
“©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.”

Energy-based Proportional Fairness for Task Offloading and

Resource Allocation in Edge Computing

Thai T. Vu†‡, Dinh Thai Hoang†, Khoa T. Phan‡, Diep N. Nguyen†, and Eryk Dutkiewicz†
†School of Electrical and Data Engineering, University of Technology Sydney, Australia

‡Department of Computer Science and Information Technology, La Trobe University, Melbourne Australia

Abstract—By executing offloaded tasks from mobile users,
edge computing augments mobile devices with comput-
ing/communications resources from edge nodes (ENs), en-
abling new services/applications (e.g., real-time gaming, vir-
tual/augmented reality). However, despite being more resourceful
than mobile devices, allocating ENs’ computing/communications
resources to given favorable sets of users may block other devices
from their service. This is often the case for most existing task
offloading and resource allocation approaches that only aim to
maximize the network social welfare (e.g., minimizing the total
energy consumption) but not consider the computing/battery
status of each mobile device. This work develops a propor-
tional fair task offloading and resource allocation framework
for a multi-layer cooperative edge computing network to serve
all user equipment (UEs) while considering both their service
requirements and individual energy/battery levels. The resulting
optimization involves both binary (offloading decisions) and real
variables (resource allocations), making it NP-hard. To tackle
it, we leverage the fact that the relaxed problem is convex and
propose a distributed algorithm, namely the dynamic branch-
and-bound Benders decomposition (DBBD). DBBD decomposes
the original problem into a master problem (MP) for the
offloading decision and subproblems (SPs) for resource allocation.
The SPs can either find their closed-form solutions or be solved in
parallel at ENs, thus help reduce the complexity. The numerical
results show that the DBBD returns the optimal solution of the
problem maximizing the fairness between UEs. The DBBD has
higher fairness indexes, i.e., Jain’s index and min-max ratio,
in comparing with the existing ones that minimize the total
consumed energy.

Keywords- Edge computing, offloading, resource allocation,
fairness, MINLP, energy efficiency, branch-and-bound, Ben-
ders decomposition.

I. INTRODUCTION

Serving an ever-growing number of mobile user equipments
(UEs) calls for an emerging network architecture, namely edge
computing [1], [7]. In edge networks, edge nodes (ENs) (or
computing nodes) are distributed closer to UEs to better serve
high-demanding computing tasks, thus reducing the work-
load for backhaul links and enabling computing demanding
and low-latency services/applications (e.g., real-time gaming,
augmented/virtual reality) [2]. However, while cloud servers,
e.g., Amazon Web Services, often possess huge computing
resources, an EN can provide limited computation services
toward users due to its limited computing resources [3]. As
such, the collaboration among ENs as well as with cloud
servers [4] is a very promising approach.

Moreover, offloading computing tasks from mobile devices
to ENs is also not always an effective or even possible due
to the energy consumption for two-way data transmissions be-
tween the UEs and the ENs [1] as well as tasks’ security/QoS
requirements. For that, the task offloading should be jointly
optimized with the resource allocation. As aforementioned,
despite of being more resourceful than mobile devices, al-
locating ENs’ computing/communications resources to given

favorable set of users may block one or other devices from
their service. This is often the case for most existing task
offloading and resource allocation approaches (as intensively
surveyed in [9]) that only aim to maximize the network social
welfare (e.g., optimizing the total consumed energy) but not
consider the computing/battery status of each mobile device.
Therefore, fairness should be considered along with efficiency
in edge computing.

A few recent works considered the fairness in resource
allocation and task offloading in edge networks. The min-max
cost polices or max-min energy balance has been investigated
in [5]. The work [6] accounts for the fairness amongst user
vehicles and vehicle edge servers with a heuristic reward
policy. Lately, a few works investigated the fairness [8], [10]
using market equilibrium approaches. These papers relied on
the game theory and market-based frameworks, which design
the price for resources in a multiple edge node and budget-
constrained buyer environment. However, the market-based
framework is only applicable to the two-layer model only (i.e.,
UEs and edge node layers) [8], [10]. Second, these approaches
can’t capture the coupling among different types of resources
(i.e., the task duration depends on the uplink, downlink, and
computation resources).

Given the above, this work develops an energy-based
proportional-fair framework to serve all user equipments (UEs)
with multiple tasks while considering both their service re-
quirements and individual energy/battery levels. Each UE,
which may have multiple computing tasks, can connect to
multiple nearby ENs to offload their tasks. The ENs can
forward the tasks to a cloud server if they do not have
sufficient resources to serve UEs. The edge computing and
communications resources are to be jointly optimized with
the task offloading decisions so as to fairly “share" the energy
reduction/benefit to all UEs while taking into account the
individual UEs’ energy/battery levels. The energy/battery level
at each UE is captured via a nonnegative weight factor. To the
best of our knowledge, this is the first work in the literature to
address the fairness of energy benefit among users in multi-
layer edge computing system with multiple tasks.

