenation process and leads 
to the generation of M–OH/–O. Nevertheless,  OH− is dif‑
ficult to undergo further dehydrogenation directly, and an 
unstable transition state (M–OH) is produced, which con‑
sequently transforms into M–OO/Ov. At last, with the des‑
orption of the formed  O2 molecule and filling of  OH−, the 
initial state M–OH/Ov is recovered. It is worth noting that 
the OER mechanism is highly sensitive to catalysts’ sur‑
face properties, and the in situ structural reconstruction of 
catalysts under OER conditions can regulate the catalysis 
process. To attain a better understanding of OER mecha‑
nisms, employing advanced techniques to investigate the 
structure self‑evolution of catalysts and monitor the reaction 
intermediates (e.g., OH, OOH) is highly suggested [56].

Fig. 1  a Illustration of the water electrolyzer. b HER mechanisms in acidic and alkaline electrolytes. c Adsorbate evolution mechanism (AEM) 
for alkaline OER. d AEM for acidic OER. e Lattice oxygen participation mechanism (LOM) for alkaline OER, the dotted red circle represents 
the oxygen vacancy [50]. Copyright 2022, Wiley–VCH
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2.2  Parameters for Electrocatalyst Evaluation

Rational evaluating catalysts’ activities is important for 
advancing the design of high‑performance electrocatalysts. 
Hence, several parameters have been proposed, including 
overpotential (η), Tafel slope, Faradaic efficiency, turnover 
frequency (TOF), and stability.

Overpotential (η) means the extra potential which is 
necessitated to initiate the electrochemical reactions. In gen‑
eral, η at a specified current density (j, e.g., 10 mA  cm−2) is 
employed to assess the activity of electrocatalysts [57], and 
a lower η represents a higher activity.

Extracted from linear sweep voltammetry (LSV) curves, 
Tafel plots are employed to disclose the kinetics of electro‑
chemical reactions [24]. The linear regions of Tafel plots can 
be fitted with the Tafel equation (η = a + blog j, where b rep‑
resents the Tafel slope). When η is zero, the corresponding 
j obtained from the Tafel equation is termed the exchange 
current density (j0). j0 shows electrocatalysts’ intrinsic activ‑
ity in the equilibrium state, which is generally used for HER 
catalysts’ evaluation.

Faradaic efficiency unveils the utilization efficiency of 
electrons involved in electrochemical reactions (i.e., HER, 
OER). Generally, Faradaic efficiency can be gained by 
comparing the experimental and theoretical values of gas 
product amounts. The amount/volume of gas products can 
be obtained via the internal water displacement method or 
tested with gas chromatography. Also, the fluorescence‑
based oxygen sensing method [58] and rotating ring disk 
electrode voltammetry [59] have been employed to measure 
the amount of oxygen gas.

TOF is explicated as the number of reactants  (H2O) that 
electrocatalysts can convert to desired products  (O2 or  H2) 
per catalytic site per time unit. Accordingly, TOF demon‑
strates catalysts’ intrinsic activity. The value of TOF is gen‑
erally calculated with the equation, TOF = (jA)/(αFn), where 
j is the current density at a fixed η; A means the surface area 
of the electrode; α is the electron numbers of the reaction; 
F represents the Faraday’s constant; n means the number of 
moles of the active sites. Of note, not all of the sites/atoms 
on catalysts are catalytically active or equally accessible, 
and thus it is difficult to gain an accurate TOF value for 
electrocatalysts. However, it is still rational to compare the 
TOF value of similar electrocatalysts.

Stability is a principal index that governs the practicabil‑
ity of electrocatalysts in commercial applications [60]. Two 

methods are generally used to test electrocatalysts’ stability. 
The first one is to document chronopotentiometry or chrono‑
amperometry curves in a long‑term running. The second one 
is the accelerated degradation test, which measures cyclic 
voltammetry (CV) or LSV curves for thousands of cycles. A 
stable catalyst would show an insignificant shift of potential 
or current density after the test.

Currently, it is still challenging to provide the best values 
of these parameters that are required for industrial water 
electrolysis applications of catalysts, because the measure‑
ment of these data is different from one study to another 
in terms of experimental protocols and catalysts’ properties 
(e.g., substrate, loading amount). Nevertheless, a promising 
electrocatalyst should possess a low η, a high Tafel slope, a 
high Faradaic efficiency, a high TOF, as well as good long‑
term stability.

2.3  Design Principles of Efficient Catalysts for Water 
Electrolysis

To develop high‑performance electrocatalysts for water elec‑
trolysis, four general design principles should be kept in mind. 
As depicted in Fig. 2, abundant active sites, high intrinsic cata‑
lytic activity, good conductivity, and long‑term performance 
durability/stability are essentials for a high‑performance 
electrocatalyst. To attain these essential properties, diverse 

Fig. 2  Design principles of waste‑derived catalysts for water elec‑
trolysis
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methods have been applied to regulate the internal and external 
characteristics of catalysts, such as doping, defect engineering, 
and nanostructure control. In this part, the most widely used 
methods for engineering efficient catalysts are detailed.

2.3.1  Abundant Electroactive Sites

Rich electroactive sites are necessary for the close contact of 
catalysts with electrolytes/reactants and promote electrocata‑
lytic processes. Generally, there are four methods to construct 
abundant electroactive sites: (i) Dispersing catalyst particles on 
substrates with a high specific surface area (SSA) will reduce 
the agglomeration of catalysts and populate the electroactive 
sites; (ii) Reducing the size of catalysts by controlling the 
catalyst synthesis protocols allows the formation of nanosized 
catalyst particles. This method also can enhance the utilization 
efficiency of catalysts, a representative is single‑atom cata‑
lysts; (iii) Previous studies also suggest that chemical doping 
and component regulation can tune the size of electrocatalysts 
and optimize the electroactive sites [61]; and (iv) Introducing 
electroactive dopants/materials can bring in additional catalytic 
sites, thus enriching surface electroactive sites.

2.3.2  High Intrinsic Catalytic Activity

Catalysts’ intrinsic catalytic activities largely dominate their 
electrocatalytic performance. Current strategies (e.g., com‑
position optimization, heterostructure construction, doping, 
phase engineering, and defect engineering) for upgrading 
the catalysts’ intrinsic activity mainly focus on altering cata‑
lysts’ electronic structures. Typically, the d‑band center and 
the density of state (DOS) are important electronic proper‑
ties that provide meaningful information about the electron 
transfer behavior and reactant bonding/adsorption mecha‑
nisms on electroactive sites. Hence, applying apt strategies 
to modulate the electronic structure of catalysts is considered 
a powerful method to achieve suitable adsorption strengths/
energies of reactants/intermediates (e.g., *H, *OH, *OOH) 
on electroactive sites, thereby high intrinsic activities.

2.3.3  High Electrical Conductivity

The electron transfer efficiency plays a crucial role in elec‑
trochemical reactions, and a high electrical conductivity can 
enhance electron transport throughout catalysts and prevent 

unwanted resistance at the electrolyte/catalyst interface [62]. 
In theory, the Fermi energy level of catalysts acts as the driv‑
ing force of electron transfer [63], and better conductivity 
is associated with a higher electron density near the Fermi 
energy level. In this context, performing design strategies, 
like component regulation, cationic doping, and constructing 
heterostructures, on catalysts can attain a favorable Fermi 
energy level, and finally a high conductivity. Additionally, 
downsizing of catalyst particles and loading electroactive 
materials on conductive supports (e.g., nickel foam (NF), 
carbon papers (CP), reduced graphene oxides (rGO), and 
carbon nanotubes (CNT)) can also improve the electrical 
conductivity of entire catalysts/electrodes.

2.3.4  Long‑term Performance Stability

To realize sustainable hydrogen fuel generation via water 
splitting, it is vital to maintain the performance stability 
of electrocatalysts in highly acidic or alkaline electrolytes. 
Electrochemical corrosion and detachment of electroactive 
materials are two major reasons for the degradation of elec‑
trodes. To overcome these barriers, component regulation, 
nanostructure control, and construction heterostructures can 
enhance the chemical and mechanical stability of catalysts 
under electrochemical conditions. Alternatively, developing 
electroactive materials on conductive and porous materials 
(e.g., NF, CP, porous carbon) via hydrothermal/solvothermal 
synthesis, electrodeposition, and electroless deposition can 
realize highly stable binder‑free electrodes. For chemical 
binders‑involved electrodes, the corrosion resistance prop‑
erty of binders to electrolytes also needs consideration, in 
addition to the stability of electroactive materials.

3  Strategies for Converting Wastes 
to Catalysts

Pristine wastes can hardly be used as efficient catalysts for 
water electrolysis. To this end, converting diverse wastes 
(e.g., biowastes, industrial wastes) into high‑performance 
catalysts is required. Of note, engineering electrocatalysts 
from wastes can significantly decrease the catalyst prepara‑
tion cost as well as the negative impacts of wastes on the 
environment [42]. Waste‑derived catalysts’ performance 
is largely determined by design principles that govern the 
nanostructure and surface chemistry of catalysts. In this part, 
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mainstream principles for waste‑derived catalyst design are 
discussed, including pyrolysis, electrochemical synthesis, 
wet‑chemical methods, microwave synthesis, and others.

3.1  Pyrolysis

Pyrolysis or carbonization is a frequently used process to 
design carbon‑based electrocatalysts from biowastes [37, 
64]. The pyrolysis/carbonization process is generally per‑
formed in a tube furnace under high temperatures, in an 
oxygen‑free or oxygen‑deficient atmosphere [65]. Cata‑
lytic properties of biowastes‑derived electrocatalysts pro‑
foundly rely on parent biowastes’ properties (e.g., the ratio 
of heteroatoms, porous structure) and pyrolysis conditions 
(e.g., atmosphere, temperature, and time) [66]. Moreover, 
a general method to optimize the nanostructure/porosity is 
chemical activation during the pyrolysis process [67], and 
commonly used activators include KOH,  K2CO3,  ZnCl2, 
 H3PO4, etc. Starting from peanut shells, Saravanan et al. 
developed multilayer carbon nanosheets for HER via a 
pyrolysis method. With KOH activation, the carbon material 
gains a high SSA (2338.5  m2  g−1) and uniform mesopores 
which improve the HER performance [68]. Aside from those 
one‑step activation methods, several studies have proposed 
two‑stage activation strategies to achieve a high surface 
area of carbon materials [69, 70]. For instance, Osman et al. 
used a two‑stage  H3PO4‑KOH activation process to convert 
biowaste into carbon materials with a high surface of 1368 
 m2  g−1 and a pore volume of 0.92  cm3  g−1 [69].

