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Abstract— Clock asynchronism is a critical issue in integrating
radar sensing into communication networks. It can cause ranging
ambiguity and prevent coherent processing of dis-continuous
measurements in integration with asynchronous transceivers.
Should it be resolved, sensing can be efficiently realized in
communication networks, requiring little network infrastructure
and hardware changes. This article provides a systematic overview
of existing and potential new techniques for tackling this
fundamental problem.We first review existing solutions, including
using a fine-tuned global reference clock, and single-node-based
and network-based techniques. We then examine open problems
and research opportunities, offering insights into what may be
better realized in each of the three solution areas.

Index Terms—Integrated sensing and communications, joint
communications and sensing (JCAS), asynchronous transceivers,
cross-antenna cross-correlation, cross-antenna signal ratio.

I. INTRODUCTION

ntegrated sensing and communications (ISAC), aka,
joint communications and sensing (JCAS), is a technique
that enables the integration of communications and

radar/radio sensing into one system, sharing a single set of
transmitted signals and a majority of hardware and network
infrastructure. It is considered as a major candidate in many
next-generation communications systems, such as 6G mobile
and Fi networks, and the next generation of radar. ISAC is
expected to improve spectrum efficiency, system cost, power
consumption, and performance. Integrating radar sensing into
existing communication systems is known as communication-
centric ISAC [1].
There are three types of geometric configurations of

transmitters (Txs) and sensing receivers (Rxs) in
communication-centric ISAC in terms of sensing: co-located,
spatially-separated, and networked, similar to mono-static, bi-
static, and multi-static/distributed radar geometries, as
illustrated in Fig. 1. As discussed in [1], these configurations
have respective advantages and disadvantages, and would
require different levels of modifications to current
communication-only networks.
The co-located mono-static configuration requires

simultaneous transmission and reception operation, hence
implicitly, in-band full-duplex operation, which is still
immature for practical applications. Therefore, sub-optimal
techniques such as deploying widely separated transmitting and
receiving antennas will be needed for co-located configuration,
which requires considerable system modifications [1].
The spatially-separated bi-static configuration may be a more

practical near-term option for communication-centric ISAC, as

it can potentially be realized without requiring any changes to
the current hardware and network. However, one major issue in
this configuration is the clock asynchronism, i.e., the
transmitter and sensing receiver use their local oscillators with
unlocked clocks. In bi-static radar, a common high-accuracy
clock signal is generally provided via, e.g., fiber optical links or
the GPS. However, it is typically unavailable between the base
station and user terminals in current communication systems.
Clock asynchronism can cause timing offset (TMO) and carrier
frequency offset (CFO). Both TMO and CFO are slow time-
varying due to clock instability. In communications, TMO can
be absorbed into channel estimates and CFO can be estimated
and compensated. In contrast, for sensing, they cause
measurement ambiguity and accuracy degradation, as will be
elaborated on shortly. Therefore tackling clock asynchronism is
a fundamental challenge in the bi-static ISAC configuration.
In the networked configuration, multiple communication

nodes can cooperatively sense the environment, such as in a
cloud radio access network (CRAN). Unless a common clock
is available to these nodes, the clock asynchronism issue similar
to that in the bi-static configuration also exists. However, the
networked environment provides more capacity for dealing
with this issue, as we will elaborate on later.
In short, clock asynchronism is a fundamental problem in

communication-centric ISAC. Should it be solved, bi-static and
networked sensing can be efficiently realized, requiring little
network infrastructure and hardware changes.