The consequent problem for offloading tasks and allocating
resources toward the tasks is a Mixed Integer Nonlinear
Programming (MINLP), which is NP-hard [12]. To tackle it,
we leverage the convexity of its relaxed problem to propose a
distributed algorithm, namely the dynamic branch-and-bound
Benders decomposition (DBBD). The DBBD decomposes the
MINLP problem according to integer variables (offloading
decisions) and real variables (resource allocations) into a
master problem (MP) with integer variables and subproblems
(SPs) with real variables at ENs. These sub-problems can be
solved iteratively and parallelly at ENs. The theoretical proofs
and the numerical results confirm that the DBBD can always

�o}µ�����À���~�^�

�Erí �Erî �ErD

Y

���lZ�µo�o]vl

>]vl�h��r �E

>]vl�h��r �^

��P� v}�� ~�E�

h������µ]�u�v��~h��

�}u�µ���]}v�o����l

Fig. 1: Multi-layer edge computing system.

get the optimal solution maximizing the proportional fairness
of the energy benefit among UEs, measured by Jain’s index
and the min-max ratio [13].

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model
Fig. 1 show a three-layer edge computing system, including

edge layer with M edge nodes (ENs) M = {1, . . . ,M}, cloud
layer with one cloud server (CS), and user layer with N user
equipments (UEs) N = {1, . . . , N}. The two former layers
can provide computational services toward the user layer. Let
S = {1, . . . , S} be the security levels of UEs, ENs and the CS,
in which 1 and S respectively denotes the highest and lowest
levels [3]. Let Q = {1, . . . , Q} be the application types of
computational tasks. The security requirement of application
type q is defined by a mapping Θ(q) ∈ S. UEs have a set of
independent computational tasks, denoted by Φ = ∪Nn=1Φn,
in which Φn is the set of tasks at the UE n. These tasks can
be executed locally at UEs, offloaded to either ENs or the
CS. Each task Ii owned by UE n ∈ N can be defined by
Ii
(
Lu
i , L

d
i , wi, t

r
i , s

r
i , q, n

)
, in which Lu

i and Ld
i respectively

are the input and output data size (in Mb), wi is the number
of required CPU Giga cycles per input data unit [14]. Thus,
Lu
i wi is the required CPU Giga cycles of task Ii. The QoS

of task Ii comprises the requirements of delay tri and security
sri = Θ(q) ∈ S. The tasks can be processed only by UE n,
ENs, or the CS satisfying their QoS.

1) Local Processing: The UE n has a security level sln ∈ S
and a CPU processing rate f l

n. If the security requirement of
task Ii can be met, i.e., sln ≤ sri , then task Ii can be processed
locally at UE n. As in [9], the chip architecture of UE n can
define the CPU power consumption rate as P l

n = α(f l
n)

γ with
its specific parameters α and γ. The energy consumption El

i
and the necessary computing time T l

i of the UE are given by
El

i = P l
nT

l
i = α(f l

n)
γ−1(Lu

i wi) and T l
i = (Lu

i wi)/f
l
n. (1)

2) Edge Node Processing: Edge node j has capabilities
defined by (Ru

j , R
d
j , R

f
j , s

f
j , Ψj), where Ru

j , Rd
j , Rf

j , sfj ∈ S,
and Ψj ⊆ Q respectively are the total uplink, total downlink,
the CPU cycle, its security level, and the set of applications
supported by the EN.

If task Ii is offloaded and processed at EN j, then this
node will allocate resources for the UE n, defined by rij =

(ruij , r
d
ij , r

f
ij), in which ruij , rdij are uplink/downlink rates for

transmitting the input/output, and rfij is the computing resource
for executing the task. The UE n will consume an amount of
energy for transmitting input data to and receiving output data
from the EN j. The latency of task Ii comprises the time for
transmission input/output and the task-execution time at EN j.

Let euij and edij be the consumed energy rates of transmitting
and receiving data. Let ζ be the delay caused by multi-access.
The UE have the consumed energy Ef

ij and the delay T f
ij are

given by
Ef

ij = euijL
u
i + edijL

d
i , (2)

T f
ij = Lu

i /r
u
ij + Ld

i /r
d
ij + (Lu

i wi)/r
f
ij + ζ. (3)

3) Cloud Server Processing: Let B = {B1, . . . ,BM} ∈
RM be the backhaul capacity between M ENs and the CS.
All tasks offloaded to the CS via EN j will share the backhaul
Bj . Let C = {C1, . . . , CQ} ∈ RQ be the processing rate the
CS can allocate to each task of Q applications. Let scq be the
security level of the CS toward application q. If the security
requirement is satisfied, i.e., sri ≥ scq , then EN j can forward
task Ii to the CS.

