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Abstract—This article proposes a cooperative friendly jamming
framework for swarm unmanned aerial vehicle (UAV)-assisted
amplify-and-forward (AF) relaying networks with wireless energy
harvesting. In particular, we consider a swarm of hovering UAVs
that relays information from a terrestrial source to a distant
mobile user and simultaneously generates jamming signals to
obfuscate an eavesdropper. Due to the limited energy of the UAVs,
we develop a collaborative time-switching relaying protocol which
allows the UAVs to collaborate to harvest wireless energy, relay
information, and jam the eavesdropper. To evaluate the secrecy
rate, we derive the expressions of the secrecy outage probability
(SOP) in the integral form for two popular detection techniques
at the eavesdropper, i.e., selection combining and maximum-
ratio combining in high signal-to-noise ratio regime. Monte Carlo
simulations validate the derived SOP and show that the proposed
framework outperforms the conventional AF relaying system, in
terms of SOP. The insights from SOP in this work can be utilized
to optimize energy harvesting time, the number of UAVs in the
swarm as well as their placements, to achieve the required secrecy
protection level.

Index Terms—ecrecy outage probability, unmanned aerial
vehicle, swarm UAVs, energy harvesting, friendly jamming, relay-
ing network.ecrecy outage probability, unmanned aerial vehicle,
swarm UAVs, energy harvesting, friendly jamming, relaying
network.S

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), thanks to their high
mobility and flexibility, have great potential applications to
future communications systems. In practical UAV-assisted
cellular networks, UAVs can be deployed as flying relays
to provide connectivity between terrestrial nodes, which are
suffering from the absence of direct links.However, due to the
broadcast nature of line-of-sight (LoS) dominated aerial based
wireless communications, the UAVs’ communication links are
vulnerable to eavesdropping or jamming.

To assist and secure the system in the presence of an
eavesdropper, UAV-assisted relaying systems with friendly
jamming have been recently studied in [1]–[5]. In [1], a
swarm of UAVs was divided into two groups of decode-
and-forward relays and jammers that transmit interference to
obfuscate the eavesdropper. The secrecy outage probability
(SOP) was analyzed when the eavesdroppers only listen to the
relay communications phase. The flying paths and locations
of UAVs can also be optimized to enhance the physical layer
security of wireless networks, i.e., retreating away from the
eavesdroppers [3]. A relaying UAV and a jamming UAV

were utilized and optimized their flight trajectory to maximize
the secrecy rate of the system in [4]. The authors in [2],
[3] studied a wireless information and power transfer system
which employs an energy-constrained aerial node as a relay
and the full-duplex destination nodes to transmit artificial noise
to confuse the malicious eavesdroppers. However, using on-
ground destination nodes to jam eavesdroppers as in [2], [3]
might not be effective in practical cases with severe obstacles,
long distance, and deep fading. Moreover, the self-interference
in full-duplex radios can also have an adverse impact on signal
reception/decoding at legitimate receivers.

In this work, we propose a cooperative friendly jamming
framework for swarm UAV-assisted AF relaying networks with
wireless energy harvesting (EH) ability. In particular, we de-
velop a collaborative time-switching relaying (TSR) protocol
which allows a swarm of hovering UAVs to harvest wireless
energy, relay information from a terrestrial source to a distant
mobile user, and simultaneously generate friendly jamming
signals to interfere an eavesdropper whose location can be un-
known. The feasibility of powering UAVs with wireless power
transfer has been reported in [6], [7] (by using microwave
power transfer). To conserve on-board energy, we assume that
UAVs operate in the half-duplex mode in which they receive
the information from the source and jam the eavesdropper in
two separate phases. During these phases, the eavesdropper
can intercept the information from both the source and the re-
lay UAV using either selection combining (SC) and maximum-
ratio combining (MRC) scheme. In practice, an eavesdropper
is often a passive device (i.e., not emitting signal), its location
and the channel state information (CSI) between it and the
legitimate transmitter are often unknown. For that, we consider
the case of a randomly distributed eavesdropper. The major
contributions of our work are as follows.

• Propose an effective model and protocol to utilize a
swarm of wireless-powered UAVs to simultaneously relay
information and to jam the eavesdropper, under a practical
shadowed-Rician fading model.