Impact of Clock Asynchronism on Sensing

Consider a multi-input multi-output (MIMO) orthogonal
frequency division multiplexing (OFDM) ISAC system. Let
(, ,,) be the frequency-domain channel state information
(CSI) of a quasi-static channel between the p-th receiver
antenna and the q-th transmitter antenna at the n-th subcarrier
of the t-th OFDM block. It can be represented as

(, ,,) =

 ∑  
,0,, ,,

= , (1)

where  is the random phase shift term, , is the TMO, ,
is the CFO, ,, is a function of angle of arrival (AoA) and
angle of departure (AoD),  is the propagation delay, , is
the Doppler frequency,  is the path amplitude,  is the total
number of paths, and  is the OFDM block period. In many
sensing applications, from the CSI measurements, we need to
explicitly or implicitly estimate {, ,}, as well as AoAs and
AoDs, in the presence of unknown variables { , ,, ,} that
may be slow time-varying. The CSI measurements, in the form
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of elements in the channel matrix (, , , ), are typically
obtained from channel estimation in communications, one from
each packet, as shown in Fig. 1. For sensing, clock
asynchronism has the following major impacts:

• TMO can directly cause timing ambiguity and hence
ranging ambiguity, and CFO can cause Doppler estimation
ambiguity and hence speed ambiguity. For example, for typical
clock stability of 20 parts-per-million, the accumulated
maximal variation of TMO over 1 millisecond can be 20
nanoseconds, which translates to a ranging error of 6 meters.

• Clock asynchronism also causes unknown and time-
varying phase shifts across packets or CSI measurements, and
cannot be tracked by pilots because of entangled phase shifts
due to channel variation. This prevents coherently processing
measurements at different timeslots/packets, and also makes
Doppler estimation challenging if both the signal magnitude
and phase are used.

Overview of Existing Solutions

In the rest of this article, we provide a systematic review of
existing sensing techniques that handle asynchronous Txs and
Rxs, and look into future research directions. We classify
existing techniques into three categories: using a global
reference clock, single-node-based and network-based
solutions, as shown in Table 1. The first relies on an external

accurate reference clock. The second can be implemented in a
single receiver, and the third exploits measurements from
multiple cooperative nodes. Our technology review is
accordingly organized into three sections next, followed by
discussions on open research problems and conclusions.

II. USING A GLOBAL REFERENCE CLOCK

The basic idea of this solution is to align individual clocks on
board with a common clock source that has high reliability and
stability. The evolving wireless time-sensitive network
(WTSN) may be a potential solution, if its timing accuracy can
be improved to the order of nanoseconds. To date, the most
widely used common clock source is from the global navigation
satellite system (GNSS). The standard GPS-assisted
synchronization is sufficient for communications; however,
further processing is required to improve the accuracy and
stability of the clock signals for radar sensing applications.
Since GPS satellites broadcast time, orbit and other

information via L1 and L2 signals, early time synchronization
solutions receive these signals and extract the exact time
information, referred to as the direct time extraction (DTE). The
typical time accuracy (error between actual and estimated
values) of DTE is 10 ns or less. This accuracy, however, needs
to be averaged over a long time, e.g., over 1000 s, to cancel out

Figure 1. Three system configurations of ISAC, and a typical ISAC MIMO-OFDM receiver, where time-

varying TMO and CFO due to clock asynchronism cause major sensing challenges in the bi-static setup.

Techniques Merits Issues

Using
global
reference
clock

GPS disciplined Low-cost hardware-based
implementation; no additional signal
processing complexity.

Require satellite visibility and be constrained to
outdoor applications; Solutions that well balance
synchronization speed and accuracy are yet to be
developed.

GPS-aided time
stamping

Single
node
based

Cross-antenna
cross-correlation

Exploit locked-clock across multiple
receiving channels; Easy to implement
without requiring changes to current
network and hardware infrastructure.

Require multiple receiving channels;
Constrained applications due to algorithm
requirements, capability, and complexityCross-antenna

signal ratio
Network
based.

Deterministic
methods

Explore strength of networked nodes;
Improved sensing capability with
“multiview” and signal diversity.

Significantly increased complexity and
information exchange overhead.