In this case, the EN j will allocate resources rij =

(ruij , r
d
ij , r

f
ij) for the UE n, where ruij , rdij are uplink/downlink

rates for transmitting input/output data, and rfij = 0 (since it
does not process the task). Then, the CS will allocate backhaul
rate bij to transmitting input/output data between EN j and the
CS. Task i will be processed at the CS with computation rate
CQ. The energy consumption Ec

ij at the UE includes the energy
for transmitting/receiving input/output to and from EN j. The
delay T c

ij comprises the time for transmitting the input from
the UE to the CS via FN j, the time for receiving the output
from the CS via the EN j, and the time for executing the task
at the CS. These metrics are given by

Ec
ij = Ef

ij = Eu
ij + Ed

ij . (4)

T c
ij = Lu

i /r
u
ij+Ld

i /r
d
ij+(Lu

i +Ld
i)/bij+(Lu

i wi)/Cq+ζ. (5)

B. Problem Formulation

The offloading decisions of task Ii can be modelled as
xi = (xl

i, x
f
i1 . . . , x

f
iM , xc

i1 . . . , x
c
iM), where either xl

i = 1

or xf
ij = 1 or xc

ij = 1 determine that task Ii is ex-
clusively executed at either the UE or EN j or the CS
(via EN j). Equivalently, we have the delay and energy
consumption, i.e., hi = (T l

i , T
f
i1, . . . , T

f
iM , T c

i1, . . . , T
c
iM) and

ei = (El
i, E

f
i1, . . . , E

f
iM , Ec

i1, . . . , E
c
iM), as in Eqs. (1)–(5).

Due to the energy, computing constraints or security re-
quirements, not all tasks can be processed locally (e.g., local
processing cannot satisfy the delay requirement). For that, we
classify the set of tasks Φ into two categories: Φ̂ for tasks that
can either be executed locally or offloaded and Φ̃ (for tasks
that are unable to be executed locally but always need to be
offloaded).

Let Ebase
i denote the total energy consumption required for

the baseline solution to execute task Ii, depending on which
category the task belongs to. Specifically:

Ebase
i =

{
El

i, Ii ∈ Φ̂,

max
j≤M
{Ef

ij , E
c
ij} = max

j≤M
{Ef

ij}, Ii ∈ Φ̃. (6)

Then, the energy benefit/saving ∆i of the UE and the task-
execution delay Ti are given by

∆i = (Ebase
i − ei)

⊤xi and Ti = h⊤
i xi. (7)

Finally, we can define the utility function of the UE n with
its set of computational tasks Φn as follows.

un =
∑

Ii∈Φn

∆i. (8)

Without considering the fairness in energy reduction/benefit
for users in the task offloading decision, one can simply
optimize the total of all individual users’ utility function ui.
Unlike these works in the literature, this work addresses a
problem of jointly task-offloading (x) and resource-allocating
(r,b) = ({rij}, {bij}) so that all UEs can achieve their
proportionally fair share of energy benefit/saving, considering
their delay, security, application compatibility requirements
as well as their battery/energy status. Let ρn ∈ [0, 1] with∑N

1 ρn = 1 be the weight of the UE n that captures the
user’s battery status/priority level. According to the definition
of proportional fairness in [15], the proportionally fair joint
offloading and resource allocation solution can be obtained
by maximizing of the utility function

∑N
n=1 ρnln(un) over

offloading decisions (x) and resource allocation (r,b) toward
all tasks in Φ = Φ̃ ∪ Φ̂. The equivalent optimization problem
considering tasks’ QoS requirements and edge nodes’ resource
constraints is formally formulated as follows.

(P0) max
x,r,b

N∑
n=1

ρnln(un), s.t. (9)

(R0)



(C1) Ti ≤ tri ,∀i ∈ Φ,

(C2)
∑
i∈Φ

rfij ≤ Rf
j ,∀j ∈M,

(C3)
∑
i∈Φ

ruij ≤ Ru
j ,∀j ∈M,

(C4)
∑
i∈Φ

rdij ≤ Rd
j ,∀j ∈M,

(C5)
∑
i∈Φ

bij ≤ Bj ,∀j ∈M,

ruij , r
d
ij , r

f
ij , bij ≥ 0,∀(i, j) ∈ Φ×M,

(10)

and

(X0)



(C6) xl
i +

M∑
j=1

xf
ij +

M∑
j=1

xc
ij = 1,∀i ∈ Φ,

(C7) xl
is

l
i +

M∑
j=1

xf
ijs

f
j +

M∑
j=1

xc
ijs

c
q ≤ sri ,∀i ∈ Φ,

(C8) xf
ij = 0,∀(i, j) ∈ Φ×G(q),

xl
i, x

f
ij , x

c
ij ∈ {0, 1},∀(i, j) ∈ Φ×M,

(11)
where (C1), (C7), and (C8) capture tasks’ QoS requirements,
i.e., the delay, security, and application compatibility, (C2),
(C3), (C4), and (C5) capture ENs’ resource bounds, and (C6)
constrains tasks’ offloading decisions. G(q) is the set of all
edge nodes that do not support the application type q.

III. PROPOSED OPTIMAL SOLUTIONS

As aforementioned, the MINLP optimization problem (P0)
can be shown to be NP-hard (its proof is omitted due to
space limitation). In general, it is intractable to find its
optimal solution. However, by relaxing the integer variables
to real numbers xl

i, x
f
ij , x

c
ij ∈ [0, 1],∀(i, j) ∈ Φ × M, the

resulting relaxation of (P0) becomes a convex optimization
problem [12] (the proof is omitted here for brevity but can be
found in [9]). In the sequel, we leverage this feature to develop
an effective algorithm to find the optimal solution of (P0).

