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Abstract
In this paper, we present a novel double diffusion
based neural radiance field, dubbed DD-NeRF, to
reconstruct human body geometry and render the
human body appearance in novel views from a
sparse set of images. We first propose a double
diffusion mechanism to achieve expressive repre-
sentations of input images by fully exploiting hu-
man body priors and image appearance details at
two levels. At the coarse level, we first model the
coarse human body poses and shapes via an un-
clothed 3D deformable vertex model as guidance.
At the fine level, we present a multi-view sam-
pling network to capture subtle geometric defor-
mations and image detailed appearances, such as
clothing and hair, from multiple input views. Con-
sidering the sparsity of the two level features, we
diffuse them into feature volumes in the canonical
space to construct neural radiance fields. Then, we
present a signed distance function (SDF) regression
network to construct body surfaces from the dif-
fused features. Thanks to our double diffused rep-
resentations, our method can even synthesize novel
views of unseen subjects. Experiments on various
datasets demonstrate that our approach outperforms
the state-of-the-art in both geometric reconstruction
and novel view synthesis.

1 Introduction
Simultaneous reconstruction of body geometry and appear-
ances from a sparse set of views is highly challenging yet
important in a wide variety of applications, including special
effects, game production and virtual reality. Substantial re-
search efforts have been made in the past, particularly with
the help of powerful deep learning techniques. When high-
quality 3D body scans are available for network training, deep
networks can reconstruct human body geometry and texture
easily. However, such data are often expensive to acquire and
not publicly accessible.

When 3D supervision is not available, self-supervised neu-
ral radiance fields (NeRF) have been proposed to render novel
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Figure 1: Our method produces detailed body geometry and synthe-
sizes high-fidelity novel views, from a sparse set of person images.

views of a specific subject. However, this per-subject opti-
mization process of NeRF is often time-consuming. Recent
works [Yu et al., 2021; Chen et al., 2021; Wang et al., 2021b]
propose to first extract features of scene images and then uti-
lize a scene-shared NeRF to synthesize novel views from the
scene features, thus circumventing the inefficient per-subject
optimization. However, these methods would suffer artifacts
when they are directly applied to human body reconstruction
or rendering due to the non-rigid deformations and large vari-
ations of human bodies. As suggested in [Peng et al., 2021],
the introduction of human body priors will significantly alle-
viate geometric distortions. Unfortunately, the work [Peng et
al., 2021] is a per-subject optimization method, thus restrict-
ing its applications in rendering various subjects.

To overcome the aforementioned shortcomings, we present
a novel double diffusion based neural radiance field, namely
DD-NeRF. As illustrated in Fig. 1, DD-NeRF is developed
to reconstruct human body geometry and render human body
appearances in novel views from a sparse set of human body
images. To be specific, we propose a novel double diffusion
mechanism that can fully exploit human body priors as well
as image appearance details at two levels to achieve represen-
tative features of input images.

At the coarse level, we first model the coarse human body
poses and shapes via an unclothed deformable human mesh
as explicit guidance. We embed the deformed vertices as
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a coarse-level feature, which indicates the coarse-scale hu-
man body pose and shape. At the fine level, we develop a
multi-view sampling network to capture image appearance
details and subtle geometric deformations, such as clothing
and hair, which are not modeled at the coarse level. Our
multi-view sampling network firstly samples 3D points on the
deformable human model as anchors and then projects them
to each input view. Then, it aggregates image features at the
project positions of different views by measuring their means
and variances as the fine level features. In this fashion, the ac-
quired coarse level and fine level feature representations are
both sparse in the canonical space. Afterwards, we diffuse
them into 3D feature volumes via sparse convolutions to fa-
cilitate the decoding process.

Subsequently, we design an implicit field regression mod-
ule to reconstruct high-quality human bodies from the two
level diffused features. Here, we employ a signed dis-
tance function (SDF) to represent body geometry instead of
volume-density based radiance fields since SDF is accurate
in modeling surface geometry while volume density is more
suitable to render texture [Wang et al., 2021a]. Thus, we
adopt multi-layer perceptrons (MLPs) to regress signed dis-
tance from the tri-linearly interpolated coarse and fine level
feature volumes. In order to avoid the per-subject optimiza-
tion as in [Peng et al., 2021], our radiance regression network
is conditioned on image features and pixels of input views in
reasoning. Additionally, we employ a transformer to fuse the
multi-view image features and raw pixels into a joint repre-
sentation for radiance regression. With regressed signed dis-
tance and radiance, the reconstructed meshes and novel views
can be obtained from differential SDF rendering [Wang et al.,
2021a]. Extensive experiments demonstrate that once DD-
NeRF is trained, it can reconstruct human bodies of both seen
and unseen subjects and achieves superior performance com-
pared to the state-of-the-art.

