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ABSTRACT
Predicting future events in dynamic knowledge graphs has attracted
significant attention. Existing work models the historical informa-
tion in a holistic way, which achieves satisfactory performance.
However, in real-world scenarios, the influence of historical infor-
mation on future events is changing over time. Therefore, it is dif-
ficult to distinguish the historical information of different roles by
invariably embedding historical entities with simple vector stack-
ing. Furthermore, it is laborious to explicitly learn a distributed
representation of each historical repetitive fact at different times-
tamps. This poses a challenge to the widely adopted codec-based
architectures. In this paper, we propose a novel model for predict-
ing future events, namelyDistributedAttentionNetwork (DA-Net).
Rather than obtaining the fixed representations of historical events,
DA-Net attempts to learn the distributed attention of future events
on repetitive facts at different historical timestamps inspired by hu-
man cognitive theory. In human cognitive theory, when humans
make a decision, similar historical events are replayed duringmem-
ory recall. Based on memory, the original intention is adjusted ac-
cording to their recent knowledge developments, making the ac-
tion more reasonable to the context. Experiments on four bench-
mark datasets demonstrate a substantial improvement of DA-Net
on multiple evaluation metrics.
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1 INTRODUCTION
Knowledge graphs (KGs) are generated by extracting facts and events
from occurrences in the real world. Traditional KGs represent in-
formation in a static graph; however, most real-world facts are
dynamic. Therefore, temporal knowledge graphs (TKGs), which
represent each fact as a quadruple (subject, predicate, object, times-
tamp), have been proposed to address these limitations.

The reasoning over TKGs is to predict events (facts) at the dif-
ferent timestamps. Previous work has attempted to learn tempo-
ral historical information to predict future events, achieving su-
perior performance. For example, CyGNet [33] uses the abstrac-
tive summarization copy mechanism to model the previous events,
and RE-GCN [19] uses the recurrent relation-aware graph convo-
lutional network (GCN) and static information to model the his-
torical events. However, in existing work, historical information
has been modeled holistically, ignoring the dynamic evolution of
events at different timestamps. For example, the prediction query
of a quadruple is (s, p, ?, 𝑡𝑛), and historical repetitive facts are rep-
resented by the set {(s, p, 𝑜 𝑗 , 𝑡𝑖 )|𝑡0 ≤ 𝑡𝑖 ≤ 𝑡𝑛−1}, where {𝑡𝑖 } represents
the historical timestamps before 𝑡𝑛 and {𝑜 𝑗 } represents all histori-
cal events. Existing work has mostly aimed to learn the fixed repre-
sentations for the historical repetitive entities {𝑜 𝑗 } and neglect the
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Figure 1: An illustration of dual-process reasoning. The two
boxes indicate human decision processes before and after
the outbreak of COVID-19.

temporal evolution of events, i.e., the associated attention weight.
However, events at various timestamps contribute differently to
the reasoning, which we discuss in Section 4.2; this phenomenon
is also referred to as the problem of time-variability [17]. Consider
the query (The man, Dinner at, ?, New Year’s Eve) shown in Fig-
ure 1. According to tradition, the historical repetitive locations (ob-
jectives) include 1) his home, 2) relatives’ homes, and 3) restaurants.
The choice of historical repetitive events (new year gatherings) is
considerably influenced by event occurrences over time, as well as
the surrounding context.

However, existing work has faced challenges when treating the
historical repetitive facts as dynamic distributions. First, existing
work has obtained definite representations of historical entities,
also known as the encoder in codec-based architectures; thus, the
distributed features of historical entities {𝑜 𝑗 } at different timestamps
are compressed into invariant vectors. Therefore, previous models
have had difficulty in capturing the historical variations of repeti-
tive events over time. Second, although historical entities {𝑜 𝑗 } at dif-
ferent timestamps play different roles in predicting future events,
it is both time and space consuming to obtain a distributed rep-
resentation at each historical timestamp. To solve these problems,
we consider cognitive science theory.

Howdo humansmake future decisions?According to dual-process
theory [24] and studies on concentrated and distributed attention [3],
in the first process, humans filter out appropriate judgments in
their memory space based on prior experience, which is often de-
rived from tradition and preserves distant features of historical
facts; and then in the second process, humans use recent develop-
ments of their knowledge to adjust their judgments. For instance,
as shown in Figure 1, when a man considers where to celebrate
on New Year’s Eve, he first recall what he usually did in previous
years. In years before the outbreak of COVID-19, he likely visited
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Figure 2: The framework of our DA-Net model. The blue bars indicate the probability predicted by the global channel for a
query (𝑠, 𝑝, ?, 𝑡𝑛). In the historical channel, the red dotted squares in the memory space represent historical predicate-object
pairs. The green bars indicate the frequency of the historical facts. The two layers include distributed attention to learn prior
experience and to utilize recent knowledge developments, respectively.

their relatives or went to a restaurant, as informed by the auto-
matic thinking phrase (Process I), because it is a tradition to have
family reunions with senior family members at their homes or at
pre-booked restaurants on New Year’s Eve. However, such choices
are sometimes impacted by unpredictable events, such as COVID-
19. In this situation, in the second decision making process, the
choice of having a family reunion must be adjusted, either by stay-
ing at home or having small group gatherings, reflecting the newly
enforced COVID restrictions (e.g., restaurant capacity) and safety
considerations. Therefore, as a result of this dual-process mecha-
nism, humans’ attention to historical events during different peri-
ods changes at various timestamps. To make better decisions, hu-
mans use distributed attention rather than concentrated attention
to emphasize key information in their memory at different time
periods.