Besides using biowastes‑derived materials as electro‑
catalysts directly, growing studies have designed carbon‑
based composites/heterostructures by pyrolysis [71]. The 
general process involves pyrolyzing the mixture of bio‑
wastes and metal salts, which could lead to the formation 
of metal compounds/carbon hybrids. For both HER and 
OER, the hybrids usually outperform the corresponding 
single components due to the populated electroactive sites 
and regulated electronic properties of metal compounds/
carbon [72]. For instance, Song and co‑authors designed 
Co and N co‑doped carbon nanosheets (Co/N–CNSs) 
for HER from the catkins waste by a ball‑milling two‑
stage pyrolysis process (Fig. 3a) [73]. The Co/N–CNSs 
show good HER activities on account of the formation of 
well‑dispersed  CoNx sites on carbon structures. Another 
effective method to develop waste‑derived carbon‑based 

composites is functionalizing carbon materials with elec‑
troactive nanomaterials (e.g., phosphates, oxides, sulfides) 
by a post‑treatment (e.g., hydrothermal method, carboni‑
zation) [74, 75]. As illustrated in Fig. 3b, the  Fe3O4 and 
NiS hybrid nanoparticles are formed on the cotton car‑
bon (CC) via a post‑carbonization treatment under a  N2 
atmosphere. The as‑obtained  Fe3O4/NiS@CC catalyst 
displays good OER performance with a low overpotential 
(η10 = 310 mV), outperforming its counterparts [74].

3.2  Electrochemical Synthesis

Electrochemical synthesis (e.g., electrodeposition) is 
powerful for engineering electrocatalysts from metal 
laden wastes or preparing electrocatalysts on low‑cost 
robust substrates, such as spent stainless steel and cable 
wires [76–78]. The electrocatalysts’ properties are highly 
dependent on the property of wastes (electrolytes) and 
experimental protocols (e.g., deposition period, current, 
temperature, potential) since such parameters largely influ‑
ence catalysts’ surface chemistry and nanostructure. Using 
the battery industrial wastewater as metal precursors, Chen 
et al. found that the nanostructure and elemental composi‑
tion of electrodeposited NiCoMn‑layered triple hydroxides 
(LTHs) electrodes obtained at different deposition periods 
were different (Fig. 3c). Specifically, the electrodeposit 
transforms from nanoclusters (S‑1, 5 min) and nanospheres 
(S‑2, 10 min) to nanoflowers (S‑3, 20 min) and nanoplates 
(S‑4, 30 min; S‑5, 40 min). The optimal catalyst (S‑3) fea‑
turing a hierarchical nanostructure, low crystallinity, and a 
high metal content of 67.33% possesses higher electrocata‑
lytic activities toward both OER and HER [39].

Electrochemical transformation of solid metal‑bearing 
wastes under a potential can also lead to high‑perfor‑
mance electrocatalysts. Huang and coworkers developed 
a positive‑bias‑driven exfoliation method to convert spent 
 LiCoO2 electrode materials into CoOOH which shows 
high OER performance (Fig. 3d) [79]. This electrochemi‑
cal exfoliation process provides an eco‑friendly, and 
high‑efficiency route for constructing electrocatalysts by 
destroying the crystal structure of parent materials and 
oxidizing the electroactive elements to a high‑valence 
state, which is suggested to benefit the OER process.
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3.3  Wet‑Chemical Methods

Wet‑chemical methods are widely used for preparing elec‑
trocatalysts from diverse wastes, including hydrothermal/sol‑
vothermal synthesis, sol–gel process, and boriding [80–82]. 
All these processes involve chemical reactions in solutions, 
with different temperatures, pressures, and chemicals. 
Among them, hydrothermal/solvothermal methods are the 
most frequent applied one to synthesize carbon [83], metal 
oxides/hydroxides/sulfides/phosphides, and heterostructural 
catalysts [84, 85], especially carbon‑based composites, such 
as  Co2P/C [86],  MoS2/C [87],  Co3O4/NHPC (nitrogen‑doped 
hierarchically porous carbon) [40]. Two processes are gener‑
ally involved to construct composite electrocatalysts from 
biowastes with the hydrothermal method. The first one is 
converting biowastes into carbon via hydrothermal carboni‑
zation and metal salts are also involved, which is followed 
by a post‑treatment (e.g., pyrolysis) to form hybrid catalysts 
(Fig. 4a) [88]. The second method is developing electroac‑
tive metal species on the pre‑synthesized biowastes‑derived 
carbon by a hydrothermal process (Fig. 4b) [43].

The sol–gel method is generally combined with a 
thermochemical process to synthesize carbon‑based het‑
erostructures from biowastes. Starting from agarose bio‑
wastes, Xiao and co‑authors proposed a sol–gel–calcina‑
tion route to prepare Fe‑Ni2P nanoparticles decorated N, 
P co‑doped carbon catalyst (Fe‑Ni2P@N, P‑CNSs) [89]. 
Thanks to the enhanced electrical conductivity, high SSA, 
and rich electroactive sites, the Fe‑Ni2P@N, P‑CNSs 
catalyst shows high OER activities. Recently, research‑
ers have developed a new boriding process to transform 
metal laden wastes into high‑performance OER catalysts 
[90]. The boriding route refers to the reduction of metal 
species (e.g., Co, Ni, Cu, Fe, Mn, and Sn) in wastes and 
the generation of metal boride nanoparticles. The cata‑
lytic properties of obtained metal borides are governed by 
wastes’ properties (e.g., metals’ species and contents) and 
boriding protocols (e.g., atmosphere, temperature, reduct‑
ants’ amount). In general, metal borides with small sizes, 
high dispersion, and a high ratio of Ni and Fe exhibit high 
OER performance [45].

Fig. 3  a Illustration of synthesis of Co/N–CNSs catalysts [73]. Copyright 2020, Royal Society of Chemistry. b Scheme of the preparation of 
 Fe3O4/NiS@CC [74]. Copyright 2020, Elsevier. c Scanning electron microscopy (SEM) images and the scheme of NiCoMn LTHs catalysts 
nanostructure evolution during the electrodeposition process [39]. Copyright 2022, Royal Society of Chemistry. d Scheme of the positive‑bias‑
driven exfoliation of  LiCoO2 into CoOOH catalyst [79]. Copyright 2022, Royal Society of Chemistry
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3.4  Microwave Synthesis and Beyond

Microwave‑assisted synthesis is efficient for nanocatalysts 
preparation because of its unique merits of short reaction 
time, cleanliness, and high energy utilization efficiency 
[91]. More importantly, different from conventional heat‑
ing strategies (e.g., hydrothermal process, calcination), the 
microwave‑assisted heating process can realize uniform 
heating and facilitate crystal nucleus generation/crystalli‑
zation rapidly [92]. In 2018, Cova et al. proposed a micro‑
wave‑assisted strategy to design Ag/Ag2S‑carbon hybrid 
from pig bristles. The pig bristles can be efficiently decom‑
posed with microwave heating, and the discharge of S 
facilitates the formation of  Ag2S [41]. More recently, Miao 
and co‑authors employed a microwave hydrothermal route 
to construct a NiFe‑borate layered double hydroxide/bio‑
mass‑derived N‑doped carbon (NiFe‑BLDH/NC) hybrid 
catalyst [93]. With multistage decentralized architecture, 
rich active sites, good electrical conductivity, and efficient 
charge/mass transfer kinetics, the NiFe‑BLDH/NC shows 
high OER activities (η10 = 243 mV, Tafel slope = 42.7 mV 
 dec−1). Compared with microwave synthesis, Zuliani et al. 

suggested that ultrasound treatment was better for the syn‑
thesis of Co/pinecones‑derived carbon hybrid OER cata‑
lysts. Further analysis indicates that the ultrasound method 
leads to a higher number of electroactive sites than the 
microwave, microwave/ultrasound, and conventional heat‑
ing processes [94].

Apart from the aforementioned methods, biogenic syn‑
thesis also has been employed for preparing electrocata‑
lysts from wastes [95]. Generally, the synthesis of electro‑
catalysts from wastes involves a combination of different 
methods, representatives include hydrothermal–pyrolysis, 
pyrolysis–hydrothermal, sol–gel–calcination/pyrolysis, and 
pyrolysis–microwave processes. The rich combinations of 
synthesis methods allow the construction of diverse high‑
performance catalysts for water electrolysis.

4  Waste‑derived Catalysts for HER

Developing cost‑effective HER electrocatalysts allows sus‑
tainable and efficient hydrogen generation at the cathode 
part of water electrolyzers [96–98]. Currently, electroactive 
carbon materials, transitional metal‑based catalysts, and 
carbon‑based heterostructures synthesized from wastes have 
shown good HER performance in a wide pH range (Table 1). 
This part reviews recent advances in representative waste‑
derived HER electrocatalysts.

4.1  Waste‑derived Carbon Catalysts for HER

Carbon‑based electrocatalysts exhibit some features for 
HER, including earth abundance, easily tunable nanostruc‑
ture, and high stability in broad pH conditions. To date, the 
development of waste‑derived carbon catalysts centrally 
focuses on phase regulation, nanostructure control, and het‑
eroatom doping.

