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RESEARCH ARTICLE

An initial parameter estimation approach for urban catchment modelling
Siming Gong, James E Ball and Nicholas Surawski

Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia

ABSTRACT
Catchment modelling is an effective approach to simulating the rainfall-runoff process. Estimating 
parameters is challenging in urban catchments with heterogeneous land use land cover (LULC). This 
paper describes a novel and reproducible approach to initialise the parameters for modelling catchment 
hydrology. The Alexandra canal catchment, Australia, was selected as the study catchment. A pixel-based 
LULC map was generated from the catchment’s orbital image using the Deep Learning (DL) techniques. 
Integrate the LULC map with subcatchment delineation and hydraulic layout, group LULC attributes to 
compute the area and imperviousness fraction at pixel scale. The distance from each pixel to the 
subcatchment outlet was vectorised to estimate flow length. The cumulative likelihood and 
Kolmogorov–Smirnov (KS) were adopted to describe the parameter distributions, evaluate the good-
ness-of-fit and LULC effect. Results reflect a limited effect of LULC on flow length, and the approach can 
initialise the parameters for conceptual catchment modelling systems.
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Introduction

Today, more than half of the world’s population live in an urban 
area, and this will increase to 68% in the middle of the twenty-first 
century, estimated by the United Nations (Department of 
Economic and Social Affairs, UN 2018). Urban catchment hydrol-
ogy and hydraulic issues are clearly getting importance and 
attracted the focus of various stakeholders during the last decades 
(Schirmer, Leschik, and Musolff 2013; Salvadore, Bronders, and 
Batelaan 2015; Fletcher, Andrieu, and Hamel 2013). Urbanisation 
is considered the significant impact on the hydrological process 
and the major cause of the increased flood damage as the expan-
sion of impervious areas and growing population and economy 
(Jha et al. 2011; Feng, Zhang, and Bourke 2021; DeFries and 
Eshleman 2004). Understanding physical principles of water 
movement regime and interactions between hydrological com-
ponents in urban environments are difficult and complex, requir-
ing people to constantly update knowledge and invest human 
resources and capital to satisfy the demands of urban develop-
ment. As a practical approach, catchment modelling systems can 
simulate the critical hydrological components that affect the 
catchment rainfall-runoff process and quantify them for flood 
risk analysis (Peel and McMahon 2020). The robustness and pre-
diction performance of a catchment rainfall-runoff model depends 
on the reliability and feasibility of the parameters used to repre-
sent the hydrological components of a catchment (Choi and Ball  
2002; Ball et al. 2019).

The primary reason for implementing catchment models is 
the limitation of catchment hydrological measurement techni-
ques (Beven 2012). In recent years, studies to understand the 
catchment’s spatial patterns distribution and the water inter-
action within catchment hydrological components are driven 
by the increased demand for flood risk management, improved 

resolution of spatial dataset and computation power. However 
understanding urban catchment hydrology tends to be more 
challenging in the phase of catchment conceptualisation and 
parameters initialisation due to the heterogeneous land use 
land cover (LULC) and intricate hydraulic system (Salvadore, 
Bronders, and Batelaan 2015; Chen, Hill, and Urbano 2009; 
Amini et al. 2011). Estimating parameters to simulate catch-
ment runoff generation and routing is an indispensable com-
ponent of catchment models, where the initial parameters such 
as area, impervious fraction and flow length play a critical role 
in configuring and initialising a catchment model. Obtaining 
reliable data and conducting sufficient data analysis are com-
pulsory tasks for catchment parameterisation. Nevertheless, 
such datasets like drainage networks and LULC maps are 
usually inaccessible, and the associated hydrological mechan-
isms remain elusive. Thus, tricky to initialise the parameters to 
drive catchment model under the contradiction between data 
availability, quality and models’ sophistication. To a certain 
extent, a reliable initial parameter estimation approach can 
compensate for the model’s instability and inaccuracy caused 
by data defects, where the LULC features and their connection 
mechanism to the catchment outlet are important computa-
tional elements used by various catchment modelling systems 
to simulate runoff quantiles and routing (Tokarczyk et al. 2015; 
Yang and Li 2015; Thomson et al. 2015).

Based on the difference between parameter estimation and 
optimisation approaches, it is possible to categorise the para-
meter estimation methods as

● Forward propagation method. Measure, digitise and com-
pute catchment characteristics using hydroinformatics 
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tools or interpreting external datasets (e.g. GIS and 
remote sensing data) and parameterise the results for 
catchment modelling systems.

● Backward propagation method. The parameters are 
inferred through optimisation algorithms to best fit the 
observed hydrological data. A lower accuracy of the initial 
parameters is tolerated but need high-quality catchment 
monitoring data.

