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Federated Learning is a growing advanced collaborative machine learning
framework that aims to preserve user-privacy data. However, multiple re-
searchers have investigated attack methods from the server side via gradient
inversion techniques and Generative Adversarial Networks (GAN) to re-
construct the raw data distributions from users. So far, the past researched
attacks are limited to certain assumptions. For example, the attacker already
has a small subset of true data, each client is limited to data of distinct
labels from one another, and no local batch training. Furthermore, many
GAN-based attacks can only achieve image class reconstruction instead of
victim identification while hindering the global model performance. In this
paper, we propose Batch Inversion GAN (BI-GAN), a novel membership
inference attack that can recover user-level batch images from local updates,
utilizing both gradient inversion techniques and GAN. Our attack is more
stealthy since it only requires access to gradients and does not interfere with
the global model performance and is more robust in terms of image batch
recovery and victim classification. The experiments show that our attack
recovers higher quality images of the victim with higher accuracy compared
to other attacks.
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1 Introduction

Federated Learning (FL) [5] is a novel distributed deep learning
framework that allows a deep learning model to be collaboratively
trained over a series of users. Each participant, as a data provider
can locally train their model and submit the model updates to the
global server instead of sending his/her raw private data. Recent
researches have identified that federated learning can be subject to
inference attacks that aim to learn the real training data attributes
and to predict if a data sample is part of the training set [13].
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The current recent attacks on FL system can be classified as Inver-
sion attacks and GAN-based attacks. Inversion attacks can aim to
steal the model’s functionality (model inversion) [1] or reconstruct
the exact private training data from the gradients update [16], [15].
Instead of reconstructing exact true training data, GAN-based at-
tacks such as the ones proposed in [3] and [13] aim to generate fake
data samples that best represent the training data distribution. Both
Inversion attacks and GAN-based attacks can exploit the FL sys-
tem’s security weaknesses to duplicate the global model’s function
abilities and recover/replicate clients’ private data.
Many of the current attacks targeting FL focus on a malicious

client instead of a malicious server [1], [3], and [13]. These attacks
have a weakness in requiring the attacker to have a subset of true
training data with an unlimited amount of target model queries
to perform the attack. Furthermore, attacks from a client are not
as efficient as from a malicious server since the server can access
the model’s parameters for more efficient targeted attacks. Many
of the GAN-based attacks on FL [3],[13] so far do not achieve tar-
geted membership inference attack since they can only make fake
replications of the whole training data instead of the victim’s data.

To target the above weaknesses, our attack first utilizes a Gradient
Inversion technique for a malicious server to constantly reconstruct
client-wise private data representatives in batch without having
to obtain a subset of true training data or unlimited model queries
to perform the attack. Furthermore, our attack also implements a
GAN-based attack model to generate fake client-wise private data.
Our GAN attack model has an advantage over previous GAN-based
attacks in FL because it can generate fake data of specific targeted
victim instead of the overall private training data.

Our major contributions are listed as follows:
• We combine the benefits of Gradient Inversion techniques
and GAN models to introduce a server side membership in-
ference attack in Federated Learning. The attack can achieve
a better client-wise targeted inference attack, eliminating the
requirements of unlimited data queries with a subset of true
data.

• The attack framework BI-GAN is introduced which combines
the benefits of batch image gradient inversion and custom
Auxiliary Classifier GAN to reconstruct and generate victim
specific private data.

• Extensive experiments are conducted under both low and
high quality image settings to compare BI-GAN’s perfor-
mance against other state of the art attack frameworks.

The rest of the article is organised as follows. Part II presents
related work of this project. Part III reviews background of involved
techniques. Part IV provides the threat model of out work. Part
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V discusses the BI-GAN attack. Part VI presents the experimental
results. Part VII concludes our work and projects future works.

2 Related Work

2.1 Membership Inference Attack in Federated Learning
2.1.1 Inversion Attack
Gradient Inversion is an approach for the server to extract user-level
data from the submitted gradients from the clients.

