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Abstract—Deep learning has demonstrated its great poten-
tial in Channel State Information (CSI)-based Human Activity
Recognition (HAR), and hence has attracted increasing attention
in both the industry and academic communities. While promising,
most existing high-accuracy methodologies require to re-train
their models when applying the previous-trained ones to a
new/unseen environment. This issue has limited their practical
usabilities. In order to overcome this challenge, this paper
proposes an innovative scheme, which combines an activity-
related feature extraction and enhancement (AFEE) method and
Matching Network (AFEE-MatNet). The proposed scheme is
“one-fits-all”, meaning that the trained model can be directly
applied in new/unseen environments without any retraining.
We introduce the AFEE method to enhance CSI quality by
eliminating noise. Specifically, the approach mitigates environ-
mental noises unrelated to activity while better compressing
and preserving the behaviour-related information. Moreover, the
size of feature signals generated by AFEE are reduced, which
in turn significantly shortens the training time. For effective
feature extraction, we propose to use the MatNet architecture to
learn transferable features shared among source environments.
To further improve the recognition performance, we introduce a
prediction checking and correction scheme to rectify some classi-
fication errors that do not abide by the state transition of human
behaviours. Extensive experimental results demonstrate that our
proposed AFEE-MatNet significantly outperforms existing state-
of-the-art HAR methods, in terms of both recognition accuracy
and training time.

Index Terms—WiFi, Device free sensing, Deep learning, Chan-
nel state information, Human activity recognition.

I. INTRODUCTION

W IFI signals, one of the most pervasive wireless signals,
have received paramount interest as a promising source

for device-free human activity recognition (HAR). For WiFi-
based HAR, the sensing task can be accomplished by ana-
lyzing the different characteristics of WiFi channels induced
by various human behaviors [1], [2]. In such a case, the
targets do not need to be equipped with any devices such as
cameras or watches, which are necessary for traditional device-
based HAR. WiFi-based HAR has the advantages of better
user privacy protection and low deployment cost, thereby
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gaining its potentially popular adoption [3], [4], [5]. Since the
channel state information (CSI) is able to provide fine-grained
information about communication links such as amplitude and
phase diversity, it has been widely explored for WiFi-based
HAR [6], [7].

A. Related Work and Motivation

Recently, significant progress has been made in CSI-HAR,
by leveraging signal processing techniques and deep learning
networks (DLNs) [8], [9], [10]. To name a few, a recent
solution in [11] first transformed CSI measurements from
multiple channels into radio images and then extracted the
color and texture information from those radio images. On
this basis, a successful HAR is accomplished, by using the
deep features extracted by a sparse autoencoder (SAE). To
further improve sensing performance, the authors in [12]
extracted discriminated features from CSI streams, and then
employed the long-short term memory recurrent neural net-
working (LSTM-RNN) to achieve a reliable sensing result
using the extracted information. For the same purpose, the bi-
directional long short-term memory (BDLSTM) was adopted
in [13], through which the representative features in two
directions from raw sequential CSI measures can be effectively
extracted. Similarly, the authors in [14] proposed a recognition
model drawing support from the improved linear discriminant
analysis and softmax regression algorithm. In [15], the authors
also developed a deep learning based HAR solution which uses
a channel selection and combination mechanism to improve C-
SI quality. In [16], we developed a feature extraction method to
enhance the CSI quality and learn distinguishable information.
Then, this extracted data was fed into LSTM-RNN for HAR,
obtaining reliable recognition results. Although the above CSI-
based HAR works, including our own in [16], can achieve
desirable sensing results, these solutions are highly specific
to environments where the HAR model is trained [8], [14],
[15], [17]. As a result, the recognition accuracy usually drops
dramatically if the classifier trained with primitive features
in source/seen environments is used to recognize activities
in new/unseen environments. In other words, well-trained
schemes in the above works cannot be directly used for HAR
in unseen environments.

Given the above challenge, significant research effort has
been made to improve the generalization ability of HAR
techniques by leveraging various DL networks. For instance,
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a transfer learning network was employed in [18] to facilitate
environment-robust HAR, by extracting the features common-
ly shared across source environments and the target/testing
environment. Another work [19] exploited a transfer neural
network for environment-robust HAR, by capturing the com-
mon knowledge in time and spatial domains shared by the
testing and source environments. A solution proposed in [20]
attempted to remove the environment-specific information con-
tained in the activity and learn the environment-independent
features by exploiting the property of the adversarial network.
Similarly, the authors in [21] and [22] explored Dense-LSTM
and attention-based bidirectional LSTM respectively, to extract
behavior-related information and reduce the number of training
samples from the testing environment. For the same purpose,
the graph few-shot learning network and meta-learning were
used in [23] and [24], respectively, for behavior-related feature
extraction. Consequently, the recognition models can work
well in the testing environment after they are fine-tuned with
a few training samples from the testing environment. Another
recent HAR solution was proposed in [25] where Doppler
frequency shift was utilized to distinguish different activities,
especially for some intensive behaviors, e.g., running and
jogging. Additionally, the authors of [26] proposed a method to
learn environment-robust features, which are then input into
a convolutional neural network (CNN) and RNN for cross-
environment HAR.

Although environment-independent recognition has been
achieved to some extent, the above methods have some
limits. To be specific, their recognition accuracies heavily
rely on the number of different source environments, and the
performance will degrade dramatically when the diversity of
source environments is insufficient (e.g., [19], [20]). It is also
challenging for them to extract high-quality and discriminative
features across different environments due to the limitation of
feature extraction processes and deep learning architectures.
Moreover, some solutions are designed for line-of-sight (LOS)
scenarios only (e.g., [21], [23], [24] ), and their sensing accura-
cies would degrade significantly when LOS conditions are not
held. Additionally, some works (e.g., [25], [26]) concentrate
on recognizing intensive (i.e., highly dynamic) behaviors only,
failing to identify small activities such as standing and laying.