Driven by developments in hydroinformatics systems and the 
availability of remote sensing data, forward propagated initial 
parameter estimation for distributed catchment modelling sys-
tems is experiencing a lively discussion within the modelling 
community. The approaches that integrate remote sensing 
data and Geographic Information System (GIS) are being widely 
adopted by the catchment modelling community to identify 
catchment spatial characteristics and estimate parameters. For 
example, Choi and Ball (2002) utilised a GIS database and 
calibration techniques to predict the spatial parameters for 
the Stormwater Management Model (SWMM), a catchment 
modelling system developed by the United States of America 
Environment Protection Agency (EPA). Gericke and Du Plessis 
(2012) developed an unconventional GIS spatial modelling tool 
to estimate the spatial distribution of catchment parameters. 
Other applications of ensemble hydroinformatics system-based 
parameter estimation approaches under different catchment 
scenarios can be found in El Bastawesy, Mohammed, and Nasr 
(2009), Tien Bui et al. (2019), Alexakis et al. (2014) and El Alfy 
(2016). It is worth noting that recognising and digitising spatial 
datasets for urban catchments with complex and massive spa-
tial characteristics is becoming laborious and challenging due 
to the LULC heterogeneity and variability caused by 
urbanisation.

Several backward propagated parameters estimation meth-
ods have been developed using the samples optimisation and 
distribution algorithms. The parameters are adjusted in each 
iteration of the algorithm until single or multiple stopping 
criteria are satisfied. For example, Thyer, Kuczera, and Bates 
(1999) and Vrugt et al. (2003) adopted the Shuffled Complex 
Evolution algorithm to optimise hydrologic parameters of the 
conceptual catchment model, while the Bayesian method- 
based parameter uncertainty analysis is presented by Muleta 
et al. (2013), Hutton et al. (2014) and Xiaoli et al. (2010). Cooper, 
Nguyen, and Nicell (1997) found that the performance of the 
calibration method depends on the selected objective function 
after the evaluation of three global optimisation methods. 
Another approach to tackle this issue is the Machine Learning 
approach method. A Random Forest algorithm was proposed 
by Sireesha Naidu, Pratik, and Rehana (2020) to determine the 
effect of climate change-related parameters on hydrological 
response. While Yang et al. (2019), Tjia, Gupta, and Alam 
(2020) and Shervan et al. (2021) used machine learning (ML) 
based methods to discover the parameter relationship 
between model and data. The backward propagated method 
is essentially a data-driven approach, and its shortcomings are 
also prominent. First, extensive data for calibration and optimi-
sation is not ubiquitous. Second, the estimated parameters 
often lack physical meaning, which limits the applicability of 

the model. Finally, there is a lack of referencing standardised 
confidence ranges for some inferred parameters such as catch-
ment width and flow length, which weakens the reliability of 
estimated parameters.

Whatever the single or multiple parameter estimation methods 
are adopted, it is crucial to ensure that any estimated parameter is 
guided by consideration of the conditions or changes in the 
catchment’s hydrologic and hydraulic characteristics and then 
mapped in the catchment’s perceptual model and parameter 
values. Computer Vision (CV) technology, a subbranch of artificial 
intelligence that trains computers to recognise, understand, and 
interpret visual datasets like videos and images (O’Mahony et al.  
2019; Forsyth and Ponce 2002; Voulodimos et al. 2018), has greatly 
enhanced the capacity data processing and uncertainty analysis. 
In this paper, a reproducible initial parameter estimation approach 
is proposed by utilising a Deep Learning (DL) based CV tool and 
Cumulative Distribution Function (CDF). A significant innovation is 
to estimate the flow length of the subcatchment based on the 
catchment semantic classification results of CV at the pixel scale 
and evaluate the influence of spatial characteristics on its distribu-
tion. This referencing parameter system of this paper is SWMM. 
According to Choi and Ball (2002), SWMM parameters can be 
categorised as measured and inferred parameters. The remainder 
of this paper is organised as follows. The section study catchment 
describes catchment conditions and adopted datasets following 
the section ‘Introduction’. The methodology shows the workflow 
of LULC classification and initial parameters estimation. Section 
‘Result and discussion’ demonstrates the statistic analysis of esti-
mated parameters with the discussion of the information behind 
the parameters. The key findings and research limitations are 
concluded at the end of this paper.

Study catchment

Catchment description

The Alexandra Canal catchment is located south of the Sydney 
CBD area, Australia, with the total area of 11.50 kilometres 
square. The catchment is highly urbanised, inclusive of multiple 
land uses such as residential (approx. 40%), industrial (approx. 
25%), road (approx. 10%), parkland (approx. 22%) and water 
body (approx. 3%). There are heterogeneous land cover types 
for both impervious and pervious features, including single 
dwelling, terrace, dense apartment, industrial plants with 
large impervious areas, and sizeable pervious areas of parkland 
and golf course. The drainage system of the catchment consists 
of subsurface pipes, pits, covered channels, open channels, 
culverts and flood mitigation structures. Shown in Figure 1 is 
the remote sensing image of the Alexandra Canal catchment 
with the location respect to continental Australia and within 
the greater Sydney region.