Stochastic
methods

Table 1. Classification of existing solutions to the clock asynchronism problem and a brief comparison.
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the inherent short-term instability of satellite time. Thus, DTE
can be unsuitable for applications that need fast time
synchronization.
GPS-disciplined oscillator (GPSDO) is another major

solution for GPS-aided time synchronization and is widely used
in distributed radar systems [2]. GPSDO is performed by
aligning a radio system’s local oscillator (LO) with the so-
called pulse per second (PPS) signal carried by L1 and L2
signals. As illustrated in Fig. 2, PPS is a periodic pulsed signal.
Thus, if distributed sensing systems are each equipped with a
GPSDO, they are then synchronized to a certain extent subject
to GPSDO accuracy and stability. Underlying GPSDO is
generally a phased-locked loop (PLL). With the use of PLL,
GPSDO suffers from the trade-off between the time constant
(the time used by a PLL to lock) and lock-up performance. For
distributed radars with static positions, the long waiting time for
GPSDOs to synchronize may be acceptable. For ISAC sensing,
however, sensing transceivers can be mobile, making the PLLs
of GPSDOs frequently restart and difficult to lock.
Recently, a GPS-aided time stamping (GPSTA) method [3]

was proposed to synchronize distributed wireless sensors.
Unlike GPSDO, GPSTA does not change a device’s LO, hence
significantly reducing the time required for synchronization. In
fact, GPSTA puts a timestamp on each sample, as individually
performed in wireless sensors, and then resamples the digital
signal to align the sampling intervals of distributed sensors, as
if their clocks are synchronized. The timestamp in each sensor
is estimated by mapping the local clock onto the GPS time
scale, while the mapping is performed through a linear fit
between the local clock count and the PPS time elapse. The
basic principle of GPSTA is shown in Fig. 2. When the -th
PPS arrives, the absolute GPS time is extracted from the L1
signal, as denoted by . In the meantime, the value of a local
counter is recorded, as denoted by  . Similarly, when the
( + )-th PPS arrives,  and  are recorded. Thus, if the
clock count of the  -th sample is  , its timestamp can be

estimated as  =  +


+
 . The timestamp estimation

error is due to the offsets in the extracted GPS time and the
reading of the local counter.
Table 2 compares the synchronization performance of the
methods above. From Table2, we can conclude that GPSDO
and GPSTA are more applicable to ISAC sensing than DTE due
to the much faster time synchronization. Moreover, GPSDO is
more suitable for static ISAC scenarios due to the PLL trade-
off, while GPSTA, which is also cheaper, can be applied to both
static and mobile scenarios. A major disadvantage of GPSTA is
the low accuracy in terms of ISAC sensing.

III. SINGLE-NODE SOLUTIONS: CROSS-ANTENNA
PROCESSING

Limited research has been reported to resolve the clock
asynchronism problem in a single receiver node. One set of
techniques are based on constructing a reference signal from the
line-of-sight (LOS) path and have been widely exploited in
passive radar, such as passive coherent location [4]. The time
difference of arrival (TDOA) between the reference signal and
reflected echo is then measured to remove the timing offset. The
technique is sensitive to the quality of the constructed reference
signal. The other set of techniques commonly exploit the fact
that TMO and CFO across multiple antennas in the receiver are
the same, because the common oscillator clock is used in the
RF circuits for all antennas. These techniques have been
validated in passive WiFi sensing [5-8]. Among them, the most
effective ones can be classified into two methods: cross-antenna
cross-correlation (CACC), and cross-antenna signal (or CSI)
ratio (CASR). Next, we mainly elaborate on the second set for
their better overall performance, of which the block diagrams
of some specific schemes and some experimental results are
shown in Fig. 3.

Cross-Antenna Cross-Correlation (CACC)

The CACC method computes the cross-correlation (i.e., cross-
product) between signals from multiple receiving antennas.
Referring to Eq. (1), we can see that CACC removes the random
phase shift, TMO, and TFO; however, it outputs  terms. The
sensing parameters also become relative ones, e.g., 1 − 2
and ,1 − ,2 , as well as their images −(1 − 2) and
−(,1 − ,2).
To proceed with the estimation of sensing parameters

{ ,,}, it is widely assumed that (1) there exists a dominating
LOS path with a much larger magnitude than non-line-of-sight
(NLOS) paths; and (2) the transmitter and sensing receiver are
static, and the relative location of the transmitter is known to
the receiver. The second assumption is not necessary for some
applications. Under these assumptions, the CACC outputs can
be divided into four groups: the cross product of the LOS term,
the cross products between NLOS terms, the cross products
between LOS and NLOS terms, and the conjugates of these
products. The NLOS cross products are much smaller than
others and can be ignored. The LOS cross-product is invariant
over the channel coherent time. Together with static terms in