In late 2019, early 2020, Ligeng Zhu and Bo Zhao have proposed
algorithms that can construct private data from gradients leakage
[16], [15]. These papers aim to revert the representations of single
images from given leaked gradients by introducing optimization
algorithms that match inputs and labels to their targeted gradients
as well as enhancing the label restoration step. These researches,
however, do not apply well to federated learning attacks since they
do not support image restoration in batch which is usually the case
for federated user data.

The most recent gradient inversion framework that support batch
training in FL is proposed by Hongxu Yin in [11]. This research pro-
poses an optimization algorithm that converts noise to adversarial
images while controlling matching gradients under a group regis-
tration framework that aims to reconstruct images from the average
of gradients. However, this approach has not been implemented to
multiple local updates in federated learning.
2.1.2 GAN-based attacks
There are a couple of researches that implement GAN to reconstruct
the distributions of true training data.
In [3], the authors assume that the adversary is a participant

trying to learn a secret label of an image. The framework in this
paper is quite similar to [13] with the difference that the adversary
only tries to flip the label of an unknown generated image and learn
how the global gradients shift to determine the actual class of that
sample. This approach still needs white-box access to the model
structure for gradients update which is not always available for
participants in federated learning.

In [14], the authors use GAN to generate fake samples that have
similar distribution as original dataset. The fake samples then get
labeled by querying the target model to generated supervised attack
training set for training attack model. Although this approach can
get user-level privacy attack, it still relies on large amount of query
of target model to get labels for fake samples which is usually very
limited for a participant in federated learning.

2.2 Generative Adversarial Networks (GAN)
Generative Adversarial Networks (GANs) have been proposed by

Goodfellow in 2014 [2], and can be employed to generate images
that similar to those in the real dataset or generate brand new one by
itself. This training model consists of Generator G and Discriminator
D. Generator creates fake data based on the random noise, and the
results will be evaluated and identified by Discriminator that trained
by the real dataset. The image been judged as fake will be trained
again until it is similar to the real one and been identified as real by
Discriminator. Training process of GAN model can be expressed as
Eq. 1.

min
𝐺

max
𝐷

𝑉 (𝐷,𝐺) =E𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥) [log𝐷 (𝑥)] +

E𝑧∼𝑝𝑧 (𝑧) [log (1 − 𝐷 (𝐺 (𝑧)))] ,
(1)

where 𝑝𝑑𝑎𝑡𝑎 and 𝑝𝑧 (𝑧) represent distribution of original images
and random vector 𝑧 respectively. This model will keep training
until the Nash equilibrium has been achieved on the adversarial
game.

3 Threat Model

3.1 Learning Scenario
Following the federated learning training protocols, we assume N

(N ≥ 2) clients that train local models collaboratively for a common
learning goal. The data of each client does not contain personal
information and are nonIID distributed. For simplicity, we consider
image classification as the common learning goal.

3.2 Attacker’s Knowledge and Goals
We consider a malicious server instead of a malicious client as

the attacker with the goal to reconstruct specific clients’ private
data. The attacker would have white-box access to the federated
learning model structure as well as the gradient updates from each
client. There are three main goals of the attacking server: (1) Samples
Reconstruction: reconstruct the client-wise data representatives via
batch-optimized gradient inversion, (2) Samples Generation: Train BI-
GAN model to generate images similar to specific clients’ data, and
(3) Prediction accuracy: The Discriminator should has high accuracy
in predicting the class label and the victim that the real sample
image belongs to.