The primary impression of the catchment remote sensing 
image to people is the high heterogeneous spatial texture 
and spectral information, such as the various roof colour 
and shapes, perennial plants, water bodies, railways, walking 
trails, roads, large pavement areas and buildings’ shadows. 
Additionally, some catchment areas had experienced 
changes in land uses, from industrial to commercial or 
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residential, resulting in the discontinuity and failure of exist-
ing catchment models and parameters. For example, the 
control parameter imperviousness fraction of subcatchment 
is used to compute surface runoff, which is highly depen-
dent on the geometry surveying and mapping of catchment 
LULC. Therefore, both maintaining the robustness of the 
existing model and building a new model require the esti-
mation of the relevant parameters due to the change of 
land uses.

Catchment data

The catchment data used in this research has been obtained 
from multiple sources for training CV model and estimating 
parameters, including:

● Remote sensing data
● Subcatchments map

● Stormwater drainage system map

The catchment’s remote sensing data was obtained from the 
New South Wales Government, Department of Spatial Service, 
which is a standard RGB (three bands: Red, Green and Blue) 
image with the resolution of 0.29 meters per pixel width (NSW 
Spatial Service, 2021). The LULC class schema is defined to 
represent the catchment’s spatial features, including imper-
vious land, pervious land, railway, road, roof, tree and water-
body. Approximately 25% of the catchment area was selected 
for training and validation purposes. This area was labelled on 
the remote sensing image with the defined LULC class schema 
for preparing the training and validation sets. The ratio of the 
training and validation sets is 8:2. The remaining 75% catch-
ment area was used as the test set.

The subcatchments delineation (Figure 2) and stormwater 
drainage maps used in this study are supported by the local 
government, City of Sydney Council. It is worth noting that, 
unlike the terrain-based subcatchments delineation, the 

Figure 1. Location and remote sensing image of Alexandria Canal catchment.
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council uses the control area of drainage networks as the 
boundaries to subdivide the subcatchments. The drainage- 
controlled subdivision means the area with ample pits and 
pipes for collecting and conveying stormwater to the catch-
ment outlet before the water enter the trunk drainage system. 
The stormwater drainage map covers the information of 
hydraulic assets belonging to the City of Sydney Council and 
Sydney Water. A certain degree of simplification of the storm-
water drainage map was conducted in this study since the 
proposed parameter estimation approach in this study is 
based on the semi-distributed catchment modelling system 
SWMM. The catchment data and essential data pre-processing 
are summarised in Table 1.

Methodology

Outline of methodology

The proposed methods of this paper consist of two parts: the 
catchment LULC classification and parameters evaluation. The 
clustering algorithm Meanshift (Cheng 1995) and pixel classifier 
U-Net (Ronneberger, Fischer, and Brox 2015) were adopted to 
conduct the LULC classification and segmentation of the catch-
ment remote sensing image. After that, the quantity analysis 
was applied to evaluate the distribution and tendency of the 
parameter values generated from the catchment LULC map. 
A detailed procedure of methodology is demonstrated in 
Figure 3.

Figure 2. Subcatchment delineation and outlet.

Table 1. Catchment data.

Name Type Source Pre-processing

Remote Sensing 
Image

RGB Image NSW Spatial 
Service

Labelling, Clipping small images (256x256) for the training set

Subcatchments 
Map

GIS  
Shapefile

City of Sydney 
Council

Combine some subcatchments that belong to the same drainage subsystem or depression. There are 1534 
subcatchment after merging.

Stormwater 
Drainage Map

GIS 
Shapefile

City of Sydney 
Council

The stormwater pits of one subcatchment with the lowest invert level will be chosen as the subcatchment 
outlet. Only one outlet was assigned to each subcatchment.
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LULC Classification and segmentation

The DL techniques and associated CV applications have gained 
great progress in the recent decade. DL-based CV application 
with interdisciplinary knowledge by letting the computers 
acquire information, process data, make predictions and gain 
advanced understanding from visual images or videos (Szeliski  
2010). CV has been widely used to solve classification and 
segmentation problems of remote sensing related topics and 
achieved excellent results. Examples of CV be used in remote 
sensing fields can be found in building footprints extraction 
(Zhao, Shihong, and Emery 2017), road extraction (Yang and Li  
2015) and impervious features segmentation (Huang, Zhao, 
and Song 2018).