• Derive the expressions of the SOP in high signal-to-
noise ratio (SNR) regime for two cases of SC and MRC
combining techniques at the eavesdropper in the integral
form.

• Conduct the Monte Carlo simulations to verify the ex-
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Fig. 1: System model of UAV-assisted relaying network.

pressions and obtain the engineering insights to optimize
the energy harvesting time, the number of UAVs in the
swarm, as well as their placements, to achieve a given
secrecy protection level.

Notations: | · | is the Euclidean norm; fX (·) and FX (·) de-
note the probability density function (PDF) and the cumulative
distribution function (CDF) of the random variable (r.v.) X ,
respectively; E (·) is the statistical expectation operation; the
operation Pr (·) returns probability.

II. SYSTEM MODEL

Consider a UAV-aided relaying system as depicted in Fig. 1,
in which a terrestrial BS S communicates with an on-ground
mobile user D, in the presence of an eavesdropper E on the
ground. We assume that the direct link between S and D is not
available, e.g., due to blockages and/or long distance. For that,
the communications and security of the transmission from S
to D are assisted by a swarm of U UAVs that function as
a relay and friendly jammers. Let Ru denote the u-th UAV
where u ∈ Φu = {1, 2, ..., U}. Due to their limited energy, we
assume that UAVs are only equipped with a single antenna,
operate in the half-duplex AF mode, and can wirelessly harvest
power from S [8]. Specifically, the TSR protocol between S
and D is accomplished over three phases with the total length
of T , i.e., the EH phase, the transmission from S to the UAVs
phase, and the AF from the relay UAV to D phase. Here,
we adopt the two equal time-slots AF relaying system [2].
During the EH phase of length αT , α ∈ [0, 1] where α is
the EH time factor, all U UAVs scavenge RF energy from
S. In the second phase of length (1− α)T/2, S broadcasts
the information signal to all the UAVs, and is susceptible to
eavesdropping by E. Note that in the second phase, all half-
duplex UAVs that are in the reception mode (to receive the
signal from S) cannot harvest energy and jam E. Then, in
the third phase of length (1− α)T/2, the UAV R∗ with the
highest SNR over S-to-UAVs links uses the harvested energy
to AF the received signals to D, while (U − 1) other UAVs
Rj (with j ∈ Φu\R∗) use their harvested energy to jam E. In
order to eliminate the burden of signal synchronization among
UAVs, we consider that only one UAV is selected as a relay to

forward signals to D. Note that the friendly jamming signals
can be completely canceled at D, e.g., using the successive
cancellation or projection technique [5].

All the channels are assumed to be quasi-static, i.e., un-
changed during each transmission time slot T but indepen-
dently vary from one time slot to another [9]. The channel
coefficient between nodes u and v is denoted as huv, which has
the corresponding channel gain |huv|2. Specifically, hSu, hSR*

and hSE are the channel coefficient between S and the u-th
UAV, R∗ or E, respectively. The channel coefficients between
R∗ and D, R∗ and E, the j-th jamming UAV and E are hR*D,
hR*E and hjE, respectively. Due to the strong LoS components,
all the channels between UAVs and ground nodes are modeled
by shadowed-Rician fading1 with the PDF given by

f|huv|2 (x) = Ae−Bx
1F1 (mS ; 1;ϑx) , x ≥ 0, (1)

where A = (2bmS/(2bmS +Ω) )
mS/2b, B = 1/2b, ϑ =

Ω/ (2bmS +Ω) /2b with Ω and 2b being the average power of
LoS and multipath components, respectively, mS is the fading
severity parameter, and 1F1 (·; ·; ·) is the confluent hypergeo-
metric function of the first kind [11]. For any arbitrary fading
severity parameter mS , one can simplify 1F1 (mS ; 1;ϑx) to
obtain the PDF and CDF as [12]

f|huv|2 (x) =

mS−1∑
l=0

ζuvx
le−ηuvx, (2)

F|huv|2 (x) = 1−
mS−1∑
l=0

l∑
q=0

κuvx
qe−ηuvx, (3)

where ζuv = A(mS − l)l(ϑ)
l
/(l!)

2, κuv =
ζuv(l!/q!)ηuv

−(l+1−q), and ηuv = B − ϑ, in which
(mS − l)l = Γ(mS)/Γ(mS − l) is the Pochhammer symbol
[13]. We denote X = |hSR* |2, Y = |hR*D|

2, Z = |hR*E|
2.