4 BI-GAN Attack

4.1 Overview of BI-GAN
For BI-GAN attack, we incorporated a batch gradient inversion

technique to recover representatives of client data for training a
custom GAN attack. Our GAN model is inspired by the capability of
encoding more conditions into traditional GAN such as CGAN [7]
and ACGAN [9] and improve it to further discriminate the client
identifications.
Fig. 1 illustrates the high level view of the proposed BI-GAN at-

tack. Assume the client population is 𝑁 . Here the attack framework
aims to discriminate all clients’ data from one another instead of
targeting a single client which makes the attack more robust and
consumes less training time when targeting different clients. In a
normal federated learning round, the malicious server distributes
the global model𝑀 to 𝑁 clients and receive the respected updates
𝑢1, 𝑢2, ..., 𝑢𝑛 after the clients have finished their local training where
the clients are allowed to train the data in multiple batches of dif-
ferent labels. In order to reconstruct the private features from the
gradients updates, a batch gradient inversion algorithm inspired by
[11] is implemented to reconstruct representatives of true client data
which will be used illustrated in Section 4.3. The representatives
would then get labeled by querying the global model to construct
the training data set for GAN. Then to generate new fake data that
captures the clients’ real data distributions while predicting the
various memberships of a data sample, we propose a custom variant
of ACGAN with extra embedded encoding of victim identification
with a novel Discriminator that discriminate all clients’ ids, realism,
and categories from a single attack. Contrary to other attack frame-
works that set the structure of the Discriminator similar to that of
the global model, we implement custom Discriminator structure
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Fig. 1. Overview of proposed BI-GAN membership inference attack framework from malicious server in federated learning at a single iteration 𝑡 . There are 𝑁
clients and the server can attack/discriminate all clients from a single attack. The client k’s update is denoted as 𝑢𝑘 , the global shared model is denoted as𝑀 .
After the batch gradient inversion step, the recovered features of clients 𝑘 and 𝑣 are denoted as 𝑥𝑘 and 𝑥𝑣 respectively with 𝑦𝑘 and 𝑦𝑣 are the predicted batch
labels are used to query the global model𝑀 . The victim-conditioned GAN model is then trained with the reconstructed representatives (𝑥𝑘 , 𝑦𝑘 ), (𝑥𝑣, 𝑦𝑣)
from the clients. The Discriminator 𝐷 aims to have similar performance as the global model as well as discriminating client-wise data while Generator G aims
to generate samples 𝑥′

𝑘
, 𝑥′𝑣 that represents the clients’ data

Fig. 2. Construction comparison between classic GAN models and our
victim-conditioned GAN. Here CGAN has been used for membership infer-
ence attack in Federated Learning [14]

with fewer convolutional layers to further decrease training time.
The Discriminator then would server as a shadow model which
would reach similar performance as the global model while being
able to discriminate data ownership and realism after training. in
Section 4.2, we will detail the structure of our victim-conditioned
GAN model.

4.2 Victim-Conditioned GAN
To be more specific, the roles of the discriminator of BI-GAN

includes (1) discriminating real/fake image as a standard GAN, (2)

correctly categorising the real label of the input, and (3) identifying
the victim ownership of the input image by categorizing victim ids.
The difference between our Victim-conditioned GAN to other GAN
structures is shown in Fig. 2. In our model, Victim-Conditioned GAN
trains the Discriminator as a shadowmodel to the global model with
similar image category prediction and extra victim id prediction in
the output layer. Compare to the membership inference attack in
[14], our model encodes the victim identification to the Generator
and does not require real sample data during training. The structure
for each of the Dense layer from the Discriminator is shown below:

𝐷𝑟𝑒𝑎𝑙 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝐹𝐶𝑟𝑒𝑎𝑙 (𝐿𝑠 ))
𝐷𝑐𝑎𝑡 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐹𝐶𝑐𝑎𝑡 (𝐿𝑠 ))
𝐷𝑖𝑑 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐹𝐶𝑖𝑑 (𝐿𝑠 ))

Here, 𝐷𝑟𝑒𝑎𝑙 , 𝐷𝑐𝑎𝑡 , and 𝐷𝑖𝑑 are dense layers for predicting realism,
image category, and client id respectively. We implement Softmax
function for both categories and ids because victim-conditioned
GAN model will have all client ids embedded instead that of a single
victim. 𝐹𝐶 denotes the fully connected layers and 𝐿𝑠 represents the
layers from the shadow Discriminator model.