A novel integrated approach utilising a CV tool (U-Net) and 
clustering algorithm (MeanShift) was adopted to present 
a semantic segmentation map for Alexandra canal catchment. 
MeanShift (Comaniciu and Meer 2002), a clustering algorithm, 
was involved in reducing the spectral and texture heterogenous 
of the catchment LULC by producing a preliminary object-based 
segmentation result. U-Net is a classical DL algorithm for seman-
tic segmentation with fully convolutional connections and 
initiated symmetrical U-shaped structure (encoding and decod-
ing) developed by Ronneberger, Fischer, and Brox (2015), which 

was first applied to biomedical image segmentation and also 
achieved excellent performance in the semantic segmentation 
tasks of remote sensing images (Abdollahi, Pradhan, and Alamri  
2022; Cui, Chen, and Yan 2020; Nanjun, Fang, and Plaza 2020). 
Compared to conventional CV models such as pure U-Net and 
DeeplabV3 (Chen et al. 2017), the integrated approach has 
achieved the best accuracy and consistency in predicting LULC 
of the study catchment (Gong, Ball, and Surawski 2022).

In the beginning, the catchment remote sensing image and 
GIS data were projected to the WGS1984/UTM zone 56 (the 
Universal Transverse Mercator projection system) coordinate 
system. World Geodetic System, or WGS for short, is a widely 
used geodetic standard in geodesy, navigation and cartography 
(Eurocontrol, and IfEN 1998). The purpose of georeferencing and 
unifying GIS data from different sources is to eliminate the error 
caused by unit system discrepancy. Then, a GIS layer with pre- 
defined seven representative surface classes (Tree, Pervious, 
Impervious, Railway, Roof, Road, Water Body) was integrated 
with the segmented image of MeanShift to generate the train-
ing sample. The training sample contains 5460 small image tiles 
with the size of 256 × 256 for each tile. Following the data 
training, the output of the MeanShift algorithm was used as 
the input of the pixel classifier U-Net to produce a pixel base 
LULC classification and segmentation map. A schematic diagram 
of U-Net is demonstrated in Figure 4. Finally, the trained U-Net 

Figure 3. Methodology framework.
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model was applied to catchment raw remote sensing images to 
make LULC predictions. As prerequisites, the predicted LULC 
map was rasterised for computing measurable parameters, and 
the results were conveyed to determine the inferable para-
meters. Where measurable parameters mean the features are 
physically measurable such as LULC areas in this study, and the 
inferable parameters are determined from the measurable attri-
butions, usually have no physical meaning (Choi and Ball 2002).

Parameters estimation

This paper aims to develop a reproducible approach to estimat-
ing initial parameters for catchment modelling systems. With 
respect to the distributed representative schema of catchment 
spatial characteristics, three parameters are selected to verify 
the estimation approach: area, imperviousness fraction, and 
flow length. Area is the fundamental physical parameter to 
compute catchment flood quantiles, while imperviousness frac-
tion and flow length are important conceptual parameters to 
determine the runoff generation and routing. Due to the limita-
tion of monitoring data and measurement techniques, it is 
necessary to conceptualise some catchment characteristics in 
the distributed model to simulate the real catchment condi-
tions. Different from the subcatchment focused conceptualisa-
tion methods, this paper uses the pixel-based estimation 
approach to obtain the initial values of the selected two con-
ceptual parameters. Each pixel was assigned and represented 
by a coordinate, which has been projected to the WGS1984 
system at the data preparation stage.

Subcatchment area

A spatial join tool of ArcGIS was adopted to merge the sub-
catchments delineation layer into the classified LULC raster 
dataset (pixel snapped) so that it allows to extract raster’s 
LULC information for each subcatchment. The extracted pixel 
information are class (C), area (A), and coordinates. Then, the 
total area and single class area of each subcatchment are 
expressed as: 

Ai ¼
Xj

1

Ap (1) 

c ið Þ ¼
Xj cð Þ

0

Ap (2) 

Where Ai, Ap and Ac ið Þ are the total area of subcatchments ‘i’, 
pixel area and area of LULC class c in subcatchments ‘i’, respec-
tively. ‘j’ is the total number of pixels in subcatchments ‘i’, and 
‘j(c)’ is total number pixels belong to class c. The seven pre- 
defined LULC classes are described in Section 2.1.

Imperviousness fraction

Runoff volume and rates of urban catchments are susceptible 
to impervious features. A common agreement of computing 
the total imperviousness fraction in the modelling community 
is measured total impervious area (TIA) divided by total area, 
where the TIA is the sum of land uses with impervious feature 
(Rossman and Huber 2015). In practice, the accuracy of catch-
ment imperviousness fraction relies on the delineation preci-
sion of catchment spatial features from remote sensing images, 
which is time-consuming and tedious. This study conducted 
a CV-based automatic classification and segmentation of the 
catchment spatial features instead of humans with higher effi-
ciency and relative precision than manual delineation. 
According to the catchment spatial features, the LULC classes: 
roof, impervious land, road and railway are counted to the 
impervious area, while pervious land and tree belong to the 
pervious feature. Waterbody does not participate in the calcu-
lation, as no contribution of the water body to surface runoff in 
the study catchment. The equation of TIA and impervious frac-
tion are presented below: 

TIAi ¼ Aimp ið Þ ¼ Aroof ið Þ þ Aimpland ið Þ þ Aroad ið Þ þ Arailway ið Þ (3) 

Fimp ið Þ ¼ Aimp ið Þ=Ai (4) 

Figure 4. Structure of U-Net.
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Where Aimp ið Þ and Fimp ið Þ are the total impervious area and 
imperviousness fraction of subcatchment i.