In this paper, we simulate the abovementioned dual-processmech-
anism to model the distribution of historical information at differ-
ent timestamps and propose a new method for temporal knowl-
edge graph reasoning known as DA-Net (Distributed Attention
Network). To address the first challenge, we design distributed at-
tention mechanisms to learn the variable distributions of historical
repetitive events by modeling the attention of each repetitive fact
in different subgraphs rather than by learning only their represen-
tations. To address the second challenge, we develop innovative
frameworks for learning distributed representations of historical
information while consuming limited computational resources. As
shown in Figure 2, in the first attention layer, we extract the histor-
ical repetitive facts of each event in the current subgraph, and then

uniformly learn the attention of these repetitive facts. By training
themodel in chronological order beginningwith the 1st timestamp,
we ensure that the learned attention preserves traditional histori-
cal features. In the second attention layer, we consider the influ-
ence of unexpected emergencies on the prediction. At this stage,
recent knowledge developments are critical for adjusting decisions.
In Section 4.5, we prove the important role of shallow memory,
and the changes of the rule-based statistical information in shal-
low memory adjust the decision-making process, which we refer
to as “knowledge sensitivity” and our proposed DA-Net success-
fully captures it. We extract the historical frequency information
of each fact in the current subgraph, which changes according to
the humans’ recent knowledge developments over time and dy-
namically assign attention rewards and punishments to the facts
based on changes in their historical frequency. In Section 3.5, we
demonstrate that the computational complexity of the proposed
framework is linearly related to the size of the datasets.

The main contributions of this work are as follows:
• We demonstrate the time-variability problem during TKG

reasoning at the data level for the first time, showing that
the representations of different subgraphs at various his-
torical timestamps play distinct roles in predicting future
events.

• In contrast to conventional codec-based methods, we pro-
pose a novel network for predicting future events in TKGs
that imitates human decision-making processes, modeling
dynamic distributions of historical repetitive facts via dis-
tributed attention in a dual process.
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• Based on cognitive theory modeling, we propose the con-
cept of memory space and study the effect of memory space
depth on model performance, proving that DA-Net success-
fully captures shallow memory features such as knowledge
sensitivity.

• Extensive experiments on four public TKG datasets are con-
ducted. The improvement on almost all evaluation metrics
demonstrates the effectiveness of our method for predicting
future events.

The remainder of this paper is organized as follows. Related
work is introduced in Section 2, including existing static and dy-
namic reasoning methods for TKGs. The proposed model is de-
tailed in Section 3. Besides, the experiments and analyses are pre-
sented in Section 4, followed by the conclusion in the final section.

2 RELATEDWORK
Existing TKG reasoning approaches are mainly divided into two
kinds by data modeling: static inference and dynamic inference.

2.1 Static Reasoning Methods
Before temporal dynamics are investigated, much research is con-
ducted on static reasoningmethods. Embedding-basedmodels, such
as TransE [4], RotatE [26], and ConvE [8], map predicates and enti-
ties to low-dimensional vector spaces. In addition,matrix decomposition-
based methods, including DistMult [32] and TuckER [2], learn the
embedding vectors of entities and predicates by outputting a core
tensor. Relation path reasoning uses path information in graph
structures tomodel complex relation (predicate) paths. Among them,
the reinforcement learning-based reasoning methods express the
process of finding paths between entities as sequential decisions,
especially theMarkovDecision Process (MDP), such asDeepPath [31]
and MINERVA [6]. Reasoning methods based on graph neural net-
works, including R-GCN [23] and Comp-GCN [28], apply graph
algorithms to knowledge graphs. However, these methods model
knowledge graphs in a static manner, neglecting the dynamic evo-
lution of the graph, which differs from real-world situations and
leads to deviations in the predictions.

2.2 Dynamic Reasoning Methods
We focus on dynamic reasoning methods for TKGs, which is cur-
rently a popular research topic. TTransE [13] models the time-
predicate sequence for inference. Deriving [15] embeds the time
and predicates into low-dimensional vector space. HyTE [7] makes
projection of predicates and entities onto the hyperplane of par-
ticular timestamps. TeMP [30] completes TKGs by simulating the
information of the multi-hop structure and the temporal facts of
neighboring timestamps. DySAT [22] calculates entity representa-
tions by combining the self-attention along two dimensions of the
neighboring structure and the temporal variations. Recent work
has focused on predicting future events in TKGs. RE-NET [14]mod-
els the occurrence of facts as a conditional probability distribution
based on the subgraphs of previous time series. CyGNet [33] treats
the historical entities that appear in previous timestamps as ab-
stract summaries, and predicts future facts based on them.The HIP
network [12] transmits historical information from the perspective
of time, structure and repetition to make predictions. xERTE [10]

generates query subgraphs with certain hop numbers by construct-
ing inference graphs. CluSTeR [18] and TITer [25] both use rein-
forcement learning to determine evolutionary patterns in query
paths. RE-GCN [19] learns the entity representations containing
evolutionary information by modeling the sub-graph sequences of
recent timestamps. TLogic [20] constrains the query path based on
temporal logic rules extracted from temporal random walks. How-
ever, in the above work, the problem of time-variability during the
temporal reasoning process is ignored. CEN [17] addresses this is-
sue in an online learning setting; however, this method can fine-
tune only representation vectors with finite lengths.

3 METHOD
In this section, we introduce the proposedDA-Netmethod.We first
describe the notations and definitions. Then, we present the model
architecture and the two channels of the model. In addition, we
also discuss the training strategy and analyze the computational
complexity.