Apart from the aforementioned works, our earlier attempts
also targeted the generalized HAR. Specifically, our work in
[27] accomplished sensing tasks using only one sample of
each activity from the testing environment. To achieve that, we

first extracted behavior-dependent features, and then designed
an innovative training strategy to bridge the gap between
source environments and the testing environment. Although
this method can achieve environment-robust HAR, the recog-
nition model still needs to be re-trained when being applied
to a new/unseen environment, and training samples from that
environment are required. To further improve the generaliza-
tion ability, we proposed an environment-independent HAR
in [28], drawing support from principal component analysis
techniques and one-shot learning. As a result, the trained
model can be directly applied to new environments, without
requiring retraining. However, the solution in [28] is designed
for a relatively simple setting, and its recognition performance
degrades notably when the number of source environments is
insufficient.

B. Main Contributions

To address the above challenges, in this work, we propose
a scheme using an activity-related feature extraction and
enhancement (AFEE) method and matching network (AFEE-
MatNet) to accomplish a cross-environment HAR. Our pro-
posed novelties of AFEE-MatNet scheme has three major
novelties. First, it can realize “one-fits-all”, meaning that once
the model is trained using source/seen environments, it can be
directly used in new/unseen environments, without requiring
re-training. Second, the proposed AFEE-MatNet is capable
of achieving much better recognition performance than other
related HAR methods. Third, our proposed AFEE-MatNet
only requires a limited number of source environments to train
the HAR model well, which is difficult for state-of-the-art
HAR techniques to realize. To achieve the above objectives,
we develop and apply novel CSI preprocessing techniques (i.e.,
AFEE) and the matching network with prediction checking
and correction (MatNet-PCC), which are significantly different
from our prior works and state-of-the-art HAR techniques.

The major contributions of this work are summarized as
follows.

• To improve the CSI quality, we propose AFEE to remove
activity-unrelated but environment-specific data and en-
hance behavior-related information. The proposed AFEE
is composed of two steps: CSI cleaning and enhance-
ment, and frequency domain feature extraction and signal
compression. The step of CSI cleaning and enhancement
can remove the phase offset completely, reduce the noise
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and eliminate activity-unrelated data in the CSI. The step
of frequency-domain feature extraction extracts activity-
dependent features in the frequency domain, enhancing
activity-related information and reducing feature depen-
dence on the environment. On top of that, the proposed
AFEE is capable of decreasing the volume of feature
signals, considerably reducing the training time.

• We propose a MatNet with a prediction checking and cor-
rection (MatNet-PCC) algorithm to realize environment-
independent HAR. We first employ the MatNet architec-
ture to extract transferable features across source environ-
ments. To achieve better sensing results, we then design
a prediction checking and correction (PCC) algorithm to
further rectify some recognition errors that do not follow
the state transition of human activities. The designed PCC
algorithm can also be applied to other HAR schemes for
performance improvement (see Table II in Section V-B).

• We design and perform numerous experiments under
various conditions and scenarios. The results demonstrate
that our proposed AFEE-MatNet holds many advan-
tages over state-of-the-art HAR methods, in ameliorating
recognition accuracies and reducing the training time.

We organize the rest of the paper as follows. In Section II,
a brief overview of the proposed AFEE-MatNet is provided.
Section III details the information on our proposed AFEE. The
details of the developed MatNet-PCC scheme are described in
Section IV. We discuss the experimental results in Section V.
Section VI concludes the main contributions of this work.

II. OVERVIEW OF PROPOSED AFEE-MATNET SCHEME

To design a “one-fits-all” recognition model, we propose
the AFEE-MatNet scheme by leveraging the discriminative
features extracted from CSI and the developed MatNet-PCC
scheme. As Fig. 1 depicts, the proposed AFEE-MatNet scheme
consists of three main modules: CSI Collection, CSI Pre-
processing and MatNet-PCC based Activity Recognition. The
first module is used to collect and store the CSI that reflects
the changes in wireless signal propagations caused by human
behaviors. The second module aims to clean and enhance
the acquired CSI matrix through processing in both time and
frequency domains. The last module identifies different human
activities, drawing support from the enhanced CSI and MatNet.

CSI Collection: In an indoor WiFi network, a person
performs different activities, causing various influences on
wireless channels. This may absorb, reflect or diffract WiFi
signals, changing the characteristics of CSI, such as amplitude
and number of multiple paths. To acquire variations on CSI,
we employ the Intel 5300 network interface card (NIC), a
widely adopted commercial off-the-shelf (COTS) WiFi device.
As regulated by IEEE 802.11n, the CSI can be effectively
collected by the CSI tools, with 30 subcarriers for each pair of
transmitter-receiver antennas [29]. More detailed information
about the experimental setup can be found in Section V-A.

CSI Preprocessing: In this module, we intend to improve
the quality of the CSI matrix by mitigating the noise, removing
activity-unrelated data and condensing activity-related infor-
mation. Another goal of this module is to reduce the size

of the CSI matrix, so as to decrease the complexity. To this
end, our proposed AFEE method consists of two key steps:
CSI cleaning and enhancement and frequency domain feature
extraction.