Flow length

Flow length is a critical parameter to simulate runoff routing in 
conceptual catchment modelling systems. For example, mod-
ellers using SWMM are required to estimate the flow length for 
computing subcatchment width, which is a conceptual width 
used to evaluate overland flow rate by assuming 
a subcatchment shape as rectangular. Two different idealised 
subcatchments (A and B) shapes with the same area are shown 
in Figure 5. The side perpendicular to the flow direction is 
subcatchment width. The side along the flow direction is flow 
length. The subcatchment B will spend more time to achieve 
equilibrium on its hydrography than subcatchment A under the 
same rainfall patterns due to the narrow subcatchment width. 
A recommended flow length estimation approach by the 
SWMM manual (Rossman and Huber 2015) is to use the average 
maximum length (AML) of surface runoff. Maximum length 
represents the distance from eight selected sample points on 
the subcatchment boundary to the subcatchment outlet, and 
the average of the eight distances is considered as the sub-
catchment flow length.

Determine flow length is essential for catchment model and 
has positive implications for estimating parameters in the 
absence of extensive data support due to the complexity of 
runoff routing under actual catchment conditions (Zhou, 
Minghui, and Chen 2014). In the urban environment, the rain-
fall-runoff process is affected by multiple factors related to 
LULC, such as the interactions between pervious and imper-
vious areas, depression and non-depression surfaces, surface 
runoff and subsurface pipes. Therefore, the flow length estima-
tion methods without considering LULC impact may result in 
unreliable parameter sets and models in an urban catchment.

As an extension of the SWMM recommended approach, this 
paper proposed an approach that considers catchment LULC at 
pixel scale and estimates flow length for subcatchments without 
the support of an extensive dataset. As mentioned above, the 
attribution of classified pixel dataset and subcatchment outlet 

data have been merged to the subcatchment delineation map 
by aligning their projection coordinate system. In the subsequent 
steps, the classified two-dimensional LULC pixel network was 
converted to a dot matrix, where the pixel’s location is defined 
by the coordinate at the pixel centre. The data are expected from 
the dot matrix and will be used for computing parameters are:

● Coordinates of dots within the subcatchment.
● Coordinate of subcatchment outlet.
● LULC class information of all dots by referencing to their 

corresponding pixel.

A new terminology, namely Conceptual Flow Length (CFL), is 
first proposed in this paper to describe the flow length at the 
subcatchment scale. Each pixel within the subcatchment is 
treated as a hydrological unit, and the vector of each pixel 
reaching the dominating subcatchment outlet is assumed to 
be the pixel’s CFL. The centroid of pixel CFL within the sub-
catchment is selected as the representative CFL of the sub-
catchment by concerning the subcatchment geometry and 
conceptualised runoff generation process. The subcatchment 
outlet coordinate is taken as the origin, and each pixel is taken 
as the mass point to compute the vector. The expression of 
subcatchment CFL is presented as: 

Vectori jð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xi jð Þ � Xi oð Þ
� �2

þ Yi jð Þ � Yi oð Þ
� �2

h ir

(5) 

Conceptual Flow lengthi ¼

Pj
1ðVectori jð Þ � ApÞ

Ai
(6) 

Where Xi jð Þ and Yi jð Þ are the coordinate of pixel j of subcatch-
ment i. Xi oð Þ and Yi oð Þ is the outlet coordinate of subcatchment i.

Furthermore, the effect of LULC on CFLs is also involved in 
this study by computing the vector of the pixels grouped by 
their corresponding LULC feature. The expressions of CFL with 
LULC are shown below: 

Vectorimp=per i;jð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ximp=per i;jð Þ � Xi oð Þ
� �2

þ Yimp=per i;jð Þ � Yi oð Þ
� �2

h ir

(7) 

Conceptual Flow lengthimp=per ið Þ ¼

Pj
1ðVectorimp=per i;jð Þ � ApÞ

Aimp=per

(8) 

Where Ximp=per i;jð Þ and Yimp=per i;jð Þ are the coordinate of imper-
vious or pervious pixel j of subcatchment i.