In summary, the contributions of this work are three-fold:

• We present a novel double diffusion based neural ra-
diance field, dubbed DD-NeRF, which can reconstruct
human body geometry from a sparse set of images in a
feed-forward fashion and is subject-agnostic.

• We propose a double diffusion mechanism that fully ex-
ploits human body priors and captures image appearance
details in both coarse and fine levels, enabling accurate
and robust human body surface reconstruction.

• We develop a signed distance function (SDF) regression
network to reconstruct human body surface in a differen-
tiable manner, allowing the body surface to be optimized
with only 2d supervision.

2 Related Work
2.1 Body Shape Reconstruction
Recently, regressing a “freeform” 3D body shape with im-
plicit representations has achieved promising progress. Pixel-
aligned implicit function (PIFu) regresses a signed distance
function for any given 3D location [Saito et al., 2019; Saito
et al., 2020]. It can infer both 3D body surface and texture
from a single image. Several works take multi-view images

as input to pursue better reconstruction performance. For in-
stance, volumetric occupancy fields have been proposed to
learn dynamic clothed bodies from sparse viewpoints [Gilbert
et al., 2018]. The work [Shao et al., 2021] combines a sur-
face field and a radiance field for body representations, and it
is learned under the supervision of ground-truth meshes. Note
that all these methods require ground-truth 3D scanned mod-
els as supervision. In contrast, our method does not rely on
3D scanned models and only leverages a sparse set of multi-
view images to reconstruct high-quality 3D body geometry in
a self-supervised manner.

2.2 Neural Representations
Neural implicit functions have emerged as an effective repre-
sentation to learn 3D scenes from 2D images. NeRF [Milden-
hall et al., 2020] learns densities and colors of a scene
with volumetric rendering, and achieves impressive results on
novel view synthesis. Following NeRF, some methods [Peng
et al., 2021; Kwon et al., 2021] capture a human body ge-
ometry from videos and reconstruct its surface by perform-
ing marching cube [Lorensen and Cline, 1987] on learned
volumetric densities. Furthermore, several works [Niemeyer
et al., 2020; Yariv et al., 2020; Kellnhofer et al., 2021;
Wang et al., 2021a] represent a scene with an SDF and thus
extract surfaces by level set. The work [Peng et al., 2021]
employs a skinned multi-person linear model (SMPL) [Loper
et al., 2015] as a human body prior to preserve geometric de-
tails of human bodies, but it needs to optimize the network
according to each subject. Recent works [Chen et al., 2021;
Wang et al., 2021b] propose conditional NeRF to bypass the
tedious per-subject optimization. They are trained on mul-
tiple subjects and can perform novel view synthesis for un-
seen subjects which are not available during training. Our
method also learns across different subjects in order to recon-
struct unseen subjects in a feed-forward fashion. Moreover,
we introduce a human body model as geometric guidance,
thus significantly facilitating high-fidelity body geometry re-
construction and improving optimization efficiency.

3 Proposed Method
Given a sparse set of multi-view posed body images, our
method computes an implicit radiance field that represents the
geometry and appearance of the subject. We denote the in-
put images as I = {I1, I2, ..., INc

}, where Nc is the number
of pre-calibrated cameras. The calibration results are stored
as Φ = {Φ1,Φ2, ...,ΦNc

}. In general, our network can be
viewed as a conditional radiance field function as follows:

s, c = F (x, d; I,Φ), (1)

where x represents a 3D location, d is a viewing direction, s
denotes a signed distance value at x and c is an RGB color
as its appearance. The output radiance field can be used to
synthesize a novel view via differentiable ray marching, or
extract 3D surfaces with marching cube.