In the step of CSI cleaning and enhancement, we first
perform the conjugate multiplication (CM) method to address
the effect of phase offset in the CSI. On top of that, we use the
PCA algorithm to further improve CSI quality by eliminating
the noise and removing activity-unrelated data. The output can
be significantly cleaned and enhanced, while it still contains
the residual noise and residual activity-unrelated information.
To solve that issue, in the step of frequency domain feature
extraction, we transfer the CSI from the time domain to the
frequency domain before extracting activity-related features.
The output of AFEE contains condensed activity-related in-
formation, significantly reducing the dimension compared to
the original CSI matrix.

MatNet-PCC based Activity Recognition: The purpose of
this module is to distinguish different behaviors by leveraging
the enhanced CSI from the former module and MatNet-
PCC method. In particular, we first employ MatNet to au-
tomatically learn hidden features from the enhanced CSI,
so as to extract features commonly shared among different
environments. As a result, the information, which is activity-
related and environment-independent, can be effectively ex-
tracted for HAR. After that, we propose a prediction checking
and correction (PCC) scheme to further fix recognition errors
and improve sensing accuracy. It is noteworthy that MatNet
architecture is trained using samples from source environments
in an offline manner. The well-trained model is then applied
to identify various activities in an online manner.

III. AFEE BASED CSI PREPROCESSING

In this section, we will describe the design of AFEE to
improve the quality of the CSI matrix. We first present the CSI
cleaning and enhancement method, followed by the discussion
of frequency-domain feature extraction method.

A. CSI Cleaning and Enhancement

Let Nt and Nr denote the number of antennas at the
transmitter and receiver, respectively. The CSI vector h(m)
acquired from the m-th received packet can be represented as

h(m)=[H1,1(m),H1,2(m),. . . ,Hl,k(m),. . . ,HL,K(m)]T , (1)

where Hl,k(m) indicates the CSI data collected in the lth
wireless link at the kth subcarrier; L = Nt×Nr represents the
total number of wireless links; K denotes the total number of
subcarriers in the wireless link; and T indicates the transpose
operation. The CSI matrix H, which is composed of CSI
vectors collected from M packets, can be given by

H = [h(1), . . . ,h(m) . . . ,h(M)]. (2)

Although putting the original CSI matrix H into a deep
learning network directly can realize behavior recognition, it is
not a good option. The reason for this is that H contains much
activity-unrelated information that could severely influence the
recognition result. Moreover, the noise and the phase offset in
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H also affect the recognition performance. To address these 
problems, we first propose to apply a conjugate multiplication 
(CM) method [30] to improve the quality of the CSI. The key 
insight of CM is to take the acquired CSI with the best quality 
as a reference href, and then calculate a conjugate multiplica-
tion of href and h. The criterion for selecting href is to choose a 
CSI vector collected from the antenna with a maximum ratio 
of amplitudes and standard deviations (MRASD). To obtain 
href, we first calculate the wireless link with MRASD, by

Lref = argmax
l∈L

1

K

K∑
k=1

mean(|hl,k|)
std(|hl,k|)

, (3)

where Lref represents the index of wireless link with MRASD;
mean(.) and std(.) stand for the mean operation and the
standard deviation operation, respectively. Then href, acquired
from the m-th packet, can be formed in equation (4) as shown
on the top of next page.

Upon obtaining href, the reference CSI matrix Href for M
packets can be expressed as

Href = [href(1), . . . ,href(m) . . . ,href(M)]. (5)

Based on equation (5), the conjugate multiplications be-
tween all the wireless links and reference links can be obtained
by

C = Href ⊙H∗, (6)

where ⊙ stands for dot product, and ∗ denotes the Hermitian.
Through the above operations, the output C, with size

LK × M , is expected to overcome the effect of phase
offset [30]. However, it still contains some activity-unrelated
information and random noise, negatively affecting recognition
results. To this end, we propose to perform PCA to retain the
activity-related information and eliminate noise contained in
C. Specifically, we divide C into L sub-matrices, written as

C = [C1, . . . ,Cl, . . . ,CL]
T , (7)

Cl =


Cl,1(1) . . . Cl,1(m) . . . Cl,1(M)
Cl,2(1) . . . Cl,2(m) . . . . . .
. . . . . . . . . . . . . . .

Cl,K(1) . . . Cl,K(m) . . . Cl,K(M)

 . (8)

Next, we apply a PCA operation to each Cl to obtain the top
p + 1 principal components. Note that most of the noise is
involved in the first principal component. To mitigate it, we
construct the principal component matrix Ĉl by discarding the
first principal component and keeping the rest of components,
represented as

Ĉl = Cl ×Φ
{2:p}
l , (9)

where Φ
{2:p}
l stands for the matrix constructed by elements

from the 2nd to the pth eigenvectors. The new feature matrix
based on the principal components of all wireless links can be
obtained by

Ĉ = [Ĉ1, Ĉ2, . . . , ĈL]
T . (10)

Note that the size of Ĉ is P × M , P = pK, and P is
used to achieve a tradeoff between computational complexity

and recognition accuracy. The impact of P on the recognition
performance will be illustrated in Fig. 8 later. Although Ĉ can
be used as the input signal to train the DLN, feeding Ĉ into the
DLN directly would cause a significant increase in the training
complexity due to its large dimension. For instance, in this
paper, the time window for each activity is approximately 1s,
the rate of samples fs is 1KHz, and we set P = 60 empirically
in the experiments, so Ĉ is a matrix of size 60×1000. It would
cause extremely high training complexity if we directly took Ĉ
as the input signal for the DLN. Consequently, it is important
to decrease the size of the Ĉ, thereby lowering the training
complexity.

B. Frequency Domain Feature Extraction

Through the above operations, Ĉ has extracted unique char-
acters for different human activities. However, it has a large
dimension, resulting significant training overhead. Moreover,
Ĉ still contains residual activity-unrelated information and
residual noise, leading to performance degradation. To deal
with these problems, we propose the frequency domain feature
extraction method to extract reliable features in the frequency
domain.