The square root of subcatchment area is raised as the stan-
dardised subcatchment width (Std width) to produce a non- 
dimensional indicator (CFL and Std width ratio) for evaluating 
the distribution of the CFL. The cumulative likelihood distribu-
tion method is applied to generate the distribution curves of 
the CFL and non-dimensional indicator, which are grouped by 
different CFL intervals with the same sample amount. The CFL 
distribution curves are compared to assessing the effect of 
LULC to subcatchment flow length, while the CFL and Std 
width ratio curves are used to estimate the initial CFL for 
urban catchments similar to the LULC conditions of the 

Figure 5. Schematic of idealised catchment shape to show the relationship between 
catchment width and flow lengths. W is subcatchment width, L is flow length.
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Alexandra canal catchment. The expression of subcatchment 
Std width is: 

Std Widthi ¼
ffiffiffiffi
Ai

p
(9) 

Distribution fitting test

There are 4602 CFL values generated from the 1534 study 
subcatchments using the aforementioned CFL computation 
approach. This paper adopts the cumulative likelihood dis-
tribution method to describe and analyse the CFL distribu-
tion and the impact of different LULC categories on CFL 
values. The categories are ‘all LULC’ (no consideration of 
catchment LULC), ‘impervious’ (only account impervious pix-
els) and ‘pervious’ (only account pervious pixels). Meanwhile, 
the Kolmogorov–Smirnov test (KS test) was involved in com-
puting the KS statistic for pair-wise comparison of the three 
categories. The KS test is a classical statistic approach for 
evaluating the fitting goodness of an empirical and hypothe-
tical distribution or two empirical distributions (Massey 1951). 
Both KS statistic and p-value (Heyde and Seneta 2001) are 
computed to assess the fitting of distributions and the sig-
nificance of statistic difference. The lower the KS statistic, the 
better the fitting of the two distributions. In contrast, the 
lower the p-value, the greater the statistical significance of 
the observed difference. The KS test is also widely used for 
comparing and evaluating the fitting goodness of catchment 
model simulations and data distribution. For example, KS 
statistics was adopted by Wang and Solomatine (2019) to 
compute sensitivity indices for the cumulative distribution 
functions of six sensitivity analysis methods. Caballero and 
Rahman (2013) described rainfall models parameters by prob-
ability distributions and tested their fitting goodness with the 
KS test. A KS test was done by Shahzad et al. (2021) to 
evaluate the goodness-of-fit of observed flow data and 
model simulation results. In this case, the expressions of KS 
statistic for evaluating two samples distribution is 

Dn;m ¼ sup F1 xð Þ � F2 xð Þj j (10) 

where F1 and F2 are the accumulative likelihood distribution 
functions of the first and second sample, and sup is the supre-
mum function means the absolute value of the maximum 
difference between F1 and F2.

The distribution of all LULC CFLs are assumed to be a true 
hypothesis ðH0Þ. Then use the p-value to test the probability of 
pervious and impervious CFL distributions, which accord with 
the hypothesis ðH0Þ. The purpose of p-value is to evaluate the 
effect of LULC on the determination of subcatchment CFL and 
correlation among them. The expression of p-value is 

pvalue ¼ Pr x � tjH0ð Þ; Pr x � tjH0ð Þf g (11) 

where t is the significance guide numbers 0.001, 0.01 and 0.05 
represent extreme significance difference, noticeable signifi-
cance difference and significance different, respectively 
(Wasserstein and Lazar 2016).

Results and discussion

Land use land cover map

The catchment LULC map is generated using the MeanShift 
clustering algorithm and DL-based U-Net model. The sample 
labelling and training procedure are described in the Section 
LULC Classification and Segmentation. The confusion matrix 
approach was applied to evaluate the performance of prediction. 
For creating the confusion matrix, 500 assessing points were 
created using the stratified random distribution method, where 
each class number of assessing points is proportional to its area. 
An essential modification on this confusion matrix is the com-
bined classes (roof, road, impervious land, railway) with imper-
vious features for fitting the parameter schema of conceptual 
catchment modelling systems (e.g. SWMM); hence the predicted 
error within the four classes is ignored. The comparison of catch-
ment raw image and LULC prediction is shown in Figure 6.

A further evaluation for LULC map is presented in the 
confusion matrix Table 2. From this table, the overall accu-
racy is 0.8953. The prediction accuracy value of the com-
bined ‘Impervious’ class achieved a high accuracy of 0.9847, 
and the prediction accuracy of ‘tree’, ‘water body’ and 
‘pervious land’ are 0.7778, 0.8889 and 0.6804, respectively. 
The error classification at the lower-left corner of the catch-
ment LULC map (where the ground truth is bare soil) results 
in lower prediction accuracy for the ‘pervious land’. 
However, this error has a limited impact on the ‘impervious’ 
prediction accuracy due to the highly urbanised catchment 
with a large portion of impervious areas. It is worth men-
tioning that the runoff generation is susceptible to imper-
vious features (Boyd, Bufill, and Knee 1993; Yang and Li  
2015), so that high prediction accuracy of ‘impervious’ 
could support the estimation of reliable initial parameters 
and establish a robust catchment model.