The phase/crystal structure of carbon catalysts influences 
their catalytic properties by determining the electrical con‑
ductivity, density of electroactive sits, and intrinsic catalytic 
activity. Starting from human hairs, Sekar et al. designed 
two carbon materials with different graphitization degrees 
(Fig. 5a) [67]. Compared with the amorphous carbon mate‑
rial (HH‑AC‑600) prepared at a lower temperature (600 °C), 
the catalyst synthesized at 700 °C (HH‑AC‑700) shows a 
partial graphitization feature. Interestingly, the HH‑AC‑
700 catalyst possesses a higher textural porosity and higher 

Fig. 4  a Scheme of synthesis of cobalt phosphides decorated spir‑
ulina‑derived porous N‑doped carbon matrix  (Co2P/NC) catalyst 
[88]. Copyright 2020, Wiley–VCH. b Illustration of the fabrication 
of N‑doped carbon nanofiber/MoS2 (pBC‑N/MoS2) nanocomposites 
[43]. Copyright 2016, American Chemical Society
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electrical conductivity than its counterpart, which contrib‑
utes to better HER activities in acidic media (Fig. 5b‑c). 
Additionally, the HH‑AC‑700 catalyst exhibits better sta‑
bility, as evidenced by the multiple chronopotentiometry and 
time‑dependent measurements for 1 and 10 h, respectively 

(Fig. 5d‑e). Similar results reported by the same group also 
indicate that rice husks‑derived graphene nanosheets pre‑
pared at a higher temperature (700 °C) with a relatively 
higher crystallinity exhibit better HER activities [99]. How‑
ever, not all reports follow this synthesis temperature‑HER 

Table 1  Summary of representative waste‑derived HER electrocatalysts

Waste Catalyst Electrolyte η10 (mV) Tafel slope
(mV  dec−1)

Refs

Palm plant Hierarchical porous carbon nanosheets 0.5 M  H2SO4 330 63 [109]
Human hair ashes Partially graphitized activated carbon nanobundles 0.5 M  H2SO4 16 51 [67]
Rice husks Corrugated graphene nanosheets 0.5 M  H2SO4 9 31 [99]
Paper wastes Co, N co‑doped carbon 0.5 M  H2SO4 223 91 [112]
Waste tires Zn, S, N co‑doped carbon 1.0 M KOH 50 78 [111]
Waste cotton textile O‑doped biochar 0.5 M  H2SO4 247.6 120.8 [196]
Polysaccharides Defective N‑doped graphene sponge 0.5 M  H2SO4 267 69.7 [104]
Pistachio shells Ni, N co‑doped carbon 1.0 M KOH 403 146 [113]
Plastic wastes Holey and wrinkled graphene 0.5 M  H2SO4 613 91 [103]
Peanut shells N‑doped carbon nanosheets 0.5 M  H2SO4 390 75.7 [68]
Tamarindus indica shells Graphitic carbon 1.0 M KOH 221 204 [100]
Peanut root nodules S, N co‑doped carbon nanosheets 0.5 M  H2SO4 27 67.8 [110]
Plastic wastes N, O co‑doped carbon 0.5 M  H2SO4 309 87 [102]
Animal bones N‑, P‑ and Ca co‑doped biochar 0.5 M  H2SO4 162 ± 3 80 [115]
Cattail fibers Porous N‑doped carbon fibers 0.5 M  H2SO4 248 135 [197]
Bean sprouts N‑doped carbon 0.5  MH2SO4 413 98 [38]
Plastic wastes N‑doped carbon coated  Mo2C 0.5 M  H2SO4 186.6 72.9 [124]
Plastic wastes N‑doped carbon supported  MoS2 0.5 M  H2SO4 56 36.6 [131]
Watermelon peels Mo2C/C 1.0 M KOH 133 71 [198]
Waste‑yeast cells N, P co‑doped  Mo2C confined in porous carbon 1.0 M KOH 84 58.15 [126]
Electronic wastes Au@N‑doped carbon 0.5 M  H2SO4 54.1 76.8 [123]
Aloe waste ZnMoO4/carbon 1.0 M KOH 124 54 [129]
Fly ash Fly ash/TiO2 0.1 M KOH 125 115 [120]
Banana waste Pd/Fe3O4@carbon 0.5 M  H2SO4 293 227.05 [199]
Wood residue Mo2C 0.5 M  H2SO4 35 25 [118]
Waste polythene N‑doped carbon‑supported  Mo2C 0.5 M  H2SO4 197.37 69.2 [200]
Eggshell membrane NiO/C 1.0 M KOH 670 77.8 [80]
Organic liquid waste MoS2/vertical graphene nanosheets 0.5 M  H2SO4 183 38 [132]
Ion‑exchange resin Cr2O3/C 0.5 M  H2SO4 123 90 [128]
Coffee waste grounds Carbon‑coated Fe nanoparticles 0.5 M  H2SO4 75 59 [122]
Carbon dioxide Ni/NiOx@C 0.1 M KOH 337 – [201]
Plastic waste Mo2C/MnO2@C 0.5 M  H2SO4 58.3 36 [46]
Walnut shells Mo2C@C 0.5 M  H2SO4 140 63 [125]
Sugarcane bagasse Co‑MoS2/C 0.5 M  H2SO4 62 53.86 [133]
Chlorella Co2P/N‑doped carbon 0.5 M  H2SO4 151 50.21 [202]

1.0 M KOH 252 70.14 [202]
Silk cocoon NiCo alloy/N‑doped carbon 1.0 M KOH 179 40 [203]
Scrap nickel Ni2P nanoparticles 0.5 M  H2SO4 69 55 [119]

1.0 M KOH 73 73 [119]
Pig bristles Ag/Ag2S@C 0.5 M  H2SO4 190 150 [41]
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activity trend. Thirumal et al. found that the activated carbon 
catalyst obtained at 800 °C outperformed its analogues syn‑
thesized at 700 and 900 °C due to its highest conductivity 
[100].

Engineering the nanostructure of carbon catalysts is a 
powerful strategy to upgrade the HER performance. Car‑
bon catalysts with diverse morphologies/nanostructures have 
been developed for HER, especially nanosheets and porous 
architecture. These structures feature large SSA, which con‑
tributes to efficient electrolyte percolation, abundant elec‑
troactive sites, and rapid mass/charge transfer during the 
catalytic process [101]. Some studies have emphasized the 
importance of managing porous structures in carbon cata‑
lysts. In the low‑temperature solvothermal dehalogenation of 
polyvinyl chloride (PVC) wastes, the solid‑base catalyst can 
work as a pore‑forming additive to generate hierarchically 

porous carbon monolith [102]. More recently, Wyss and 
coworkers developed a Joule heating process to convert 
mixed plastic wastes into holey and wrinkled flash graphene 
(HWFG) (Fig. 5f) [103]. The obtained graphene contains 
rich three‑dimensional (3D) and 2D pores and displays a 
large surface area (874  m2  g–1). Nevertheless, the HWFG 
only shows a mediocre HER activity (η10 = 613 mV) in an 
acidic solution, which may be due to its pure carbon com‑
position. Using hard templates is another efficient method 
to engineer porous structures in carbon catalysts. Niu et al. 
designed graphene sponges by employing  SiO2 spheres 
as the hard template and chitosan biomass as the carbon 
source [104]. With a spatial structure and high surface area, 
the obtained defective N‑doped graphene sponge shows a 
good HER activity (η0.5 = 203 mV) and excellent durability 
for about 2 h. For potential applications, the stability test 

Fig. 5  a Scheme of the preparation of human hair‑derived HH‑AC‑700 layered nanobundles and HH‑AC‑600 nanobundles. b LSV curves, c 
Tafel plots, d multi‑chronopotentiometry profiles, and e time‑dependent HER stability for HH‑AC‑700 and HH‑AC‑600 catalysts [67]. Copy‑
right 2022, MDPI. f Illustration of the HWFG preparation process, and the diagram of HWFG’s porous structure [103]. Copyright 2022, Ameri‑
can Chemical Society. g Scheme of the fabrication process of bean sprouts carbon materials [38]. Copyright 2021, Elsevier
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should be operated for a longer period to meet the industrial 
demand.

Doping is powerful to upgrade carbon catalysts’ intrinsic 
activities [105]. Compared with the nonpolar C–C bonds in 
pure carbon materials, carbon atoms in heteroatom‑doped 
carbon materials can develop polar bonds with doped het‑
eroatoms (e.g., N, P) to impose different dipole moments 
depending on their difference in electronegativity and atomic 
size from those of carbon [106]. Accordingly, an adjust‑
ment in the DOS and charge population can be achieved on 
both the carbon atom and heteroatoms, which would help 
to improve catalytic activities in various heteroatom‑doped 
carbon materials [107, 108]. Biowastes themselves are effec‑
tive sources for in situ synthesizing heteroatoms (especially 
N, S, O)‑doped carbon materials [109]. For instance, Cao 
and coworkers utilized bean sprouts as the carbon precursor 
to prepare carbon materials due to their self‑doping charac‑
teristics under the high‑temperature calcination condition 
(Fig. 5g) [38]. The resulting N, S co‑decorated carbon cata‑
lyst shows acceptable HER activities (η10 = 413 mV, Tafel 
slope = 98 mV  dec−1) with high durability over 2000 CV 
cycles in acidic media. The influence of N and S dopants on 
HER performance was disclosed by density functional the‑
ory (DFT) calculations. Specifically, S dopants can lead to 
significant changes in the electronic structures and enhance 
the adsorption of the H atom intermediate on catalysts, 
which could improve the HER activity more efficiently than 
single N doping [110]. Besides nonmetal doping, transitional 
metals also have been incorporated into carbon materials, 
such as Zn, S, N self‑doped carbon [111], Co, N co‑doped 
carbon [112], Ni, N co‑doped carbon [113, 114], and N, P, 
Ca co‑doped biochar [115]. The presence of metal atoms 
can significantly improve catalytic performance by increas‑
ing the electrical conductivity and taking the advantage of 
synergistic effects of different elements [115]. A special 
structure is metal‑N–C which emerges as a promising can‑
didate for HER [114, 116]; as suggested, the abundant Co–N 
electroactive sites in the Co, N co‑doped carbon  (Cox–N–C) 
contribute to enhanced HER activities [112].

4.2  Waste‑derived Transitional Metal‑based Catalysts 
for HER

Earth‑abundant transitional metals, especially Fe, Cu, 
Ni, Co, and Mo, are extensively employed for designing 

high‑performance HER catalysts due to their high conduc‑
tivity, good electrochemical activity, as well as low cost [51, 
117]. To further reduce catalysts’ fabrication cost, several 
studies have converted biowastes and industrial wastes into 
transitional metal‑based HER catalysts.

Starting from the birch tree, Humagain and co‑authors 
design a porous  Mo2C catalyst for HER (Fig. 6a), the bio‑
waste‑derived biochar acts as the carbon source instead 
of a carbon substrate [118]. The  Mo2C catalyst can effi‑
ciently catalyze water reduction in the acidic electrolyte 
(η10 = 35 mV, η100 = 60 mV), with high durability for 100 h. 
Besides metal carbides, highly conductive metal phosphides 
also attain great interest. In 2018, Lin et al. reported a three‑
step process to transform bulk scrap nickel into 3D  Ni2P 
nanoparticle catalysts (Fig. 6b) [119]. Benefiting from its 
high intrinsic activity and 3D nanostructure, the obtained 
 Ni2P catalyst exhibits high HER activities in both alkaline 
and acidic electrolytes with low overpotentials of 73 and 
69 mV at 10 mA  cm−2, respectively (Fig. 6c‑d). Compared 
with these single component transitional metal‑based cata‑
lysts, constructing hybrids from wastes can realize enhanced 
HER performance. Altalhi and coworkers used industrial 
fly ash (FA) waste with  TiO2 to create a FA‑TiO2 nanocom‑
posite [120]. With a post‑cathodic polarization treatment, 
the activated FA‑TiO2 nanocomposite catalyst shows good 
HER activities (η10 = 125 mV, Tafel slope = 115 mV  dec−1) 
in the alkaline electrolyte, which are comparable to those of 
the Pt/C catalyst. Although the FA‑based composite exhibits 
high electrocatalytic performance, it is challenging to iden‑
tify the activity origin owing to the unclear crystal structure 
and complicated chemical composition of FA. Since most 
waste‑derived transitional metal‑based HER electrocatalysts 
also show high OER activities (e.g., NiCoMn hydroxides 
[39]), they will be discussed in the part of waste‑derived 
bifunctional catalysts for OWE.