Therefore, {ζX , κX , ηX}, {ζY , κY , ηY }, and {ζZ , κZ , ηZ}
are the corresponding channel gain of S-to-R∗, R∗-to-D, and
R∗-to-E links, respectively. The terrestrial link between S
and E is subject to undergo small-scale Rayleigh model due
to many obstructions on ground [9] with the PDF and CDF
as

fW (x) = e−x, FW (x) = 1− e−x, (4)

respectively, where W = |hSE|2 is denoted as the channel gain
of link between S and E.

We use the polar coordinate to facilitate the analysis with
the coordinate origin at S, pS = (0, 0, HS), where HS is the
height of the antenna tower from the ground. UAVs are flying
within a swarm whose span is very small at pu = (ru, θu, Hu)
to serve a mobile user D which is located at pD = (rD, 0, 0).
Since the eavesdropper’s location is unknown in practical
applications, we consider the case that an eavesdropper E at
pE = (rE , θE , 0) is uniformly distributed on ground inside

1The shadowed-Rician distribution has been proposed to generally describe
the channels between UAVs and ground nodes [10] since these channels vary
significantly with UAVs’ 3D locations in an area, which may be under a deep
fade and shadowing.



a circular disc of radius rc that is centered at S. The E′s
distribution is modeled by the binomial point process ΦE with
the corresponding PDF as [14]

fpE (rE , θE , 0) =
1

πrc2
, rE ≤ rc, 0 ≤ θE ≤ 2π. (5)

Considering the nodes’ locations, the path loss at a distance
duv from u to v is given by λuv = ρ0 (duv/d0)

−τ , where τ
is the path-loss exponent, and ρ0 is the reference gain at a
reference distance of d0.The received power at v can be written
as Pv = Puλuv|huv|2, where Pu is the transmitted power at u.
The transmit power of S is PS . The noise at all the receivers
is assumed to be the Additive White Gaussian Noise following
CN

(
0, σ2

)
.

A. Legitimate Communication Link

In the EH phase, following the linear EH model [15], the
harvested energy at the u-th UAV is written as

Ξu = ηαT
(
PSλSu|hSu|2 + σ2

)
, (6)

where 0 < η < 1 is the energy conversion efficiency factor
which depends on the EH circuitry. In the second phase,
S broadcasts its information signal to all the UAVs. The
instantaneous SNR over the link between S and the u-th UAV
is γSu = ψλSu|hSu|2, with denotation of ψ = PS/σ

2. At the
end of this phase, only R∗ is selected as a relay node according
to the highest SNR criterion as γSR* = ψλSR* |hSR* |2 =

max
u∈Φu

(
ψλSu|hSu|2

)
. The harvested energy at R∗ in the EH

phase is ΞR∗ = ηαT
(
PSλSR∗ |hSR∗ |2 + σ2

)
. Then, in the

third phase, R∗ uses its harvested energy to AF the received
signals to D with an amplification factor of

GAF =
2ΞR∗/ (1− α)T

PSλSR* |hSR* |2 + σ2
. (7)

The SNR of received signal at D is then written as

γD =
εψλSR*λR*DXY

ελR*DY + 1
, (8)

where ε = 2ηα/(1− α) denotes the TSR-AF factor.
Under the assumption that the UAVs are located sufficiently

apart within a swarm whose span is very small as compared
to the distances from UAVs to on-ground nodes, we assume
i.i.d. channels between S and UAVs with the same average
received power λSu = λSR* . Therefore, the UAV with the
highest channel gain is selected to relay information to D.
The CDF of X = |hSR* |2 = max

u∈Φu
|hSu|2 is written as

FX (x) = Pr
{
|hSu|2 < x

∣∣∣ u ∈ Φu

}
=

U∏
u=1

F|hSu|2 (x). (9)

Lemma 1. The expressions for the CDF and PDF of r.v. X
are presented as

FX (x) =
∑̃U

u
κux

χue−ηux, (10)

fX (x) = U

mS−1∑
lX=0

ζX
∑̃U−1

u
κux

lX+χue−(ηX+ηu)x, (11)

where∑̃U

u
=

U∑
u=0

(−1)
u

u!

U∑
n1=1

. . .

