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Abstract

Network slicing is a core technique of fifth-generation (5G) systems and beyond. To maximize the number of accepted net-
work slices with limited hardware resources, service providers must avoid over-provisioning of quality-of-service (QoS), which
could prevent them from lowering capital expenditures (CAPEX)/operating expenses (OPEX) for 5G infrastructure. In this paper,
we propose a sub-action aided double deep Q-network (SADDQN)-based network slicing algorithm for latency-aware services.
Specifically, we model network slicing as a Markov decision process (MDP), where we consider virtual network function (VNF)
placements to be the actions of the MDP, and define a reward function based on cost and service priority. Furthermore, we adopt the
Dijkstra algorithm to determine the forwarding graph (FG) embedding for a given VNF placement and design a resource allocation
algorithm — binary search assisted gradient descent (BSAGD) — to allocate resources to VNFs given the VNF-FG placement. For
every service request, we first use the DDQN to choose an MDP action to determine the VNF placement (main action). Next, we
employ the Dijkstra algorithm (first-phase sub-action) to find the shortest path for each pair of adjacent VNFs in the given VNF
chain. Finally, we implement the BSAGD (second-phase sub-action) to realize this service with the minimum cost. The joint action
results in an MDP reward that can be utilized to train the DDQN. Numerical evaluations show that, compared to state-of-the-art
algorithms, the proposed algorithm can improve the cost-efficiency while giving priority to higher-priority services and maximizing
the acceptance ratio.
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1. Introduction

To meet the diverse industrial and market demands, the In-
ternational Telecommunication Union (ITU) has classified the
current-generation mobile networks (5G) into three main cate-
gories: ultra-reliable low latency communications (URLLC),
enhanced mobile broadband (eMBB), and massive machine-
type communications (mMTC). Packets belonging to the same
category are aggregated and then travel through the correspond-
ing network slice, which is composed of an ordered set of vir-
tual network functions (VNFs) and virtual links (VLs) connect-
ing them. A network slice can be symbolized by a service func-
tion chain (SFC) or a VNF-forwarding graph (VNF-FG). 5G
imposes more stringent latency requirements on payload traffic
than its predecessor, 4G systems, in support of latency-sensitive
applications, such as remote surgery and self-driving vehicles
[1]. Therefore, efficient and automatic placement of VNFs be-
comes one of the most critical components for meeting such re-
quirements. Furthermore, within the same category, traffic from
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different users may have different quality-of-service (QoS) re-
quirements; hence, we need to create several sub-slices [2, 3]
within a category to meet the diverse requirements.

Several works have aimed to address the VNF-FG place-
ment problem. Some are heuristic-based methods that are good
for stationary systems but could have degraded performance
in dynamic systems. Others are deep reinforcement learning
(DRL)-based approaches, which are efficient when properly de-
signed but inefficient when their action space becomes enor-
mous. In addition, two main open issues remain in all the
existing works. First, only a few focus on the sub-slices is-
sue, let alone latency-sensitive sub-slices. Second, when de-
ploying network slices, most works adopt the classical virtual
network embedding (VNE) model, which assumes that the re-
quired resources of VNFs are already specified in SFC requests
[4] and thus do not need to consider the resource allocation is-
sue of VNFs. However, in some real cases, customers might
not be knowledgeable enough to configure VNFs; hence, ser-
vice providers must help to allocate resources to VNFs.

In this paper, to address these issues, as in [5], we first as-
sume that customers do not know the required resources of
VNFs and thus specify their SFC requests in terms of (i) a se-
quence chain of VNFs, (ii) requested traffic, and (iii) latency
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requirement. Then, we propose a sub-action aided double deep
Q-network (SADDQN)-based network slicing algorithm for de-
ploying latency-sensitive sub-slices with different latency re-
quirements.

Specifically, the proposed algorithm handles SFC requests
one after another. For a request, the algorithm sequentially de-
cides (i) the placement of the VNFs in this SFC, (ii) the for-
warding graph (FG) embedding given the VNF placement, and
(iii) the assignment of CPU and bandwidth resources to the
VNFs, given the placement of the VNF-FG.

We assume there are L latency-sensitive SFC requests, also
known as service requests. Accordingly, we model the network
slicing for all requests as a Markov decision process (MDP)
and represent the MDP action space as the possible VNF place-
ments of a single request. We prioritize requests based on
their latency requirements and define the reward function of the
MDP based on priority and resource cost. For every incoming
request, the DDQN first chooses an MDP action to determine
the VNF placement. Given the VNF placement, the Dijkstra al-
gorithm is then employed to embed the VLs. Finally, based on
the VNF-FG placement, the latency requirement, and requested
traffic of this service, we propose a resource allocation algo-
rithm — binary search assisted gradient descent (BSAGD) —
to provide the request with the minimum resource such that its
latency requirement is satisfied. In response to the joint action
(VNF-FG placement and resource allocation), an MDP reward
is returned to train our DDQN. Once trained, the SADDQN
model approximates the optimal solution of ensuring priority
allocation for higher-priority services and maximizing the ac-
ceptance ratio while minimizing the total cost.

The main contributions of this paper can be summarized as
follows:

1. We formulate the SFC embedding problem as an MDP with
appropriate state, by including the requested traffic into the
state, rather than by using the required VNF capacity (CPU,
memory, . . . ) to replace traffic, as in [6]. This change is es-
sential because, in some cases, VNF capacity does not accu-
rately reflect real network traffic, which is critical to latency-
sensitive services.

2. Given a VNF placement (main action) and the optimal path
traversing the VNF chain (the first-phase sub-action), we
propose a resource allocation algorithm (the second-phase
sub-action) to realize the network slice with the minimum
cost. In other words, instead of assuming that the required
resources of VNFs are known in advance, we optimally al-
locate resources to all VNFs in a given VNF chain based
on the requested traffic and latency requirement of this ser-
vice. In this way, for any given VNF placement, we only
need to take the main action into the action space because
we find the optimal first-phase and second-phase sub-action
for the main action. Otherwise, we would have to enumer-
ate chaining and resource allocation options for each VNF
placement; thus, the action space would be too large for the
DDQN algorithm to converge.

3. Most QoS-related works fail to slice a network slice into
sub-slices. We prioritize services (the lower latency thresh-

old a service requests, the higher priority it receives), de-
fine a reward function based on priority and cost, and pro-
pose a SADDQN framework to ensure priority allocation for
higher-priority services and maximize the acceptance ratio
while minimizing the total cost.

The rest of this paper is organized as follows. In Section II,
we discuss related work. Then, we present the system model of
VNF-FG placement for latency-sensitive services and formu-
late the problem in Section III. In Section IV, we present our
algorithm, and in Section V, we numerically evaluate the per-
formance of our algorithm. Finally, we conclude the paper in
Section VI.

2. Related Work

Many studies have been devoted to the placement of network
services techniques [7, 8, 9]. Since our objective is to deploy as
many latency-sensitive sub-slices as possible with limited hard-
ware resources, we pay close attention to those works studying
latency-sensitive or traffic-aware services. In general, they fall
into the following two categories.

2.1. Heuristic-Based Approaches

Most techniques were proposed to formulate and solve op-
timization problems [10, 11, 12, 13, 14, 4, 15, 16, 17, 18, 5].
Some works, [12] and [13], are based on strong assumptions.
For instance, the authors in [12] assumed that each physical
link has a delay of 30 ms. In [13], the authors used the packet
loss ratio to reflect network congestion in simulations, but they
assumed that the packet loss ratio is a fixed value, such as 0.02
or 0.03.

Some works first make predictions about network parame-
ters and then determine solutions for VNF. The authors in [14]
first proposed a traffic forecasting method. Then, they devised
two VNF placement algorithms based on the forecast traffic to
guide online VNF scaling. While the forecast traffic curve is
very close to the real-time traffic curve in most cases, its vari-
ation trend is sometimes one time-step later than that of the
real-time traffic curve. In our work, we aim to accommodate as
many latency-sensitive services as possible with the minimum
cost. For a deployed service, if the predicted traffic rate is lower
than the real-time traffic rate, then the latency requirement of
this service might not be satisfied. Hence, we cannot tolerate
prediction error and thus design our algorithm in a stable envi-
ronment where the traffic characteristics that we are interested
in can be learned from traffic history.