Name of
Methods

Time
accuracy
(ns)

Frequency
accuracy

Time
(s)

Cost
(USD)

Suitability
for ISAC
sensing

DTE
3-10 (24
h)

4 × 104

(24 h)
~1000 -- low

GPSDO ≤5.5
2.6 ×
104

(long)
~100 ~1000

Static
sensing
scenarios

GPSTA ≤42 -- ~1 ~100
Static and
Mobile

1s
10ms

GPS time

LC

A fitted linear
relationG

P
ST
A

Phase
detector

Loop
filter

VCO
OutputP

LL
PPS

GPSDO

Figure 2. Illustration of PLL-based GPSDO and GPSTA.

Table 2. Performance comparison among different

GPS-aided time synchronization methods.
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other groups, they can be removed by passing the CACC
outputs through a bandpass filter (BPF) in the time domain. The
cross-products between the dynamic NLOS and LOS paths thus
dominate in the output of the filter, containing relative delays
and Doppler frequencies and their images with values
symmetric about zero. To this end, the outputs largely retain the
linearity of the signals, if multiple paths and/or targets are
present, such that conventional sensing algorithms can be easily
applied. The cross-product between LOS and dynamic NLOS
signals also significantly amplifies the dynamic NLOS signal,
which is useful for detecting its sudden change, when, e.g., an
object crosses obstacles such as walls [6]. However, one main
drawback is that the image components may cause sensing
ambiguity and degrade the performance of sensing algorithms.
To suppress the image components, one widely used scheme

[5], what we call add-minus, is as follows. Firstly, a reference
antenna with typically the largest average power is selected. A
constant value is then added to signals from the reference
antenna, and another constant is subtracted from signals at other
antennas before the cross-correlation operation. In this way, one
of the two LOS-NLOS cross-products is enlarged, and the other
is diminished. This scheme has been widely used for range and
velocity estimation in WiFi sensing and is shown to work to
some extent. However, it is found to be susceptible to the
number and power distribution of static and dynamic signal
propagation paths.
An alternative scheme, called mirrored MUSIC, is proposed

in [9]. Exploiting the symmetry of the unknown relative
parameters, we can construct two mirrored signal and basis
vectors by adding the original ones in a conventional two-
dimensional (2D) MUSIC algorithmwith their sample-reversed
versions. Thus, only L mirrored vectors are needed to span the
whole signal space, instead of the 2L ones in conventional
MUSIC. This equivalently reduces the unknown parameters by
half, improves the estimation performance, and resolves the
image ambiguity in the outputs.
A different strategy of removing the image components is

proposed in [10] for single-target real-time passive WiFi
tracking. It exploits the dominating LOS cross product instead
of simply removing it, unlike all the CACC methods mentioned

above. The LOS cross-product is used to obtain the ratio
between dynamic and static CSI. Then a metric is established
as a function of the sensing parameters of the dynamic path,
without involving image components. Accurate Doppler
estimates can then be obtained from the metric, using, e.g., the
conventional MUSIC algorithm. The signal auto-correlation is
then applied to extract dynamic components by exploiting the
estimated Doppler frequencies, followed by delay and AoA
estimation.

Cross-Antenna Signal Ratio (CASR)

By exploiting the common offsets across receiving antennas,
we can also compute the CSI ratios between one reference
antenna and others to remove the impact of clock asynchronism
[7,8], which we call the CASR technique. For a single dynamic
path, CASR generates an expression where the phase associated
with sensing parameters is only contained in one term in the
denominator. There is a close relationship between the phase
variation of the CSI ratio and that of the sensing parameters.
In [7], by considering a single dynamic path in respiration