U∑
nu=1︸ ︷︷ ︸

n1 ̸=n2... ̸=nu

mS−1∑
l1=0

l1∑
q1=0

. . .

mS−1∑
lu=0

lu∑
qu=0

,

κu =

u∏
t=1

κX , ηu =

u∑
t=1

ηX , χu = q1 + . . .+ qu =

u∑
t=1

qt

Proof. Using the multinomial theorem, the CDF of r.v. X
is given as in (10). The corresponding PDF in (11) can be
obtained by taking the derivative of FX (x) with respect to
(w.r.t.) x to complete the proof.

B. Eavesdropping
E is assumed to attempt to eavesdrop information in the

second phase and the third phase. E can intelligently either
perform SC to select the highest SNR received signal as γSC

E =

max
(
γSE, γ

J
R*E

)
, or MRC with the sum SNRs as γMRC

E =

γSE + γJ
R*E

to intercept the legitimate information [16].
In the second phase, E directly listens to S and receives

the signal with the SNR as

γSE = ψλSEW. (12)

When all the UAVs other than the relaying one use their
harvested energy to send jamming signals to E, the SNR at
E over aerial links is

γJ
R*E =

εψλSR*λR*EXZ

ελR*EZ + 1 + PJE
, (13)

where PJE = δε
U−1∑
j=1

{
ψλSj|hSj|2 + 1

}
λjE|hjE|2, in which δ is

the factor of using harvested energy, 0 < δ ≤ 1. We assumed
that all the channels between UAVs and ground nodes are i.i.d.
with λSj = λSR* and λjE = λR*E, j ∈ Φu\R∗. The jamming
power from each of the jamming UAVs can be approximated to
relate to the average harvested energy from S, PJ = δεψλSR*g,
where g is the average channel gain between S and jamming

UAVs. Denote J =
U−1∑
j=1

|hjE|2, we obtain

γJ
R*E =

εψλSR*λR*EXZ

ελR*EZ + 1 + PJλR*EJ
, (14)

Lemma 2. The expression for the PDF of r.v. J is presented
as

fJ (t) =
∑̂U−1

j
ζjt

χj−1e−ηZt, U ≥ 1, (15)

where ∑̂U−1

j
=

mS−1∑
l1=0

. . .

mS−1∑
lU−1=0

,

χj =

U−1∑
j=1

(lj + 1), ζj =
1

(χj − 1)!

U−1∏
j=1

(ζZ lj!).



Proof. Using the Moment Generating Function approach, we
obtain the PDF of J as in (15) to complete the proof. The
detailed proof is omitted due to space limit. The detailed proof
can be found in our technical report [17].

III. SECRECY PERFORMANCE ANALYSIS

Secrecy capacity is defined as the positive value of the dif-
ference between the instantaneous capacities of the legitimate
and the wiretap channels. To measure the security performance
of the system, the SOP is defined as the probability at which
the achieved secrecy capacity of CS is not greater than a pre-
defined secrecy rate of Cth. Let Pout (Cth) = Pr {CS < Cth}
denote the SOP at Cth

Pout (Cth) = Pr

{
1− α

2
log2

(
1 + γD
1 + γE

)
< Cth

}
, (16)

where γS = 22Cth/(1−α) denotes the target secrecy SNR. In
high SNR regime, exploiting the approximation of 1+γD

1+γE
≈

γD

γE
, which is adopted in literature [12], we obtain the asymp-

totic expression of Pout as

P̄out (γS) = Pr

{
γD
γE

< γS

}
. (17)

The CSI between S and E depends on E’s location via the
free-space path losses, i.e., λSE ∝ dSE, λR*E ∝ dR*E. Therefore,
the system SOP in the presence of a randomly distributed
eavesdropper can be written as

P̄out (γS) = EpE {Pout (γS , pE)} , (18)

where Pout (γS , pE) is the expression of the SOP w.r.t. to the
fixed location of E for different cases of combining schemes of
SC or MRC at E. In the sequel, we first derive the expressions
of the SOP w.r.t. a given location of E. Then (18) can be
calculated by taking the expectation over the E’s geometry
environment of a circular disc of radius rc.