Some works, [4, 15, 16] and [17], focus on the convergence
rate of their algorithms. In [4], the authors formulated the VNF
placement as a binary integer programming model and pro-
posed the service function chains embedding approach (SFC-
MAP) algorithm, in which the shortest path algorithm is it-
erated based on a multi-layer cost graph to acquire the op-
timal placement solution. The authors of [15] designed an
eigendecomposition-based approach to address VNF forward-
ing graph (VNF-FG) placement. This matrix-based method re-
duces the complexity and accelerates the convergence. How-
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ever, it does not explore the immense space of possible ac-
tions. A novel approach that combines Markov approximation
with matching theory, sampling-based Markov approximation
(SAMA), was proposed in [16] to minimize the joint opera-
tional and traffic cost. In [17], the authors formulated the VNF
placement and flow routing problems as integer linear program-
ming (ILP) optimization problems and designed a set of heuris-
tics to find near-optimal solutions. In our work, we acceler-
ate the convergence rate by compressing the action space using
our resource allocation algorithm (BSAGD). Although the con-
vergence rate is important, cost-effectiveness is more important
regarding our objective. Therefore, we focus on the optimal ac-
ceptance ratio and cost-utility rather than on the convergence
rate.

Other studies, [5, 11] and [18], are based on delay mod-
els. In [11], the authors proposed a fine-grained delay model
and extended the VNF placement optimization in [10] with de-
lay constraints. The authors in [18] formulated the problem
of finding the optimal number of VNFs and their locations as
an ILP. Then, they proposed a cost-efficient proactive VNF
placement and chaining algorithm to resolve it. The algorithm
aims to accept each request with the minimum cost while meet-
ing its latency requirement. However, as in [11], it does not
prioritize value-added services based on their latency require-
ments. Thus, infrastructure with insufficient resources might
not ensure priority allocation of high-priority services. Re-
cently, the authors in[5] first formulated the power-aware and
delay-constrained joint VNF placement and routing problem as
an ILP. Then, they proposed a fast heuristic algorithm — Holu
— to resolve it. The authors calculated the end-to-end delay of
a VNF chain by summing the propagation delay of each link
and the processing delay of each VNF. However, queuing de-
lay and propagation delay might also be considered in some
real cases. Therefore, creating or choosing a delay model that
achieves an accurate estimation is critical for the VNF place-
ment of latency-sensitive services. In our work, to ensure prior-
ity allocation of services with stricter latency requirements, we
prioritize requests based on their latency requirements. To en-
sure an accurate estimation of the end-to-end delay, we design
our SADDQN framework based on a mature 5G end-to-end de-
lay model, whose accuracy has been verified in [19].

In summary, heuristics are efficient in stable systems. Never-
theless, in scenarios where environmental characteristics, such
as network topology, service requests, and incoming traffic,
are prone to change, these approaches must be frequently re-
triggered to obtain the optimal solution for the new environ-
ment. However, our proposed SADDQN algorithm, whose
agent interacts with the environment during the training phase,
can learn the environment changes before it converges.

2.2. Reinforcement Learning-Based Approaches
Various techniques based on reinforcement learning (RL)

have also been developed [6, 20, 21, 22, 23]. The valuable abil-
ity to learn from past experience makes these approaches note-
worthy. The authors in [21] proposed a distributed reinforce-
ment learning algorithm for VNF-FG allocation, which accel-
erates the convergence. However, they did not consider whether

they should design a dedicated network for communication be-
tween agents. In [22], the authors made VNF placement deci-
sions based on end-to-end performance predictions. Although
the prediction algorithm performs very well in dynamic condi-
tions, as in [14], it would need to reserve resources for VNFs
in case of prediction error. Therefore, developing prediction-
based VNF placement solutions is not cost-efficient. Instead of
learning from scratch, the authors in [23] trained a DRL agent
to learn how to reduce the optimality gap of heuristic-based so-
lutions. For the latency issue, [6] proposed to extract latency
in real time, making it very attractive. Adopting the real-time
model can greatly improve the accuracy of the model. How-
ever, there exist several limits in [6]. First, they used VNF-
FGs requested by clients to symbolize traffic in the deep re-
inforcement learning state. It is important to take VNF-FGs
into the state, but it is equally important to include the incom-
ing traffic of each service, an indispensable feature of the envi-
ronment. This is because, for a given VNF-FG configuration,
different incoming traffic may result in different real latency.
Second, the authors assumed that the requested resources of
VNFs are normalized and distributed uniformly, which could
be impractical in some real cases. For instance, in an Open-
Stack (an open-source cloud computing infrastructure software
project) supported cloud environment, there are several avail-
able ‘flavors’[24] for resources such as VCPU, RAM, and Disk.
Therefore, these required resources are discrete random vari-
ables rather than continuous random variables.

Most works [6, 12, 13, 4, 15, 16, 18, 5, 21, 22, 23] followed
the classical VNE model and directly treated the assumed val-
ues of required resources as the input of their approaches. How-
ever, in some real cases, customers are familiar with the QoS
parameters but not the VNF size. Therefore, in our work, we
design a VNF resource allocation algorithm for a service based
on its incoming traffic and latency requirement.

3. System Model and Problem Formulation

3.1. Network Infrastructure and Service Request
According to the 3rd Generation Partnership Project (3GPP)

view [25, 26], the network slice management function (NSMF)
receives requests for allocation of network slices with certain
characteristics. Accordingly, it interfaces with management and
orchestration (MANO) to plan VNFs allocation using the net-
work function virtualization (NFV) infrastructure. In this paper,
the DDQN-agent, which takes the role of MANO, is responsi-
ble for choosing the location for VNFs of an incoming request.
Once the VNF placement is decided, the decision is delivered
to the SDN-controller, which accordingly derives the shortest
path in terms of hop count for any two adjacent VNFs in this
VNF chain and replies the hop count results back to the DDQN-
agent. With the VNF location and the hop count information,
the agent assigns resources to each VNF in such a way that the
service is realized with the minimum cost.

3.1.1. NFV Infrastructure
As for the infrastructure, we consider a non-blocking archi-

tecture whereby every tier is connected to the next tier with
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Symbol Definition
L Number of service requests
Ki Number of VNFs in service request i
S Set of servers in the system infrastructure
Ni Number of newly activated servers for accommodating service i
λi Packet arrival rate of the ith service

Mtot Total MIPS quantity of a server
Wtot Total bandwidth of a server
Cpro

i, j The maximum number of packets that can be processed by the jth VNF of the ith service
when all the CPU resources of the host server are allocated to it.

Ctran
i, j The maximum number of packets that can be transmitted by the jth VNF of the ith service

when all the bandwidth resources of the host server are allocated to it.
mn Remaining MIPS quantity of the nth server
wn Remaining bandwidth of the nth server
µi, j Processing and transmitting rates of the jth VNF of the ith service (in the unit of packets per second)
xn

i, j Whether the jth VNF of the ith request nests on the nth server
h(sn, sn′ ) Number of hops between server n and server n′

h(v j, v j+1) Number of hops between two adjacent VNFs
DR

i Latency requirement of the ith service
Di Real latency of the ith service
ρi Priority of the ith service
β Price that converts the traffic cost to a monetary cost
γ Price that converts the CPU cost to a monetary cost
α Price that converts the operational cost to a monetary cost

Table 1: Main parameters and symbols

equal aggregate bandwidth [27]. It is facilitated by a topology
known as fat-tree topology. We adopt a widely used fat-tree
topology, depicted in Fig.1. Let S denote the set of servers, as
given by

S = {sn | n ∈ {1, 2, . . . , |S|}},

where |S| is the number of servers and sn indicates the nth server
in the infrastructure.