The Generator G takes three inputs: noise z sampled form Gauss-
ian distribution, randomized category and client id. There will be
three loss functions for detecting real/fake (𝑙𝑟 ) , image category (𝑙𝑐 )
and victim id (𝑙𝑣 ) which are Binary Crossentropy, Sparse Catego-
rial Crossentropy, and Sparse Categorial Crossentropy respectively.
After sufficient training, the Discriminator 𝐷 will try to minimize
𝑙𝑟 + 𝑙𝑣 + 𝑙𝑐 while Generator 𝐺 will try to minimize 𝑙𝑣 − 𝑙𝑟 + 𝑙𝑐 .
4.3 Batch Gradient Inversion

To obtain the training samples for victim-conditioned GANmodel,
the malicious server needs to reconstruct the clients’ data base on
their gradients updates. Hongxu Yin in [11] proposed a gradient
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inversion approach that can recover images of different labels in a
batch up to a size of 48 images from gradients updates from noise.
However, this method has not been implemented to perform a mem-
bership inference attack in Federated Learning. Motivated by [11],
we are able to create samples that represent the victims’ data when
the clients are allowed to have multiple training labels in batch.

This approach introduces an image fidelity regulation and a group
consistency regulation to the traditional gradient inversion opti-
mization function mentioned in [16] as shown below

𝑥 ′
𝑘
= 𝛼𝐺

∑︁
𝑙

argmin
𝑥𝑙
𝑘

| |∇𝑢𝑙
𝑘
− ∇𝑢𝑙𝑥𝑘 | |2 + 𝑅𝑓 𝑖𝑑𝑒𝑙𝑖𝑡𝑦 (𝑥𝑘 )

+ 𝑅𝑔𝑟𝑜𝑢𝑝 (𝑥𝑘 )
(2)

Here, the summation of ground truth gradients from all layers 𝑙
is scaled on a fixed parameter 𝛼𝐺 and the difference between the
gradients of reconstructed images and the real images is minimized
under 𝑙2 distance. The fidelity regulation loss function is the combi-
nation of strong prior 𝑅𝐵𝑁 proposed in DeepInversion [12] and two
classic image prior 𝑅𝑇𝑉 [6] and 𝑅𝑙2 [8]. 𝑅𝐵𝑁 penalizes 𝑥 ′

𝑘
according

to the variation estimate and batch-wise mean of convolution layers’
feature maps while 𝑅𝑙2 and 𝑅𝑇𝑉 penalizes 𝑥 ′

𝑘
according to total 𝑙2

norm and total variance respectively as shown in Eq. 3 where 𝛼
denotes different scaling factors.

𝑅𝑓 𝑖𝑑𝑒𝑙𝑖𝑡𝑦 (𝑥𝑘 ) = 𝛼𝑙2𝑅𝑙2 + 𝛼𝑇𝑉 𝑅𝑇𝑉 + 𝛼𝐵𝑁𝑅𝐵𝑁 (3)

To help enhances the quality of recovered images in batch, we
incorporated the group consistency regulation 𝑅𝑔𝑟𝑜𝑢𝑝 (𝑥𝑘 ) to our
constructed images 𝑥𝑘 as shown in Eq. 4. This regulation would first
initiate multiple repeated optimizations with different seeds then op-
timizes the multiple seeds in parallel with a combined optimization
goal.

𝑅𝑔𝑟𝑜𝑢𝑝 (𝑥𝑘 , 𝑥𝑘𝑔 ∈ 𝐺) = 𝛼𝑔𝑟𝑜𝑢𝑝 | |𝑥𝑘 − 𝐸 (𝑥𝑘𝑔 ∈ 𝐺) | |2 (4)

Here, 𝐸 (𝑥𝑘𝑔∈𝐺 ) is considered to be the pixel-wise average of the
image group. Optimizing multiple seeds under a joint optimization
constraint is promised to output more robust and more realistic
images.