Subcatchment area and imperviousness fraction

The LULC map was transmitted to the measured parameters 
estimation procedure as the fundamental dataset. The gov-
erning equations for computing TIA and imperviousness 
fraction are presented in Equation 3 and 4. In this section, 
two figures (Figure 7 and Figure 8): subcatchments’ imper-
viousness fraction distribution histogram and accumulated 
likelihood curve, are plotted to describe the impervious 
conditions of the 1534 subcatchments. In Figure 7, a few 
subcatchments have an impervious fraction less than 50% 
and are distributed uniformly from 0% to 40%. The majority 
numbers of subcatchments belong to the imperviousness 
fraction range of 50% to 95%, followed by a significant 
increase in the range of 95% to 100%. Figure 8 shows the 
same content in the form of an accumulated likelihood 
curve; the likelihood curve of imperviousness fraction 
grows slowly from 0% to 65%, then enters an exponential 
growth trend with the highest gradient occurring near the 
curve’s end.

Both Figures 7 and 8 reflected the high urbanisation level of 
the Alexandra canal catchment with planned impervious devel-
opments, where the identifiable industrial, commercial and 
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utility areas from the catchment remote sensing image are the 
most visible ground surface features. Meanwhile, the significant 
landscape of residential areas and large urban green spaces 
also echoes the 30% occurrence likelihood of imperviousness 
fraction range from 0% to 65%.

Distribution of conceptual flow length and accumulated 
likelihood

The distribution and accumulated likelihood curves describe 
the conceptual flow length of the 1534 subcatchments (see 
Figure 9) including all LULC, impervious and pervious. All LULC 

Figure 7. Subcatchments imperviousness fraction distribution histogram.

Figure 8. Subcatchments impervious fraction accumulated likelihood curve.

Table 2. Confusion matrix of prediction.

Classname Tree Water Body Pervious Impervious Total U_Accuracy

Tree 56 0 7 2 65 0.8615
Water Body 2 8 0 0 10 0.8000
Pervious 7 1 66 3 77 0.8571
Impervious 7 0 24 323 354 0.9124
Total 72 9 97 328 506
P_Accuracy 0.7778 0.8889 0.6804 0.9847

P_Accuracy = Prediction Accuracy 
U_Accuracy = User Accuracy 
Overall Accuracy = 0.8953 
Kappa = 0.7900

Figure 6. Alexandra Canal catchment raw image and LULC prediction.
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classes curve represents the subcatchments’ CFLs without con-
sidering the influence of pixels’ LULC attribute. In comparison, 
the impervious and pervious curves represent the CFLs of sub-
catchments’ impervious and pervious areas, respectively. No 
significant difference was observed in Figure 9a by comparing 
the three types of CFL curves, which illustrates the well-planned 
proportion of pervious areas in the study catchment, particu-
larly the subcatchment zoned as residential and industrial. Most 
subcatchments’ conceptual flow lengths are distributed from 
25 m to 100 m, which occupies approximately 80% of the total 
subcatchments number. It is worth mentioning that the three 
curves climb with the same gradient and reach a peak at 65 
meters, then they gradually decrease with similar fluctuations 
until approaching zero. The erratic fluctuations of the pervious 
curve between 200 and 500 meters correspond to several sub-
catchments with ample green space, such as Sydney park and 
Morre park golf course.

Figure 9b also presents a great similarity of the three curves, 
where the impervious and all LULC curves almost coincide. The 
likelihood of three CFLs climb with a similar gradient and 
approach 100% at 170 meters. The likelihood of pervious CFLs 
in the range of 170 to 800 meters is lower than the other two 
curves, revealing impervious dominated LULC of the study 
catchment, such as the longer CFL of large industrial and 

commercial subcatchments with high imperviousness fraction 
than subcatchments zoned to residential.

Table 3 presents the KS test results of the three curves, 
which further validated the observation from Figure 9a,b from 
the statistic perspective. The low KS statistic values of pair-wise 
comparison are not unexpected, which recall the similar dis-
tribution observed in Figure 9a,b. All LULC and impervious 
curves have the best goodness of fit (KS statistic = 0.0156) 
among the other two comparisons, where the KS statistic of 
all LULC/pervious and impervious/pervious are 0.0613 and 
0.0535, respectively. Corresponding to that, the p-values pre-
sents the same kernel of KS statistic. The highest p-value 0.9918 
is obtained from all LULC/impervious followed by impervious/ 
pervious 0.0248 and all LULC/pervious 0.0062.

In summary, both observation and the statistical test proved 
the excellent goodness of fit for all three pair-wise comparisons, 
where all LULC/impervious has the highest fitting level and ther 
is no significant difference between LULCs. In addition, the 
fitting of impervious and pervious curves illustrates that the 
landscape area occupies a certain percentage in most sub-
catchments dominated by residential and commercial land. 
However, the best fitting of all LULC and impervious further 
describes the high urbanisation and imperviousness fraction of 
the Alexandra canal catchment. In this case, the following CFL 
estimation discussion will focus on the all LULC samples due to 
the limited impact of different LULC on estimating the CFL of 
subcatchment.