3.1.2. Service Request
Let L denote the number of requests, each of which is com-

posed of an ordered SFC and has a distinctive delay require-
ment. We assume that, within the URLLC category, there are
T types of SFC. Hence, we can prioritize the T types of ser-
vices and give each of them a priority value. And we define
user request i as follows:

ri = (DR
i , ρi, Fi, λi),

where DR
i is the end-to-end delay requirement, λi is the

requested data rate, ρi is the priority value, and Fi =

{ fi1, fi2, · · · , fiKi } is the requested SFC, an ordered set of VNFs
through which the traffic should be routed.

Without loss of generality, we consider the following
example shown in Fig.1. When an SFC (a VNF-FG) request
(ingress→VNF1→VNF2→VNF3→VNF4→VNF5→egress)
arrives, we suppose that the DDQN-agent chooses server1 to
place VNF1 and VNF2, server2 to place VNF3 and VNF4,

Figure 1: Network infrastructure considered in this paper.

and server3 to place VNF5. Once the incoming traffic stream
finishes its journey from the source (ingress) to the destination
(egress), we obtain the real delay of this stream to see whether
it meets the corresponding latency requirement.

3.2. Traffic Model

We model the packet arrivals of flow i at the first VNF
(VNF1) as a Poisson process with arrival rate λi. As in [28],
we define the time profile for flow i traveling through VNF1 as
a two-dimensional time vector

[
τ

pro
i,1 , τ

tran
i,1

]
. τpro

i,1 denotes the CPU
processing time for a packet in flow i to move through VNF1,
when all CPU resources of the host server are allocated to this
flow. τtran

i,1 denotes the transmission time for a packet in flow i to
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Figure 2: M/D/1 queuing model.

go through the outgoing link of VNF1, when the whole band-
width resources on the outgoing link of the host are allocated to
flow i. Correspondingly, the rate vector

[
Cpro

i,1 ,C
tran
i,1

]
(in the unit

of packets per second) for flow i traversing VNF1 is the recip-
rocal of the time profile, Cpro

i,1 = 1/τpro
i,1 and Ctran

i,1 = 1/τtran
i,1 . Let

us consider flow i in the M/D/1 model in Fig.2. If µtran
i,1 > µ

pro
i,1 , it

may lead to resource waste on link transmission; if µtran
i,1 < µ

pro
i,1 ,

packets will accumulate in the transmission queue, causing an
increase in the queuing delay [19]. Therefore, to avoid the
queuing delay of the transmission queue and bandwidth waste,
we need to have

1
µ

pro
i,1

=
1
µtran

i,1
=

1
µi,1

. (1)

To achieve (1), we have to allocate CPU and bandwidth re-
sources to flow i passing through VNF1 according to the per-
centage Ctran

i,1 /C
pro
i,1 or Cpro

i,1 /C
tran
i,1 . For simplicity, we define a

resources package Ctot, as given by

Ctot =


{
Mtot,

Cpro
i,1

Ctran
i,1

Wtot

}
, Ctran

i,1 > Cpro
i,1{

Ctran
i,1

Cpro
i,1

Mtot,Wtot

}
, Ctran

i,1 ≤ Cpro
i,1 ,

(2)

where Mtot and Wtot indicate the total MIPS and bandwidth of a
server, respectively. When we need to allocate MIPS and band-
width resources to a VNF, we fetch a percentage of Ctot.

3.3. Delay Model

When a traffic stream goes through an embedded VNF chain,
the end-to-end packet delay should be calculated by summing
the packet queuing delay and packet processing delay on all in-
termediate VNFs and the packet transmission delay on all links
[19].

In [19], the authors decoupled the packet processing of dif-
ferent flows traveling through an NFV node and thus regarded
the average packet processing rate of each flow as an approx-
imated service rate. They also applied the theory to the trans-
mission rate. Accordingly, they developed an M/D/1 queuing
model to calculate packet delay at the first NFV node for each
flow. Based on the analysis of packet inter-arrival time at the
subsequent NFV node, they further adopted an M/D/1 queuing
model to evaluate the average packet delay for each flow at the
subsequent NFV node.

Due to the slice isolation requirements, in our work, we con-
sider unshared VNFs [16, 29], which means two or more chains

cannot share a VNF. This solution logically separates the traffic
of all network sub-slices and decouples all flows. Therefore,
it is reasonable for us to apply the delay model in [19] to our
system.

For the first VNF, the average packet delay of flow i is deter-
mined by

Di,1 =
1
µ

pro
i,1

+
λi

2
(
µ

pro
i,1

)2
(1 − ρi,1)

+
1
µtran

i,1
, (3)

where the first term is the average processing delay, the sec-
ond term is the average queuing delay of the processing queue
[19], and the third term is the average transmission delay. The
utilization ρi,1 is given by

ρi,1 =
λi

µ
pro
i,1

, (4)

where λi is the packet arrival rate and µpro
i,1 is the processing rate.

For the jth ( j > 1) VNF that flow i travels through, the aver-
age packet delay is expressed as

Di, j =


1
µ

pro
i, j

+ λi

2
(
µ

pro
i, j

)2
(1−ρi, j)

+ 1
µtran

i, j
, µtran

i, j−1 > µ
pro
i, j

1
µ

pro
i, j

+ 1
µtran

i, j
, µtran

i, j−1 ≤ µ
pro
i, j ,

(5)

where 1/µpro
i, j is the average processing delay,

λi/2
(
µ

pro
i, j

)2
(1 − ρi, j) is the average queuing delay of the

processing queue, and 1/µtran
i, j is the transmission delay.

In (5), if the transmission rate of the ( j − 1)th VNF is lower
than or equal to the processing rate of the jth VNF, then there
will be no queuing delay of the processing queue on the jth

VNF, as given in the second segment. Otherwise, in the first
segment, we have the average queuing delay of the processing
queue based on M/D/1 queue theory [19].

As in (1), we let the processing rate equal the transmission
rate to eliminate the queuing delay of the transmission queue:

1
µ

pro
i, j

=
1
µtran

i, j
=

1
µi, j

, j > 1. (6)

If the jth and the ( j+1)th VNFs are located on the same server,
traveling from the jth VNF to the ( j + 1)th VNF, the flow will
suffer no forwarding delay caused by switches. Otherwise, the
flow may go through a sequence of network switches and phys-
ical links. In our work, as in [19] and [30], we assume that the
processing and transmission rates allocated to flow i from these
switches are the same as the transmission rate of the jth VNF to
maximize resource utilization. Therefore, the queuing delay, ei-
ther of the transmission queue or of the processing queue, does
not need to be considered on these switches. Consequently, to
go from the jth VNF to the ( j + 1)th VNF, the total packet delay
for flow i traversing n j switches is given by

Df
i, j =

2n j

µtran
i, j

, 1 ≤ j ≤ Ki. (7)
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In general, the average end-to-end delay of flow i traveling
through an embedded VNF chain, consisting of Ki intermedi-
ate VNFs, is the total of the average delay for packets to move
through all Ki VNFs and the average delay on the switches and
links along the path [19], as given by

Di =

Ki∑
j=1

Di, j +

Ki∑
j=1

Df
i, j. (8)

3.4. Cost Model

3.4.1. Operational Cost
We define the operational cost as the total power consump-

tion of all active nodes [16], expressed by α
∑|S |

i=1 Qi, where α
is the price that converts the power to a monetary cost and Qi

is the active power of server i. The power of active node Qi is
always set to 250 Watts uniformly [16]. Therefore, we simplify
the operational cost in the system as follows:

cope =

L∑
i=1

cope,i =

L∑
i=1

α × 250 × Ni, (9)

where Ni is the number of newly activated servers for accom-
modating service i.