A. Dynamic Branch-and-Bound Benders Decomposition

We introduce a dynamic Branch-and-Bound Benders De-
composition Algorithm, namely DBBD as in Fig. 2. In DBBD,

Dynamical
Branch & Bound

Convex
Solver

Intermediate
relaxed problems

Incremental

Heuristic

Search

Benders
cuts

Subproblems

Master problem

Integer
cuts

Real
cuts

Offloading
Solutions

Fig. 2: Dynamic Branch-and-Bound Benders Decomposition.

(P0) is first decomposed according to integer variables (of-
floading decisions) and real variables (resource allocations)
into a master problem (MP0) with the integer variables and
subproblems (SP0) with the real variables. Then, we develop
a dynamical Branch and Bound (DBB), which is equipped
an incremental heuristic search, to quickly find the optimal
offloading solution of the (MP0) [9][7]. The Benders cuts
that eliminate useless solutions of the (SP0) are generated and
updated in the (MP0). The DBBD finds the optimal solution
of (P0) by iteratively solving (MP0) and (SP0).

(MP0) x(k) = argmax
x∈X0

{
N∑

n=1

ρnln(un)} s.t. cuts(k), (12)

(SP0) min
r,b∈R0

{0}, (13)

where cuts(k) is the set of Benders cuts generated in previous
iterations (1, . . . , (k − 1)) as in Section III-C, {0} is the
constant zero. Here, cuts(k) are constraints on offloading
variables x of (MP0) at iteration (k).

In DBBD, at iteration (k), (MP0) first is solved to find the
offloading solution, i.e., x(k), of (MP0). Then, the (SP0)
is solved to find the resource allocation, i.e., (r,b), toward
the offloaded tasks that are determined by x(k) of (MP0).
According to Theorem 1, DBBD can terminate the iteration if
either (MP0) is infeasible or it returns a solution (x, r,b).

THEOREM 1. At iteration (k), if a solution (x) of (MP0)
leads to a solution (r,b) of (SP0), then (x, r,b) is the
optimal one of (P0). In addition, at iteration (k), if (MP0)
is infeasible, then (P0) is infeasible.

Proof: The detailed proof is presented in [9].

B. Distributed Solving Subproblems

The offloading decision x(k) helps to break down (SP0)
to M smaller independent problems (SP1) at M ENs. The
resource allocation problem (SP1) at EN j is for tasks that
are offloaded to EN j (denoted Φt

j) and to the CS via EN j

(denoted Φs
j). Equivalently, these sets are captured by x

f(k)
j =

(xf
1j , . . . , x

f
|Φ|j)

(k) and x
c(k)
j = (xc

1j , . . . , x
c
|Φ|j)

(k) in x(k).
Thus, we can define Φt

j = {1, . . . t}, Φs
j = {t + 1, . . . t +

s}, and Φt+s
j = Φt

j ∪ Φs
j = {1, . . . , t + s} is captured by

x
(k)
j = (x

f(k)
j ,x

c(k)
j). Variables rj = (r1j , . . . r(t+s)j) and

bj = (b1j , . . .b(t+s)j) denote resource allocation of EN j
towards the set of tasks Φt+s

j . The problem (SP1) at EN j
can be defined as

(SP1) min
rj ,bj∈Rj

{0}, (14)

in which Rj is the feasible region at EN j as follows.

(Rj)



(C1j) Ti ≤ tri ,∀i ∈ Φt+s
j ,

(C2j)
∑

i∈Φt
j
rfij ≤ Rf

j ,

(C3j)
∑

i∈Φt+s
j

ruij ≤ Ru
j ,

(C4j)
∑

i∈Φt+s
j

rdij ≤ Rd
j ,

(C5j)
∑

i∈Φt+s
j

bij ≤ Bj ,
rfij , r

u
ij , r

d
ij , bij ≥ 0,∀i ∈ Φt+s

j ,

rfij = 0,∀i ∈ Φs
j , bij = 0,∀i ∈ Φt

j .

(15)

Instead of directly solving (SP0), the resource allocation
solution can be found by parallely solving M smaller problems
(SP1) at M ENs in concurrence with the CS for (MP0).

At iteration (k), if M subproblems (SP1) are feasible at all
M ENs, then x(k), r = (r1, . . . , rM), and b = (b1, . . . ,bM)
are the optimal solutions of (P0). Otherwise, for each infea-
sible (SP1) at EN j, a new Benders cut c(k)j will be added
to the cutting-plane set of (MP0) for the next iteration, i.e.,
cuts(k+1) = cuts(k) ∪ c(j)j , that are designed in Section III-C.
To advance the efficiency of DBBD, we develops theoretical
study in the section below.

1) Feasibility and Infeasibility Detection: Replacing
Eqs. (3) and (5) into (C1j) Ti ≤ tri in (Rj) of (SP1), this
delay constraint can be transformed as

(
Lu

i

ruij
+

Ld
i

rdij
+

Lu
i wi

rfij

)
≤ tri − ζ, ∀i ∈ Φt

j ,(
Lu

i

ruij
+

Ld
i

rdij

)
+
(

Lu
i +Ld

i

bij

)
≤ tri −

Lu
i wi

Cq
− ζ, ∀i ∈ Φs

j .