3.1 Definitions and Model Architecture
3.1.1 Notations and Definitions. In a TKG, let E be the entity set,
R be the predicate set, T be the timestamp set, 𝑁 be the size of E,
𝑃 be the size of R and 𝑇 be the size of T . We divide the TKG into
a series of sequential subgraphs G = {G0,G1, ...,G𝑇−1} to simu-
late the evolution over time. G is composed of the facts containing
time information, such as (𝑠, 𝑝, 𝑜, 𝑡𝑛), where {𝑠, 𝑜} ∈ E, 𝑝 ∈ R, and
𝑡𝑛 ∈ T . s, p, o, and tn are the embedding representations of 𝑠 , 𝑝 ,
𝑜 , and 𝑡𝑛 , respectively, and 𝑑 is the embedding dimension. Future
event prediction on the TKG is to predict the missing object entity,
(𝑠, 𝑝, ?, 𝑡𝑛), or the missing subject entity, (?, 𝑝, 𝑜, 𝑡𝑛), according to
previous temporal subgraphs {G𝑡 |𝑡 < 𝑡𝑛} with historical informa-
tion, where 𝑡𝑛 is a future timestamp.

As shown in Figure 2, for a query (𝑠, 𝑝, ?, 𝑡𝑛) at timestamp 𝑡𝑛 , the
memory space is defined as a sequence of multi-hot vectors gen-
erated according to temporal static subgraphs, {𝑚 (𝑠,𝑝)

𝑡𝑖
∈ R𝑁 |𝑡0 ≤

𝑡𝑖 ≤ 𝑡𝑛−1}. The value in the 𝑖-th dimension of 𝑚 (𝑠,𝑝)
𝑡𝑖

is 1 if the
fact (𝑠, 𝑝, 𝑜𝑖 ) occurred at timestamp 𝑡𝑖 . To predict the future object
entity in (𝑠, 𝑝, ?, 𝑡𝑛), the historical information extracted from the
memory space is represented as:

M(𝑠,𝑝)
𝑡𝑛

=𝑚 (𝑠,𝑝)
𝑡0

+𝑚 (𝑠,𝑝)
𝑡1

+ ... +𝑚 (𝑠,𝑝)
𝑡𝑛−1

, (1)

whereM(𝑠,𝑝)
𝑡𝑛

is an N-dimensional vector, with each dimension rep-
resenting the occurrence frequency of the corresponding historical
entity, thus imitating memory in the human brain. We assume that
for all facts in the dataset, the memory space starts with the 1st
timestamp.

3.1.2 Model Architecture. Figure 2 shows an outline of our pro-
posed framework, which is composed of two channels. Specifically,
the global channel is responsible for learning the global informa-
tion according to the original query, which ensures that the event
prediction model does not rely too much on historical information
in the historical channel. The historical channel uses two atten-
tion layers to mimic how humans dynamically utilize information
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in the memory space and assigns distributed attention to informa-
tion at different timestamps. In the historical channel, the histori-
cal repetitive facts and their frequencies are firstly extracted for the
first and second attention layers, respectively. This information is
obtained frommemory space, which consists of a sequence of tem-
poral static subgraphs divided by timestamps. Then through the
self-attention mechanism [29], the first attention layer (for prior
experience) simulates the efficient manner in which humans learn
the traditional attention weights of historical facts. The second at-
tention layer (for recent knowledge development) assigns reward
or punishment scores to the historical facts (including both repet-
itive and nonrepetitive facts) according to recent changes in their
occurrence frequency.The final prediction is generated by combin-
ing the attention of these two channels.

3.2 Historical Channel
Themotivation to introduce the historical channel is to imitate hu-
man judgement processing, which includes two steps. First, peo-
ple recall similar historical facts from their memory and assign the
original attention to them according to prior experience; then, hu-
mans use recent knowledge developments to adjust and select a
proper decision. Similarly, in an event prediction task, if a person
needs to determine the answer of an unknown query (𝑠, 𝑝, ?, 𝑡𝑛), he
first searches his memory space for similar situations, that is, for
historical repetitive facts, denoted by {(𝑠, 𝑝, 𝑜0, 𝑡0),…,(𝑠, 𝑝, 𝑜𝑖 , 𝑡𝑖 ),…,(𝑠, 𝑝,
𝑜𝑛−1, 𝑡𝑛−1)}, where 𝑡𝑖 ∈ [𝑡0, 𝑡𝑛−1]. After collecting historical repeti-
tive facts, he will decide which historical repetitive fact is the most
valuable for predicting future events. In the historical channel, we
use two attention layers to simulate this process. The details are
presented below.

3.2.1 First Attention Layer. We further represent historical repeti-
tive facts as {(𝑠, 𝑝, 𝑜0), ..., (𝑠, 𝑝, 𝑜𝑖 ), ..., (𝑠, 𝑝, 𝑜𝑛−1)}, where {(𝑝, 𝑜𝑖 ) |𝑖 ∈
[0, 𝑛 − 1]} is the set of historical predicate-object pairs. In practice,
we calculate a batch of queries, and generate the matrix 𝑄 by con-
catenating s and p:

𝑄 = W𝑞 [s, p], (2)

where W𝑞 ∈ R𝑑𝑞×2𝑑 , and 𝑑𝑞 is the embedding dimension of the
matrix 𝑄 . Furthermore, [s, p] ∈ R2𝑑×1×𝐵 , where 𝐵 is the number
of queries in a batch. To the best of our knowledge, we are the first
to model the historical repetitive facts of each query as a sequence.
However, we encounter the issue of inconsistent sequence length
in sequence batches. We solve this problem by using the padding
mask [29]. Then we generate matrices 𝐾 and 𝑉 by concatenating
p and oi:

𝐾 = W𝑘 [p, oi],𝑉 = W𝑣 [p, oi], (3)

where, W𝑘 ∈ R𝑑𝑘×2𝑑 and W𝑣 ∈ R𝑑𝑣×2𝑑 . In our model, we set
𝑑𝑞 = 𝑑𝑘 = 𝑑𝑣 = 64. Furthermore, [p, oi] ∈ R2𝑑×𝑆×𝐵 , where 𝐵 is the
size of a batch, 𝑆 is the number of historical repetitive facts in each
sequence. We define the self-attention as:

Self_Attention(𝑄,𝐾,𝑉 ) =

softmax

(
W𝑞 [s, p] (W𝑘 [p, oi])𝑇√

𝑑𝑘

)
W𝑣 [p, oi], (4)

where 1√
𝑑𝑘

is the scaling factor, which is to deal with the effect
when the softmax function reaches an area of a minimal gradient.
W𝑞 ,W𝑘 andW𝑣 are trainable parameters. To predict future events,
matrices W𝑘 and W𝑣 assign unique coefficients to each histori-
cal repetitive fact. Thus, our model can assign different attention
weights to various historical repetitive facts by learning separately.
The introduction of multi-head attention allows the prediction to
consider the importance of historical repetitive facts frommultiple
perspectives (subspaces).The heads denote the number of matrices
W𝑞 ,W𝑘 andW𝑣 , and we use 8 heads in our model. Then we intro-
duce a feed-forward network (FFN) with 𝑑𝑓 𝑓 =2048 hidden units:

𝐹𝐹𝑁 (x) = W1 (𝑅𝐸𝐿𝑈 (W2x)), (5)

where x ∈ R2𝑑×𝐵 is the output of the multi-head attention opera-
tion, andW2 ∈ R𝑑𝑓 𝑓 ×2𝑑 ,W1 ∈ R2𝑑×𝑑𝑓 𝑓 . After the layer of the FFN,
we introduce residual connections [11] and layer normalization [1].
The output of the first attention layer is y, with y ∈ R2𝑑×𝐵 .

3.2.2 Second Attention Layer. The output y includes the attention
information of historical repetitive facts in query (𝑠, 𝑝, ?, 𝑡𝑛). The
timestamp of a future event is necessary for predicting future events;
thus, we concatenate y and tn and convert the result to anN-dimensional
multi-hot vector through a linear layer:

𝑠𝑡 = 𝑡𝑎𝑛ℎ(W𝑡 [y, tn] + b𝑡 ), (6)

where W𝑡 ∈ R𝑁×3𝑑 , b𝑡 ∈ R𝑁×1, and the 𝑡𝑎𝑛ℎ layer allows 𝑠𝑡
range between (−1, 1) (with a gap of 2). As shown in Figure 2,
the attention punishment layer changes the index values of facts
that have not occurred in history (corresponding to the dimensions
with a value of zero inM(𝑠,𝑝)

𝑡𝑛
) to more negative numbers, denoted

as
𝑝𝑢
M

(𝑠,𝑝)
𝑡𝑛 . The attention reward layer presents the corresponding

facts with rewards (denoted as
𝑟𝑒
M

(𝑠,𝑝)
𝑡𝑛 ) based on the base value 𝛿 ac-

cording to the frequency of the historical repetitive facts (denoted

as
+
M

(𝑠,𝑝)
𝑡𝑛 , corresponding to the values of nonzero dimensions in

M(𝑠,𝑝)
𝑡𝑛

):
𝑟𝑒
M

(𝑠,𝑝)
𝑡𝑛 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (

+
M

(𝑠,𝑝)
𝑡𝑛 ) ∗ 𝛿, (7)

𝑠ℎ = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑠𝑡+
𝑝𝑢
M

(𝑠,𝑝)
𝑡𝑛 +

𝑟𝑒
M

(𝑠,𝑝)
𝑡𝑛 ), (8)

where the base value 𝛿 is chosen as the gap (i.e., 2) to ensure that
both attention layers work. From the perspective of cognition, hu-
mans can either selectively use theirmemorized knowledge through
experiential learning or adjust their learned preferences according
to recent knowledge developments. This dual process is both ob-
jective and effective, achieving distributed attention to repetitive
facts at different historical timestamps.

3.3 Global Channel
For the query (𝑠, 𝑝, ?, 𝑡𝑛), the global channel captures the original
query information and generates a prediction of the object entity
from a global perspective.The prediction of the global channel pre-
vent one-sided judgements or over-reliance on historical informa-
tion. The global channel first concatenates s, p and tn in the query
and then converts the vector to size 𝑁 (the size of entity set E).
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Finally, we normalize the output multi-hot vector with a softmax
function to obtain the result of the global channel:

𝑠𝑔 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (W𝑔 [s, p, tn] + b𝑔), (9)

where W𝑔 ∈ R𝑁×3𝑑 and b𝑔 ∈ R𝑁×1. The global channel outputs
the entity corresponding to the maximum value in 𝑠𝑔 .

3.4 Training Strategy
The final prediction of query (𝑠, 𝑝, ?, 𝑡𝑛) is obtained by combining
the attention of the two channels:

p(𝑜 |𝑠, 𝑝, 𝑡𝑛) =
𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛(𝑠, 𝑝, 𝑡𝑛) = 𝛼 ∗ 𝑠ℎ + (1 − 𝛼) ∗ 𝑠𝑔, (10)

𝑜 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑜∈E (p(𝑜 |𝑠, 𝑝, 𝑡𝑛)), (11)
where 0 ≤ 𝛼 ≤ 1, and𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛(𝑠, 𝑝, 𝑡𝑛) is anN-dimensi-
onal multi-hot vector, with each dimension indicating the proba-
bility of predicting the corresponding entity as the object.