We perform Fast Fourier Transform (FFT) on each row of
Ĉ to get the frequency domain feature matrix, by

CF = FFT(Ĉ), (11)

where FFT(.) stands for the Fast Fourier Transform operation.
CF indicates the extracted frequency domain feature matrix.

It is notable that, most of CSI variations caused by human
activity in daily life are in a relatively low frequency range
(less than 100Hz), due to the limited speed and space of
movements. On this basis, we discard the data in the high
frequency range contained in CF to remove activity-unrelated
information whilst retraining the activity-related features. To
further enhance the activity-related CSI, we remove the zero
frequency component (i.e., the first column of CF ) which
is mainly environment-specific but behavior-unrelated. Let
ĈF be the compressed feature matrix, and q be the cutoff
frequency used to filter out activity-unrelated features. The
value of q is determined based on the types of activity to be
recognized. In this paper, we intend to recognize six activities
{laying, standing, walk, fall, standup, empty}. The maxi-
mum frequency for these behaviors is about 80Hz [31], so
we set q = 80Hz. Through the aforementioned operations, the
size of ĈF is P × qM/fs, which is much smaller than that
of CF . Thus, using ĈF as the input signal to train the DLN
can result in a notable decrease in the training complexity.

It is noteworthy that the correlation features between
different wireless links of transmitter-receiver pairs can pro-
vide distinguished information for identifying different behav-
iors [32]. To provide more information for input signals to
DLN, we also compute the correlation feature of ĈF , by

UC = ĈF × (ĈF )
T . (12)

Note that, UC and ĈF can provide correlated and com-
plementary features for behavior recognition. On the one
hand, ĈF contains features in different wireless links, while
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Fig. 2. Architecture of MatNet based activity recognition.

it fails to present other types of information such as the
correlation features between different links. On the other hand,
UC highlights the correlation information between different
wireless links, but it loses some information during correlation
operations. Therefore, we take Θ = {ĈF ,UC} as the input
signal of MatNet for extracting reliable and distinguished
features.

IV. MATNET-PCC BASED HUMAN ACTIVITY
RECOGNITION

As presented in Section III, the output of our AFEE method
is expected to contain significantly enhanced CSI, by retain-
ing the activity-related information whilst mitigating activity-
unrelated data. However, it is difficult to fully eliminate the
impact of the environment. To overcome this problem, we
propose to use MatNet to learn and extract transferable fea-
tures shared among different environments, meaning that these
features are robust to environments. Moreover, we propose a
prediction checking and correction method to further improve
recognition accuracy.

A. Architecture of MatNet

To realize activity classification, we propose to employ
MatNet to automatically learn and extract hidden features from
the enhanced CSI, as depicted in Fig. 2. Given a source data
set S, MatNet is able to build a classier cs for each S, mapping
S to cS , S → cS(.). The source data set S with N samples
can be obtained by

S = {(xi, yi)}Ni=1, (13)

where (x, y) indicates the input-label pairs; x = Θ stands
for the input feature signal; y denotes the output label for the
corresponding human activity.

After that, the estimated output label ŷ can be obtained
based on S and the target sample x̂, by

ŷ = argmax
y

P (y|x̂, S), (14)

where P (.) stands for the probability distribution, defined as

P (ŷ|x̂, S) , S → cS(x̂). (15)

To estimate ŷ, we calculate the linear combination of y in
the source data set S. In this paper, an attention mechanism
in the form of softmax over the cosine similarity is employed
to combine y. Let xi, yi stand for the input signal and the cor-
responding label from the source data set S = {(xi, yi)}Ni=1,
so ŷ can be rewritten as

ŷ =

N∑
i=1

ecos(f(x̂),g(xi))∑N
j=1 e

cos(f(x̂),g(xj))
yi (16)

where cos(α, β) is the cosine similarity function [33], given
by

cos(α, β) =
α · β

∥ α ∥∥ β ∥
. (17)

In (16), f and g are defined as the embedding functions
of x̂ and xi, respectively. Note that x̂ and xi are embedded
fully conditioned on the whole source data set S, expressed
as f(x̂, S) and g(xi, S), respectively. This enables MatNet
to extract generalised features from different source data
(environments).

As shown in Fig. 2, both f and g are composed of CNN
with LSTM, which can extract discriminated and generalized
features from the input data to reliably detect behaviors. In
particular, f consists of a CNN with read-attention based
LSTM [34]. Let f ′(x̂) denote the output features of CNN
given a target sample x̂. g(S) represents the embed data set
via g over the whole source data set S. In such a case, the
embedded feature f(x̂, S) can be obtained by

f(x̂, S) = attLSTM(f ′(x̂), g(S), Np), (18)

where attLSTM(.) stands for the read-attention based LSTM;
Np denotes the number of unrolling steps in LSTM. Thus, hnp ,
the state of the read-attention based LSTM after np processing
steps, is expressed as

hnp = ĥnp + f ′(x̂), (19)

ĥnp , cnp = LSTM(f ′(x̂), [hnp−1, rnp−1], cnp−1), (20)

rnp−1 =

Ns∑
i=1

softmax
(
hT
np−1g(xi)

)
g(xi), (21)

where LSTM(f ′(x̂), [hnp−1, rnp−1], cnp−1) follows the same
structure defined in [35]; cnp represents the cell; rnp−1 is
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read-out from g(S); Ns indicates the length of g(S). After 
conducting Np steps of “reads”, we can obtain

attLSTM(f ′(x̂), g(S), Np) = hNp . (22)

For the embedding function g, it includes a CNN with a
bidirectional LSTM [36]. For a given xi, discriminative fea-
tures g′(xi) are extracted by the CNN network, then g(xi, S)
can be obtained with the help of bidirectional LSTM, given
as

g(xi, S) = h⃗i + ⃗hi + g′(xi), (23)

h⃗i, c⃗i = LSTM(g′(xi), h⃗i−1, c⃗i−1), (24)

⃗hi, ⃗ci = LSTM(g′(xi), ⃗hi+1, ⃗ci+1), (25)

where h⃗i and ⃗hi stand for the outputs of forward LSTM and
backward LSTM, respectively; c⃗i and ⃗ci denote the cells of
the forward LSTM and the backward LSTM, respectively;
LSTM(g′, h, c) follows the same structure as described in [35].