A. Selection Combining

The asymptotic SOP for the SC scheme at E in case with
friendly jamming is

P SC,J
out (γS , pE) = 1− Pr

{
γD
γS

> max
(
γSE, γ

J
R*E

)}
= 1− EX,Y,J

{
Pr

{
W < XΥW (Y ) ,

Z < ΥZ (Y,J )

}}
,

(19)
where

ΥW (Y ) =
ελSR*λR*DY

γSλSE (ελR*DY + 1)
,

ΥZ (Y,J ) =
λR*DY (1 + PJλR*EJ )

λR*E (ελR*DY (γS − 1) + γS)
.

Proposition 1. With friendly jamming, the asymptotic SOP
with respect to SC scheme at E is presented in (20), at the
top of the next page.

Proof. Using the CDF and PDF of r.v. X and W , after some
simplifications and employing [18, eq. (3.326,2)], we can
derive (20) to complete the proof.

B. Maximum-Ratio Combining

For the case of E using MRC scheme to increase intercept-
ing level, the asymptotic SOP with friendly jamming is

PMRC,J
out (γS , pE) = Pr

{
γD

γS
< γSE + γJ

R*E

}

= EX,Y,J


Pr {Z > ΥZ (Y,J )}

+ Pr

{
Z < ΥZ (Y,J ) ,

W > XΥW (Z, Y,J )

} ,

(21)
where

ΥZ (Y,J ) =
λR*DY (1 + PJλR*EJ )

λR*E (ελR*DY (γS − 1) + γS)
,

ΥW (Y,Z,J ) =
ελSR*

λSE

(
λR*DY

γS (1 + ελR*DY )

− λR*EZ

ελR*EZ + 1 + PJλR*EJ

).

Proposition 2. With friendly jamming, the asymptotic SOP
with respect to MRC scheme at E is presented in (22).

Proof. Using the CDF and PDF of r.v. X and W , after some
simplifications and employing [18, eq. (3.326,2)], we can
derive (22) to complete the proof.

Remark 1. To evaluate the SOP of the conventional AF
relaying system (i.e., without jamming), the value of PJ can
be set at zero and the expectation w.r.t J is eliminated in (19)
and (21) to have the expressions of the system SOP.
Remark 2. In the general case of a randomly distributed
eavesdropper on ground inside a circular disc of radius rc
around S, although we cannot find the closed-form expression
in this case, one can rely on numerical tools or apply the
Jensen’s inequality on (18) to effectively evaluate the lower
bound SOP [19].

IV. PERFORMANCE EVALUATION

In this section, Monte-Carlo simulations of 105 runs are
conducted to validate the theoretical expressions in (20) and
(22) as well as to obtain insights into the secrecy performance
of our system. We first set the target secrecy capacity at
Cth = 0.1 bps/Hz. We assume that the jamming UAVs use
all their harvested energy to effectively jam E, i.e., δ = 1. For
the purpose of illustration, all the coordinate systems in our
simulations are shown in the cartesian coordinate, which are
then converted to the polar coordinate to evaluate the analysis
expressions. All the locations are shifted to the positive half
of the coordinate system and presented in meters. S and D
are fixed at pS = (300, 300, 25) and pD = (600, 300, 0),
respectively. The aerial channel between UAVs and terrestrial
base stations under shadowed-Rician fading of (mS , b,Ω) =
(5, 0.251, 0.279) for the average shadowing. The path loss



P SC,J
out (γS , pE) =1− U

mS−1∑
lX=0

ζX
∑̃U−1

u
κuΓ(lX + χu + 1)

×
∫ ∞

0

fJ (t)

∫ ∞

0

FZ (ΥZ (y, t))
{
{ηX + ηu}−(lX+χu+1) − {ηX + ηu +ΥW (y)}−(lX+χu+1)

}
fY (y)dydt

(20)

PMRC,J
out (γS , pE) =

∫ ∞

0

fJ (t)

∫ ∞

0

{1− FZ (ΥZ (y, t))} fY (y)dydt+ U

mS−1∑
lX=0

ζX
∑̃U−1

u
κuΓ(lX + χu + 1)

×
∫ ∞

0

fJ (t)

∫ ∞

0

fY (y)

∫ ΥZ(y,t)

0

{ηX + ηu +ΥW (y, z, t)}−(lX+χu+1)
fZ (z) dzdydt

(22)
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Fig. 2: SOP versus (a) energy conversion efficiency factor; (b) TSR-AF factor; (c) number of UAVs in a swarm.
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model is referred to a distance at d0 = 100 meters where the
reference ρ0 = 0dB can be obtained using directional antennas
or beamforming techniques, etc.