To predict future events, our model first examines the histori-
cal repetitive facts in memory space, which increase with increas-
ing time, and are passed to the validation and test sets. Then the
global information and historical information are learned through
the global and historical channels, respectively. We divide the data
into batches according to timestamps to extract historical infor-
mation from memory space. We treat the prediction process as a
multiclass classification task with a classifier number 𝑁 and use
the cross-entropy loss function for training:

L = −
∑
𝑡 ∈T

∑
𝑖∈E

∑
𝑗 ∈E

𝑜𝑡𝑖 ln p
(
𝑦
𝑗
𝑖 | 𝑠, 𝑝, 𝑡𝑛

)
, (12)

where 𝑜𝑡𝑖 represents the i-th ground-truth object entity in the t-
th timestamp subgraph 𝐺𝑡 . p

(
𝑦
𝑗
𝑖 | 𝑠, 𝑝, 𝑡𝑛

)
denotes the probability

that 𝑜𝑡𝑖 is the j-th object entity in the entity set E.

3.5 Computational Complexity Analysis
The main calculation cost of our model is due to the multi-head
attention operation in the first attention layer. We prove that the
computational complexity of DA-Net is linearly related to the size
of datasets by analyzing all the components of the model.

For each query (𝑠, 𝑝, ?, 𝑡𝑛), there are ℎ heads in multi-head at-
tention. In our model, 𝑑𝑞=𝑑𝑘=𝑑𝑣= 2𝑑

𝑘ℎ , where 𝑘 is used to explain
the case where the dimension of the embedding vector is not an
integer multiple of ℎ, and 𝑘 and ℎ are constants. We represent the
size of the entity set E as 𝑁 and the maximum sequence length
of the historical repetitive facts as 𝑛. For a dataset with 𝐷 sam-
ples, similar to previous history-based models [14, 33], we adopt
the idea of space for time and use the sparse matrix method to ex-
tract and store the historical repetitive facts. It processes all the
facts in the dataset through a loop traversal with a computational
complexity of 𝑂 (𝐷). For each of the multiple heads, the computa-
tional complexity of the input linear mapping (Eq. 2) to [𝑠, 𝑝] is
𝑂 (𝑑2). Similarly, the computational complexity of the input linear
mapping (Eq. 3) to [𝑝, 𝑜𝑖 ] is 𝑂 (𝑛𝑑2). We also consider scaled dot-
product attention (Eq. 4), which has a computational complexity
of 𝑂 (𝑛𝑑2). Finally, the computational complexity of feed-forward
network (Eq. 5) is 𝑂 (𝑑2) (𝑑𝑓 𝑓 is fixed in our model). Therefore,

the computational complexity of the first attention layer is𝑂 (𝑛𝑑2).
Similarly, the computational complexities of the second attention
layer and the global channel are both 𝑂 (𝑁𝑑2). The total computa-
tional complexity of DA-Net is thus 𝑂 ((𝑁 + 𝑛)𝑑2). Therefore, the
computational complexity of the entire training and testing pro-
cess is𝑂 ((𝑁 +𝑛)𝑑2𝐷). In summary, when 𝑁 , 𝑛 and 𝑑 are fixed, the
computational complexity of DA-Net is linearly associated with
the scale of the data.

4 EXPERIMENTS
In this section, we evaluate the effectiveness of our proposed DA-
Net model on four public TKG datasets.

4.1 Experimental Setup
4.1.1 Datasets. The TKG datasets for evaluation are WIKI [15],
YAGO [21], GDELT [16] and ICEWS18 [5]. YAGO and WIKI are
temporal subgraphs of YAGO3 andWikipedia, respectively. ICEWS18
is extracted from temporal political events. GDELT comes from
the news media on human societal scale behaviors. According to
previous work [10, 12, 14, 17, 19, 20, 25, 33], the datasets are split
into training/validation/test sets in proportions of 80%/10%/10%,
respectively. Information on the datasets is detailed in Table 1.

4.1.2 BaselineMethods. Our proposedDA-Netmethod is compared
with various static and dynamic TKG reasoningmethods.The static
methods include TransE [4], DistMult [32], ConvE [8], ComplEx [27],
RotatE [26], R-GCN [23] and Comp-GCN [28]. Dynamic methods
for TKG reasoning include TTransE [13], HyTE [7], TeMP [30], TA-
DistMult [9] and DySAT [22]. And RE-NET [14], CyGNet [33] HIP
network [12], xERTE [10], RE-GCN [19], TITer [25], TLogic [20]
and CEN [17] predict future events based on the historical infor-
mation and are similar work to ours. The baseline models are de-
scribed in detail in Section 2.

4.1.3 EvaluationMetrics. Weevaluate the effectiveness of ourmodel
with the link prediction task. For each query in the test set, we re-
port the mean results of the two queries, (𝑠, 𝑝, ?, 𝑡𝑛) and (?, 𝑝, 𝑜, 𝑡𝑛).
We use conventional evaluation metrics, including the mean recip-
rocal rank (MRR), hits at 1 (Hits@1), hits at 3 (Hits@3) and hits at
10 (Hits@10), which all report the ranking of the missing ground-
truth entity in the predicted results.

4.1.4 Implementation Details. We implement our DA-Net model
in PyTorch and train the model on a GPU Tesla V100. We con-
figure the model based on the MRR performance of the method
on the validation set. In addition to the parameters given when
introducing the model in Section 3, the 𝛼 parameter for the atten-
tion addition is set to 0.5 for the YAGO and WIKI datasets, 0.8 for
the ICEWS18 dataset, and 0.7 for the GDELT dataset. We use an
AMSGrad optimizer to minimize the global loss with a 0.001 learn-
ing rate. The batch size is set to 1024 for all training datasets. The
batch size of the testing datasets is set to 64 for YAGO and WIKI,
1024 for ICEWS18 and 512 for GDELT. We set the 𝑛_𝑙𝑎𝑦𝑒𝑟𝑠 of the
multi-head attention operation to 1, and the training epoch is lim-
ited to 30 for YAGO and WIKI, 6 for ICEWS18 and 2 for GDELT,
which is sufficient for the task. For the static reasoning methods,
the timestamp information is removed from all TKG datasets. For
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R-GCN [23] and Comp-GCN [28], we use DistMult [32] as the de-
coder. We set the dimension of the embedding vectors to 200 to be
consistent with the experimental settings in the HIP network [12].
Some of the baseline results are adopted from [12].