(16)
Remarkably, (tri − ζ) and

(
tri −

Lu
i wi

Cq
− ζ
)

are

constant components. If ∃i ∈ Φt+s
j , (tri − ζ) ≤

0 or
(
tri −

Lu
i wi

Cq
− ζ
)
≤ 0, then offloading task Ii to

either EN j or the CS does not meet the delay requirement,
i.e., Ti ≤ tri , leading to the infeasibility of (SP1). In this
case, a new cutting-plane is directly generated to prevent
offloading task Ii. In other , if (tri − ζ) > 0,∀i ∈ Φt

j and(
tri −

Lu
i wi

Cq
− ζ
)

> 0,∀i ∈ Φs
j , then the relative size, i.e.,

(Lu′

i , Ld′

i , w
′

i, L
c′

i), of task Ii is defined as
(

Lu
i

tri−ζ ,
Ld

i

tri−ζ , wi, 0
)
, ∀i ∈ Φt

j(
Lu

i

tri−
Lu
i
wi

Cq
−ζ

,
Ld

i

tri−
Lu
i
wi

Cq
−ζ

, 0,
Lu

i +Ld
i

tri−
Lu
i
wi

Cq
−ζ

)
, ∀i ∈ Φs

j .

(17)

For task Ii, let βi =

(
Lu′

i

ruij
+

Ld′
i

rdij
+

Lu′
i w

′
i

rfij
+

Lc′
i

bij

)
. Then,

the delay constraint in Eq. (16) becomes

βi =

(
Lu′

i

ruij
+

Ld′

i

rdij
+

Lu′

i w
′

i

rfij
+

Lc′

i

bij

)
≤ 1,∀i ∈ Φt+s

j . (18)

Based on the relative size concepts, Theorems 2 and 3 below
can detect the feasibility as well as the infeasibility of (SP1).

THEOREM 2. Let βu
bal =

∑
i∈Φ

t+s
j

Lu′
i

Ru
j

, βd
bal =

∑
i∈Φ

t+s
j

Ld′
i

Rd
j

,

βf
bal =

∑
i∈Φ

t+s
j

Lu′
i w

′
i

Rf
j

, and βb
bal =

∑
i∈Φ

t+s
j

Lc′
i

Bj
. If βbal =

βu
bal + βd

bal + βf
bal + βb

bal ≤ 1, then (SP1) is feasible and

rij = (ruij , r
d
ij , r

f
ij , bij) = (

Lu′
i

βu
bal

,
Ld′

i

βd
bal

,
Lu′

i w
′
i

βf
bal

,
Lc′

i

βb
bal

),∀i ∈ Φt+s
j ,

is a resource allocation solution.

Proof: The detailed proof is presented in [9].

THEOREM 3. If

∑
i∈Φ

t+s
j

Lu′
i

Ru
j

> 1 or

∑
i∈Φ

t+s
j

Ld′
i

Rd
j

> 1 or∑
i∈Φ

t+s
j

Lu′
i w

′
i

Rf
j

> 1 or

∑
i∈Φ

t+s
j

Lc′
i

Bj
> 1, then (SP1) is

infeasible.

Proof: The detailed proof is presented in [9].

C. Benders Cut Generation
This section develops three types of Benders cuts that will

be added into the constraints of (MP0).
1) Subproblem Benders Cut: At iteration (k), the problem

(SP1) at EN j is determined by x
(k)
j = (x

f(k)
j ,x

c(k)
j). If

(SP1) is infeasible, then a new Benders cut c(k)j will be added
into the cuts set of (MP0) to prevent offloading Φt+s

j in next
iterations.

c
(k)
j = {xf(k)⊤

j xf
j + x

c(k)⊤
j xc

j ≤ t+ s− 1}. (19)
2) Resource Benders Cut: To make a feasible problem

(SP1) at EN j, the set Φt+s
j ⊆ Φ must not violate any resource

constraints at EN j as presented in Theorem 3.
Let c

u(edge)
j = (Lu′

1 , . . . , Lu′

N)/Ru
j , c

d(edge)
j =

(Ld′

1 , . . . , Ld′

N)/Rd
j and c

f(edge)
j = (Lu′

1 w
′

i, . . . , L
u′

Nw
′

i)/R
f
j .

Here, (Lu′

i , Ld′

i , w
′

i) is defined as in Eq. (17) for i ∈ Φt
j .

Let c
u(cloud)
j = (Lu′

1 , . . . , Lu′

N)/Ru
j , c

d(cloud)
j =

(Ld′

1 , . . . , Ld′

N)/Rd
j , and c

b(cloud)
j = (Lc′

1 , . . . , L
c′

N)/Bj . Here,
(Lu′

i , Ld′

i , Lc′

i) is defined as in Eq. (17) for i ∈ Φs
j .

To avoid the infeasible conditions in Theorem 3, we need
to add the cutting-planes below into the cuts set of (MP0).
cuj = {cu(edge)⊤j xf

j + c
u(cloud)⊤
j xc

j ≤ 1},
cdj = {cd(edge)⊤j xf

j + c
d(cloud)⊤
j xc

j ≤ 1},
cfj = {cf(edge)⊤j xf

j ≤ 1}, and cbj = {c
b(cloud)⊤
j xc

j ≤ 1}.
3) Prefixed-Decision Benders Cut: As aforementioned in

Section III-B1, if (tri − ζ) ≤ 0, then task Ii is unable to be
offloaded to ENs, if

(
tri −

Lu
i wi

Cq
− ζ
)
≤ 0, then task Ii is

unable to be offloaded to the CS. Thus, the suitable cutting-
planes can be generated and updated in the cuts set of (MP0).