4.3  Waste‑derived Carbon‑based Heterostructures 
for HER

Combining carbon materials’ large surface area and high 
conductivity and transitional metals’ high intrinsic activity 
can enhance the HER performance of individual compo‑
nents. In this regard, hybridizing biowaste‑derived carbon 
with transitional metal‑based nanomaterials is practical to 
create favorable HER electrocatalysts [121]. To date, a group 
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of waste‑derived carbon‑based heterostructures has been 
realized for HER, such as metal–carbon and metal alloys/
oxides/sulfides/phosphides/carbides‑carbon hybrids.

Core@shell structured metallic particle@carbon catalysts 
with strong carbon–metal binding and high stability can be 
obtained by a reduction reaction. With a carbothermal reduc‑
tion process, Ahsan et al. developed an ultrathin carbon‑shell 
(4 nm)‑coated metallic Fe nanoparticles structure (Fig. 7a) 
[122]. LSV measurements suggest that the sample prepared 
at 800 °C (Fe‑800 °C@BMC) delivered high HER perfor‑
mance (η10 = 75 mV, Tafel slope = 59 mV  dec−1) in acidic 
media, with high durability (99% of the initial activity pre‑
served after 20000 s) (Fig. 7b‑c). Both the hierarchically 
porous carbon matrix and the strong electronic interaction 
between carbon shells and metallic Fe cores contribute to the 
high catalytic performance. An earlier study reported a bio‑
reduction and calcination route to engineer Au nanoparticles 
covered by N‑doped carbon (Au@NC) [123]. The interface 
interaction and charge transport between N‑doped carbon 
and Au core significantly benefits the HER process and 
leads to high activities (η10 = 54.1 mV, Tafel slope = 76.8 mV 
 dec−1).

Among all waste‑derived carbon‑based heterostructures, 
 Mo2C/C catalysts are the most frequently studied. Tradi‑
tionally, the synthesis of  Mo2C needs a high temperature, 
which would result in severe agglomeration of particles 
[124]. Alternatively, encapsulating/loading  Mo2C nano‑
particles in/on a large surface carbon structure can enhance 
both catalytic efficiency and durability. Thus, biowastes have 
been extensively used to fabricate  Mo2C/C catalysts [46, 
125]. To further improve the catalytic performance, heter‑
oatom doping is a favorable option. As shown in Fig. 7d, 
the N, P co‑decorated  Mo2C enclosed in the N, P co‑doped 
carbon matrix (N, P‑Mo2C/NPC) was prepared from waste‑
yeast cells [126]. The N, P‑Mo2C/NPC hybrid displays a 
good HER activity (η10 = 84 mV) and high durability in 
alkaline solution. Further DFT calculations suggest that N 
and P dopants can significantly tune the electron density 
of electroactive sites on  Mo2C and thus regulates the DOS 
of  Mo2C, resulting in optimized intermediates adsorption 
energy (Fig. 7e, f). In the highly porous  Mo2C/N‑rich carbon 
matrix composite, the N dopant in carbon is also suggested 
to optimize the intrinsic activity by optimizing hydrogen 
adsorption strength [127].

Fig. 6  a Diagram of the preparation of the  Mo2C catalyst from birch tree [118]. Copyright 2018, Wiley–VCH. b Scheme of the  Ni2P catalyst 
preparation process (PVG: photochemical vapor generation; CVD: chemical vapor deposition). c HER performance of the  Ni2P catalyst in acidic 
and alkaline media [119]. Copyright 2018, Royal Society of Chemistry
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Metal oxides/carbon heterostructures also attract enor‑
mous attention. Zhou et al. have tested the HER perfor‑
mance of different metal oxides/carbon catalysts prepared 
from spent ion‑exchange resins [128]. Compared with other 
metal ions (i.e.,  Ni2+,  Ag+,  Pb2+,  Mn2+,  Cr3+,  Cd2+,  Zn2+ 
and  Co2+), the  Fe3+‑contaminated resin‑derived  FeOx/C 
catalyst shows the best HER activity (η10 = 60 mV). Of note, 
the  CrOx/C prepared from highly toxic metal Cr‑containing 
ion‑exchange resins can also attain a good catalytic activity 
(η10 = 123 mV), which provides a suitable route to reutilize 
hazardous wastes. Incorporating a second metal into metal 
oxides can enhance the catalytic performance. In some aloe 
waste‑derived 3D carbon (3D‑AWC)‑supported Mo‑based 
bimetallic oxides  (ZnMoO4,  MnMoO4, and  Cu3Mo2O9) fab‑
ricated through a chemical precipitation route (Fig. 7g), the 
 ZnMoO4/3D‑AWC catalyst demonstrates a high HER activ‑
ity in alkaline media (η10 = 124 mV, Tafel slope = 54 mV 
 dec−1) (Fig. 7h, i) [129]. In‑depth computational results 

indicate the good HER performance of Mo‑based bimetal‑
lic oxides arises from metallic features and apt energy levels. 
Another efficient method to upgrade the HER performance 
of metal oxides/C hybrids is forming heterostructures on the 
carbon substrate. Upadhyay et al. have engineered a three‑
component  Mo2C/MnO2/C heterostructure from laboratory 
plastic wastes [46]. In contrast to the  Mo2C/C catalyst, the 
 Mo2C/MnO2/C composite performs better toward HER. This 
is because the extremely fine and intertwine  MnO2 nano‑
flakes develop a network that guarantees efficient electrons/
ions transfer and enhances the structural stability over 5000 
cycles of CV tests.

A group of metal sulfides/carbon hybrids also have been 
developed for HER recently.  MoS2 is a representative HER 
catalyst among transitional metal dichalcogenides, due to 
its layer structures and abundant highly active sites [130]. 
Zhao et al. reported a plastic waste‑derived carbon‑sup‑
ported  MoS2 catalyst for HER [131]. The highly active  MoS2 

Fig. 7  a Diagram of the preparation of Fe‑800 °C@BMC catalyst. b LSV curves catalysts in 0.5 M  H2SO4. c Chronoamperometric curves of 
Fe‑800 °C@BMC and Pt/C catalysts at the overpotential of 350 mV, the inset shows the crossover effect of Fe‑800 °C@BMC and Pt/C catalyst 
with the addition of 3 M methanol [122]. Copyright 2020, Elsevier. d Illustration of the reutilization of waste‑yeast cells to design N, P‑Mo2C/
NPC catalyst. e Computational hydrogen adsorption free energy (ΔGH*) at the equilibrium potential, and the inset shows Bader charges of the N, 
P‑Mo2C catalyst. f Calculated DOS for  Mo2C and N,P‑Mo2C catalysts [126]. Copyright 2022, Elsevier. g Scheme of the synthesis of Mo‑based 
bimetallic oxides and their carbon‑based hybrids. h LSV curves and i Tafel plots of catalysts in 1.0 M KOH [129]. Copyright 2020, Elsevier
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nanosheets are finely scattered on the carbon material. Inter‑
estingly, the rich pyridinic‒N in the carbon support provides 
additional electroactive sites, and there is a positive correla‑
tion between HER performance and the content of N dopant. 
The critical role of the carbon support in enhancing  MoS2 
catalysts’ HER performance is also identified in the organic 
liquid waste‑derived vertical graphene nanosheets (VGNS)/
MoS2 hybrid [132]. By combining VGNS with  MoS2, the 
Schottky barrier height is reduced from 0.52 to 0.23 eV in 
the computational model, which is in line with the experi‑
mentally reduced overpotential by ∼ 50 mV. More recently, 
Ji and co‑authors found that Co‑doping could raise the HER 
performance of biowaste‑derived  MoS2/C [133]. The Co 
dopant can modulate the electronic structure of  MoS2 and 
contribute to larger planar defect structures, which jointly 
ameliorate the HER performance of  MoS2.

5  Waste‑derived Catalysts for OER

As a central bottleneck of the water electrolysis system, OER 
with inherently sluggish kinetics requires efficient electro‑
catalysts to speed the catalytic process [134]. Currently, 
cost‑effective catalysts derived from diverse wastes (e.g., 
biomass, spent batteries) play a key role in upgrading OER 
performance. Similar to HER catalysts, the waste‑derived 
OER catalysts listed in Table 2 also can be classified into 
three categories, namely carbon catalysts, transitional metal‑
based catalysts, and carbon‑based heterostructures. It can 
be seen that most waste‑derived OER catalysts only work 
in alkaline media because they are likely to be corroded, 
dissolved, and deactivated in harsh acidic and oxidative 
conditions [56, 135]. In this part, OER electrocatalysts syn‑
thesized from wastes are fully discussed, and some effective 
catalyst design strategies are outlined.

5.1  Waste‑derived Carbon Catalysts for OER

Nanocarbon materials prepared from biomass and plas‑
tic wastes have shown promising OER performance, and 
most of them are N‑doped carbon [136]. The benefit of N 
doping includes enhanced electrical conductivity, regu‑
lated surface electronic properties, increased structural 
disorder, and populated defective sites [137]. It is well 
accepted that the species of N dopants governs the cata‑
lytic activity of carbon catalysts. For example, the biomass 

(euonymus japonicus leaves)‑derived N‑doped porous car‑
bon nanosheets (NPCNS) synthesized at different pyrolysis 
temperatures show distinct N contents (Fig. 8a, b) [138]. The 
sample obtained at 900 °C (NPCNS‑900) contains the high‑
est ratio of pyridinic‑N, which contributes to its best OER 
performance compared to its analogues (Fig. 8c). The pyri‑
dinic‑N shows more moderate adsorption energies toward 
O and OH intermediates than other N species (graphitic‑N, 
pyrrolic‑N), which is the most vital factor for the efficient 
OER performance of NPCNS‑900.