According to the above discussion, g is a function of the
whole source set S. Note that g is critical for conducting
embedding operations on xi, especially when the value of xj

is close to that of xi. For instance, let xi and xj be input
signals for two similar activities (e.g., stand up and standing),
respectively, then we can train g to transfer xi and xj to two
recognizable domains conditional on the whole source data
set.

B. Training Strategy

We define a task, denoted as T , as the distribu-
tion for potential label sets of human behaviors. In
each episode, a set of human activities L are sampled
from T , L ∼ T , consisting of six different behaviors:
{standing, laying, walk, standup, empty, fall}. Next, L is
used for sampling both the source data set S and the batch
of target set B, achieving S = S ∼ L and B = B ∼ L. The
purpose of training MatNet is minimizing the error between
the estimated and the actual labels in B under the condition
of S. In this case, we can obtain the loss function of MatNet
based HAR, by

Loss = −EL∼T

ES,B

 ∑
(x ,y)∈B

logPΛ (y |x ,S)

 , (26)

where Λ = {Λ1,Λ2}, Λ1 and Λ2 stand for parameter sets of
embedding functions g and f , respectively. The core objective
of training MatNet is to minimize Loss over B conditioned
on the source data set S, which is

Λ = argmin
Λ

Loss(Λ). (27)

Note that the training process is conducted fully conditional
on the whole data set S that is collected form multiple different
source environments. Under this situation, the relationship
between different source environments can be built by drawing
support from g and f . As a result, the generalized features
among different environments can be learned and extracted for
HAR. In other words, the impact of a specific environment on
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Fig. 3. Simplified state transition diagram for six different activities.

recognition performance is significantly reduced. Therefore,
the proposed AFEE-MetNet scheme is robust to environments,
contributing to environment-independent recognition.

C. Prediction Checking and Correction

The core of the proposed prediction checking and correc-
tion (PCC) method is to rectify certain recognition errors
that do not match the state transition of human behaviors,
so as to further improve the recognition accuracy. When
a person performs a set of different activities continuously,
these behaviors are not independent but belong to a circle of
continuous states. Fig. 3 shows the simplified state transition
diagram for the case when people perform six different activ-
ities {laying, standing, walk, fall, standup, empty}. To be
specific, when a person conducts “stand up” at the current time
slot, he/she may perform “fall”, “standing” or “stands up” at
next time slot. In such a case, if the output of MatNet at the
next time slot is “fall”, “standing” or “stands up”, the result
follows the state transition diagram. Under this situation, we
treat the output of MatNet as a logical result and keep it as the
final output. Otherwise, the output of MatNet at the next time
will be regarded as an incorrect result, and we will correct it
using the detailed scheme as follows.

We let Na stand for the total number of activi-
ties to be recognized, and Na is set to 6, including
{laying, standing, walk, fall, standup, empty}; Y (tn − 1)
denotes the final output of our proposed method at time slot
tn − 1, and ŷ(tn) represents the output of MatNet at time
slot tn; Y (tn − 1), ŷ(tn) ∈ [1, Na]; Υ is the state transition
diagram for different activities. If Y (tn − 1) and ŷ(tn) abide
by the state transition diagram, i.e., [Y (tn − 1), ŷ(tn)] ∼ Υ,
we set η = 1, otherwise, η = 0.

If η = 0, it means that the output of the MatNet is incorrect
and should be rectified. We let Pm with size Na ×Na be the
confusion matrix; Pm(i, j) stands for the probability of the
activity i being recognized as the activity j; i, j ∈ [1, Na]. We
will rectify the incorrect sensing result based on Υ and Pm.
Specifically, we first find the possible activity set for the time
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Algorithm 1: Prediction Checking and Correction.

1: begin
2: Initialize: the final output Y (tn − 1),
3: the outputs of MatNet ŷ(tn), ŷ(tn − 1), . . . , ŷ(tn − τ),
4: the state transition diagram Υ;
5: the confusion matrix Pm;
6: if [ŷ(tn − 1), . . . , ŷ(tn − τ)] � Υ
7: PCC method is inactivated;
8: Y (tn) = ŷ(tn);
9: else
10: if [ŷ(tn), Y (tn − 1)] ∼ Υ
11: η = 1;
12: else
13: η = 0;
14: Compute Atn according to equation (28);
15: Compute j∗ according to equation (29);
16: end
17: Compute Y (tn) according to equation (30);
18: end
19: Update Pm;
20: end

slot tn conditioned on Y (tn − 1), denoted as Atn , which is
given by

Atn , {j|[Y (tn − 1), j] ∼ Υ, j ∈ [1, Na]}. (28)

After that, the probability of misjudging Atn as ŷ(tn) can
be obtained with the help of Pm. Moreover, we can get
the activity j∗ that holds the highest probability of incorrect
classification in Pm, expressed as

j∗ = arg max
j∈Atn

Pm(j, ŷ(tn)), (29)

where j∗ can be treated as the final output of our proposed
scheme at time slot tn. Thus, the final output of our proposed
method at time slot tn can be expressed as

Y (tn)=

{
ŷ(tn), η = 1,
j∗, η = 0.