D. DBBD Algorithm
DBBD finds the optimal solution by iteratively solving

(MP0) and (SP1). An optimization solver can be used to
find resource allocation solution of the convex problem (SP1).
However, we need to use a branch-and-bound method to solve
the integer problem (MP0). Thus, to support DBBD, we
develop a dynamic branch and bound algorithm, namely DBB,
which can effectively solve (MP0) considering the balance
between the users’ demand and available resources at ENs.
The details of the DBB is presented in [9]. The DBBD is
presented in Algorithm 1. Initially, initialize the iterator k = 1
and set cuts(k) in (MP0) with 4M resource Benders cuts as
in Section III-C. At iteration (k), the DBB algorithm finds
x(k) ∈ X0 of (MP0) satisfying cuts(k). With x(k), M
problems of the form (SP1) at M ENs are defined. Then,
EN j solves (SP1) to find a resource allocation solution
toward Φt+s

j . Here, Theorem 2 can determine the feasibility

of (SP1). If (SP1) has no solution, a new Benders cut c(k)j

as in Section III-C will be updated into cuts(k+1) of (MP0)
for the later iterations. If x(k) of (MP0) does not exist, then
DBBD can conclude the infeasibility of (P0). With x(k) of
(MP0), if M problems of the form (SP1) have solutions
(r,b) = ({rj}, {bj}), then DBBD can conclude (x(k), r,b)
is the optimal solution of (P0).

Algorithm 1: DBBD Algorithm

Input : Set Φ of tasks Ii
(
Lu
i , L

d
i , wi, t

r
i , s

r
i , q, n

)
Set of M edge nodes {(Ru

j , R
d
j , R

f
j , s

f
j , Ψj)}

Set N of UEs, Security levels S
Application types Q, Cloud server (B, C)

Output: Optimal (x, r,b) of (P0)

1 begin
2 k ← (k + 1), cuts(k) ←

⋃M
j=1{cuj , cdj , c

f
j , c

b
j}.

3 while solution (x, r,b) has not been found do
4 x← DBB algorithm solve (MP0) with

cuts(k). ▷ x store x(k) at iteration k
5 if x is found then
6 Solution x defines M problems (SP1) with

asigned tasks Φt+s
1 , . . . ,Φt+s

M .
7 else Return Problem (P0) is infeasible.
8 for (j = 1; j < M + 1; j = j + 1) do
9 (rj ,bj)← Solver solves (SP1) at EN j

with assigned tasks Φt+s
j .

10 if (rj ,bj) is found then
11 Update new cut c(k)j into cuts(k+1).
12 end
13 if (r,b) = ({rj}, {bj}) is found then
14 Optimal (x, r,b) has been found.
15 k ← (k + 1) ▷ For next iteration
16 end
17 Return (x, r,b)
18 end

E. Complexity Analysis
With |Φ| tasks and M ENs, there are M |Φ|+1 possible

problems of the form (SP1) with the task numbers increasing
from 0 to |Φ| and M |Φ| master problems (MP0). Thus, in
the worst situation, the DBBD algorithm has complexity in
the order of O(M |Φ|). However, with the support of Benders
cut generations, most of the useless subproblems are excluded.
Consequently, in practice, the solving time is far more less than
that of the worst case. This is also because (MP0) and (SP1)
have the linear sizes over the number of tasks.

IV. PERFORMANCE EVALUATION

We study how the numbers of UEs/tasks affect the fairness,
energy benefit, and total consumed energy of all UEs. To
capture the fairness, we define and use the Jain’s index =
(
∑N

n=1 un)
2

N
∑N

n=1 u2
n

and Min-Max ratio =
min
n≤N

{un}

max
n≤N

{un} where un is

defined as in Eq. (8) [13].
At first, the experiments are designed with 5 applications

Q = {1, . . . , 5} and 3 security levels S = {1 − High, 2 −
Medium, 3−Low}. Each EN can randomly support 3 applica-
tions, and the CS can support all applications in Q. All UEs

TABLE I: Experimental parameters
Parameters Value
Number of mobile devices N 2 – 12
Number of edge nodes M 3
Number of computation tasks |Φ| 24
CPU rate of mobile devices f l

i 1 Giga cycles/s
Security levels of mobile device sli 1(High)
Energy consumption model of devices (α, γ) (10−11Watt/cycle2, 2)
Unit transmitting energy consumption euij 0.071 – 0.213 J/Mb
Unit receiving energy consumption edij 0.071 – 0.213 J/Mb

Security level of each edge node sfj ∈ S 1(High)
CPU rate of the cloud server {10, . . . , 10}
C = {C1, . . . , CQ} Giga cycles/s
Backhaul capacity between FNs and the cloud {100, . . . , 100} Mbps
B = {B1, . . . ,BM}
Upper bound of backhaul rate for each task bij ≤ 5 Mbps
Security level of clouds towards 1(High)
application q: scq ∈ S
Multi-access delay ζ 20ms

0.4

0.6

0.8

1

J
a
in

 I
n
d
e
x DBBD

FFBD

2 4 6 8 10 12

Number of Devices

0

0.2

0.4

0.6

0.8

1

M
in

-M
a
x
 R

a
ti
o

Fig. 3: Jain’s index and Min-Max Ratio of energy benefits as
the number of devices N is increased.