3.4.2. Traffic Cost
In a service chain, a VNF needs to forward packets to the next

VNF through the virtual link connecting them. These virtual
connections are embedded on the active physical links of nodes.
Therefore, the hop count between two adjacent VNFs depends
on the network topology [31]. We use h

(
v j, v j+1

)
to indicate the

hop count between two adjacent VNFs.
We define the network traffic cost in the same way as in [21]

and [31], calculating the traffic cost of two adjacent VNFs based
on the hop count between them and the allocated bandwidth of
the virtual link. Hence, the total network traffic cost can be
written as

ctran =

L∑
i=1

ctran,i

= β

L∑
i=1

Ki∑
j=1

µi, j

Ctran
i, j
×Wtot × h

(
v j, v j+1

)
,

(10)

where

h
(
v j, v j+1

)
=

|S|∑
n=1

|S|∑
n′=1

xn
i, j × xn′

i, j+1 × h (sn, sn′ ) . (11)

In (10), β is the price that converts the traffic cost to a mon-
etary cost. In (11), the binary variable xn

i, j indicates whether
the jth VNF of the ith request nests on the nth server, xn′

i, j+1 de-
notes whether the ( j + 1)th VNF of the ith request nests on the
n′th server, and h (sn, sn′ ) is the hop count between server n and
server n′.

3.4.3. Server Cost
Compared with memory and capacity, CPU’s computational

power is much more important for latency-sensitive services.
Therefore, as for server cost, we consider only CPU resources
in million instructions per second (MIPS), and the total server
cost can be written as

cser =

L∑
i=1

cser,i = γ

L∑
i=1

Ki∑
j=1

µi, j

Cpro
i, j

× Mtot, (12)

where γ is the price that converts the server cost to a monetary
cost.

3.5. Problem Formulation

In this part, we formulate the objective as an optimization
problem. The purpose is to maximize the number of accepted
higher-priority service requests while minimizing the total cost,
under infrastructure resource constraints.

The weighted sum of the accepted requests can be defined as:

u =

L∑
i=1

ui =

L∑
i=1

ρi × f (DR
i − Di). (13)

In the function above,

f (x) =

{
0, x < 0
1, x ≥ 0, (14)

DR
i and Di, respectively, denote the latency requirement and the

real latency of the ith service and ρi indicates the priority of
service i.

The total cost can be calculated as:

c =

L∑
i=1

ci =

L∑
i=1

(cser,i + ctran,i + cope,i). (15)

Thus, the optimization problem can be written as

(P1) : max
xn

i, j,µi, j

η1u − η2c

s.t.



L∑
i=1

Ki∑
j=1

xn
i, j
µi, j

Cpro
i, j

≤ 1, n = 1, 2, . . . , |S| (16a)

L∑
i=1

Ki∑
j=1

xn
i, j
µi, j

Ctran
i, j
≤ 1, n = 1, 2, . . . , |S| (16b)

|S|∑
n=1

xn
i, j = 1, i = 1, 2, . . . , L, j = 1, 2, . . . ,Ki (16c)

xn
i, j ∈ {0, 1},

i = 1, 2, . . . , L, j = 1, 2, . . . ,Ki, n = 1, 2, . . . , |S|
µi, j ∈ N+, i = 1, 2, . . . , L, j = 1, 2, . . . ,Ki.
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In the objective function above, η1 and η2 are the weights
of two objectives. Since the objective of maximizing the num-
ber of accepted higher-priority services is more important, we
assign a higher weight to it.

In the constraints above, the binary variable xn
i, j indicates

whether the jth VNF of the ith request nests on the nth server.
For any server in the infrastructure, the total MIPS allocated
to the embedded VNFs cannot exceed the CPU capacity of the
server, so we have (16a), and the total bandwidth allocated to
the embedded VNFs cannot exceed the maximum bandwidth of
the server’s outgoing link, so we have (16b). Each VNF can be
deployed at only one server, so we have (16c).

It can be difficult to solve this optimization problem using
heuristic approaches because heuristics can hardly trace the
dynamics of the network. Alternatively, learning-based tech-
niques can be utilized to learn the network dynamics, such as
the arrival pattern of various services and the changing topol-
ogy of the infrastructure, and solve such a problem. The goal
of the learning technique is to learn a policy that determines
what action to take in each environment state. In the follow-
ing, we introduce a model based on DDQN [32] for the joint
VNF-FG placement and resource allocation problem regarding
the latency requirement.

4. Proposed VNF-FG Placement and Resource Allocation
Scheme

4.1. Overview of Our Proposed SADDQN Algorithm

For our VNF-FG embedding problem, an agent handles the
service requests one after another. To achieve its objective,
the agent learns how to behave in the environment, the state
of which consists of the available resources provided by the
infrastructure and the characteristics of the service request to
be processed, by performing actions and observing the results.
Specifically, for a single request (VNF-FG), the agent sequen-
tially fulfills three tasks. First, it chooses a VNF placement
(main action), the locations of all the VNFs in this VNF-FG.
Second, it employs the Dijkstra algorithm to derive the optimal
path traversing the VNFs placed by the first task (the first-phase
sub-action). Third, it utilizes our proposed resource allocation
algorithm — BSAGD (the second-phase sub-action) — to allo-
cate resources to all VNFs in such a way that the service request
is realized with the minimum cost.

By performing the joint action (VNF placement, its corre-
sponding optimal path and resource allocation solution) for the
current request to the environment, the agent will receive a re-
ward, which will be utilized to improve its action (VNF place-
ment) for subsequent requests. Meanwhile, the state of the en-
vironment will be updated, and the action for the next request
will be determined. Hence, we can model the VNF-FG em-
bedding for all requests as a Markov decision process (MDP).
Because one VNF placement has only one corresponding op-
timal path and resource allocation solution, we represent the
MDP action space as the possible VNF placements of a single
request. Since our aim is to maximize the number of accepted

higher-priority services while minimizing the total cost, we pri-
oritize those requests based on their latency requirements and
define the reward function of the MDP based on service prior-
ity and resource cost. The details of the state, action, and reward
function in the context of our problem are provided in Sections
IV-C, IV-D, and IV-E.

We propose a sub-action aided DDQN (SADDQN) algo-
rithm to resolve our VNF-FG embedding problem. A general
overview of the SADDQN used in our scheme is shown in Fig.
3. The state, indicated by a vector, is fed into the evaluation
neural network, which outputs a vector of Q-values, with each
indicating the expected discounted cumulative reward of a cor-
responding action (VNF placement). At time step t, the Q-value
of performing action at under state st based on policy π is given
by

Qπ(st, at) = E(
L∑

i=t

γ(i−t)R(si, ai)|st, at). (17)

The objective of the agent is to learn a policy that maximizes the
expected return Qπ(st, at). Once the optimal policy is achieved,
given a state, the agent can find the best action by taking the
largest Q-value from the output vector. At the beginning of
training, the weights of the evaluation neural network are ran-
dom; thus, the policy is poor. For each given state, the max-
imum Q-value may not account for the best VNF placement.
Hence, we continuously feed the framework requests, and the
agent iteratively optimizes the neural networks. Specifically, at
time step t, by performing the joint action (VNF placement and
its corresponding optimal sub-action) for a service request to
the environment, the agent receives a reward that is used to con-
duct the back-propagation process and update the weights of the
evaluation network. When the next request arrives, this training
process is iterated in the next time step. The loop ends when the
weights of the neural networks converge. Then, given a state,
the agent can choose the optimal VNF placement according to
the output Q-values of the evaluation network. Additionally, the
corresponding optimal routing and resource allocation solution
can be obtained from the routing and BSAGD modules, given
the VNF placement. The iterative training process is summa-
rized in Algorithm 1.