(30)

To this end, we can see that the value of Y (tn) heavily relies
on Y (tn − 1). In other words, the accuracy of Y (tn − 1) sig-
nificantly affects Y (tn), restricting the performance of PCC.
To address this issue, we propose an activation mechanism
for PCC to guarantee its reliability, i.e., preventing over-
correction cases. To be specific, the proposed PCC method can
be activated to correct ŷ(tn), only if the outputs of MatNet
[ŷ(tn − 1), . . . , ŷ(tn − τ)] abide by Υ but ŷ(tn) does not. In
this paper, the value of τ is empirically set as 3. The details
of proposed PCC are summarized in Algorithm 1.

V. IMPLEMENTATION AND EVALUATION

In this section, numerous simulations are designed and con-
ducted to verify the recognition performance of the proposed
AFEE-MatNet.

A. Experimental Setup

To validate the recognition performance, we implement the
proposed AFEE-MatNet in seven indoor environments (such
as laboratory, meeting room, office, two types of bedrooms,
dining room, living room) with various wireless environmental

Transmitter

Receiver

(a) (b) (c)

Fig. 4. Layout of three indoor experimental areas: (a) 6m× 7m laboratory.
(b)4m× 6m meeting room. (c)3m× 4m office.

complexities. Notably, the complexity of the wireless envi-
ronment is dependent on many factors, e.g., distance and
obstacles between transmitter and receiver. In each config-
uration/environment, each of five people performs six types
of behaviors, including falling, laying, stand up, standing,
walking, and empty room. Each behavior is conducted 200
times by each person. Among these seven environments, the
first four environments are taken as source environments,
and the collected data in them are regarded as the training
dataset, which is used for training the proposed AFEE-MatNet
scheme. The remaining three configurations are treated as
testing environments, and the acquired data in these envi-
ronments is the testing dataset being used for evaluating
the recognition performance of the proposed AFEE-MatNet
scheme. Due to limited space, we illustrate the layouts of
three testing environments in Fig. 4. In particular, the first
configuration/environment is a 6m× 7m laboratory room, the
second one is a 4m× 6m meeting room, and the third one is
a 3m× 4m square area.

In the experiments, two computers are employed as trans-
mitter and receiver, respectively, and each equips with an
Intel WiFi NIC5300 network card operating under the 802.11n
standard. The WiFi exposure level of Intel NIC5300 is around
0.05W/m2, which is much lower than the guideline (i.e.,
10W/m2) [37], significantly mitigating health risk [38], [39].
Both the transmitter and receiver conduct data transmission at
the operating frequency 5.32 GHz. The transmitter, having one
antenna (Nt = 1), keeps emitting signals, and the receivers
continuously collect data via three antennas (Nr = 3). The
CSI tool in [29] is adopted to acquire and store signals (i.e.,
CSI). There are 30 subcarriers (S = 30) available for each pair
of transmitter-receiver antennas. We propose to use a sliding
window to collect data/samples for each behavior from raw
CSI streams, and the time length for this window is set as 1s.
In the training process, if multiple behaviors are involved in
one time window, its label will be the activity with the largest
ratio. We leave the work of designing a sliding window with
an adaptive time length based on different activities to be a
future task. The sample rate is 1 kHz, thus the dimension of
CSI matrix (H) is 90× 1000.

In the training stage, each embedding function of the
proposed MatNet-eCSI includes a CNN with 6 convolutional
layers. In each layer, there are 3 × 3 convolution, a ReLU
non-linearity operation, and a 2× 2 max-pooling. We employ
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TABLE I
AVERAGE RECOGNITION ACCURACY OF DIFFERENT METHODS IN THREE

INDOOR CONFIGURATIONS

Method 1st Exp. 2nd Exp. 3rd Exp.
Proposed AFEE-MatNet 0.734 0.763 0.803

EI 0.531 0.577 0.605
TNNAR 0.485 0.511 0.544

BVP 0.687 0.699 0.715

a 2.3 GHz PC with Nvidia GeForce GTX 1070Ti graphic card
(8GB memory) to train the proposed AFEE-MatNet. We select
64 and 0.001 as the batch size and learning rate, respectively.
Note that we obtain robust scaling for the developed AFEE-
MatNet in experiments. Specifically, we perform a normaliza-
tion operation on the input signal before feeding it into the
MatNet architecture. Next, in the training process, we utilize
the Batch Normalization method [40] to normalize the input
signal of each layer.

B. Performance Evaluation

In this section, we first present extensive simulation re-
sults under various conditions and parameters, to analyze
the performance of the proposed AFEE-MatNet and other
three recognition schemes (i.e., EI [20], TNNAR [19], and
BVP [26]). Then, we comprehensively validate the sensing
capability of our developed AFEE-MatNet from a wide range
of aspects.