Figure 3: Study on the time-variability problem on theWIKI
dataset.

Table 1: Details of the TKG datasets.

#Datasets #Entities #Predicates #Training #Validation #Test #Granularity
YAGO 10,623 10 161,540 19,523 20,026 1 year
WIKI 12,554 24 539,286 67,538 63,110 1 year
ICEWS18 23,033 256 373,018 45,995 49,545 24 hours
GDELT 7,691 240 1,734,399 238,765 305,241 15 mins

For the similar baselinework xERTE [10], RE-GCN [19], TITer [25],
TLogic [20] and CEN [17], we replicate the results on Tesla V100
using the default parameters in their open source codes and the
same evaluation metrics as our model to ensure the consistency
of the experimental settings. For CEN [17], we report its results
under the online setting, which achieves the best results of it. For
TITer [25] and xERTE [10], when we try to run on GDETT, the
largest TKG dataset, their codes crash. TLogic [20], on the other
hand, is only suitable for dealing with the ICEWS18 dataset, which
provides the content references for entities, predicates, and times-
tamps. Therefore, we report only the results of the datasets that
they are capable of processing, which is also consistent with the
experiments reported in their papers.

4.2 On the Problem of Time-variability
In this section, we use the WIKI and YAGO datasets to study the
time-variability problem in TKG reasoning. We show that differ-
ent historical timestamps play various roles in predicting future
events, which suggests that, under reasonable circumstances, fu-
ture events should pay different attention to repetitive information
at different historical timestamps.

For a query (𝑠, 𝑝, ?, 𝑡𝑛) with amissing object entity𝑜 , the ground-
truth attention on historical repetitive facts can be represented by

the set {(𝑠, 𝑝, 𝑜, 𝑡𝑖 ) |𝑡𝑖 ∈ [𝑡0, 𝑡𝑛−1]}. We use different timestamps
as research objects and design a metric 𝑒 𝑗𝑖 for representing the
ground-truth attention of a certain timestamp on its historical times-
tamps:

𝑒
𝑗
𝑖 =

ℎ
𝑗
𝑖

𝑝 𝑗
, (13)

where ℎ 𝑗𝑖 represents the ground-truth attention of all facts at the

Figure 4: The influence of the time-variability problem on
future event prediction with the YAGO dataset.

j-th prediction timestamp on the i-th historical timestamp, and 𝑝 𝑗
represents the total number of facts at the j-th prediction times-
tamp. Therefore, 𝑒 𝑗𝑖 indicates the overall attention of all facts at
a given prediction timestamp on their historical timestamps. As
observed in Figure 3, the vertical axis represents the prediction
timestamps and the horizontal axis represents the historical times-
tamps, where each value represents the index of one year in the
WIKI dataset. For each prediction timestamp in the test set, we de-
termine the ground-truth attention on all its historical timestamps
starting with the 217th timestamp. Finally, the attention of the
10 prediction timestamps (between 222 and 231) on their histori-
cal timestamps is represented as a heat map based on the calcula-
tion results of Eq. 13. It can be observed that the attention of the
facts at the prediction timestamps on the historical information dy-
namically evolves over time. Interestingly, for all prediction times-
tamps, their ground-truth attention to the historical information
decreases with increasing historical distance, and the historical in-
formation closer to the prediction timestamps makes more sense.

The intuitive consequence of the time-variability problem is that
the prediction timestamp cannot capture and utilize new histori-
cal information in time, e.g., the prediction timestamp’s previous
timestamp. Each prediction timestamp in the YAGO dataset (ex-
cept the 188th timestamp, which is removed because it contains
only one fact) is used as a separate study object. For cases both
with and without the previous timestamp, we test the individual
performance of each prediction timestamp. Due to space, we re-
port only the most representative MRR metric. As shown in Fig-
ure 4, when DA-Net ignores the time-variability problem and does
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Table 2: Performance (in percentage) on four datasets. The best results are bolded, and the second-best results are underlined.