Algorithm 1 Sub-action Aided DDQN Algorithm
Input: λ1, λ2, . . . , λL,DR

1 ,D
R
2 , . . . ,D

R
L

1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with random weights θ
3: Initialize target action-value function Q̂ with weights θ−

4: θ− = θ
5: for episode = 1, 2, . . . , I do
6: Initialize state of the environment
7: for t = 1, 2, . . . , L do
8: Workflow of each learning step
9: end for

10: end for

The workflow for each learning step can be summarized as
follows:

7



Figure 3: Flowchart of the SADDQN algorithm. Upon receiving a service re-
quest, the SADDQN maps the requested VNF-FG to the infrastructure after
sequentially deciding the VNF placement for all VNFs, optimal path traversing
the VNF chain, and resource allocation for all VNFs. First, the agent chooses
the locations for all VNFs using the DDQN framework. Next, based on the
VNF sequence in the VNF-FG, the routing module derives the shortest path
traversing all the VNFs placed by the previous step. Finally, with the given
VNF placement and the shortest path, the BSAGD module allocates resources
to all VNFs in such a way that the end-to-end delay requirement of this service
is satisfied with the minimum cost. The agent will then perform the joint ac-
tion (the VNF placement, routing, and resource allocation) to the environment.
In response to the joint action, a reward is returned to train the DDQN frame-
work. The training process is iterated when a new request arrives. Once trained,
given an environment, the agent knows how to perform the best action, and the
SADDQN model approximates the optimal solution of our objective.

a) Step 1: The agent observes the state (st) of the environment.
b) Step 2: The agent chooses a main action (at), i.e., the VNF

placement, randomly with probability ε or according to the
evaluation network with probability 1−ε. Next, it delivers at

(the chosen VNF placement) to the routing module, which
derives an optimal path (sa

′

t) traversing all the VNFs based
on the VNF sequence.

c) Step 3: at and sa
′

t (the chosen VNF placement and its corre-
sponding optimal path) are fed into the BSAGD module to
obtain a resource allocation solution (sa

′′

t ) that realizes the
service with the minimum cost.

d) Step 4: at, sa
′

t and sa
′′

t (the chosen VNF placement, its corre-
sponding optimal routing and resource allocation solution)
are jointly applied to the environment.

e) Step 5: The agent receives a reward (rt) from the environ-
ment, and the experience tuple (st, at, rt, st+1) is stored in an
experience replay buffer. Here, we need to add only the main
action (at) to the experience tuple because we have only one
corresponding optimal sub-action for any main action.

f) Step 6: To train the DDQN framework, a mini-batch of N tu-
ples is uniformly sampled from the experience replay buffer.

g) Step 7: For tuple i, si and ai are fed into the evaluation net-
work (θ), while si+1 is fed into the target network (θ−).

h) Steps 8, 9: A loss function is created, and the weights of
the evaluation network are updated by minimizing the loss
function:

L =
1
N

N∑
i=1

(yi − Q(si, ai|θ))2, (18)

where

yi = ri + γmaxa′Q′(si+1, a′|θ−). (19)

i) Step 10: The weights of the target network are updated by
copying the weights of the evaluation network every Z time
steps.

4.2. State

We define the state as a vector, including the latency require-
ment, VNF chain, and requested traffic of a service request and
the remaining resources of each server. In our environment,
the number of intermediate VNFs in service i is Ki. Then, the
characteristic vector of service i can be given by

rrri =
[
λi DR

i I1 I2 · · · IKi

]
,

where λi and DR
i denote the requested traffic and the delay re-

quirement of the ith service and I1, I2, . . . , IKi indicate the ID of
the first, second, . . . , Kth

i VNF in the VNF chain. For the net-
work infrastructure, the characteristic vector of the nth server
can be expressed as

sssn =
[

mn wn

]
,

where mn and wn denote the remaining MIPS and bandwidth of
the nth server.

As a result, the state vector of the environment is written as

SSS =
[

rrri sss1 · · · sss|S|
]
.

4.3. Action

4.3.1. Main Action (VNF Placement)
We use a 1×Ki row vector aaai to symbolize a VNF placement

for the ith request. Element ai, j symbolizes on which server the
jth VNF of the ith request nests. For the request in Fig. 1, we use
a 1 × 5 row vector, aaa1 =

[
1 1 2 2 3

]
, to indicate its

main action. This vector indicates that the first and the second
VNFs are located on server1, the third and fourth VNFs are
located on server2, and the fifth VNF is located on server3.

4.3.2. First-Phase Sub-Action
With a given VNF placement, to minimize the resource cost,

we must find the shortest path traversing the VNF chain. There-
fore, the Dijkstra algorithm, which finds the shortest path in
terms of hop count, is adopted to connect adjacent VNFs. In-
stead of running the Dijkstra algorithm from the ingress node to
the egress node, we run the Dijkstra algorithm from the ingress
node to the first VNF, from the first VNF to the second VNF,
and so on, until the egress node.

4.3.3. Second-Phase Sub-Action (Binary Search Assisted Gra-
dient Descent (BSAGD))

For a VNF-FG, after determining the locations for all VNFs
and the corresponding optimal path traversing the VNF chain,
we must allocate resources to all VNFs such that this service’s
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latency requirement is satisfied with the minimum cost. In gen-
eral, to find the minimum cost for realizing service i, there are
two steps to take. In the first step, we prove that the minimum
delay Dmin

i (ci) is a monotone decreasing function of variable
ci. In the second step, we use our BSAGD algorithm, a bi-
nary search algorithm in which gradient descent is iterated, to
search for the minimum cost and the corresponding resources
of each VNF (µi, j) to satisfy the delay requirement of service i.
Because µi, j is an integer, we adopt the relax-and-round mech-
anism to obtain the optimal integer solution (̃µi, j, j = 1, . . . ,Ki)
for realizing service i.

Based on (1), (3), (4), (5), (6), (7), and (8), the problem of
minimizing the average delay with limited cost ci can be for-
mulated as follows:

(P2) : min
µµµi

Di(µµµi) =
λi

2
(
µi,1

)2 (1 − λi
µi,1

)
+

Ki∑
j=1

2
µi, j

+

Ki∑
j=1

2(h(v j, v j+1) − 1)
µi, j

g(h(v j, v j+1))

+

Ki∑
j=2

λi

2
(
µi, j

)2
(1 − λi

µi, j
)
g(µi, j−1 − µi, j)

s.t.



µi, j ≤ µi, j+1 or µi, j+1 ≤ µi, j, j = 1, . . . ,Ki − 1 (20a)

γ

Ki∑
j=1

µi, j

Cpro
i, j

× Mtot + β

Ki∑
j=1

µi, j

Ctran
i, j
×Wtot

×h
(
v j, v j+1

)
+ α × 250 × Ni = ci (20b)

Ki∑
j=1

xn
i, j
µi, j

Cpro
i, j

× Mtot ≤ mn,

n = 1, . . . , |S| (20c)
Ki∑
j=1

xn
i, j
µi, j

Ctran
i, j
×Wtot ≤ wn,

n = 1, . . . , |S|. (20d)

In the objective function above,

g(x) =

{
0, x ≤ 0
1, x > 0. (21)

In the constraints above, (20a) is a possible condition of µi, j

and µi, j+1, j = 1, . . . ,Ki − 1. We provide VNF chain i with
limited cost ci, so we have (20b). In (20b), the first term is
the total CPU cost of all VNFs. The second term is the traffic
cost, which depends on the hop count of each pair of adjacent
VNFs. The third term is the operational cost, a linear function
of newly activated servers. For any server in the infrastructure,
the total MIPS allocated to the embedded VNFs cannot exceed
the remaining CPU MIPS of the server, so we have (20c), and
the total bandwidth allocated to the embedded VNFs cannot
exceed the remaining bandwidth of the server’s outgoing link,
so we have (20d).

Proposition 1. The minimum end-to-end delay expression in
terms of variable ci is a monotone decreasing function of ci.

Proof. The proof is provided in Appendix A.
Proposition 2. P2 is a convex optimization problem.
Proof. The proof is provided in Appendix B.
Since P2 is a convex optimization problem, given a constant

cost Ci, we can use gradient descent to find the minimum av-
erage delay Dmin

i (Ci). Furthermore, Dmin
i (ci) is a monotone de-

creasing function of variable ci. Therefore, for realizing service
i, we can use a binary search algorithm in which gradient de-
scent is iterated to find the minimum cost and the corresponding
optimal resource allocation for all VNFs.

Our BSAGD algorithm is summarized in Algorithm 2.