An overview of our model is illustrated in Fig. 2. There are
three components: an image encoder module, a double dif-
fusion module, and an implicit field regression module. The
image encoder module is composed of a stacked hourglass
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Figure 2: An overview of DD-NeRF. Given multi-view input images and a corresponding SMPL model, the double diffusion module con-
structs two feature volumes to represent a coarse body prior and local features that depict local geometric deformations. Next, an implicit
field regression module predicts a signed distance function (SDF) and scene radiance for each ray. All the modules are learned jointly by
minimizing the differences between the target and rendered pixels.

neural network [Newell et al., 2016] for image feature extrac-
tion. Next, the double diffusion module builds two volumes,
a coarse body feature volume and a fine detail feature vol-
ume. While the former is designed to encode the coarse body
prior, the latter is developed to depict the detailed geomet-
ric deformations for high-fidelity body representation. The
implicit field regression module consists of two sub-modules
that regress signed distance values and colors, respectively.
Specifically, an SDF regression sub-module generates signed
distance from diffused features of both volumes, and a ra-
diance regression sub-module takes as input surface normal,
multi-view raw pixels, image features and the view direction,
and produces an RGB color as output. Once we obtain the
regressed signed distance and colors, a novel view image of
the subject can be synthesized by differential SDF rendering.

3.1 Double Diffusion
The motivation of double diffuse is to attain expressive repre-
sentations by exploiting both coarse human body priors and
detailed multi-view image features. We build a coarse body
volume and a fine-level detail feature volume in parallel. We
use the resolution of 2563 for the coarse body volume, and
5123 for the detail feature volume in order to capture high-
frequency geometric details. Inspired by [Peng et al., 2021],
we adopt an SMPL model as the body prior and the coarse
body volume encodes the body shapes and poses. Given the
multi-view images, the corresponding SMPL parameters are
estimated by [Zheng and Shao, 2021]. We obtain the vertices
V = {v1, v2, ..., v6,890, vi ∈ R3} from the template model.
The vertices are fed into the embedding network to compute
a structured latent code Z ∈ R6,890×16, which serves as our
coarse body prior for implicit filed reconstruction.

The detail feature volume is designed to capture fine-
grained geometric characteristics of a subject by integrating
multi-view image features. Inspired by [Yu et al., 2018],
we sample the on-body and far-body anchors to effectively
capture the body-related features. The on-body anchors are
relatively dense vertices computed with subdivisions on the
SMPL model. The far-body anchors are randomly sam-
pled on the exterior surfaces of spheres centered at each

vertex of the SMPL model. We empirically set the radius
as 0.05m to account for objects that are relatively far away
from the SMPL surface (e.g., loose clothing, long hair).
We uniformly sample 12,446 far-body anchors, and utilize
Trimesh [Dawson-Haggerty et al., 2019] to obtain 27,554 on-
body anchors from 6,890 SMPL vertices with subdivision.
Next, we project the anchors to different views and sample
pixel-aligned multi-view features, expressed as:

âji = Kj · [RT
j ·R · (ai − T ) + Tj ],

f ji = Ej{âji},
(2)

where ai is the 3D position of the i-th anchor, R and T are
the estimated rotation and translation of the SMPL model.
Kj and [Rj , Tj ] are the intrinsic and extrinsic matrices of j-
th camera respectively. Ej{·} denotes the image feature ex-
tracted from the j-th view, f ji ∈ Rc denotes the sampled fea-
tures of the i-th anchor from the j-th view. Given theNc input
views, we attain features fi = {f1, f2, ..., fNc

} for each an-
chor and then concatenate their mean and variance to achieve
a feature vector f̂i ∈ R2c as the final representation of the an-
chor. Then, those feature vectors are utilized to capture subtle
geometric deformations and image detailed appearances.

Since the sparse coarse-and-fine features are not suitable
for dense surface reconstruction, we employ SparseCon-
vNet [Graham and Engelcke, 2018] to diffuse them into the
canonical space. Our double-diffusion module incorporates
the coarse body prior with elaborated geometric information
while preserving the local appearance and geometric details
depicted in input images.