80

85

90

95

E
n
e
rg

y

C
o
n
s
u
m

p
ti
o
n
 (

J
)

DBBD

FFBD

Total All Devices

2 4 6 8 10 12

Number of Devices

0

20

40

60

E
n
e
rg

y

B
e
n
e
fi
t
(J

)

DBBDmin

DBBDmax

FFBDmin

FFBDmax

Per Device

Fig. 4: Total consumed energy and energy benefits as the
number of devices N is increased.

have the same weight ρn = 1. We then generate |Φ| = 24 tasks
Ii
(
Lu
i , L

d
i , wi, t

r
i , s

r
i , q, n

)
(Ii ∈ Φ) in which Lu

i = 1 MB,
Ld
i = 0.1 MB, wi = 5 Giga cycles/Mb, tri = 5s, sri ∈ S ,

and q ∈ Q. Three edge nodes with WLAN connection are
configured with total resources (

∑
Ru

j ,
∑

Rd
j ,

∑
Rf

j) =
(108 Mbps, 108 Mbps, 15 Giga cycles/s) so that they can
process 50% × 24 = 12 tasks. Then, we vary the number
of UEs N from 2 to 12 with the uplink/downlink energy
consumption units raising by 0.01 J/Mb from 0.071 J/Mb to
0.213 J/Mb. Each UE has an equal demand with 24

N tasks.
Other parameters are presented in Table I and clarified in [9].

Our proposed framework, i.e., DBBD, is compared with the
total utility maximization framework, e.g., FFBD [7] where the
total energy consumption is minimized without considering
the fairness. This policy is also called the social welfare
maximization scheme (SWM) in [10]. The DBBD and FFBD
are implemented using the MOSEK Optimizer [16]. In the
DBBD and FFBD, the minimum and maximum energy benefit
of UEs are denoted by DBBDmin, DBBDmax and FFBDmin,
FFBDmax, respectively.

2 4 6 8 10 12 14 16 18 20 22 24

Number of Tasks

0

2

4

6

8

10

12

N
u
m

b
e
r

o
f
T

a
s
k
s

o
n
 E

d
g
e
 N

o
d
e
s

DBBDEN-1

DBBDEN-2

FFBDEN-1

FFBDEN-2

Fig. 5: Number of tasks offloaded to each edge node as the
number of tasks is increased.

2 4 6 8 10 12 14 16 18 20 22 24

Number of Tasks

0

2

4

6

A
v
e
ra

g
e
 D

e
la

y
 (

s
)

DBBD

FFBD

t
i
r

Fig. 6: Average delay of tasks as the number of tasks is
increased.

Figs. 3 and 4, respectively, show the fairness indices and
the energy benefit of UEs for the proposed methods when
the number of UEs N is increased from 2 to 12. In Fig. 3,
as expected, both the Jain’s index and min-max ratio in
the DBBD are much higher than those in the benchmark
FFBD method. Especially, the both indices are close to their
maximum value 1 for the cases of 2, 4, 6 and 12 UEs in
the DBBD. This is because the DBBD aims to allocate the
energy benefit in a proportionally fair manner to all UEs.
Consequently, each UE can get its fair share of offloaded tasks,
i.e., 6, 3, 2 and 1 (for 12 tasks described in the above).

The FFBD minimizes the total consumed energy, equiva-
lently maximizing the total energy benefit of all UEs. Besides,
the transceiving energy units of UE n + 1 are 0.01 J/Mb
higher than those of UE n as in the experiment setup.
Consequently, in the FFBD, 12 tasks of UEs with the less
energy consumption are offloaded, whereas 12 tasks of UEs
with the higher energy consumption are processed locally.
Thus, the Jain’s index of the FFBD is mostly close to 0.5
and the min-max ratio is 0 for all experiments.

The fairness and efficiency of two schemes are also demon-
strated in Fig. 4 in terms of the total energy consumption
of all UEs and the energy benefit per UE. One can observe
that the FFBD’s consumption is a little lower than that of
the DBBD. This is because the FFBD tries to minimize the
total consumed energy, whereas the DBBD aims to maximize
the proportionally fair energy benefit but the energy traded
off for the fairness is not significant. The energy benefit of
each UE also matches the trends of fairness indexes in both
methods. Especially, the gap between the minimum (FFBDmin)
and maximum (FFBDmax) energy benefits of the FFBD is lager
than that of the DBBD (DBBDmin and DBBDmax). The zero
value of the minimum energy benefit (FFBDmin) shows that
all the tasks of some UEs are processed locally in the FFBD
method.