Algorithm 2 BSAGD Algorithm
Input: Cmin

i ,Cmax
i ,Cunit

Output: vmin
i , µµµi

1: tmin
i = Cmin

i , vmin
i = 0, tmax

i = Cmax
i

2: i = 1, µµµi = 000
3: while vmin

i − tmax
i > Cunit or i = 1 do

4: i = i + 1
5: Substituting tmax

i into P2 and using gradient descent to find

6: the minimum delay and the correspondingµµµi

7: if Dmin
i (tmax

i ) < DR
i then

8: vmin
i = tmax

i

9: tmax
i =

tmax
i +tmin

i
2

10: update µµµi

11: else if Dmin
i (tmax

i ) > DR
i then

12: tmin
i = tmax

i

13: tmax
i =

tmin
i +vmin

i
2

14: else
15: vmin

i = tmax
i

16: update µµµi

17: end if
18: end while
19:
20: return vmin

i , µµµi

Given a VNF placement and a condition of µi, j and µi, j+1,
j = 1, . . . ,Ki − 1, we can obtain the unit cost Cunit, the maxi-
mum cost (Cmax

i ), and the minimum cost (Cmin
i ). Cmax

i and Cmin
i

are used as the initial two ends of the binary search algorithm.
Let tentative maximum cost tmax

i = Cmax
i and tentative minimum

cost tmin
i = Cmin

i . If Cmax
i cannot obtain a delay shorter than or

equal to requirement DR
i , there is no solution for this placement

under this condition. Otherwise, we store Cmax
i in verified mini-

mum cost vmin
i and update the rate vector µµµi. Then, we go to the

middle point if Cmax
i has a delay shorter than DR

i . If the mid-
dle point cannot obtain a delay shorter than or equal to DR

i , we
update tmin

i and tmax
i accordingly and continue searching in the

upper half. Otherwise, we store this middle point in vmin
i and

update µµµi. If the delay of this middle point is shorter than DR
i ,

we update tmax
i accordingly and continue searching in the lower
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half. When the difference between vmin
i and tmax

i is less than the
unit cost Cunit or the current vmin

i has a delay equal to DR
i , there

is no need to continue looping, and we return vmin
i and µµµi for

realizing service i. For any possible condition of µi, j and µi, j+1,
j = 1, . . . ,Ki − 1, we can obtain a vmin

i and the corresponding
µµµi. The minimum of these verified minimum cost values is the
minimum cost for realizing service i, given a VNF placement.

4.4. Reward
A performance model must be created to assess whether the

latency requirement has been achieved with the given resources
(MIPS, bandwidth) and the current workload. In our work, we
first leverage the simulation tool CloudSimSDN-NFV [33] to
obtain the latency of each service. Then, we issue a penalty
for a service whose latency requirement is not satisfied and a
reward for a successful accommodation. For the ith service, the
reward function regarding delay is defined as

Rdelay,i =

{
ρi, Di ≤ DR

i
0, Di > DR

i ,
(22)

where Di is the average delay of the ith service we obtain from
CloudSimSDN-NFV.

Regarding the cost, we define reward functions for opera-
tional cost, server cost, and traffic cost of service i as follows:

Rope,i = α × 250 × Ni, (23)

Rser,i = γ

Ki∑
j=1

µi, j

Cpro
i, j

× Mtot, (24)

Rtran,i = β

Ki∑
j=1

µi, j

Ctran
i, j
×Wtot × h

(
v j, v j+1

)
. (25)

As in [16], α, β, and γ can be adjusted to change the impact
factor of each category.

Since our objective is to maximize the number of accepted
higher-priority service requests while minimizing the total cost,
the reward function of service i is expressed as a weighted sum
of the delay reward and cost reward functions

Ri = η1Rdelay,i − η2(Rope,i + Rser,i + Rtran,i). (26)

Maximizing the acceptance ratio is our top priority; therefore,
we assign a greater weight to delay rewards.

5. Simulation Results

5.1. Simulation Setup
In this section, we evaluate the performance of the pro-

posed SADDQN algorithm regarding the admission ratio and
the cost efficiency under different network sizes. We use
CloudSimSDN-NFV, an NFV environment simulation tool ex-
tended from CloudSimSDN [34] and CloudSim [35], as our
simulation framework. To merge the DDQN algorithm into

CloudSimSDN-NFV, we import deeplearning4j and nd4j writ-
ten in JAVA. For the infrastructure, we consider fat-tree, a
widely used network topology for data centers (Fig. 1). Two
scenarios, i.e., 8-Node Fat-Tree and 16-Node Fat-Tree, are uti-
lized to assess our algorithms. The bandwidth of each link is 1
Gbps, and the total MIPS of each server is 3000. For the cost
model, we set α = 1 $/W, γ = 0.1 $/MIPS, β = 0.1 $/Mbps.

In our experiment, we assume there are three types of
latency-sensitive services, the characteristics of which are sum-
marized in Table II. Additionally, the rate vectors of all VNFs
for three different packet types are provided in Table III.

The neural network is set up with the following parame-
ters. Adam [36] is adopted to learn the neural network pa-
rameters. The learning rate is 0.005, and the discount factor
is 0.99. The parameters of the target network are updated every
100 episodes, and the batch size is 64. We use a fully con-
nected deep neural network (DNN), which involves hyperbolic
tangent and rectified linear unit (ReLu) [37] as activation func-
tion in the middle layer, and the output layer is connected to a
linear activation function [38].

Regarding the traffic, we assume that, for any service, the
packet arrival process can be modeled as a Poisson process,
with parameter λ indicating the average arrival rate. According
to traffic history, λ of a request service is uniformly distributed
in the data rate interval of this service type in Table II.

Our proposed SADDQN algorithm consists of an offline
training phase and an online testing phase. In the training phase,
we randomly choose a service type and its requested data rate
from Table II to create a service request. We continuously feed
our SADDQN framework with the service requests until the
weights of neural networks converge.

During the online testing phase, we can run the trained SAD-
DQN model online to optimize the VNF placement, as well as
its corresponding route and resource allocation, for any given
state.

5.2. Algorithms to Compare

5.2.1. Standard DDQN
For comparison purposes, we have designed a standard

DDQN algorithm based on a popular assumption: the required
resources of each VNF have been specified in service requests.
The only difference between the standard DDQN and our pro-
posed SADDQN is that the standard one assumes that the ca-
pacity of each VNF has been specified by customers, but our
proposed SADDQN allocates resources to each VNF for cus-
tomers. For the sake of fairness, for any algorithm, we assume
that VNFs are embedded in containers, for which CPU request
can be as small as 1/1000 of the total CPU resources. For the
standard DDQN, according to the number of vCPUs of those
‘flavors’, we have 1

64 , 1
32 , 1

16 , 1
8 , 1

4 , 1
2 , and the whole of the CPU

resources of a server for any container/VNF to choose in our
simulation.

5.2.2. Holu
The Holu algorithm [5] addresses the VNF placement and

routing problem with the objective of minimizing the number
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Table 2: Overview of three service types.

Service type Delay requirement SFC Packet size Data rate
SFC1 20 ms VNF1→VNF2→VNF3 4000 bits [100-900] packets/s
SFC2 30 ms VNF1→VNF2→VNF4→VNF6 16000 bits [100-200] packets/s
SFC3 40 ms VNF1→VNF2→VNF5→VNF2→VNF1 20000 bits [1000-2000] packets/s

Table 3: Rate vectors of all VNFs for three packet types.

VNF type
Packet size

4000 bits 16000 bits 20000 bits

VNF1 [125000,250000] packets/s [125000,62500] packets/s [80000,50000] packets/s
VNF2 [125000,250000] packets/s [125000,62500] packets/s [80000,50000] packets/s
VNF3 [125000,250000] packets/s – –
VNF4 – [125000,62500] packets/s –
VNF5 – – [80000,50000] packets/s
VNF6 – [125000,62500] packets/s –

of online physical machines (PMs) and network switches un-
der end-to-end delay and resource constraints. This fast heuris-
tic framework efficiently solves the power-aware and delay-
constrained joint VNF placement and routing (PD-VPR) prob-
lem in an online manner. Specifically, Holu decomposes the
PD-VPR into two sub-problems and solves them sequentially:
i) a VNF placement problem that maps VNFs to PMs using
a centrality-based PM ranking strategy and ii) a routing prob-
lem that efficiently splits the delay budget between consecu-
tive VNFs in the SFC and finds a delay-constrained least-cost
(DCLC) shortest-path through the selected PMs using the La-
grange relaxation-based aggregated cost (LARAC) algorithm.
Although the power consumption model of Holu is different
from the cost model of our proposed algorithm, the objectives
of the two algorithms (reducing costs while satisfying the delay
constraint of each SFC) are the same. Therefore, it is reasonable
to run Holu in our system model and compare it with our pro-
posed SADDQN. In our simulation, as in [5], we fix the CPU
capacity for each VNF for the Holu algorithm. Based on the
composition of three SFCs, we set the CPU capacity of VNF1
and VNF2 to 1

4 of a server’s CPU capacity and that of the other
VNFs to 1

64 .