Estimation of conceptual flow length

This section focus on the CFLs estimation of all LULC sample 
due to the limited impact of LULC on CFL values. The Std 
width (Equation 9) and CFL/Std width ratio are involved in 
measuring the CFL distribution and testing the CFL estimation 
approach. The 1534 Std width samples are divided into four 
different length intervals (10–47 m, 48–62 m, 63–85 m, 86– 
210 m) to ensure the same sample amount is occurred by 
each length group. In practical modelling, it is difficult to 
estimate the CFL value from the CFL likelihood distribution 
curves due to the difference of subcatchment areas. 
Therefore, this paper calculates the ratio of CFL to Std width 
in each subcatchment and summarises it into the correspond-
ing Std width group, then plots the cumulative likelihood 
distribution curves of each Std width group (Figure 10). 
Nearly 100% CFL/Std width ratios are lower than 3.5. The 
four Std width groups present a minor difference from 1 to 
3.5. When the area of the subcatchment is known, the mod-
eller can calculate the subcatchment Std width and corre-
spond to the Std group curve in Figure 10 by referring to its 
length range. The likelihood of CFL/Std width ratio can be 
obtained from the associated accumulated likelihood curve. 
Then, the multiply CFL/Std width ratio and Std width to 
estimate the most likely CFL length.

Figure 9. (a) Subcatchments’ conceptual flow length distribution and (b) accu-
mulated likelihood curves of conceptual flow length (1534 subcatchments).

Table 3. KS test and p-values.

All LULC/Impervious All LULC/Pervious Impervious/Pervious

KS statistic 0.0156 0.0613 0.0535
p-value 0.9918 0.0062 0.0248
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This approach can help modellers initialise parameters for 
catchment modelling systems at the mathematical level with-
out an extensive dataset like ungauged catchment. It is worth 
mentioning that the sample size is critical to the reliability of 
the results. Therefore, it is necessary to expand the number of 
samples in future research to improve the robustness of the 
results. The subcatchment map used in this study is provided 
by the City of Sydney Council, where the subcatchment 2D 
delineation is based on its urban drainage network controlled 
cadastral map, and most subcatchments are in regular shapes. 
Therefore, the influence of subcatchment 2D shape on the CFL 
value determination has not been thoroughly studied. The 
terrain-based subcatchment delineation method should be 
adopted to resample the study catchment to further explore 
the performance of the CFL estimation approach on a different 
sample system.

Conclusion

This paper proposes an initial parameter estimation approach 
for distributed catchment modelling systems in the Alexandra 
canal catchment. The clustering algorithm Meanshift and 
semantic segmentation neural network U-Net were applied to 
achieve the pixel based LULC map of catchment remote sen-
sing image. The U-Net model was trained on the preliminary 
segmentation dataset of Meanshift and made predictions on 
the remote sensing image to produce the LULC map. Then, the 
external datasets such as subcatchment delineation map and 
outlet map were integrated into the LULC map by referring to 
the spatial coordinate system (WGS1984). The following meth-
ods processed the integrated catchment dataset to estimate 
the initial parameter for catchment modelling.

● Subcatchment area: Use a GIS software package to com-
pute subcatchment area by entering the spatial projec-
tion coordinate system (WGS1984).

● Subcatchment imperviousness fraction: Sum the area of 
pixels with impervious features and divide by the total 
subcatchment area.

● Subcatchment conceptual flow length: Extract the outlet 
and each pixel centre’s coordinates of subcatchments. 

Vectorise the distance from each pixel to the outlet within 
the subcatchment. Select the centroid value as the sub-
catchment conceptual flow length by sorting these vectors.

The KS test and cumulative likelihood method were adopted to 
describe the parameter distributions and evaluate their good-
ness of fit. The non-dimensional indicator CFL/Std width ratio 
was computed to plot its accumulated likelihood distribution 
curves to estimate CFL for an ungauged catchment.

The work contributes to existing knowledge of parameter 
estimation for catchment modelling, where a comprehensive 
initial parameter dataset for SWMM was obtained by imple-
menting the above procedure. The results are concluded as:

● The proposed approach can estimate the initial para-
meters for catchment modelling systems, including sub-
catchment area, imperviousness fraction and CFL.

● Greater efforts are needed to ensure a higher prediction 
precision on pervious features of catchment remote sen-
sing images. The current 68% prediction accuracy of per-
vious feature is not an optimistic number, and the error 
could be magnified during parameter propagation.

● In total, 80% of subcatchments within the Alexandria canal 
catchment have an imperviousness fraction over 60%.

● According to the KS fitting test of CFL distribution curves, 
there was no significant influence of LULC on subcatch-
ment CFLs.

● The number of CFL samples should be expanded to 
enhance the results’ reliability in future research.

● Different subcatchment delineation methods such as ter-
rain-based methods should be adopted to resample the 
CFLs from the study catchment to evaluate the 
approach’s robustness further.
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