1) Recognition Performance for Different Methods: Table
I compares the average recognition accuracy of six activities
for different sensing methods under different testing environ-
ments. The training dataset from four source environments
are collected to train each scheme, and each trained model
is used to identify activities in testing environments. As can
be observed from this table, the proposed AFEE-MatNet
notably outperforms the other three sensing methods in each
testing environment, which gives credit to the property of the
proposed AFEE scheme and MatNet. Specifically, the AFEE is
proposed to mitigate most activity-unrelated data and condense
the behavior-related information. As a result, the impact of
activity-unrelated components (e.g., caused by noise or envi-
ronment) on feature signals is significantly reduced. Moreover,
we propose to employ MatNet architecture to automatically
build a relationship among different source environments and
extract generalized features for HAR. In other words, the fea-
tures commonly shared among different source environments
are extracted for HAR, and the information subject to a certain
environment would be discarded. This enables our proposed
AFEE-MatNet to achieve robustness to environments. For EI
[20] and TNNAR [19], the number of source environments
limits their recognition accuracies. When the number is not
sufficient, it is hard for these methods to achieve accurate
sensing results. BVP [26] fails to reliably classify some light
activities (such as laying), degrading its detection accuracy.

To provide more details, we present the confusion matrix of
four methods in Fig. 5. In this figure, we select the third testing
environment to examine the performance of each method. We
can observe that the sensing accuracy of the proposed AFEE-
MatNet is far better than those of the other three methods.

Walk Standing Fall Laying Stand up Empty

Walk 0.836 0.017 0.086 0 0.042 0.019

Standing 0.001 0.819 0.003 0.081 0.058 0.038

Fall 0.046 0.006 0.842 0.062 0.039 0.005

Laying 0 0.08 0.017 0.703 0.063 0.137

Stand up 0.03 0.106 0.06 0 0.804 0

Empty 0.081 0 0.003 0.105 0 0.811
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(a) Proposed AFEE-MatNet

Walk Standing Fall Laying Stand up Empty

Walk 0.834 0.035 0.063 0.003 0.044 0.021

Standing 0.011 0.617 0.001 0.138 0.028 0.205

Fall 0.07 0 0.874 0.012 0.04 0.004

Laying 0 0.101 0.011 0.505 0.014 0.369

Stand up 0.001 0.097 0.054 0.003 0.844 0.001

Empty 0.048 0.13 0.001 0.207 0 0.614
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(b) BVP

Walk Standing Fall Laying Stand up Empty

Walk 0.724 0.081 0.1 0.001 0.022 0.072

Standing 0.003 0.641 0.014 0.112 0.13 0.1

Fall 0.223 0.001 0.572 0.009 0.194 0.001

Laying 0.001 0.144 0.009 0.415 0 0.431

Stand up 0.042 0.078 0.214 0.083 0.583 0

Empty 0.005 0.09 0.001 0.208 0.001 0.695
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(c) EI

Walk Standing Fall Laying Stand up Empty

Walk 0.651 0.034 0.175 0.002 0.123 0.015

Standing 0.001 0.415 0.004 0.102 0.002 0.476

Fall 0.107 0.173 0.581 0.125 0.009 0.005

Laying 0 0.1 0.003 0.394 0.001 0.502

Stand up 0.185 0.092 0.122 0.003 0.597 0.001

Empty 0.045 0.141 0 0.185 0.001 0.628
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(d) TNNAR

Fig. 5. Confusion matrix for different human activity recognition methods.

To be specific, each estimated behavior is in accordance with
the corresponding actual one with high probability, implying
that the proposed work is capable of accomplishing reliable
detections. By contrast, for EI [20] and TNNAR [19], their
prediction results cannot match the corresponding actual ones.
Although the prediction activity of BVP [26] is consistent with
the actual behaviors, the accuracy for light activities is low
(e.g., laying and standing).

In Fig. 6, we demonstrate the number of source environ-
ments on the average recognition accuracy for four sens-
ing schemes. The third testing environment is selected for
performance evaluation in this figure. As can be seen, the
proposed AFEE-MatNet, EI [20] and TNNAR [19] can achieve
improved detection results with the number of source envi-
ronments increasing. The reason is that, with more source
environments, these three schemes are able to extract more
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Fig. 6. Recognition accuracy with increased number of source environments
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Fig. 7. Impact of the number of used subcarriers on the recognition accuracy.

transferable features shared among these environments, result-
ing in better recognition performance. In contrast, increasing
the number of source environments does not necessarily lead
to improvement for BVP [26]. This is because the authors
of BVP proposed velocity-related data for HAR, which has
little relationship with the number of source environments.
Moreover, the RNN architecture adopted in that paper cannot
learn generalized features shared among source environments.

In Fig. 7, we show how the number of receiving antennas,
each containing 30 subcarriers, affects the average recognition
accuracy. We examine the sensing performance of different
sensing schemes in the third testing environment. We can
observe from this figure that all methods can obtain improved
recognition results when the number of subcarriers increases.
Moreover, the proposed work is able to achieve larger im-
provement with more subcarriers, compared to the other three
methods.

In Table. II, we also present how well the proposed PCC
inproves the classification results of different methods. The
recognition stage is conducted in the third testing environment.
From this table, it is clear that PCC can also be applied
to other methods, enabling these methods to achieve higher
sensing accuracies. The reason is that PCC can correct some
detection errors that are not in accordance with the state

TABLE II
IMPACT OF PCC ON RECOGNITION ACCURACY FOR DIFFERENT METHODS

Method Without PCC With PCC
Proposed AFEE-MatNet 0.752. 0.803

BVP 0.715 0.758
EI 0.605 0.621

TNNAR 0.544 0.559

TABLE III
IMPACT OF AFEE ON PROPOSED METHOD

Method Accuracy Training Time
With AFEE 0.767 131.7 mins

Without AFEE 0.464 531.2 mins

transition of human behaviors. Moreover, we can see that our
proposed work can achieve a more obvious improvement than
the other methods. This is because our proposed work achieves
higher sensing accuracies, thereby having more opportunities
to activate PCC to further improve detection performance, as
can be seen from the activation mechanism of PCC in Section
IV-C).

2) Effect of AFEE on AFEE-MatNet: In this subsection, we
investigate the significance of AFEE on the proposed scheme.