To illustrate the secrecy performance of the system, the SOP
is investigated for two techniques of SC and MRC at E in
a high SNR of ψ = 40dB. In these simulations, UAVs are
hovering at Hu = 60 meters, in particular in a swarm at pu =
(350, 300, 60). Whereas E is assumed to be known and located
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at pE = (600, 400, 0) or is randomly located around S inside
a circular disk of rc = 300 meters.

Fig. 2(a) and (b) show the impact of the energy conversion
efficiency factor η and the TSR-AF factor α on the system
SOP, when U = 5 UAVs in the swarm. Fig. 2(c) depicts the
SOP vs. the number of UAVs when α = 0.8 and η = 0.8.
These figures validate the theoretical derivation in (20) and
(22) as the coincidence between the asymptotic analysis and



the Monte Carlo simulation. Without friendly jamming, the
SOP is not impacted much by increasing η or U in case of
known E, i.e., the SOP is around 0.4 when η ≥ 0.25 or
U ≥ 3. The relay selection not only provides the better link
between S and D when the number of UAVs increases but
also benefits the eavesdropping link from relaying UAV to E.
Therefore, at a certain value of η and U , the signals received at
E from UAVs are as good as at D, resulting in less variation
in the SOP. With friendly jamming, the higher η or α, or
the more UAVs in the swarm, more energy can be harvested
to jam E. Therefore, the channels between UAVs and E are
severely degraded, resulting in a significant decrease in the
SOP. Increasing η and U provides the lower SOP, i.e., the
SOP is around 0.1 when η ≥ 0.8 or U ≥ 5. From Fig. 2(b),
increasing α at first gives more energy to AF the information
and jam E, as such improves the SOP. However, the more
the time for energy harvesting, the less the time for signal
transmission. Therefore, α can be optimized to achieve the
minimum SOP, e.g., α = 0.5 without friendly jamming or
α = 0.85 with friendly jamming. Furthermore, the eavesdrop-
per is the most effective in overhearing legitimate transmission
using the MRC scheme. Without friendly jamming, the SOP
in the case of the MRC scheme at E is greater than that of
the SC scheme at E as expected. Using friendly jamming
to degrade the channels between UAVs and E, results in the
coincidence of two schemes. This implies signals from UAVs
are not significant as compared to the signals from S.

Fig. 3 shows the significant impact of E’s locations on the
SOP. The particular locations of all nodes are illustrated on the
subplot. E is assumed to change its location from (550, 600, 0)
to S, numbered from 1 to 8. The SOP increases as E gets
closer to S (i.e., E’s location numbered 2 and 3) and decreases
when E goes far away from S. Locating around S helps
E improve its capacity by boosting the link from S to E.
Considering the general case of a randomly distributed E, the
system SOP is calculated as the average SOP over the region
around S in which E is randomly distributed. As expected,
from Figs. 2(a), (b), (c), the SOP for this case is higher than
the case when E is fixed far away from S. These figures
also show that using UAVs to jam E, which is randomly
distributed, provides the lower SOP as compared to the case
without jamming.

The impact of UAVs’ locations on the system SOP in the
presence of a randomly distributed E is shown in Fig. 4. The
flying altitude and x-coordinate of UAVs are independently
investigated while other coordinates remain the same as above.
Since higher flight altitudes lead to a more severe path loss
for ground-to-air and air-to-ground communications, the SOP
increases along with the higher flight altitude. Due to the path
loss model, when the distance between S and R increases,
UAVs receive lower SNR signals from S, and harvest less RF
energy to relay signals to D as well as to jam E. Therefore,
the SOP increases when UAVs fly at a high altitude and far
from S. Moreover, as E is randomly distributed, we cannot
exactly know the radius rc of E’s geometry environment. In

Fig. 4, the SOP is high when E is distributed around S with
rc = 300, and significantly decreases when rc = 2000.

V. CONCLUSIONS

In this paper, we proposed a cooperative friendly jamming
in swarm UAV-assisted communications with wireless energy
harvesting. The integral form of SOP was obtained for two
popular detection schemes at the eavesdropper and verified
by Monte-Carlo simulations. Using the SOP, we obtained
engineering insights to optimize energy harvesting time, the
number of UAVs in the swarm to achieve the required secrecy
level.
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