Introducing another electroactive element into the 
N‑doped carbon can effectively enhance the OER perfor‑
mance. Ma and co‑authors developed a N, P co‑decorated 
carbon catalyst from lignocellulosic biowastes [139]. Com‑
pared with the individual N‑ or P‑doped carbon, the N, P 
co‑doped carbon catalysts show a better OER activity. 
The main reason is that N and P co‑doping contributes to 
favorable electronic structure and a variety of electroactive 
defect sites. Apart from nonmetal components, designing 
metal‑N–C structures for OER also have been realized [140]. 
In Luo and coworkers’ study, the Fe, N co‑doped porous 
carbon (Fe‑MNC) catalyst obtained from corn stalk soot 
(CSS) (Fig. 8d) can catalyze water oxidation efficiently 
(η10 = 309 mV) [141]. This study also investigated the impor‑
tance of chemical precursors on the nanostructure and elec‑
tronic properties of catalysts. Compared with Fe‑NC (sample 
without the presence of melamine), Fe‑MC (sample without 
the presence of 2,2‑dipyridine), MC (pyrolysis the hybrid of 
CSS and melamine), and PMel (pyrolysis bare melamine) 
catalysts, Fe‑MNC with the optimal porous lamellar struc‑
ture, less defects, and high concentration of active Fe‑Nx and 
Fe‑Cx sites exhibits better OER performance (Fig. 8e, f).

5.2  Waste‑Derived Transitional Metal‑based Catalysts 
for OER

Transitional metal‑based nanomaterials are efficient cata‑
lysts for alkaline OER [142]. Thus, many metal‑rich indus‑
trial wastes have been employed to develop OER catalysts. 
Rich in Fe, ubiquitous steel wastes are great precursors for 
OER electrocatalysts. Maruthapandian et  al. developed 
an OER electrocatalyst from high speed steel alloy by 
mechanical milling [143]. With major content of Fe, the 
steel alloy powder catalyst can act as a good pre‑electro‑
catalyst for OER. After 50 h of the OER durability test, the 
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Table 2  Summary of representative waste‑derived OER electrocatalysts

a  LDH: Layered double hydroxides

Waste Catalyst Electrolyte η10 (mV) Tafel slope
(mV  dec−1)

Refs

Lignocellulosic biowastes N, P co‑doped biochar 0.1 M KOH 347 28.8 [139]
Polymer waste N‑doped carbon 0.1 M KOH 497 – [137]

1.0 M
HClO4

268 – [137]

Plant residues N‑doped carbon 0.1 M KOH 450 – [204]
Cedar tree cones N‑doped carbon 1.0 M KOH 106 191 [205]
Plant leaves N‑doped carbon 0.1 M KOH 340 (η5) 191 [138]
Corn stalks Fe, N co‑doped carbon nanosheets 0.1 M KOH 309 127 [141]
Cornstalks Co, Fe, B, N co‑doped biochar 1.0 M KOH 383 100.92 [140]
Waste printed circuit boards FeNiCuSnB 1.0 M KOH 199 53.98 [45]
Spent Li‑ion batteries Ni0.5Mn0.3Co0.2(OH)2 1.0 M KOH 280 6.79 [157]
Stainless steel waste meshes Anodized stainless steel 1.0 M KOH 280 63 [144]
Spent capacitors FeNi hydroxides 1.0 M KOH 303 (η20) 80 [156]
Spent Li‑ion batteries Lithium cobaltate 1.0 M KOH 550 128 [148]
Waste steel alloy Steel alloy 1.0 M KOH 387 64 [143]
Waste Cu cable wires NiFe  LDHa/Cu(OH)2/Cu 1.0 M KOH 275 (η20) 83 [78]
Spent Li‑ion batteries NiCoMnB 1.0 M KOH 263 57.98 [150]
Waste steel Fe sheets 1.0 M KOH 439 60 [206]
Spent Li‑ion batteries MnCo2O4 1.0 M KOH 400 80 [146]
Spent Zn − C batteries Mn3O4 0.1 M KOH 360 64 [207]
Spent Li‑ion batteries De‑lithiated  Li0.4Ni0.5Co0.2Mn0.3O2 1.0 M KOH 236 66 [149]
Spent Li‑ion batteries Ni‑incorporated  LiFePO4 1.0 M KOH 285 45 [76]
Rusty stainless steel Activated stainless steel plate 1.0 M KOH 260 32 [145]
Spent Li‑ion batteries LiCoOx 0.1 M KOH 420 (η9.68) 67.41 [147]
Spent Li‑ion batteries CoOOH nanosheets 1.0 M KOH 301 53.8 [79]
Sludge waste ZnS/N, S co‑doped carbon 0.1 M KOH 390 117 [166]
Spent catalysts Ni/CNTs/Al2O3 1.0 M KOH 370 119 [160]
Biowaste Co/N‑doped carbon 0.1 M KOH 390 72 [159]
Spent adsorbents NiCuFeB/C 1.0 M KOH 251 71.75 [90]
Cotton fabric Fe3O4/NiS@C 1.0 M KOH 310 82 [74]
Food waste FeOx/nanocarbon 0.1 M KOH  ~ 400 41 [162]
Peanut shells FeNi alloy/N‑doped carbon 0.1 M KOH 380 115 [161]
Cocoons FeCoNi alloy/B, N co‑doped carbon 1.0 M KOH 321 42 [158]
Diaper waste NiO/C 1.0 M KOH 280 62 [208]
Spent Li‑ion batteries NiMnCo‑activated carbon 1.0 M KOH 350 ‑ [165]
Waste paper NiCo phosphate/C 1.0 M KOH 351 94.44 [75]
Onion peels Fe3C@N‑doped carbon 1.0 M KOH 330 52 [209]
Banana peels Ba0.5Sr0.5Co0.8Fe0.2O3−δ/N‑doped carbon 0.1 M KOH 350 65 [210]
Mangosteen skin NiFe‑borate LDH/N‑doped carbon 1.0 M KOH 243 42.7 [93]
Milk powder NiFeOx/N, P co‑doped carbon 1.0 M KOH 320 59.03 [163]
Millet Co5.47 N/N‑doped carbon 0.1 M KOH 390 110 [211]
Polyphenylene sulfide Fe, N, S co‑doped carbon 0.1 M KOH 339 85.9 [169]
Red blood cells CoS1.097/C 1.0 M KOH 260 83 [167]
Blood powder Co3O4/C 0.1 M KOH 380 47 [164]
Spent Li‑ion batteries Co3O4/C 1.0 M KOH 245 53 [212]
Human hair NiO/C 1.0 M KOH 320 49 [213]
Sludge NiFe phosphide/heteroatom‑doped carbon 1.0 M KOH 280 56 [214]
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waste‑derived catalyst shows comparable OER activities to 
the  RuO2 catalyst due to the formation of active metal (oxy)
hydroxide phases on the catalyst surface. Starting from the 
industrial stainless steel 316L waste meshes, Gomaa and 
co‑authors designed a self‑supported OER catalyst (ASS‑
O2) via an anodization‑annealing  (O2 atmosphere) process 
[144]. Compared with catalysts prepared under other anneal‑
ing atmospheres (i.e.,  H2, air), the ASS‑O2 catalyst exhibits 
better OER activities owing to the formation of electroactive 
 Fe2O3 with small amounts of FeCr alloy and NiO on the sur‑
face. A similar study also suggests that rusty stainless steel 
can be used as efficient free‑standing OER catalysts due to 
the high conductivity, good mechanical stability, and espe‑
cially the generated plentiful Fe/(Ni) oxyhydroxides on the 
catalyst surface during the electrochemical process [145].

Transitional metal oxides derived from spent batteries 
are a group of promising OER catalysts, and the chemi‑
cal composition, surface chemistry, and nanostructure of 
oxides largely influence the catalytic properties. Natara‑
jan et al. found that the OER performance of spent Li‑ion 
batteries‑derived spherical and porous spinel  MnCo2O4 was 
better than the monometallic  Co3O4 and  MnO2 [146], and 

the reason for the better performance of  MnCo2O4 has been 
attributed to its structural features. Lithium cobalt oxides 
can be easily obtained from Li‑ion batteries. Chen and co‑
authors found that a long‑time cycling treatment of  LiCoOx 
could result in smaller particle size and activated surface, 
and thus contributes to enhanced OER activities [147]. 
Another study introduced a solvent extraction‑calcination 
method to recover  LiCoOx from Li‑ion batteries [148]. The 
obtained oxides catalyst (calcinated at a low temperature of 
600 °C) with optimal small particle size (20–100 nm) and 
surface area (4.8027  m2  g−1) outperforms its counterparts 
for OER. The synchronous reutilization of multi‑metals in 
spent Li‑ion batteries can not only shorten waste recycling 
procedures but also innovate mixed metal oxide catalysts. Lv 
et al. proposed an electric field‑driven de‑lithiation method 
to design high‑performance OER catalysts from the cathode 
(Fig. 9a) [149]. The de‑lithiated  Li0.4Ni0.5Co0.2Mn0.3O2 cath‑
ode materials display a high specific surface area and a large 
amount of lattice oxygen, which contribute to high OER 
activities (η10 = 236 mV, Tafel slope = 66 mV  dec−1). Some‑
times, incorporating a foreign active species is necessary 
to enhance the catalytic properties of spent cathodes. For 

Fig. 8  a Scheme of synthesis of N‑doped porous carbon from plant leaves. b Nitrogen contents in carbon catalysts. c LSV curves of carbon 
catalysts and the Pt/C catalyst [138]. Copyright 2018, Elsevier. d Diagram of the fabrication of Fe, N co‑doped mesoporous and microporous 
carbon (Fe‑MNC). e LSV curves and f corresponding Tafel plots of catalysts in 0.1 M KOH [141]. Copyright 2022, Elsevier
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example, introducing a Ni promoter significantly improves 
the catalytic performance of spent  LiFePO4 [76]. Theoreti‑
cally, the insertion of Ni can effectively activate Fe sites by 
regulating the adsorption strength of the *OOH intermedi‑
ate; also, the abundant oxygen defects promote the oxygen 
desorption step, which synergistically upgrade the spent 
 LiFePO4 material’s OER performance.

Besides oxides, mixed metal borides synthesized from 
electronic wastes also have shown excellent OER catalysts 
[45]. As illustrated in Fig. 9b, spent Li‑ion batteries can 
be directly converted into magnetic Ni‑Co‑Mn borides 
(NCMBs) through a fast and efficient  NaBH4‑mediated 
boriding process [150]. After the boriding reaction, the 
metal ion concentrations in the solution are below the emis‑
sion limits of related standards, indicating the boriding 
process can ease the following waste effluent management 
process. The NCMB‑2 catalyst with a larger ratio of Ni and 
Co content (38.4% vs. 20.3%) shows a higher OER activity 
(Fig. 9c), compared with the NCMB‑1 analogue. In such 
a manner, it would be efficient to improve NCMBs’ OER 
performance by adjusting the composition of spent batteries 

precursors. In addition, the metal borides undergo surface 
reconstruction initiated by boron leaching and form stable 
metal (oxy)hydroxides on the catalyst surface (Fig. 9d). Such 
in situ surface/structure reconstruction processes have well 
been identified for various transitional metal‑based catalysts 
[151–155], which becomes an important guideline for novel 
OER catalyst design.