To minimize the training cost, we omit the batch label restoration
step in [11] and replaced it with labels predicted by querying the
global model. Furthermore, to further ensure the quality of training
data for victim-conditioned GAN, we implemented an extra noise
filter by filtering out reconstructed images with high noise vari-
ance [4] as shown in Eq. 5. This method is only applicable to two
dimensional images

𝜎2𝑛 =
1

36(𝑊 − 2) (𝐻 − 2)
∑︁
𝑥𝑘

(𝑥𝑘 (𝑢, 𝑣) ∗ 𝑁 )2 (5)

where 𝑁 = 2(𝐿2 − 𝐿1) is the mask operation over 2 Lapcacian

masks 𝐿1, 𝐿2 of an image. In this case, we denote𝑁 =

������ 1 −2 1
−2 4 −2
1 −2 1

������
and an image is considered noise if the noise variance 𝜎2𝑛 is greater
than 0.5

Algorithm 1 BI-GAN attack
Input: Global model𝑀 and a set of client updates (𝑢1, 𝑢2, ..., 𝑢𝑛)
Output: Discriminator D and Generator G
Initialize𝑀 , 𝐷 , and 𝐺
trainImages = []
trainLabels = []
trainVictims = []
for k in range 𝑁 do

Construct client data images 𝑥𝑘 from 𝑢𝑘 via Eq. 2
Filter noisy images from 𝑥𝑘 via Eq. 5
Add 𝑥𝑘 to trainImages
Get predicted labels 𝑦𝑘 by querying 𝑥𝑘 by𝑀

Add 𝑦𝑘 to trainLabels
Add 𝑘 to trainVictims

end for
Get fake images 𝑋𝑓 𝑖 , fake labels 𝑌𝑓 𝑐 , fake victim ids 𝑌𝑓 𝑣 from 𝐺

with inputs: 𝑙𝑎𝑡𝑒𝑛𝑡𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛, 𝑡𝑟𝑎𝑖𝑛𝐿𝑎𝑏𝑒𝑙𝑠 , and 𝑡𝑟𝑎𝑖𝑛𝑉𝑖𝑐𝑡𝑖𝑚𝑠

Update 𝐷 by minimizing 𝑙𝑟 + 𝑙𝑣 + 𝑙𝑐 with inputs: 𝑡𝑟𝑎𝑖𝑛𝐼𝑚𝑎𝑔𝑒𝑠 and
𝑋𝑓 𝑖

Update 𝐺 by minimizing 𝑙𝑣 − 𝑙𝑟 + 𝑙𝑐 .

4.4 Attack Algorithm
This section details the BI-GAN attack algorithm in a specific

federated training iteration which is depicted in algorithm 1. The
model would first take the global model 𝑀 and the list of client
gradient updates (𝑢1, 𝑢2, ..., 𝑢𝑛) as inputs from 𝑁 > 2 clients. Then,
each of the client data representatives would be reconstructed via
batch gradient inversion approach from Section 4.3, resulting in
a set of 𝑥𝑘 images for each victim. The noisy images from 𝑥𝑘 is
then filtered out by Eq. 5. Then, the high quality images from 𝑥𝑘
will be labelled by global model 𝑀 and the training data set for
victim-conditioned GAN would include the reconstructed images,
predicted labels, and the client ids.

After obtaining the training dataset, the predicted labels and vic-
tim ids are fed to the Generator𝐺 to generate fake images with fake
ids and fake labels. The Discriminator 𝐷 takes reconstructed images
𝑡𝑟𝑎𝑖𝑛𝐼𝑚𝑎𝑔𝑒𝑠 as input and try to discriminate the reconstructed im-
ages from the fake images generated by 𝐺 . Both 𝐺 and 𝐷 will be
trained simultaneously while optimizing their respecting loss func-
tions mentioned in section 4.2. The output of BI-GAN algorithm
is not only the Generator G for creating fake client-like images
but also the Discriminator D which has high accuracy in category
prediction and is also able to predict the ownership of a data sample.