5.3. Simulation Results

We compare our proposed SADDQN, the standard DDQN
and Holu with respect to the acceptance ratio, cost-utility and
average end-to-end delay. To see how granularity in resource
allocation impacts the performance of the standard DDQN, we
set the CPU parameter of the minimum ‘flavor’ to 1

32 (DDQN1)
and 1

64 (DDQN2). In other words, on a server, the minimum
percentage of CPU resource that DDQN1 can allocate to a VNF
is 1

32 , while it is 1
64 for DDQN2.

From Fig. 4, we can see that as the number of requests in-
creases, SADDQN always obtains the highest acceptance ratio
among all algorithms in both topologies. That is because our
proposed SADDQN algorithm uses the resource optimization
algorithm (BSAGD) to allocate resources to VNFs, achieving
finer granularity than that of any other algorithm. The standard

Figure 4: Acceptance ratio comparison.

DDQN, which can only choose the CPU capacity for VNFs
based on ‘flavors’, excessively provisions higher-priority ser-
vices and thus does not have sufficient resources to accommo-
date lower-priority services when we increase the number of
service requests. DDQN2 outperforms DDQN1 because of the
CPU parameter of the minimum ‘flavor’: the smaller it is, the
more requests the standard DDQN accepts. The Holu algorithm
fixes the CPU capacity for each type of VNF and allows differ-
ent services to share VNFs. To some extent, the sharing policy
alleviates the over-provisioning issue. However, the problem
remains, and the severity depends on the sharing percentage of
each VNF. For instance, if we initiate a new instance of a VNF
for a service request and no subsequent services share this VNF
instance, its resource utility will degrade.

Fig. 5 indicates the accommodation results of different ser-
vices. It depicts the situation of the 8-node fat-tree topology
when the number of requests is 150. The DDQN-based al-
gorithms ensure priority allocation for higher-priority services
when the resources are insufficient to accept all requests. Of
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Figure 5: Acceptance of different services.

all the requests accepted by SADDQN, 50 are of the high-
est priority, 50 are of the second-highest priority, and only 36
have the lowest priority. That is, 14 lowest-priority requests
are discarded because of a lack of resources. DDQN1 ac-
cepts 50 highest-priority requests and 22 second-highest pri-
ority requests, while DDQN2 accepts 50 for both priorities.
Meanwhile, these two standard DDQN algorithms drop all the
lowest-priority requests. There are two reasons for the above
results. First, we assign greater reward values to the success-
ful placement of higher-priority service requests. Second, the
learning-based algorithms can learn the arrival distribution of
different services. With the object of maximizing the total
discounted cumulative reward, the DDQN-based models dis-
card the lower-priority services when there are insufficient re-
sources to accommodate all. However, the Holu algorithm,
which does not consider service priority, attempts to accom-
modate services in sequence and thus cannot ensure priority
allocation for higher-priority services. Hence, it treats every
request equally and accommodates nearly the same number of
requests for the three categories. In conclusion, our proposed
SADDQN outperforms the other algorithms regarding the ac-
ceptance ratio. Meanwhile, it ensures priority accommodation
for higher-priority services.

We further compare our proposed SADDQN with the stan-
dard DDQN and the Holu algorithm in terms of the average
end-to-end delay. In Fig. 6, we can see that compared to the
other algorithms, our proposed SADDQN obtains an average
end-to-end delay closer to the requirement for any type of ser-
vice. The reason is that we optimize the resource allocation for
VNFs of each service. Specifically, we approach the latency re-
quirement of a service using the proposed BSAGD algorithm,
which iteratively searches the minimum cost for realizing the
service. By contrast, without the proposed sub-action concept
or the resource optimization algorithm, the standard DDQN
always over-provisions these flows. The Holu algorithm first
proposes a PM ranking mechanism based on power consump-
tion to resolve the VNF placement. Then, it employs a delay-
constrained least-cost (DCLC) shortest-path algorithm to find
the path between the selected VNFs. Although the Holu algo-

Figure 6: Average end-to-end delay comparison.

rithm aims to satisfy the end-to-end delay of each service with
the minimum cost, it does not take the over-provisioning of re-
sources into consideration. Therefore, from the bar chart for the
standard DDQN and Holu, we can see that each flow suffers a
delay shorter than the required delay by at least a few millisec-
onds. The results indicate that the standard DDQN and Holu
consume extra resources to accommodate services, as observed
in Figs. 7 and 8.

We can see from Figs. 8 and 7 that, of all the algorithms, our
proposed SADDQN achieves the highest cost utility because
our BSAGD algorithm flexibly allocates resources to VNFs and
thus provides a finer granularity in resource allocation. In con-
trast, the others use fixed-capacity VNFs, inevitably resulting
in over-provisioning. Furthermore, DDQN-based algorithms
minimize the cost from the global perspective, while Holu min-
imizes the cost instantaneously rather than farsightedly. Never-
theless, one of Holu’s advantages over the standard DDQN is
its VNF sharing policy, which mitigates the overconsumption
of resources. For this reason, in Figs. 7 and 8, as the num-
ber of service requests increases, the Holu algorithm is second
only to SADDQN in terms of cost utility. Moreover, in Fig. 7,
the average cost per request does not change substantially for
the SADDQN algorithm, while the cost for the Holu algorithm
fluctuates. The reason is that because of the VNF sharing pol-
icy, the curve of Holu may ascend when new VNF instances
must be initiated and descend when the current running VNFs
can be utilized by new services. The standard DDQN algorithm
does not accept VNF sharing for security reasons. Hence, the
average cost per request of DDQN1 and DDQN2 remains sta-
ble when all requests can be accepted. However, as the number
of requests increases, the two curves start to descend because
the lowest-priority services, which have a higher cost than ser-
vices from the other two categories, are gradually discarded. In
conclusion, our proposed SADDQN is superior to all the other
approaches in terms of cost utility.

6. Conclusion

In this paper, we proposed a sub-action aided DDQN (SAD-
DQN) algorithm to maximize the acceptance ratio and ensure
priority allocation for higher-priority requests while minimiz-
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Figure 7: Joint traffic and CPU cost comparison.

Figure 8: Operational cost comparison.

ing the total cost for latency-aware network sub-slices. We
considered a multi-edge cloud scenario in which service re-
quests with different priorities are fed into the DDQN-agent,
and developed an intelligent policy to place the VNF-FGs and
allocate resources. Considering the objective, we defined our
new state, main action and sub-action, and reward function for
the DDQN framework and proposed an algorithm (sub-action)
for allocating resources. Simulations showed that our proposed
SADDQN can maximize the acceptance ratio and ensure prior-
ity allocation for higher-priority services while minimizing the
total cost for latency-aware services with different latency re-
quirements. Numerical results showed that, compared with the
other two popular algorithms, our proposed scheme performs
better in terms of minimizing the cost and maximizing the ac-
ceptance ratio; thus, it resolves the QoS over-provisioning is-
sue, as expected.
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APPENDIX A. PROOF OF PROPOSITION 1

Based on (20b), we have

Ki∑
j=1

a j × µi, j = ci − α × 250 × Ni (27a)

a j = γ
Mtot

Cpro
i, j

+ β
Wtot × h

(
v j, v j+1

)
Ctran

i, j
,

j = 1, 2, . . . ,Ki. (27b)