3.2 Implicit Field Regression
This step consists of two sub-modules: SDF regression FS

and radiance regression FR. To obtain a high-quality output
surface, we use signed distance instead of volumetric density
to represent the body geometry. For a 3D point x that a ray
traverses in the 3D bounding box Ω3, we trilinearly interpo-
late features from the coarse and fine level feature volumes
to obtain its corresponding coarse feature fc and detail fea-
ture fd. Then, we adopt an MLPs to regress signed distance



s based on x, fc and fd as follows:

s, fs = FS(x, fc, fd), (3)

where fs is a surface feature corresponding to s. Similar to
NeRF [Mildenhall et al., 2020], x is mapped to a higher di-
mensional space with positional encoding. After computing s
for the feature volumes, the body surface S can be expressed
by the zero level-set of SDF, i.e., S = {x ∈ Ω3|s = 0}.

Once the geometry is obtained, the next step is to regress
the corresponding appearance. Given the geometry-related
feature fs, we take the view direction, the geometry and the
image feature into consideration. The radiance regression is
expressed by:

c = FR(fs, g, x, d, {fxi}, {pxi}|i = 1, 2, ..., Nc), (4)

where d is the view-direction, and g = ∇FS(x, fc, fd) rep-
resents the normal of surface S at position x. We project x
to the i-th view, and then sample pixel-aligned image feature
fxi from Ei and the raw RGB pixel pxi. Notably, pxi and d
are also mapped to a higher dimensional space with positional
encoding for learning high-frequency variations.

We adopt a transformer [Vaswani and Shazeer, 2017] to ef-
fectively fuse features {fxi}, {pxi}|i = 1, 2, ..., Nc} for ap-
pearance reasoning. The transformer consists of an encoder
and a decoder. The encoder E encodes the multi-view features
with stacked multi-head attention layers to obtain a fused fea-
ture f̂x, computed as:

f̂x = E({fxi}, {pxi}|i = 1, 2, ..., Nc). (5)

The MLP-based decoder D regresses the final radiance:

c = D(fs, g, x, d, f̂x). (6)

3.3 Differential SDF Rendering
To optimize our representation, we adopt the SDF-based dif-
ferential renderer [Wang et al., 2021a]. Then, we can use our
input images as ground-truth to supervise novel view synthe-
sis and reconstruction. For a pixel in the target image, We
accumulate the radiance along the ray emiited from the pixel
to to predict the pixel color by:

Ĉ =

n∑
i=1

Tiαici, (7)

where Ti =
∏i−1

j=1(1− αj) is the discrete accumulated trans-
mittance, and αi is a discrete opacity value, defined as:

αi = max(
Φs(f(si)− Φs(f(si+1)))

Φs(f(si))
, 0),

Φs = (1 + e−kx)−1,

(8)

where k is a learnable scalar that increases as the training
iteration progresses.

3.4 Loss Function
To learn the implicit body representations, we penalize the
differences between the rendered pixel colors and their coun-
terparts in the input image. We randomly select n input views,

and randomly sample m pixels from each view to train our
network. The rendering loss Lr measures the pixel-wise L1
distance between the rendered colors and the ground-truth:

Lr =
1

m

m∑
i=1

|Ci − Ĉi|, (9)

where Ĉi is the predicted pixel color and Ci is the ground-
truth. Besides, the Eikonal loss Le serves as an implicit ge-
ometric regularization [Gropp and Yariv, 2020], and enforces
our SDF regression sub-module to model signed distance:

Le =
1

nm

∑
i,j

(|∇(sij)| − 1)2. (10)

Finally, the overall loss is defined as:

L = λrLr + λeLe, (11)

where λr and λe denote the corresponding weights.

4 Experiments
4.1 Datasets
We perform experiments on the synthesized datasets Twin-
dom 1, THuman2.0 [Zheng and Shao, 2021] and the real-
world dataset ZJU-Mocap [Peng et al., 2021]. We use 1,200
body meshes from Twindom for training, 300 meshes for
evaluation. For THuman, 400 meshes are used for training,
and 100 meshes for evaluation. All the data in ZJU-Mocap
are used for evaluation. To render a scanned body mesh, we
place it in the center of a unit sphere, and orient the camera
towards the sphere center with a distance of 2.4m. We move
the camera around the sphere, sample a yaw angle from−30◦

to 60◦ with an interval of 10◦, and sample a roll angle from
0◦ to 360◦ with an interval of 24◦. For each body model, we
render 135 images of resolution 10242 for training.