To investigate the effect of the number of tasks on the
number of tasks offloaded to each edge node and the average
delay of all tasks, we set up two devices with an equal number
of tasks |Φ|/2. We then vary the total number of tasks |Φ|
from 2 to 24. These devices have WLAN connections to
ENs 1 and 2, and the 3G near connections to EN 3. From
Fig. 5, the DBBD offloads tasks equally to ENs 1 and 2

(labelled DBBDEN-1 and DBBDEN-2). This is because while
the DBBD always returns offloading decisions that balance
the load amongst ENs, the FFBD returns arbitrary ones. Here,
tasks are not offloaded to EN 3 due to the higher energy
consumption of the 3G connection. As a result, the DBBD
has a lower average delay than the FFBD has as in Fig. 6.

V. CONCLUSION

We considered the fairness among users in the joint task
offloading and resource allocation problem for the multi-
layer cooperative edge computing network. To that end, we
formulated a proportional fairness maximization problem that
turns out to be NP-hard. To find its optimal solution, we
have developed a dynamic Branch-and-Bound Benders De-
composition algorithm, namely DBBD, to decompose the
original problem into subproblems that can be solved parallelly
in a distributed at edge nodes. Numerical results showed
that the DBBD always returns the optimal solution, which
achieves the Jain’s index and Min-Max ratio, i.e., respectively
around 1.0 and 0.8 in most cases. Simulations were also used
to compare DBBD with other task offloading and resource
allocation frameworks that only aim to minimize the energy
consumption. Our proposed framework ensures that UEs’ tasks
and edges’ resources can be offloaded and allocated with
respect to UEs’ energy/priority levels.

REFERENCES

[1] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architec-
ture and computation offloading,” IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1628–1656, 2017.

[2] Y. Mao, et al., “A survey on mobile edge computing: The communication
perspective,” IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–
2358, 2017.

[3] H. El-Sayed, et al., “Edge of things: The big picture on the integration of
edge, iot and the cloud in a distributed computing environment,” IEEE
Access, vol. 6, pp. 1706–1717, 2018.

[4] J. Wang, et al., “Delay-sensitive multi-period computation offloading
with reliability guarantees in fog networks,” IEEE Trans. Mobile Com-
put., pp. 1–1, 2019.

[5] J. Liu, et al., ‘Max-min energy balance in wireless-powered hierarchical
fog-cloud computing networks,” IEEE Trans. Wireless Commun., vol. 19,
no. 11, pp. 7064–7080, 2020.

[6] H. Liao, et al., ‘Blockchain and learning-based secure and intelligent
task offloading for vehicular fog computing,” IEEE Trans. Wireless
Commun., vol. 22, no. 7, pp. 4051–4063, 2021.

[7] T. T. Vu, D. N. Nguyen, D. T. Hoang, E. Dutkiewicz, and T. V.
Nguyen, “Optimal energy efficiency with delay constraints for multi-
layer cooperative fog computing networks,” IEEE Trans. Commun.,
vol. 69, no. 6, pp. 3911–3929, 2021.

[8] D. T. Nguyen, et al., “Price-based resource allocation for edge com-
puting: A market equilibrium approach,” IEEE Trans. Cloud Comput.,
vol. 9, no. 1, pp. 302–317, 2021.

[9] T. T. Vu, D. T. Hoang, Khoa T. Phan, D. N. Nguyen, and E. Dutkiewicz,
“Proportional Fairness Edge Computing Resource Allocation using
Dynamic Branch-and-Bound Benders Decomposition Algorithm,” Tech-
nical report, 2021. [Online]. Available: https://arxiv.org

[10] D. T. Nguyen, et al., “A market-based framework for multi-resource
allocation in fog computing,” IEEE/ACM Trans. Netw., vol. 27, no. 3,
pp. 1151–1164, 2019.

[11] Y. Wang, et al., “Cooperative task offloading in three-tier mobile
computing networks: An admm framework,” IEEE Trans. Veh. Technol.,
vol. 68, no. 3, pp. 2763–2776, 2019.

[12] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[13] R. K. Jain, et al., “A quantitative measure of fairness and discrimination,”
Eastern Research Laboratory, Digital Equipment Corporation, Hudson,
MA, 1984.

[14] J. Du, et al., “Enabling low-latency applications in lte-a based mixed
fog/cloud computing systems,” IEEE Trans. Veh. Technol., vol. 68, no. 2,
pp. 1757–1771, 2019.

[15] F. P. Kelly, et al., “Rate control for communication networks: shadow
prices, proportional fairness and stability,” JORS, vol. 49, no. 3, pp.
237–252, 1998.

[16] E. D. Andersen and K. D. Andersen, “The mosek documentation and api
reference,” Report, 2019. [Online]. Available: https://www.mosek.com

https://arxiv.org
https://www.mosek.com

	2022 IEEE
	Energy-based Proportional Fairness for Task Offloading and Resource Allocation in Edge Computing
	Introduction
	System Model and Problem Formulation
	System Model
	Local Processing
	Edge Node Processing
	Cloud Server Processing

	Problem Formulation

	Proposed Optimal Solutions
	Dynamic Branch-and-Bound Benders Decomposition
	Distributed Solving Subproblems
	Feasibility and Infeasibility Detection

	Benders Cut Generation
	Subproblem Benders Cut
	Resource Benders Cut
	Prefixed-Decision Benders Cut

	DBBD Algorithm
	Complexity Analysis

	Performance Evaluation
	Conclusion
	References