sensing, a close relationship is established between the ratio of
CSI measurements across two receiving antennas and human
chest movement. The CSI ratio is rewritten in the form of
Mobius transformation, and the reflection path length change
due to chest movement can be directly mapped to the change of
CSI ratio. More specifically, it is found that the CSI ratio rotates
along a circular arc clockwise or counter-clockwise,
corresponding to the inhalation and exhalation in breathing
pattern detection. With the application of CSI ratio, it is shown
that the sensing range can be significantly extended with high
accuracy [7], compared to CACC.
Using the principle of CASR, it is still possible to formulate

a linear multi-source mixture problem when multiple dynamic
targets need to be sensed. One example is available from [8],
where respiration sensing for multiple persons is studied. This
work first separates the CSI measurements for multiple persons,
and then applies sensing algorithms to each person’s CSI. To
separate the CSIs, a blind source separation technique such as
the independent component analysis (ICA) can be applied. The
ICA technique requires that the sources are mixed linearly;
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Figure 3. (Left) Block diagrams of some CACC (in purple) and CASR schemes for a system with two receiving antennas,

where H1 and H2 denote the CSIs at one subcarrier of the two antennas, and the filters are applied to measurements

over time for each subcarrier. (Right) Experimental results for Doppler estimation using the methods of add-minus

CACC (shown in black cross marks) [5], CSI-ratio [7] (blue solid curve), and DFS estimator [10] (red dashed curve).
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however, the direct CSI ratio is non-linear. Since the impact of
clock asynchronism still needs to be removed before ICA, the
CSI-ratio expression needs to be modified to generate a linear
model. This is achieved by using the static background
component as the denominator in the CSI ratio, since a common
phase shift due to clock asynchronism exists in the originally
received and background signals. In [8], a filter is designed
through the genetic algorithm to extract static background
signals from the CSI measurements. The modified ratios form
linear combinations, and ICA can then be applied.

Comparisons

The CACC method retains signal linearity; hence
conventional sensing algorithms can be easily applied to solve
complicated sensing problems involving, e.g., multiple targets
and multiple dynamic paths. The advantages of CASR,
compared to CACC, are as follows: (1) The CSI ratio is simple
to compute and has an elegant relationship with the target
movement; and (2) It can cancel the distortions in CSI that are
common to receiving antennas, such as the AGC variation, to
improve the SINR, leading to significantly improved sensing
performance such as larger sensing range. Despite these
advantages, known solutions are constrained to indoor
environments, considering only low-speed moving targets and
estimating their relative movement, essentially associated with
the Doppler frequency. Given the challenges in estimating other
sensing parameters, it is unclear whether they can be applied to
applications such as the characterization and tracking of high-
mobility targets.
Fig. 3 presents some experimental results for Doppler

frequency estimation from WiFi CSI measurements for a
human walking in an office environment [5]. All estimates are
raw, before smoothing and filtering operations. We can clearly
see the residual images from the add-minus CACC outputs,
which require complicated subsequent filtering and path
matching processing to clean up [5]. The DFS estimator
performs best with the smallest variation. In Table 3, the key
ideas, advantages and disadvantages of these techniques are
summarized.

IV. COOPERATIVE NETWORK-BASED SOLUTIONS

In a communication network involving multiple nodes,
receivers can conduct cooperative sensing, via either a
deterministic or statistical approach. There has been extensive
research on cooperative networked localization, which locates
signal-emitting transmitters [11]. Comparatively, there has
been little reported work on cooperative sensing, which aims to
sense both transmitters and the environment surrounding the
transmitters and receivers, and deals with both localization and
diverse sensing applications. Despite these differences, many
existing techniques for cooperative localization may be
extended and applied to cooperative sensing. Here, we explore
two classes of potential technologies to deal with clock
asynchronism in cooperative sensing: deterministic geometric
and statistical methods. We leave discussions for major
challenges, such as target association, for cooperative
networked sensing, to Section V.