4.2 Implementation Details
The SMPL parameters are estimated by EasyMocap [Dong
and Fang, 2021] from input images. Note that sampling
strategies can heavily influence the final results as reported
by prior works [Wang et al., 2021a]. Therefore, we adopt the
hierarchical sampling method as in [Wang et al., 2021a]. We
use the Adam optimizer [Kingma and Ba, 2014], and set the
learning rate to 1 × 10−4. The loss weights are set to 10, 1
for λr and λe, respectively.

4.3 Qualitative Comparisons
We compare our approach with state-of-the-art methods to
validate the superiority of our method. MVSNeRF [Chen et
al., 2021], PIFu [Saito et al., 2019] and our method are all
generalizable. In other words, models are trained on sev-
eral subjects and tested on randomly sampled subjects that
are unseen during training. NeuralBody [Peng et al., 2021] is
a subject-specific optimization based method. Following the
training protocols of NeuralBody, we train it with 500 epochs
for each testing subject. It is worth mentioning that we use

1web.twindom.com



Table 1: Quantitative comparisons of novel view synthesis. “Ft” indicates that fine-tuning is applied. Bold and underlined numbers correspond
to the best and the second-best values for each metric.

Model Supervision PNSR↑ SSIM↑ LPIPS↓ PNSR↑ SSIM↑ LPIPS↓ PNSR↑ SSIM↑ LPIPS↓
THuman2.0 Twindom ZJU-Mocap

MVSNeRF images 18.99 0.72 0.35 16.43 0.66 0.30 19.50 0.76 0.41
MVSNeRF(Ft) images 21.09 0.80 0.32 19.90 0.72 0.27 22.10 0.88 0.32

PIFu 3D meshes 18.39 0.58 0.33 16.43 0.70 0.30 19.12 0.75 0.43
NeuralBody images 21.90 0.85 0.20 23.52 0.76 0.26 25.65 0.92 0.27

Ours images 21.06 0.75 0.21 23.40 0.79 0.26 23.95 0.79 0.25
Ours(Ft) images 23.08 0.85 0.17 27.67 0.81 0.23 25.32 0.89 0.23

Neural BodyPIFu MVSNeRF Ours 1 of 4 input views Neural BodyPIFu Ours1 of 4 input views MVSNeRF

Figure 3: Comparisons of geometry reconstruction results by different methods. Please zoom in for more details.

1 of 4 input view Traget view PIFu MVSNeRF Neural Body Ours
Figure 4: Comparisons of novel view synthesis. Our method produces the most faithful results. Please zoom in for more details.

Table 2: Quantitative comparisons of surface reconstruction.

Model Chamfer↓ P2S↓ Chamfer↓ P2S↓
THuman2.0 Twindom

MVSNeRF 1.597 1.146 1.528 1.126
MVSNeRF(Ft) 0.930 0.913 0.925 0.741

PIFu 1.510 1.524 1.170 1.630
NeuralBody 0.915 0.931 0.815 0.725

Ours 0.810 0.739 0.803 0.714
Ours(Ft) 0.740 0.689 0.696 0.647

the public-released weights of PIFu for comparisons. PIFu
is trained under the supervision of scanned 3D meshes and
takes a single image as input. For the remaining methods, we
use four views (i.e., the left, front, right and back views) as
the input in testing.

We conduct comparison experiments on both the recon-
structed geometry (Fig. 3) and rendered appearances (Fig. 4).

Please refer to the supplementary video for animated results
with varying views. The results show that PIFu suffers over-
smoothing artifacts and distortions in its reconstructed geom-
etry and texture. Benefiting from our double diffusion mech-
anism, our method effectively learns both the coarse body
prior and image details and thus produces the most authen-
tic geometry and appearances. MVSNeRF and NeuralBody
generate plausible novel views. However, some bumpy arti-
facts appear in their generated shape results as seen in Fig. 3.
Since we employ SDF to represent the geometry, our results
do not exhibit such artifacts. We also compare our method
with NeuralBody on real-world images. Note that we only
need to spend 30 minutes to finetune our method on real-
world images, while NeuralBody requires 4 hours to learn
from scratch for each subject on an Nvidia RTX3090 GPU.
As illustrated in Fig. 5, our method produces better surface



Neural Body Ours Target view Neural Body OursTarget view

Figure 5: Comparisons of synthesized novel views and reconstructed surfaces of real-world images.

w/o DD full modelTarget view w/o transformerw/o  fC

Figure 6: Qualitative ablation study on synthesized novel views. Our
full model leads to the best result compared to other variants.

details and comparable novel views. For more visual results,
please refer to the supplementary material.