The aforementioned studies emphasize the importance of 
metal (oxy)hydroxides because of their high catalytic per‑
formance and durability for alkaline OER. Consequently, 
it is sensible to develop metal (oxy)hydroxides directly 
from wastes. The NiFe hydroxides and NiCu hydroxides 
synthesized from upcycled capacitors [156], spent Li‑ion 
batteries‑derived  Ni0.5Mn0.3Co0.2(OH)2 [157], NiFe LDH/
Cu(OH)2/Cu prepared from spent Cu cable wires [78], and 
CoOOH obtained from spent Li‑ion batteries [79] are rep‑
resentative efficient OER catalysts. Among these catalysts, 
the self‑supported NiFe LDH/Cu(OH)2/Cu catalyst delivers 
a good OER activity (η100 = 390 mV) with excellent stability 
for 24 h, owing to its hierarchically heterostructural feature 
[78]. The multiphase heterostructure can ensure wealthy 

Fig. 9  a Scheme of the electric field‑driven de‑lithiation process for preparing  LiNixCoyMnzO2 OER catalysts [149]. Copyright 2021, Elsevier. 
b Illustration of the fabrication of magnetic NiCoMnB catalysts (NCMBs) from the spent batteries. c η10, η100, and the current density at 1.53 V 
(vs. reversible hydrogen electrode, RHE) of catalysts. d Scheme of the surface reconstruction process of spent Li‑ion batteries‑derived NCMBs 
[150]. Copyright 2021, Royal Society of Chemistry
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and multiple electroactive sites and endow fast mass/charge 
transport during OER.

5.3  Waste‑Derived Carbon‑based Heterostructures 
for OER

The high conductivity, large surface area, and redox prop‑
erties of carbon materials make them good substrates to 
support transitional metal‑based electroactive nanomateri‑
als, intending to achieve high OER performance. Different 
categories of transitional metal‑based materials/carbon het‑
erostructures have been synthesized from a range of wastes, 
which are detailed in this part.

Metal/alloy nanoparticles feature high electrical conduc‑
tivity and catalytic activities. Compositing metal/alloy with 
carbon is capable of mitigating the severe aggregation and 
growth of metal/alloy nanoparticles, thus populating elec‑
troactive sites and also enhancing the structural stability of 
catalysts [158]. Chen et al. prepared a hierarchically struc‑
tured catalyst (Co@Co–N, S–C) from biowaste, integrating 
Co–N–C structures and encased Co nanoparticles [159]. 
The well‑developed interface between hierarchical struc‑
tures, the large SSA, and rich Co nanoparticles encapsulated 
in carbon layers jointly contribute to a high OER activity. 
With suitable structural and electronic properties, the spent 
methane decomposition catalyst (Ni/CNTs/Al2O3) can be 
directly used as an OER catalyst [160]. In this tricomponent 
hybrid, Ni nanoparticles act as electroactive sites toward 
OER, CNTs can facilitate low charge transfer resistance, and 
the  Al2O3 provides porous support. Although the authors 
declared good stability of the Ni/CNTs/Al2O3 catalyst for 
20 h, it should be cautious that the  Al2O3 support may suffer 
from leaching/dissolution in the strong alkaline electrolyte. 
Besides metal particles, Yang and coworkers developed a 
FeNi alloy/N‑doped porous carbon catalyst from peanut 
shells [161]. The alloy/carbon hybrid prepared at 900 °C 
with a higher SSA and porous size outperforms its analogues 
for OER owing to the enhanced mass/charge transfer and 
abundant active sites.

Loading metal (hydr)oxides on carbon scaffolds attracts 
growing interest in OER catalyst design, and the main reason 
is that the conductive carbon can effectively compensate for 
the relatively low conductivity of metal (hydr)oxides [162]. 
The OER performance of metal (hydr)oxides/carbon hetero‑
structures can be optimized by regulating the external and 

internal properties of both metal (hydr)oxides and carbon 
materials. With a hydrothermal treatment‑carbonization 
process, Chen et al. incorporated  NiFeOx nanoparticles 
(~ 10 nm) into N, P co‑decorated carbon derived from milk 
powder (Fig. 10a) [163]. Benefiting from porous carbon’s 
large surface area and  NiFeOx nanoparticles’ high activities, 
the  NiFeOx/carbon hybrid delivers a good OER activity. To 
regulate the nanostructure of carbon substrate, Zhang and 
co‑authors proposed a  CaCO3‑involved approach to synthe‑
size  Co3O4/heteroatom‑doped carbon catalysts (Fig. 10b) 
[164]. It is interesting to find that using  CaCO3 as the tem‑
plate and activator leads to a unique fibrous network struc‑
ture. The carbon material with a large surface area and rich 
heteroatom dopants can provide abundant anchoring sites for 
 Co3O4, which significantly limit particle growth and aggre‑
gation and also improve the charge transfer process. Moreo‑
ver, the intimate contact of  Co3O4 and the carbon support 
leads to synergistic effects for OER.

Regulating metal (hydr)oxides’ properties can directly 
alter the catalytic performance of metal (hydr)oxides/carbon 
heterostructures. For instance, the intercalated borates in the 
hierarchical NiFe‑borate LDH/N‑doped carbon catalyst play 
a positive effect on the OER performance by improving the 
hydrophilicity, enlarging the surface area, populating elec‑
troactive sites, and providing abundant mass/charge trans‑
port pathways [93]. Alternatively, engineering a metal/oxide 
heterostructure on carbon materials is suggested to enhance 
the catalytic performance by the strong electronic interac‑
tions between the electroactive metals and oxides. Jiao et al. 
proposed a rapid thermal radiation strategy for transform‑
ing spent Li‑ion batteries into a NiMnCo/carbon catalyst 
(NiMnCo‑AC) for OER (Fig. 10c) [165]. Detailed charac‑
terizations suggest that the NiMnCo nanoparticles show a 
Ni@NiMnCoO4 core–shell nanostructure, including spinel 
 NiMnCoO4 shell and fcc‑structured Ni core (Fig. 10d). Fur‑
ther DFT calculations suggest that the charge density redis‑
tribution at the Ni/  NiMnCoO4 interface induced by Ni core 
and rich electroactive sites on the  NiMnCoO4 shell ensure 
good OER performance.

Carbon materials coupled with metal sulfides/nitrides/
carbides/phosphides/borides heterostructures developed 
from wastes are promising OER catalysts. Compared 
with metal (hydr)oxides, the main merit of metal sulfides, 
nitrides, carbides, phosphides, and borides is their better 
electrical conductivity. Recent studies have emphasized the 
rational design of these metal compounds/carbon hybrids 
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from wastes. Using dye sludge as the carbon source, Peng 
and coworkers developed a ZnS‑involved N, S co‑deco‑
rated carbon (ZnS/NSC) via a  ZnCl2‑involved pyrolysis 
process [166]. As suggested, the better OER performance 
of the ZnS/NSC catalyst prepared at a higher temperature 
(1000 °C) is due to its higher relative content of ZnS in the 
hybrid than catalysts synthesized at lower temperatures (800 
and 900 °C). To improve the catalytic activity of CoS, a 
biowaste‑derived carbon was introduced via a hydrothermal 
process (Fig. 11a) [167]. The obtained composite shows a 
flower‑like (Fig. 11b) structure which enables high surface 
area, abundant active sites, and enhanced diffusion kinetics. 
It also can be seen that the nanoflower structure can provide 
abundant acute geometry at the nanoscale. Such features 
are favorable for concentrating the localized electric field 
at tips and providing enhanced adsorption of reaction inter‑
mediates, which would enhance the reaction kinetics [168]. 
Hence, the sulfide/carbon catalyst outperforms the bare 
sulfide and the  RuO2 catalyst for OER (Fig. 11c).

Another method that enables upgrading sulfides/carbon 
catalysts’ OER performance is constructing electroactive 

hybrids on carbon materials. For example, Jiang et al. 
designed  Fe3O4/NiS heterostructures on free‑standing 
fibrous carbon  (Fe3O4/NiS@C) [74]. The ternary compos‑
ite shows excellent OER performance (η10 = 310 mV) and 
stability (no current density loss after 26 h OER opera‑
tion) owing to the synergistic effect between electroactive 
 Fe3O4 and NiS, as well as the self‑standing hierarchically 
porous carbon structure. Using the sulfur‑rich polyphe‑
nylene sulfide as the precursor, a Fe, N, S co‑decorated 
porous carbon (Fe–N/S‑HPC) was fabricated via a three‑
step route (Fig. 11d) [169]. The obtained Fe–N/S‑HPC 
catalyst exhibits a honeycomb‑like structure, and it is vis‑
ible that rich spherical Fe particles are disseminated in the 
carbon matrix (Fig. 11e). Further characterizations suggest 
an electroactive  FexNySz@FexOySz structure (Fig. 11f), 
which can significantly enhance the OER activity and 
durability. As displayed in Fig. 11g, Fe–N/S‑HPC reserves 
a high OER activity after the electrochemical stability test 
for 15 h.

Fig. 10  a Scheme of the preparation of milk powder‑derived NP‑C and  NiFeOx/NP‑C catalysts [163]. Copyright 2018, Elsevier. b Illustration 
of the synthesis of  Co3O4 decorated BDHC [164]. Copyright 2014, Wiley–VCH. c Scheme of the preparation of the NiMnCo‑AC electrocatalyst 
from spent Li‑ion batteries. d Core–shell model of the NiMnCo nanoparticle [165]. Copyright 2022, National Academy of Sciences, USA
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6  Waste‑Derived Bifunctional Catalysts 
for OWE

Developing bifunctional electrocatalysts for OWE is of great 
significance in light of system simplification, cost reduc‑
tion, and large‑scale application of electrolyzers [170–172]. 
Encouragingly, many waste‑derived catalysts deliver high 
activities toward both HER and OER (Table 3) and such 
cost‑effective bifunctional electrocatalysts profoundly push 
the development of green hydrogen production. In this part, 

recent waste‑derived bifunctional electrocatalysts for OWE 
are discussed.