In Table III, we demonstrate how AFEE affects the per-
formance of the proposed scheme in the sense of recognition
accuracy and training time. In this table, we show the average
sensing accuracy of three testing environments. As can be
seen, the setup with AFEE achieves much higher training
accuracy and less training time, compared to the setup with-
out AFEE. The reason is that the proposed AFEE has the
capability of significantly suppressing activity-unrelated data
and enhancing activity-related information. As a result, the
impact subject to a specific environment but not helpful for
HAR can be effectively reduced, making the proposed scheme
more robust to variations of environments. Moreover, we can
find that the training time in the case with AFEE is much less
than that without AFEE. This is because AFEE can greatly
decrease the size of the CSI matrix that are the input signals
for the training stage, shortening the training time.

Fig. 8 illustrates how the number of principal components
for all wireless links (P ) in AFEE influences the sensing
accuracy and training time. As Fig. 8 depicts, a larger P can
result in improved recognition accuracy for each testing envi-
ronment, while the speed of improvement slows down when
P is sufficiently large. This is because a larger P , i.e., more
principal components, can provide more useful information
for HAR, contributing to better recognition results. However,
the proportion of distinctive features for HAR contained in
the principal component with a larger index becomes less.
Additionally, the training time becomes longer with a larger P .
Therefore, there exists a tradeoff between recognition accuracy
and training time when choosing the value of P .

3) Impact of Input Signals and Human Diversity on AFEE-
MatNet: To further examine the performance of our AFEE-
MatNet, we discuss how its performance changes with various
input signals and human subjects.

In Table IV, we investigate changes in recognition perfor-
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Fig. 8. Impact of P on the recognition accuracy and training time.

TABLE IV
RECOGNITION ACCURACY USING DIFFERENT INPUT SIGNALS.

Method 1st Exp. 2nd Exp. 3rd Exp.
AFEE-MatNet 0.734 0.763 0.803

AFEE-MatNet-C 0.698 0.724 0.766
AFEE-MatNet-U 0.669 0.715 0.749

mance with different input signals in three testing environ-
ments. “AFEE-MatNet” refers to the case of using the output
of AFEE (i.e., Θ) to train MatNet for HAR. “AFEE-MatNet-
C” and “AFEE-MatNet-U” stand for cases of putting ĈF and
UC (refer to Section III-B) into the MatNet architecture for
training, respectively. From this table, it is obvious that AFEE-
MatNet performs much better than both “AFEE-MatNet-C”
and “AFEE-MatNet-U”, because it can extract more distin-
guishable and generalized features for recognition.

In Fig. 9, we demonstrate how detection accuracies vary
with different human beings in each testing environment.
Two persons performed different activities in the training
stage to build the training dataset. In the testing process,
the trained model is used to recognize activities performed
by the other three volunteers. In this figure, we provide the
average recognition accuracy for three persons. As can be
seen, the recognition accuracy changes differently with various
testing persons in each testing environment, implying that
different persons have diverse impacts on sensing performance.
Another observation is that the average recognition results
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Fig. 9. Average recognition accuracy for different people

across various persons are still reliable (e.g., above 72%) in
all testing environments. This demonstrates that the proposed
AFEE-MatNet is robust to human diversity.

C. Application potential of AFEE-MatNet

The above simulations verify that the proposed AFEE-
MatNet is able to provide a reliable “one-for-all” HAR so-
lution, which brings great application potential. Specifically,
AFEE-MatNet can be applied to a wide range of applications,
including health, safety, security and entertainment in aged
care centers, hospitals, and smart homes. For instance, aged
care centers may apply our proposed AFEE-MatNet to detect
aged people’s abnormal activities (such as falling down) and
report an alert to the monitor center, without exposing people’s
private information (e.g., facial data). Moreover, our AFEE-
MatNet can be applied by hospitals to monitor patients’
behaviors, ensuring their safety. In addition, AFEE-MatNet
can be used by smart home systems, so that people can
control appliances via their activities or gestures without using
conventional remote-controls.

VI. CONCLUSION

In this paper, we propose an innovative CSI-based HAR
scheme, denoted as AFEE-MatNet, to accomplish the “one-
fits-all” human activity recognition. The proposed scheme
is shown to have the following major novelties. First, the
proposed scheme only requires an initial training, and then
it can be directly applied to new environments without an
extra re-training process. Second, the proposed scheme is able
to achieve much better recognition performance, compared to
other HAR techniques. Third, our scheme requires fewer seen
environments for training the recognition model, compared to
other HAR methods. These were achieved by the combined
AFEE and MatNet-PCC methods. The AFEE method is able
to mitigate noise, eliminate the impact of behavior-unrelated
elements subject to the specific environment, and retain the
activity-related information. It can also significantly decrease
the size of input signals, lowering the computational complex-
ity and shortening the training time. We propose to employ
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the MatNet architecture to extract generalized features shared 
among source environments, facilitating cross-environment 
recognitions. To further improve sensing performance, we 
propose a prediction checking and correction method to rectify 
detection errors that do not abide by the state transition of 
behaviors. We design and conduct numerous experiments to 
validate the performance of our proposed AFEE-MatNet from 
a wide range of aspects. The extensive results verify that 
our proposed scheme significantly outperforms existing state-
of-the-art techniques, in terms of improving the recognition 
accuracy and lowering the training time.

In this work, LSTM was adopted in MatNet to process 
activity signals and extract effective features. Its memorized 
structure demands more resources in training and implementa-
tion, compared to techniques without requiring memory. How 
to apply techniques without memory for deep learning-based 
HAR is an interesting open research problem.
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