Deterministic Geometric Methods

The deterministic geometric methods exploit known geometric
relationships to remove the clock offset, via, e.g., the
trilateration and triangulation techniques, which have been
commonly used in networked localization [11]. Here, we depict
the potential of applying these methods to networked sensing.
As shown in the networked configuration in Fig. 1, multiple
remote radio units (RRUs) are used to collect the echo signals
from the same Tx to sense a target, e.g., the car therein. As
RRUs are centrally controlled through, e.g., optical fibre, they
can be well synchronized. However, there still exists clock
asynchrony between Tx and RRUs.
TDOA can suppress the timing offset that is common to the

RRUs. Three RRUs can result in two TDOAs with timing offset
suppressed. Then, using the known locations of RRUs
combined with the two TDOAs can solve the target's location
unambiguously.
The AOA-based solution is relatively simpler. Only two

RRUs are needed to estimate the AOAs of the same target. Then
the target location can be solved using some basic triangular
relations. As illustrated in Fig. 1, for the triangle XUV, if we
know two angles, a and b, the location of X can be easily solved
based on the known locations of U and V.
The TDOA solution needs three synchronized nodes to sense

one target unambiguously. In contrast, the AOA solution can be
performed over two nodes that may not be synchronized but
must be equipped with antenna arrays to estimate AOAs. Since
antenna arrays are commonly used in modern mobile networks,
AOA-based solutions can be more promising in ISAC.

Stochastic Methods

Various statistical estimators have been developed for network
localization, as reviewed in [13]. Some of these techniques have
been explored to deal with the asynchronization problem, by
exploiting the statistical averaging effect of multiple
measurements.
We illustrate the methods via one example based on the

expectation-maximization (EM) technique. In [14], multiple
moving passive targets are localized with one Tx and multiple
Rxs. RFID tags are assumed to be installed on these targets so
that the reflected signals can be separated at Rxs. Thus
essentially, a single passive target localization problem is
considered. The receiver-specific time-varying clock offset is
modelled as a memoryless Markov process where a Gaussian
noise process is introduced to represent the difference between
different timeslots. The Gaussian noise variables are
statistically independent between Rxs, but have the same zero
mean and non-zero variance parameters. This clock offset
model makes it possible to average the effect of offset in the
subsequently formulated maximal likelihood and maximum a
posteriori estimator. The solution of the estimator is obtained
by applying an iterative EM algorithm. The work demonstrates
the efficiency of such a statistical estimator in handling not only
the clock offset, but also NLOS links. However, the high
complexity of the scheme could be a concern for real-time
implementation.
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V. FUTURE RESEARCH DIRECTIONS

Although existing solutions have demonstrated their
potential in resolving the clock asynchronism problem, they
have respective limitations, and there are still significant spaces
for improvement. Here, we discuss open problems and research
opportunities in these areas.

Refining GPS Clocks for ISAC

GPSTA is a promising time synchronization solution for ISAC
but needs to be improved in terms of synchronization accuracy.
Two potential future directions are suggested below:
Multi-point adaptive fitting: Rather than the two-point fitting

shown in Fig. 2, one may employ multi-point adaptive fitting
by continuously incorporating new GPS time and onboard
counter samples. Adaptive updating algorithms can also be
devised to constantly refine the time synchronization accuracy.
Jointly using multi-satellite PPS signals: When multiple

satellites are in view, their PPS signals can be jointly used to
reduce the short-term instabilities of satellite times. Note that
such time instability has been unveiled as a significant time
error in GPSTA [3].

Relaxation of Single-node Sensing Techniques

The CACC and CASR methods have demonstrated great
potential, but they also have notable limitations. Tackling their
limits is important for generalizing these techniques.
Firstly, the CACC method relies on the assumptions of fixed

Tx-Rx locations and presence of a dominating LOS path. With
varying Tx and Rx locations, the estimated sensing parameters
become relative, and the absolute locations of reflectors cannot
be determined. Without the dominating path, all product terms
may have similar power, and the product terms with dynamic
paths cannot be ignored anymore. It is critical to relax these
assumptions to broaden the applications of CACC, via, e.g.,
exploring known static reflectors near the receiver.
Secondly, the CASR method’s effectiveness has only been

demonstrated for sensing relative movement. Essentially, only
Doppler frequencies associated with the relative motion of

targets have been estimated. The variation of propagation delay
and AOAs are yet to be considered, to significantly extend the
applications of CASR to scenarios involving high mobility and
large range variations. Their estimation via CASR is much
more challenging than estimating Doppler frequency. A
potential solution would be to combine CASR with CACC.
Thirdly, extending the single-node solutions to more

complicated scenarios involving multiple dynamic paths and
objects will be critical for practical applications. For CASR, this
is particularly challenging and only very limited works have
been reported. The linear signal separation technique in [8]
requires signal independence between different users, which
may not always be available. It would be critical to develop
more general linearization techniques for CASR so that
conventional sensing algorithms can be applied to deal with
these complicated scenarios. Advanced techniques based on
machine learning may be applied to extract feature signals for
different targets.