4.5 Dataset and Experiment Setup
4.5.1 Dataset
MNIST is a popular benchmark dataset for deep learning models.
This dataset contains 70000 grayscale handwritten digits images
with 10 labels from 0 to 9. The size of each image is 28x28 pixels
and is divided into 60000 training records and 10000 testing records
4.5.2 Experiment Setup
As mentioned in Section 4.1, our attack model consists of a Batch
Gradient Inversion model, a Discriminator, and a Generator, tar-
geting a global Federated Learning model M. For both the attack
model and the federated global model, we use Convolutional Neural
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Table 1. Network Structure for MNIST

Federated Model 282×1
Conv(stride=2, kernel=3)

−→ 322× 64
Conv(stride=2, kernel=3)

−→ 642× 128
Conv(stride=2, kernel=3)

−→

1282× 256
FC−→ 12544

FC, Softmax()
−→ 10

Discriminator 282×1
Conv(stride=2, kernel=3)

−→ 142× 128
Conv(stride=2, kernel=3)

−→ 72× 128
FC−→ 588

FC, Softmax())
−→ 10

Generator (100,1,1)
Embedding

−→ 100
FC−→ 72× 384

Deconv−→
142× 192

Deconv, tanh−→ 282× 1

Table 2. Gradient Inversion techniques

Single Label Batch Labels

Target

iDLG [15]

CPL [10]

BI-GAN

Network (CNN) based architecture with categorical output layers.
Table 1 shows the network architectures for MNIST dataset.

The global Federated Learning model will have 4 convolution
layers with a single Dense layer to predict image class. The size
of (3x3) kernels are consistent for every convolution layers with
strides 2 except for the last layer (no strides). There are also a Batch
Normalization layer, a Leaky Rectified Linear Unit layer with nega-
tive slope 0.2, and a Dropout layer with parameter 0.5 after each of
the last 3 convolution layers. The structure for the Discriminator is
simpler with only 2 convolution layers with Leaky Rectified Linear
Unit layer with negative slope 0.2 after both layers, and 3 Dense
layers to predict realism, image category and client id respectively.
For the generator, the kernel size is 5×5 with stride 2, taking random
noise, number of categories, and number of clients as input. The
generator G squeezes the input to size 100 and concanate the image
category and client id embeddings. The output of G is generated
image of size 28x28 pixels.
For setting up training dataset, we set the number of clients

𝑁 = 10. Each of the client will have 200 samples randomly drawn
from all available classes as personal private data.

4.6 Qualitative andQuantitative analysis
4.6.1 Batch Gradient Inversion Comparison

In this section, we compare the performance of our BatchGradient
Inversion algorithm to other existing gradient inversion algorithms.
Table 2 shows the visual reconstructions under single label and
batch labels scenarios. Here, all three methods are using 𝑙2 distance
metrics. iDLG and our method BI-GAN use label prediction instead
of using a label-matching regulation while CPL has a label-matching

Table 3. GAN techniques

CGAN

ACGAN

BI-GAN

Table 4. GAN label prediction accuracy (%)

Category Victim
CGAN ∼ ∼
ACGAN 91.1 ∼
BI-GAN 92.4 62.9

Table 5. BI-GAN accuracy per client (%)

1 2 3 4 5 6 7 8 9 10
Category 91 90 92 96 97 92 90 93 87 96
Victim 70 61 85 74 42 62 72 69 47 47

regulation. Furthermore, the proposed BI-GAN includes reality and
group consistency regulations.
The results in Table 2 shows that BI-GAN manages to recover

much higher quality image in both single label image setting and
batch image setting (sample batch size 3) with more defined color
details. Both iDLG and CPL fails to reconstruct images from the
gradients of a batch training while BI-GAN manages to recover the
features of individual images. This result proves the effectiveness of
BI-GAN in recovering batch of images from gradients updates.
4.6.2 GAN frameworks comparison
This section compares the performance of GAN structures men-
tioned in Fig. 2 which includes CGAN from a membership infer-
ence attack [14], the traditional ACGAN structure and our Victim-
conditioned GAN model.