According to (27a), no matter what the optimal solution for P2
is, we can conclude that the optimal solution µ̃ĩµĩµi satisfies

a j × µ̃i, j = q j × (ci − α × 250 × Ni),
j = 1, 2, . . . ,Ki (28a)
Ki∑
j=1

q j = 1 (28b)

0 < q j < 1, j = 1, 2, . . . ,Ki. (28c)

Substituting the optimal solution µ̃ĩµĩµi into P2, we have

Dmin
i (µ̃ĩµĩµi) =

λi

2
(̃
µi,1

)2 (1 − λi
µ̃i,1

)
+

Ki∑
j=1

2
µ̃i, j

+

Ki∑
j=1

2(h(v j, v j+1) − 1)
µ̃i, j

g(h(v j, v j+1))

+

Ki∑
j=2

λi

2
(̃
µi, j

)2
(1 − λi

µ̃i, j
)
g(̃µi, j−1 − µ̃i, j)

=
1
2

(
1

µ̃i,1 − λi
−

1
µ̃i,1

) +

Ki∑
j=1

2
µ̃i, j

+

Ki∑
j=1

2(h(v j, v j+1) − 1)
µ̃i, j

g(h(v j, v j+1))

+

Ki∑
j=2

1
2

(
1

µ̃i, j − λi
−

1
µ̃i, j

)g(̃µi, j−1 − µ̃i, j).

(29)

Let

Dmin
i1 (̃µi, j) =

1
µ̃i, j − λi

−
1
µ̃i, j

, j = 1, 2, . . . ,Ki, (30)
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Dmin
i2 (̃µi, j) =

2
µ̃i, j

, j = 1, 2, . . . ,Ki. (31)

Then, we have

Dmin
i (µ̃ĩµĩµi) =

Dmin
i1 (̃µi, j)

2
+

Ki∑
j=2

Dmin
i1 (̃µi, j)

2
g(̃µi, j−1 − µ̃i, j)

+

Ki∑
j=1

Dmin
i2 (̃µi, j)(h(v j, v j+1) − 1)g(h(v j, v j+1))

+

Ki∑
j=1

Dmin
i2 (̃µi, j), j = 1, 2, . . . ,Ki.

(32)

Substituting (27b) and (28a) into (30) and (31) and then dif-
ferentiating Dmin

i1 and Dmin
i2 with respect to ci, we have

dDmin
i1 (ci)
dci

=
a j

q j
(

1
(ci − 250 × α × Ni)2

−
1

(ci − 250 × α × Ni −
a j

q j
λi)2

),
(33)

dDmin
i2 (ci)
dci

=
a j

q j

−1
(ci − 250 × α × Ni)2 . (34)

Based on (27b) and (28c), we know a j > 0 and q j > 0.

Therefore, we can conclude that dDmin
i1 (ci)
dci

< 0 and dDmin
i2 (ci)
dci

< 0.
Furthermore, based on (21), we know g(µi, j−1 − µi, j) = 1 or 0,
and g(h(v j, v j+1)) = 1 or 0. At this stage, we can conclude that
dDmin

i (ci)
dci

< 0; thus, Dmin
i (ci) is a monotone decreasing function

of ci.

APPENDIX B. PROOF OF PROPOSITION 2

The standard form of an optimization problem can be ex-
pressed as [39]:

min f0(x)

s.t.

 fi(x) ≤ 0, i = 1, 2, . . . ,m
hi(x) = 0, i = 1, 2, . . . , p.

(35)

The problem is to find an x that minimizes f0(x) among all x
that satisfy the conditions fi(x) ≤ 0, i = 1, . . . ,m, and hi(x) =

0, i = 1, . . . , p. To be a convex optimization problem, it needs
to satisfy three additional requirements [39]:

1. the objective function must be convex,
2. the inequality constraint functions must be convex,
3. the equality constraint functions must be affine.

Now let’s prove that our problem satisfies these three require-
ments and thus is a convex optimization problem.

6.1. Objective function is convex
In our problem, the objective function shown below is twice

differentiable; that is, its Hessian or second derivative exists at
each point in dom Di, which is open. Then, Di is convex if and
only if dom Di is convex and its Hessian is positive semidefinite
[39].

Di(µiµiµi) =
λi

2
(
µi,1

)2 (1 − λi
µi,1

)
+

Ki∑
j=1

2
µi, j

+

Ki∑
j=1

2(h(v j, v j+1) − 1)
µi, j

g(h(v j, v j+1))

+

Ki∑
j=2

λi

2
(
µi, j

)2
(1 − λi

µi, j
)
g(µi, j−1 − µi, j).

The hessian matrix of Di can be expressed as

H(Di) =



∂2Di

∂µ2
i,1

∂2Di
∂µi,1∂µi,2

· · ·
∂2Di

∂µi,1∂µi,Ki
∂2Di

∂µi,2∂µi,1

∂2Di

∂µ2
i,2

· · ·
∂2Di

∂µi,2∂µi,Ki

...
...

. . .
...

∂2Di
∂µi,Ki∂µi,1

∂2Di
∂µi,Ki∂µi,2

· · ·
∂2Di

∂µ2
i,Ki


,

where

∂2Di

∂µ2
i,1

=
3 + 4(h (v1, v2) − 1) × g(h(v1, v2))

µ3
i,1

+
1(

µi,1 − λi
)3 ,

when 2 ≤ j ≤ Ki,

∂2Di

∂µ2
i, j

=


1

(µi, j−λi)3 +
3+4(h(v j,v j+1)−1)×g(h(v j,v j+1))

µ3
i, j

,

µi, j < µi, j−1
4+4(h(v j,v j+1)−1)×g(h(v j,v j+1))

µ3
i, j

, µi, j ≥ µi, j−1,

and
∂2Di

∂µi, j∂µi, j′
= 0, j , j′.

In the M/D/1 model, obviously, µi, j > λi is satisfied for any
j. Therefore, dom Di = {µiµiµi ∈ RKi |µi, j > λi, j = 1, . . . ,Ki}

is convex. Based on (21), we know g(h(v j, v j+1)) = 1 or 0.
So we have ∂2Di

∂µ2
i, j
> 0, j = 1, . . . ,Ki,; thus, H(Di) is a positive-

definite matrix. At this stage, we can conclude that the objective
function is convex.

6.2. Inequality constraint functions are convex
The standard form of inequality constraints in our problem

can be expressed as

f j(µiµiµi) = µi, j − µi, j+1 ≤ 0, j = 1, 2, . . . ,Ki − 1, or

f j(µiµiµi) = µi, j+1 − µi, j ≤ 0, j = 1, 2, . . . ,Ki − 1,
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fKi−1+n(µiµiµi) =

Ki∑
j=1

xn
i, j ×

µi, j

Cpro
i, j

× Mtot − mn ≤ 0,

n = 1, 2, . . . , |S|,

fKi+|S|−1+n(µiµiµi) =

Ki∑
j=1

xn
i, j ×

µi, j

Ctran
i, j
×Wtot − wn ≤ 0,

n = 1, 2, . . . , |S|.

Evidently, for any constraint function, dom f j = {µiµiµi ∈

R2|µi, j > λi, µi, j+1 > λi}, j = 1, 2, . . . ,Ki − 1 or dom fn =

{µiµiµi ∈ RL|µi,1 > λi, . . . , µi,L > λi}, n ≥ Ki (suppose that L VNFs
nest on the nth server) is convex. Furthermore, its Hessian is
zero matrix and thus positive semidefinite. Hence, inequality
constraints are all convex.

6.3. Equality constraint function is affine

When service i is provided with a constant cost Ci, the stan-
dard form of the equality constraint in our problem can be ex-
pressed as

h1(µiµiµi) =γ

Ki∑
j=1

µi, j

Cpro
i, j

× Mtot + β

Ki∑
j=1

µi, j

Ctran
i, j
×Wtot

× h
(
v j, v j+1

)
+ α × 250 × Ni −Ci = 0.

According to the definition of affine: A set C is affine if the
line through any two distinct points in C lies in C[39], we know
that any line or line segment is affine. Therefore, the equality
constraint in our problem is affine.
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