6.1  Waste‑Derived Carbon Catalysts for OWE

Engineering the nanostructure and electronic properties 
of some heteroatom‑doped carbon materials can catalyze 
HER and OER synchronically. Using the mixture of corn 
stalks soot and melamine as the precursor, Liu and co‑
authors developed a N‑doped porous carbon electrocatalyst 

Fig. 11  a Schematic of the fabrication of  CoS1.097‑B catalyst. b SEM image of  CoS1.097‑B catalyst. c LSV curves of catalysts in 1.0 M KOH 
[167]. Copyright 2020, Elsevier. d Scheme of Fe–N/S‑HPC preparation from polyphenylene sulfide (PPS) plastic. e Transmission electron 
microscopy (TEM) image of Fe–N/S‑HPC. f A model of Fe‑based nanoparticles in Fe–N/S‑HPC. g LSV curves of Fe–N/S‑HPC before and after 
the 15 h OER durability test [169]. Copyright 2022, Elsevier
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(NPCSS) for OWE [173]. With large SSA, abundant elec‑
troactive sites, and rich electrochemically active pyri‑
dinic/pyrrolic N species, NPCSS acquires 10 mA  cm−2 at 
1.60 V in a two‑electrode cell. Besides N‑doped carbon, 
S self‑doped carbon also can catalyze water splitting. Xia 
et al. prepared the S self‑doped activated camellia (SA‑
Came) carbon nanospheres from camellia flowers through 
a hydrothermal treatment–pyrolysis route (Fig. 12a) [174]. 
The obtained SA‑Came catalyst shows a densely intercon‑
nected spherical morphology with a small particle size of 
approximately 50 nm (Fig. 12b). The rough surface and rich 
nanopores of the catalyst contribute to increased micropores 
and mesopores, which further enlarge the pore volume and 
surface area and lead to efficient mass/charge transfer during 

electrochemical processes. In addition, the abundant S sites 
induced more polarized surface domains with highly active 
sites, which benefit the electrocatalytic performance. To this 
end, the SA‑Came catalyst requires a small η (0.53 V) to 
attain 10 mA  cm−2 (Fig. 12c) with good performance stabil‑
ity for 24 h (Fig. 12d).

Incorporating active transitional metals into carbon mate‑
rials is expected to attain enhanced catalytic performance 
[175]. For example, loading Ni onto the high graphitic car‑
bon takes the advantage of graphitic carbon’s excellent elec‑
trical conductivity and the high electrocatalytic activity of 
Ni species [176]. In another study, Zhang et al. found that 
Fe species in the textile sludge facilitated the graphitiza‑
tion process of pyrolyzed 3D interconnected hierarchical 

Table 3  Summary of representative waste‑derived electrocatalysts for OWE

a E10: Applied voltage at the current density of 10 mA  cm−2

b Alkaline wastewater: Wastewater with 1 M KOH

Waste Catalyst Electrolyte E10
a (V) Durability Refs

Camellia flower S‑doped carbon 1.0 M KOH 1.76 24 h @ ~ 20 mA  cm−2 [174]
Corn stalks Few‑layer N‑doped porous carbon 1.0 M KOH 1.60 – [173]
Rose flower Ni‑doped graphitic carbon 1.0 M KOH 1.64 24 h @ 1.64 V [176]
Textile sludge Fe, N co‑doped carbon 1.0 M KOH 1.70 14 h @ 1.7 V [177]
Battery industrial wastewater NiCoMn LTHs Alkaline  wastewaterb 1.58 24 h @ 1.6 V [39]
Spent Li‑ion batteries Ni/Ni‑Mn‑Co–O 1.0 M KOH 1.62 25 h @ 1.58 – 1.66 V [178]
Scrap copper wires NiCoP/Cu 1.0 M KOH 1.59 24 h @ 10 mA  cm−2 [77]
Cornstalks β‑Mo2C/C 1.0 M KOH 1.65 30 h @ 10 mA  cm−2 [215]
Cotton fibers Co/carbon tubes 1.0 M KOH 1.40 110 h @ 1.4 V [179]
Miscanthus stems Co/C 1.0 M KOH 1.45 120 h @ 50 mA  cm−2 [47]
Duckweed NiFe‑alloy/N, S‑doped carbon 1.0 M KOH 1.61 200 h @ 2 V [181]
Alfalfa NiFe/N, P, S co‑doped carbon 1.0 M KOH 1.60 50 h @ 10 mA  cm−2 [182]
Grapefruit peels NiFe‑alloy/ N‑doped carbon 1.0 M KOH 1.63 – [180]
Magnolia leaves CoP/C 1.0 M KOH 1.56 24 h @ 1.59 V [216]
Polysaccharide chitin Co2P/N, P co‑doped carbon 1.0 M KOH 1.65 10 h @ ~ 20 mA  cm−2 [190]
Ginkgo leaves Co2P@CoP/C 1.0 M KOH 1.63 1000 min @ 10 mA  cm−2 [189]
Cauliflower leaves Ni/NiO/N‑doped carbon 0.1 M KOH 1.688 20 h @ 10—30 mA  cm−2 [188]
Amaranth Fe, N co‑doped carbon 1.0 M KOH 1.53 30 h @ 1.53 V [183]
Lotus leaves Co/MoO2@N doped carbon 1.0 M KOH 1.629 48 h @ 10 mA  cm−2 [186]
Holly leaves Co‑CoO/C 1.0 M KOH 1.77 – [187]
Chicken feathers Ni‑Co oxides/C 1.0 M KOH 1.53 200 h @ 1.7 V [185]
Willow catkins Co3O4/N‑doped hollow carbon 1.0 M KOH 1.74 20 h @ 1.74 V [184]
Waste yeast Cu8S5 decorated N, S co‑doped porous 

carbon
1.0 M KOH 1.64 14 h @ 10 mA  cm−2 [191]

Tissue paper Co9S8@Co–N/C nanorods 1.0 M KOH 1.61 70 h @ 10 mA  cm−2 [192]
Catkin MoS2@NiOOH@C 1.0 M KOH 1.62 40 h @ 1.62 V [194]
Willow catkins NiFe LDH/(NiFe)Sx/hollow carbon 1.0 M KOH 1.53 100 h @ 10 mA  cm−2 [48]
Spent Li‑ion batteries CoN/graphene 1.0 M KOH 1.61 40 h @ 1.68 V [195]
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Fe, N co‑decorated carbon (TS–Fe–N–C) [177]. Combined 
with the high pyridinic‑N content, uniformly distributed 
Fe‑Nx and  Fe3C electroactive sites, and hierarchical struc‑
ture, the TS–Fe–N–C gains a high activity toward OWE 
(E10 = 1.70 V).

6.2  Waste‑Derived Transitional Metal‑based Catalysts 
for OWE

Transitional metals‑rich wastes are highly desirable precursors 
for preparing bifunctional OWE electrocatalysts because of the 
high activity of transitional metals and low cost. For instance, 
Zheng et al. employed an ultrafast carbothermal shock method 
to transform the spent cathode of Li‑ion batteries into a Ni/Ni‑
Mn‑Co–O hybrid catalyst for OWE (E10 = 1.62 V) [178]. The 
co‑presence of Ni‑Mn‑Co oxides and Ni metal ensures great 
conductivity and catalytic activity. Additionally, the hybrid’s 
small size and large electrochemically active surface area facil‑
itate the exposure of abundant catalytic sites, promoting the 
mass/charge transfer process. Recently, our group has focused 
on the close‑loop utilization of battery industrial wastewater 
with an electrodeposition‑electrolysis route (Fig. 13a) [39]. In 
this process, the main metal ions (i.e., Ni, Co, Mn) have been 
converted into NiCoMn LTHs via electrodeposition, which 

shows favorable catalytic performance for OER and HER. 
The optimal deposit (S‑3) possesses a hierarchical nanoflower 
structure that can act as a highly competitive electrocatalyst for 
post‑electrodeposition (PE) wastewater electrolysis (Fig. 13b). 
The S‑3||S‑3‑driven wastewater electrolyzer attains a higher 
hydrogen production efficiency at a much lower cost than the 
 RuO2||Pt/C couple (Fig. 13c).

Besides the battery‑based wastes‑derived metal (hydr)
oxides, the abundant waste Cu wires were used as a support 
to design phosphide‑based bifunctional electrocatalysts for 
OWE [77]. Via electrodepositing highly active amorphous 
NiCoP films on the Cu wire, the obtained NiCoP/Cu hybrid 
shows high HER and OER activities. Using as a bifunctional 
catalyst, the NiCoP/Cu electrode attains 10 mA  cm−2 at 1.59 V 
(Fig. 13e) and displays good stability in 24 h (Fig. 13f). These 
successful practices hint that it is convenient to engineer free‑
standing high‑performance bifunctional electrocatalysts from 
metal‑rich solid wastes/effluents.

6.3  Waste‑Derived Carbon‑Based Heterostructures 
for OWE

To ameliorate transitional metal‑based materials’ cata‑
lytic properties, introducing a highly conductive carbon 

Fig. 12  a Scheme of the preparation of SA‑Came nanospheres. b SEM image of SA‑Came. c LSV curve and d Chronoamperometry analysis of 
the SA‑Came assisted water electrolyzer [174]. Copyright 2022, Wiley–VCH
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support is usually implemented. In consequence, exploring 
eco‑friendly and low‑cost waste‑derived carbon to prepare 
carbon/transitional metal‑based materials heterostructures 
for OWE is greatly attractive for advancing efficient water 
electrolysis systems. Encouragingly, diverse transitional 
metal‑based materials (e.g., metals, alloys, carbides, nitrides, 
oxides, sulfides, and phosphides) have been successfully 
coupled with biowaste‑derived carbon, and the formed 
hybrids exhibit high performance toward OWE.

Loading highly electroactive and conductive metals or 
alloys within the carbon matrix is suggested to attain all‑
around performance for OWE [47]. Recently, Jiang and 
co‑authors developed Co particles/biomass carbon tubes 
(Co‑BCTs) catalysts from cotton fibers [179]. Using as 
the bifunctional electrocatalyst for OWE, the CO‑BCTs 
can deliver 10 mA  cm−2 at an applied potential of 1.40 V. 
Detailed characterizations imply the tight connection of Co 
particles with BCTs enhances conductivity and electron 
transfer kinetics, while BCTs’ loosely hierarchical struc‑
ture facilitates mass/charge transport and sustains high 
stability. Apart from metal nanoparticles, Son et al. intro‑
duced Co single atoms, nanoclusters, and nanoparticles to a 

waste‑derived self‑standing carbon material with intercon‑
nected fibrous networks [47]. The multi‑sized Co species 
decorated carbon catalyst shows high performance for OWE 
(E10 = 1.45 V), and the origin of electrochemical activities 
for different reactions has been disclosed. Specifically, the 
co‑presence of Co single atoms and nanoparticles mainly 
contributed to the OER activity, while the principal elec‑
troactive sites for HER should be Co–Nx sites. NiFe‑alloys 
hybridized N‑doped graphene‑like carbon [180], N, S co‑
doped mesoporous carbon [181], and N, P, S tri‑doped nano‑
carbon [182] are also active toward OWE.