4.4 Quantitative Comparisons
We adopt a variety of metrics to quantitatively evaluate our re-
sults from the perspectives of the image and geometry quality.
Specifically, we employ peak signal-to-noise ratio (PSNR),
structural similarity index (SSIM) and learned perceptual im-
age patch similarity (LPIPS) [Zhang et al., 2018] to evaluate
the similarity between the ground-truth and the synthesized
image. The metrics of Chamfer distance (Chamfer) and av-
erage point-to-surface Euclidean distance (P2S) are applied
to geometric quality assessment. For the image quality eval-
uation, we randomly select 20 target views from the 135 ren-
dered images as the ground-truth. In the geometry quality
assessment, marching cube is performed for surface extrac-
tion. To further inspect the capability of generalization, we
fine-tune MVSNeRF and our method for 100 epochs.

The quantitative comparisons in terms of image and geom-
etry quality are reported in Tab. 1 and 2, respectively. Our
method outperforms the other competing methods on most
metrics. In particular, our method achieves the highest scores
at Charmfer and P2S, indicating the effectiveness of our pro-
posed implicit body representations. In other words, our
method attains the most accurate geometric models. Though
DD-NeRF works in a feed-forward way during testing, we
can fine-tune it, similar to the subject-specific optimization
based method NeuralBody. After fine-tuning, our method
achieves the highest scores in novel view synthesis. More-
over, all the metrics are also improved. This indicates that
DD-NeRF can not only be extended to subject-specific novel
view synthesis but also capture more expressive features.

4.5 Ablation Study
We conduct ablation studies on Twindom dataset to evaluate
the contributions of each component in DD-NeRF. We first

Table 3: Ablation study on the Twindom dataset.

Model Chamfer↓ P2S↓ PSNR↑ SSIM↑
w/ofc 0.843 0.91 17.03 0.70

w/o DD 0.926 1.08 14.54 0.49
w/o transformer 0.835 0.74 19.95 0.73

full model 0.803 0.71 23.40 0.79

remove the coarse-level feature fc (w/ofc) to evaluate the ef-
fect of body prior. Note that the fine-level feature fd cannot
be removed since it provides all the clothes and hair informa-
tion. Then, we remove the double diffusion mechanism (w/o
DD). The ablated model is trained from scratch in a subject-
specific way. To inspect the effect of the transformer, we re-
move the transformer from the full model (w/o transformer),
and thus multi-view features are stacked as the input of our
radiance decoder.

The results are reported in Tab. 3. Our full model achieves
the best scores under all the metrics. Without the coarse-level
feature, the performance of w/ofc drops significantly, reveal-
ing the importance of body prior. Without the double diffu-
sion mechanism, w/o DD is hard to produce realistic novel
views when the input is a sparse set of views. This manifests
that our diffusion mechanism can effectively learn the body
representation for the implicit field regression. Besides, most
metrics are negatively changed with the absence of the trans-
former. This indicates that the transformer can effectively in-
tegrate multi-view information and produce more satisfactory
results. We observed that when the SDF regression submod-
ule is removed and the diffused features are fed to the radi-
ance field decoder, the network cannot converge. The visual
comparisons of the above variations are shown in Fig. 6, and
more results are provided in the supplementary material.

5 Conclusion

We propose a novel double diffusion based neural radiance
field to represent the human body implicitly from a sparse set
of multi-view images. The proposed double diffusion mech-
anism fully exploits human body priors and image appear-
ance details at both coarse and fine levels, thus leading to
expressive representations of subject geometry and appear-
ances. Benefiting from the diffused features, our proposed
implicit field regression module can reconstruct high-quality
human bodies. Thanks to our self-supervised training fash-
ion, our method does not require any 3D supervision in train-
ing and is able to reconstruct human bodies of unseen sub-
jects. Extensive experiments show that our method consider-
ably outperforms concurrent works.
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