Cooperative Networked Sensing

Cooperative networked sensing based on, e.g., TDOA and
AOA, can be challenging in practice due to a critical issue of
target association. The issue is specific to ISAC, because, in
networked localization, transmitters can be differentiated in
specific domains, e.g., waveform and frequency.
In ISAC sensing, the presence of multiple targets makes the

timing offset entangled with the propagation delays, and the
order of path arrivals may not be the same for different
receivers. Thus target association needs to be implemented
before almost all timing-based trilateration operations. For
triangulation, target association may be implemented
simultaneously, as it is almost independent of clock offset. For
timing-based trilateration, it is generally challenging, and the
complexity may increase exponentially with the number of
targets increasing. One potential solution is to exploit new
communication protocols to assist the association [12]. The
stochastic methods in networked sensing may also be adopted
to realize joint association and sensing [11,13].

Methods Key Idea Advantages Disadvantages

Reference
Signal

Construct a reference
signal from LOS path,
and then compute
TDOA.

Linearity of signals and flexibility of
signal processing are retained.

- High-quality reference signal construction is
not easy;
- Coherent processing of discontinuous signals
is challenging due to random phase shifts.

CACC Compute signal (CSI)
cross-correlation
between one reference
and other antennas

- All useful signals are retained.
- Linearity is retained and
conventional sensing techniques can
be applied.

- Have application constraints;
- By-product cross-correlation outputs need to
be removed.

CASR Compute the signal
(CSI) ratio between any
two antennas

- Cancel distortions in CSI common
to Rx antennas, e.g., AGC variation,
to boost signal-to-interference-and-
noise ratio (SINR);
- No image components;
- Easy to see phase variation.

- Hard to estimate Parameters in denominator;
- Linearization requires special techniques and
may be hard to achieve for multiple
paths/targets;
- CSI ratio has different characteristics from
CSI, making phase estimation challenging.

Table 3 Comparison of existing single-node cross-antenna processing techniques.
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We envision several potential directions to combat clock
asynchronism in a networked environment: 1) Instead of
confining in TDOA- or AOA-based solutions from
conventional localization, we can extend the degrees of
freedom to more unexplored domains, such as Doppler and
polarization. The combination of different domains can bring
more benefits; 2) We may identify and exploit useful
information from the sensing environment to perform post-
calibration for all targets. The rationale is that some targets may
be active users that communicate with the sensing transceivers.
The clock correction can be more easily performed on these
targets by cooperation. Then, the calibration information from
these targets may be used for removing the clock asynchronism
for other targets; and (3) we may resort to joint estimation
methods, e.g., jointly estimating transmitter location and time-
varying timing offset caused by clock offset and skew in [12]
and AoA and frequency in [15]. These techniques typically
formulate a statistically optimal objective function using, e.g.,
the maximal likelihood principle, and obtain ambiguity-free
estimates at the cost of high complexity.

VI. CONCLUSIONS

In this article, we show that clock asynchronism is a central
problem in integrating radar sensing into communication
networks, and that it can be resolved by three classes of
techniques: using a global reference clock, single-node-based
and network-based solutions. GPS can potentially offer a
reliable global reference clock for outdoor devices, but its
accuracy and stability need further improvement to meet the
sensing accuracy requirement. Single-node-based techniques
face the challenges of relaxing application constraints and
extending application scenarios. Networked techniques need to
tackle the challenging target association problems while
applying trilateration and triangulation techniques. The three
categories of techniques may also be combined. The
prospective solutions are expected to boost the realization of
integrated sensing in communications significantly.
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