WIKI YAGO GDELT ICEWS18
Method MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
TransE 46.68 36.19 49.71 51.71 48.97 46.23 62.45 66.05 16.05 0.00 26.10 42.29 17.56 2.48 26.95 43.87
DistMult 46.12 37.24 49.81 51.38 59.47 52.97 60.91 65.26 18.71 11.59 20.05 32.55 22.16 12.13 26.00 42.18
ComplEx 47.84 38.15 50.08 51.39 61.29 54.88 62.28 66.82 22.77 15.77 24.05 36.33 30.09 21.88 34.15 45.96
ConvE 47.57 38.76 50.10 50.53 62.32 56.19 63.97 65.60 35.99 27.05 39.32 49.44 36.67 28.51 39.80 50.69
RotatE 50.67 40.88 50.71 50.88 65.09 57.13 65.67 66.16 22.33 16.68 23.89 32.29 23.10 14.33 27.61 38.72
R-GCN 37.57 28.51 39.66 41.90 41.30 32.56 44.44 52.68 23.31 17.24 24.96 34.36 23.19 16.36 25.34 36.48
Comp-GCN 37.64 28.33 39.87 42.03 41.42 32.63 44.59 52.81 23.46 16.65 25.54 34.58 23.31 16.52 25.37 36.61
TTransE 31.74 22.57 36.25 43.45 32.57 27.94 43.39 53.37 5.52 0.47 5.01 15.27 8.36 1.94 8.71 21.93
HyTE 43.02 34.29 45.12 49.49 23.16 12.85 45.74 51.94 6.37 0.00 6.72 18.63 7.31 3.10 7.50 14.95
TA-DistMult 48.09 38.71 49.51 51.70 61.72 52.98 63.32 65.19 29.35 22.11 31.56 41.39 28.53 20.30 31.57 44.96
DySAT 31.82 22.07 26.59 35.59 43.43 31.87 43.67 46.49 23.34 14.96 22.57 27.83 19.95 14.42 23.67 26.67
TeMP 49.61 46.96 50.24 51.81 62.25 55.39 64.63 66.12 37.56 29.82 40.15 48.60 40.48 33.97 42.63 52.38
RE-NET 51.97 48.01 52.07 53.91 65.16 63.29 65.63 68.08 40.12 32.43 43.40 53.80 42.93 36.19 45.47 55.80
CyGNet 52.60 50.48 53.26 55.82 66.58 64.26 67.98 70.16 51.06 44.66 54.74 61.32 47.83 42.02 50.71 57.72
HIP network 54.71 53.82 54.73 56.46 67.55 66.32 68.49 70.37 52.76 46.35 55.31 61.87 48.37 43.51 51.32 58.49
xERTE 77.47 76.01 78.79 79.54 88.75 87.88 89.30 90.38 - - - - 36.47 29.60 40.26 50.41
RE-GCN 81.07 78.84 82.36 84.95 83.27 80.20 84.94 89.00 39.72 31.93 43.14 53.46 45.67 37.62 49.19 61.18
TITer 74.89 74.05 74.71 76.57 90.48 90.25 90.46 90.81 - - - - 37.00 31.14 39.05 47.96
TLogic - - - - - - - - - - - - 37.35 29.57 40.56 53.02
CEN 83.11 81.20 84.15 86.46 85.84 83.55 87.11 90.02 43.54 36.51 46.13 56.88 45.09 37.85 47.92 59.12
DA-Net 84.13 81.66 86.46 87.37 91.59 90.07 92.94 93.43 58.47 51.89 62.32 69.82 51.92 45.55 55.70 62.62

Table 3: Ablation study on the ICEWS18 dataset.

Evaluation Metrics MRR Hits@1 Hits@3 Hits@10
Global channel only 34.41 25.78 38.23 50.76
Global channel and first layer of attention 39.71 32.80 42.48 52.90
Global channel and second layer of attention 41.62 34.57 44.55 55.08
Historical channel only 47.23 44.36 49.84 51.03
DA-Net 51.92 45.55 55.70 62.62

not pay attention to the new historical timestamp of each predic-
tion timestamp (corresponding to the dark blue area in Figure 4),
the performance is considerably lower than the performance of the
complete DA-Net model (corresponding to the light blue area in
Figure 4). However, as shown in Figure 3, in addition to the above-
mentioned problem, the time-variability problem also includes the
different roles of various historical timestamps on future event pre-
diction, which is ignored by CEN [17]. Therefore, to address the
time-variability problem, DA-Net adopts distributed attention in-
stead of the traditional codec-based framework to model the distri-
bution of historical information.

4.3 Results of Reasoning on TKGs
In this section, we compare DA-Net with static and dynamic infer-
ence methods based on link prediction tasks in TKGs.

As shown in Table 2, in the TKG reasoning task, dynamic meth-
ods generally perform better than static methods, with the excep-
tion of HyTE [7] and TTransE [13]. We believe that this result oc-
curs because these models focus on the embedding representation
of temporal information while ignoring the temporal evolution. In
terms of the similar work, such as RE-NET [14], CyGNet [33], HIP
network [12], xERTE [10], RE-GCN [19], TLogic [20] and CEN [17],
our proposed DA-Net model has a considerable improvement over

all baselines on all evaluation TKG datasets and all evaluation met-
rics. This improvement is because all of these models, with the ex-
ception of CEN [17], ignore the problem of time-variability in TKG
reasoning. Therefore, these models treat repetitive information at
different historical timestamps equally, and it is nearly impossi-
ble for these models to utilize distributed information at various
timestamps, which inevitably degrades the performance of these
models.

However, although CEN [17] proposes an online learning strat-
egy to address the challenge of time-variability, it is still limited
by its codec-based framework and must constantly fine-tune rep-
resentation vectors with finite lengths, which compresses the dis-
tributed information of each historical timestamp into a finite vec-
tor and inevitably results in representation limitations and the loss
of distributed information. It is observed that the performance of
our proposed DA-Netmodel on the YAGO dataset is inferior to that
of TITer [25] under the evaluation metric Hits@1. As mentioned
in CEN [17], TITer [25] retrieves answers through an explicit path,
which usually results in a high Hits@1 metric. We also observe
that for large datasets, such as GDELT and ICEWS18, the perfor-
mance of some recently proposed models [10, 17, 19, 20, 25] is far
inferior to that of DA-Net, CyGNet [33] and HIP network [12], be-
cause DA-Net, similar to CyGNet [33] and HIP network [12], uti-
lizes the frequency statistics of the repetitive facts. In the second
attention layer, DA-Net not only uses these frequency statistics but
alsomodels and captures the changes in these statistics that impact
the prediction of future events; thus, DA-Net also performs better
than CyGNet [33] and the HIP network [12]. We believe that this
is an advantage of modeling based on human cognition.

4.4 Ablation Study
We perform an ablation study on the ICEWS18 dataset. The two
attention layers in the historical channel are removed from the
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model both separately and simultaneously. Moreover, we evaluate
the performance of the global channel. The MRR and Hit@1/2/3
metrics are used for evaluation.