A) Visual Comparison Table 3 shows the sample fake image con-
structions of 10 classes from MNIST data set. Since BI-GAN needs
client identification as input, we show the results of BI-GAN gener-
ated images targeting one random victim while letting CGAN and
ACGAN generate images that represent the whole training dataset.
All three models are trained with the reconstructed images from
Batch Gradient Inversion model for 5000 iterations. According to
Table 3, CGAN appears to have good visual output of the generated
images. That’s because CGAN only has to focus on optimizing the
reality of the image. ACGAN, on the other hand, has the most noisy
image outputs. That’s because predicting class label function create
more noise during training. Our proposed BI-GAN model generates
clear images similar to CGAN while also targeting a single client’s
training data. Our model is shown to perform better than traditional
ACGAN model since the optimization functions are optimized to
also highlight the ownership of the images.
The quantitative accuracy performance of BI-GAN is presented

in tables 4 and 5. Table 4 evaluates how different GAN structures’
Discriminators can be used to predict the Category label and the
Victim owner of input image. Here, only BI-GAN is supported to
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predict both objectives while ACGAN can only predict item label and
CGAN is incapable since CGAN is only supported to differentiate
between real and fake categories. BI-GAN is proved to only be more
accurate in predicting image label with 92.4% accuracy compared
to 91.1% for ACGAN, but also able to predict client identification
for client-wise membership inference attack with 62.9% accuracy.
The accuracy of victim id is not as high as category accuracy for
BI-GAN is because we allow each user to randomise there data
from all given labels so the uniqueness among clients is not up
to par with the uniqueness between image labels. This result also
shows that adding embedded client information into GAN does
not hinder its performance in predicting image category and the
model can be served as a shadow model representing the global
Federated Learning model. Furthermore, BI-GAN is proved to be a
more robust attack because the malicious server only has to train the
attack model once to attack all clients’ data instead of retraining the
model to target different clients at a time. Table 4 lists the accuracy
of BI-GAN attacks performed on individual clients. This table shows
that the model can get high client prediction accuracy (≥ 70%) for
multiple clients after a single attack.

Fig. 3. BI-GAN’s Discriminator loss progression on images recovered from
Batch Gradient Inversion over 14500 iterations, recording the average loss
of every 10 iterations. 𝑑𝑟1, 𝑑𝑟2, and 𝑑𝑟3 are losses for realism, image labels,
and victim labels respectively

4.6.3 BI-GAN loss functions
Fig. 3 illustrates the loss improvements of BI-GAN’s Discriminator D.
According to Section 4.2, D has three loss functions 𝐷𝑟𝑒𝑎𝑙 , 𝐷𝑐𝑎𝑡 , and
𝐷𝑖𝑑 for differentiating real and fake images, classifying image cate-
gory and predicting client ownership. These three loss functions are
represented as 𝑑𝑟1, 𝑑𝑟2, and 𝑑𝑟3 in Fig. 3. Here, the model seems to
converge from iteration 2000 with low consistent loss value (∼ 0.5)
for predicting realism and image category. In terms of optimizing
the model for classifying client identification, 𝑑𝑟3 loss gradually
decreases over time reaching (∼ 0.7) categorical entropy loss after
training. This result does so that the BI-GAN model’s Discrimina-
tor can further optimize the predictions clients for membership
inference attack in Federated Learning.

5 Future Work

In this paper, we confirmed the feasibility of our BI-GAN mem-
bership inference attack model targeting client-wise private data in
Federated Learning system. The attack framework implement an
advanced batch gradient inversion algorithm that proves to recover
higher image quality allowing clients to train local model in batches.
Furthermore, BI-GAN includes a novel Victim-conditioned GAN
model that is not only able to generate fake images comparable
to existing GAN attack frameworks but is also able to predict the
owner of an input image. In the future, we will research and improve
the GAN attack framework together with other approaches.
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