Metal oxides/carbon heterostructures can benefit from 
carbon’s high surface area and excellent conductivity and 
metal oxides’ high catalytic activity, thus forming effi‑
cient OWE catalysts. For instance,  FeOx [183] and  Co3O4 
[184] decorated N‑doped hierarchical porous carbon have 
been reported as bifunctional electrocatalysts for OWE. To 
upgrade monometallic oxides’ intrinsic activity, recent stud‑
ies have designed bimetallic oxides and metal/metal oxide 
hybrids on carbon supports. Compared with the  NiCoOx/
carbon hybrid, the electrochemical activities of  CoOx/carbon 
and  NiOx/carbon are lower for OWE [185]. This is because 

Fig. 13  a Scheme of wastewater electrolyzed by wastewater‑derived NiCoMn LTHs. b LSV curves of OWE of S‑3||S‑3 and  RuO2||Pt/C in alka‑
line‑deionized water and post‑electrodeposition (PE) wastewater. c Comparison of hydrogen production rate and catalyst cost for the S‑3||S‑3 
and  RuO2||Pt/C PE wastewater electrolyzer systems [39]. Copyright 2022, Royal Society of Chemistry. d Schematic of the NiCoP/Cu electrode 
preparation. e Scheme of the OWE configuration. f LSV curves of NiCoP/Cu electrode before and after 24‑h electrolysis [77]. Copyright 2018, 
Wiley–VCH
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the co‑presence of Ni and Co can provide more catalytically 
active sites than its monometallic analogues. Recently results 
implied that synergistic effects between metal/metal oxides 
could boost metal oxides/carbon hybrids’ electrochemical 
properties [186–188]. In an efficient bifunctional Co–CoO 
nanoparticles/porous carbon catalyst, multiple active sites 
are involved for OWE, including Co–CoO, Co–N–C, and 
N‑doped carbon [187]. Of note, a high N content (primar‑
ily graphitic‑N, pyridinic‑N) in the carbon can regulate the 
charge distribution of adjacent carbon atom and improve the 
hydrophobicity of catalysts. Additionally, the rich Co–CoO 
nanoparticles with strong synergistic effects can provide 
highly active sites toward both HER and OER, thereby real‑
izing high catalytic activities.

Metal phosphides are promising bifunctional electrocata‑
lysts for OWE, and a feasible way to further upgrade metal 
phosphides’ catalytic performance is by coupling them with 
porous carbon materials [189]. Starting from natural poly‑
saccharide chitin, Li et al. designed a metal phosphide‑based 
core–shell hybrid for OWE, which is composed of  Co2P core 
and N, P co‑decorated porous carbon shell  (Co2P@NPPC) 
(Fig. 14a) [190]. Abundant  Co2P nanoparticles are well iso‑
lated and fixed in the porous carbon, which can enhance 
electron transfer, expose rich active sites, and keep good sta‑
bility for catalytic reactions (Fig. 14b‑c). In another bifunc‑
tional  Co2P@CoP/N, S co‑doped carbon hybrid, the role 
of each component in catalyzing OWE has been uncovered 
by Lin and coworkers [189]. Specifically, the synergistic 
effects of the  Co2P@CoP heterostructure make a near‑zero 
ΔGH*, resulting in a high HER activity. Also, the  Co2P@
CoP hybrid causes the conduction band to bend downwards, 
leading to high OER activity. Moreover, N and S dopants 
can tune the carbon support’s electronic property, and sus‑
tain the suitable electron‑donating feature to enhance overall 
electrocatalytic properties.

Metal sulfides/carbon heterostructures have been widely 
designed from wastes for OWE. For instance, the textile 
sludge derived  Cu8S5/N, S co‑doped porous carbon [191], 
and the  Co9S8/carbon nanorod framework  (Co9S8@Co–N/C) 
fabricated from waste tissue paper towel [192] are highly 
efficient bifunctional catalysts. Constructing electroactive 
hybrids on carbon support is a universal method to boost 
the performance of metal sulfides/carbon heterostructures 
[48]. Typically,  MoS2 is an active HER catalyst with low 
OER performance [193]. To make a bifunctional catalyst 
with  MoS2, it is necessary to incorporate an OER active 

component. Liu et al. developed the  MoS2@NiOOH hybrid 
on mesoporous carbon support synthesized from catkin 
 (MoS2@NiOOH@C‑MC) via a three‑step process (Fig. 14d) 
[194]. By combining the high OER activity of NiOOH, HER 
activity of  MoS2, as well as C‑MC’s efficient charge trans‑
fer kinetics, the multicomponent  MoS2@NiOOH@C‑MC 
performs better than the Pt/C||IrO2 couple for OWE regard‑
ing catalytic activity and performance durability (Fig. 14e). 
Also, the high reaction Faraday efficiencies of 99.6% (HER) 
and 98.7% (OER) further evidence the excellent catalytic 
performances of the catalyst toward OWE (Fig. 14f). Dif‑
ferent from most carbon‑based heterostructures made from 
biowastes, Liu and co‑authors prepared a CoN/graphene 
composite from spent Li‑ion batteries (Fig. 14g) [195]. 
Benefiting from the high intrinsic conductivity and activ‑
ity, sea–urchin‑like nanostructure, and high surface area, the 
optimal sample (CoN‑Gr‑2) shows comparable performance 
to the Pt/C||IrO2 couple for OWE, with better stability for 
40 h at 1.68 V (Fig. 14h, i).

7  Conclusions and Perspectives

Following circular economy principles, engineering‑efficient 
electrocatalysts from wastes for water electrolysis is of great 
environmental and economic benefits. In this review, recent 
achievements in the design of waste‑based catalysts for 
HER, OER, and OWE have been systematically analyzed. 
Diverse wastes (especially biowastes and electronic wastes) 
have been successfully converted into electrocatalysts via 
pyrolysis, electrochemical synthesis, wet‑chemical synthe‑
sis, microwave synthesis, etc. The waste‑derived carbon‑
based catalysts, transitional metal‑based catalysts, and car‑
bon‑based heterostructures have exhibited good performance 
toward HER, OER, and OWE. Catalysts’ performance is 
highly related to their nanostructure, chemical composition, 
and electronic property, which can be regulated by waste 
precursors and synthesis methods.

Despite these exciting scientific achievements, many 
opportunities implore further investigations in this expand‑
ing field.

1) Exploring diverse wastes for the design of high‑perfor‑
mance electrocatalysts. Currently, most studies focus 
on biowastes and some electronic wastes (mainly spent 
batteries), while other types of wastes (e.g., plastic 
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wastes, liquid wastes) are still less explored. More atten‑
tion should be paid to the reutilization of ever‑growing 
plastic wastes due to their high carbon content, large 
quantity, and hazardous effect on the ecosystem. Since 
heteroatom‑doped carbon is more active than pure car‑
bon materials for electrochemical applications, it is 
better to choose biowastes/plastic wastes with a high 
content of non‑carbon elements (e.g., N, P, S, B) as the 
catalyst precursors. In addition, it is a sensible way to 
co‑treat biowastes/plastic wastes and electronic wastes 
to form transitional metal materials/carbon heterostruc‑

tures which have shown favorable catalytic performance 
toward HER, OER, and OWE.

2) It is crucial to adopt advanced techniques to gain clear 
and fundamental insights into the origin of electro‑
chemical activity. Most wastes present complicated 
compositions and structures, which causes many chal‑
lenges in catalytic mechanism investigations and the 
reproducibility of research. To this end, integrating 
advanced analytical, electrochemical, microscopic, 
spectroscopic, and computational techniques to inves‑
tigate the composition‑structure‑catalytic performance 

Fig. 14  a Diagram of the preparation of  Co2P@NPPC. b TEM and c high resolution TEM (HRTEM) images of  Co2P@NPPC [190]. Copyright 
2021, Royal Society of Chemistry. d Scheme of the synthesis of the  MoS2@NiOOH@C‑MC composite. e Stability test of the Pt/C||IrO2 and 
 MoS2@NiOOH@C‑MC||MoS2@NiOOH@C‑MC couples for OWE, at 10 mA  cm−2. f The time‑dependent of the experimental and theoretical 
 H2 and  O2 production amounts during OWE using the  MoS2@NiOOH@C‑MC catalyst [194]. Copyright 2022, Elsevier. g Scheme of the prepa‑
ration of tiny CoN‑coupled graphene hybrid (CoN‑Gr‑2). h The OWE performance of the CoN‑Gr‑2||CoN‑Gr‑2 and Pt/C||RuO2 couples. i Stabil‑
ity test of CoN‑Gr‑2 for OWE in 1.0 M KOH at 1.68 V [195]. Copyright 2021, Elsevier
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relationship would guide the design of high‑efficiency 
electrocatalysts. Importantly, easily overlooked defects, 
dopants, and single‑atom sites in waste‑derived catalysts 
should be checked carefully, because these features can 
profoundly govern the catalytic performance.

3) To realize large‑scale production of catalysts from 
wastes, facile and low‑cost fabrication techniques are 
required. Considering the environmental impacts, cata‑
lyst preparation processes with limited carbon emissions 
and low energy consumption are highly suggested. Some 
techniques like electrodeposition, ball milling, plasma 
synthesis, and flash Joule heating are favorable options. 
Importantly, it is suggested to perform a pre‑treatment 
process to remove hazardous and toxic substances (e.g., 
radioactive elements) in some typical wastes before the 
preparation and utilization of waste‑derived catalysts. 
In a circular economy view, it is feasible to recover and 
reuse the spent waste‑derived electrocatalysts for further 
applications.

4) Waste‑derived electrocatalysts have shown promising 
performance for water electrolysis, but they are still far 
from satisfactory. To further improve the catalytic per‑
formance of waste‑derived catalysts, advanced strategies 
are encouraged to improve the intrinsic catalytic activ‑
ity, electroactive sites, mass/charge transfer, mechanical 
and electrochemical stability of catalysts. In this context, 
implementing sophisticated methods (e.g., heteroatom 
doping, nanostructure design, defect engineering, het‑
erostructure construction, and crystallinity control) to 
synergistically regulate catalysts’ internal and external 
characteristics would meet the necessities for waste‑
derived electrocatalysts toward practical water electroly‑
sis.

5) Considering the high redox property and low cost of 
waste‑derived catalysts, it is of great environmental 
and economic value to implement waste‑derived cata‑
lysts in other electrochemical reactions related to envi‑
ronmental remediation and energy storage/conversion, 
such as nitrogen/nitrate reduction, organic pollutant 
oxidation/reduction, oxygen reduction, carbon dioxide 
reduction, hydrogen oxidation, and biomass oxidation. 
The wide application of waste‑derived catalysts would 
help to minimize the carbon footprint of functional 
materials preparation and largely facilitate waste man‑
agement.
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