Figure 5: Study on the depth of memory space with the
YAGO dataset.

As indicated in Table 3, the model performance decreases sig-
nificantly when only the global channel is adopted because the
model ignores the historical information. In the second row of Ta-
ble 3, we use the global channel and the first attention layer for
the prediction. The results are better than when only the global
channel is adopted. This result shows the effect of the prior experi-
ence learned in the first attention layer; however, it is obviously of
limited use because this traditional attention cannot cope with the
development of time and the evolution of events. We then adopt
the global channel with only the second attention layer in the his-
torical channel.In this setting, the results are significantly better
than when only the global channel is adopted. In addition, the re-
sults indicate that recent knowledge developments (changes in the
frequency statistics of historical repetitive facts) learned by the sec-
ond attention layer contribute more to the prediction. This result
shows that there is both variant and invariant information in the
data. Because the first and second attention layers (corresponding
to the second and third rows in Table 3) both perform better than
the global channel, DA-Net successfully captures the invariant his-
torical information, and especially the changing distributed infor-
mation of event evolution.

The model in the fourth row of the table uses only the histori-
cal channel for prediction, and its results are slightly worse than
those of DA-Net in terms of the MRR, Hits@1 and Hits@3. How-
ever, in terms of the Hits@10 metric, the performance when only
the historical channel is adopted is worse than the performance
of the second and third rows in Table 3. This result demonstrates
the importance of the global channel in the DA-Net model. When
all the components are adopted, it observes a substantial improve-
ment over any single component. This is because DA-Net includes
and models the global information in the global channel, the in-
variant historical information in the first attention layer and the

variant historical information in the second attention layer. There-
fore, through the ablation test, we can conclude that each model
component contributes to DA-Net, and DA-Net successfully learns
the original attention on repetitive facts as prior experience and
the frequency changes of historical facts as recent knowledge de-
velopments in the novel historical channel.

4.5 On the Depth of Memory Space

Figure 6: Study on the knowledge sensitivity of shallow
memory on the YAGO dataset.

In this section, we use the YAGO dataset to extend the research
object to the entire memory space and focus on the second atten-
tion layer. By investigating the contribution of memory space seg-
ments at different depths to the prediction, we demonstrate the
critical role of shallow memory in predicting future events, and
our proposed DA-Net successfully captures knowledge sensitivity.

The vital effect of shallow memory. As shown in Figure 5, for the
test sets of the YAGO dataset, we split the memory space into 11
segments according to depths. For the 189 timestamps (from 0 to
188), the memory space segments {100%-90%, 90%-80%, 80%-70%,
70%-60%, 60%-50%, 50%-40%, 40%-30%, 30%-20%, 20%-10%, 10%-5%,
5%-0%} represent the timestamp ranges {[0, 19), [19, 38), [38, 56),
[56, 75), [75, 94), [94, 113], [113, 132), [132, 150), [150, 169), [169,
179), [179, 188)} from deep to shallow, respectively. We report the
MRR metric and the Hits@1/3/10 metrics of our DA-Net model
for both the complete memory space and the different memory
segments. As observed in Figure 5, the most significant contribu-
tion to the prediction is concentrated in the 5% short-termmemory,
which has almost the same effect as extracting the historical infor-
mation across the entire memory space. With increasing memory
depth, the prediction performance decreases. In particular, when
the segment range of the memory space increases from 5% to 20%,
the performance decrease sharply.The contribution of thememory
space at a depth of greater than 20% remains stable and at a low
level. For the 20026 nonrepetitive triples in the test set, we count
the number of their historical repetitive facts in each segment of
the memory space. The final result is represented as a percentage.
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Theblue bars in Figure 5 show that 93% of the test facts are repeated
in shallow memory (0-5%), which is equivalent to the effect of the
complete memory space.This result proves that for the facts of pre-
diction timestamps, the repetitive historical information gathers in
shallow memory space, and decreases with increasing depth.

Capturing the knowledge sensitivity of shallow memory. Knowl-
edge sensitivity indicates that the change in frequency-based sta-
tistical information in shallow memory reflects the recent knowl-
edge developments, which adjust the prediction of future events.
Because most repetitive facts are concentrated in shallow memory,
their frequency statistics accumulate from the shallow memory
boundary and remain at a similar level. Therefore, the frequency
changes in shallow memory at each timestamp have distinct im-
pacts on the overall number of repetitive facts.Thus, shallowmem-
ory possesses the feature of knowledge sensitivity. We use the
187th timestamp in the YAGO dataset as the test object and succes-
sively add new historical timestamps to the DA-Net model starting
with the 174th timestamp, which is sufficient for demonstrating
the effectiveness of DA-Net. We report how performance changes
as a result of the recent new knowledge developments. As shown
in Figure 6, DA-Net is not affected by the addition of new histori-
cal information until the 178th timestamp. We note that the shal-
lowmemory starts at the 179th timestamp, and the performance of
DA-Net improves with the addition of new historical information.
This result demonstrates that DA-Net is sensitive to recent knowl-
edge developments when faced with new historical information
over time.

5 CONCLUSIONS
In this paper, to address the time-variability problem in temporal
knowledge graph reasoning, we propose DA-Net. Inspired by dual-
process theory in cognitive science, DA-Net assigns distributed at-
tention to historical information at different timestamps through
dual layers of attention, and models the dynamic distribution of
repetitive facts. In the first attention layer (Process I), DA-Net as-
signs traditional attention to repetitive facts based on their history
of distant dependencies. In the second attention layer (Process II),
DA-Net adjusts the original attention based on recent knowledge
developments (changes in the historical frequency statistics). A
large number of experiments demonstrate that DA-Net achieves
a qualitative improvement over baseline methods.
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