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Abstract

In the Internet of Medical Things, the intelligent auxiliary decision-making sys-

tem uses machine learning algorithms to analyze medical data, which can effec-

tively help patients and doctors analyze their health conditions. However, due

to the particularity of the medical industry, its requirements for data security

protection are more stringent, which leads to the reduction of data circulation,

and related applications are difficult to be widely used. Therefore, this paper

proposes an intelligent classification decision-making program in the Internet

of Medical Things - SEMMI, which can effectively deal with the risk of data

leakage in the process of medical data processing. At the same time, the huge

computing and storage pressure caused by encryption and decryption operations

in medical institutions is relieved.

In this scheme, data collection, network transmission, and calculation pro-

cesses are all carried out under ciphertext. Since the resource allocation of each

participant is different, we use chaos theory to construct a stream cipher algo-

rithm on the sensor side to ensure the security of sensor-to-user transmission;

in users, trusted organizations (large medical institutions) and the cloud, we

use homomorphic encryption algorithm. In this way, the computability and

storage security of the ciphertext can be guaranteed. Through security analysis
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and experiments, the scheme can resist the attack of the adversary, and at the

same time effectively reduce the calculation and network transmission pressure

of each participant. Finally, we also discuss the flexibility of the scheme, and

the results show that our scheme can be well applied in other algorithms as well.

Keywords: , Internet of Medical Things, Data Security, Intelligent Decision

System, Homomorphic Encryption

2010 MSC: 00-01, 99-00

1. Introduction

With the development of sensors, Internet of Things, 5G networks, etc., ap-

plications such as Smart Homes, Smart City, and Wise Information Technology

of med have also been widely promoted. At the same time, the rapid develop-

ment of sensor computing, network transmission, and miniaturized equipment5

also has a certain role in promoting the Internet of Medical Things (IoMT).

IoMT can process a large amount of data collected by sensors (such as blood

pressure, heart rate, pulse), apply machine learning, neural network and other

algorithms to mine the potential information contained in the data, and pro-

vide auxiliary reference for real-time decision-making[2]. It can bring people10

great convenience and precise services[3]. However, the computing power, stor-

age capacity, etc. of sensor nodes deployed in wireless networks are insufficient.

Therefore, cloud-based storage systems can effectively reduce the storage and

computing overhead of users[4].

In applications such as smart medical and wearable devices, the data flow15

process can be roughly applied to the following three scenarios: (1) Use sensor

devices to collect user biometric data, and then send these data to medical in-

stitutions or cloud storage. At the same time, these data will be used for remote

diagnosis, such as: telemedicine, user health self-diagnosis, etc. (2) Community

hospitals and private clinics need to send data to large medical institutions for20

authoritative auxiliary diagnosis due to factors such as personnel and equip-

ment level. (3) Insurance and financial institutions need to know the health
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status of their clients when conducting business, but these institutions do not

have the ability to detect and diagnose, and need other medical institutions to

help them make judgments[5, 6, 7]. Therefore, these institutions need to send25

customer information to the medical institution, and then the medical institu-

tion will give the test results based on the data. In medical institutions, there

are many applications that use machine learning and neural network algorithms

to process, analyze, and obtain results to assist medical personnel in medical

diagnosis[8]. For example, Xing et al.[9] improved the KNN algorithm in the30

context of smart medical care to make up for the algorithm’s deficiencies in

processing large data sets. Elhoseny et al.[1] used Self Organizing Maps (SOM)

and Optimal Recurrent Neural Networks (ORNN) to classify ovarian cancer in

women. It can be seen from the experimental results that the program is more

prepared, which will effectively improve the probability of disease detection.35

However, with the indepth research on related technologies and applications[10,

11], there are many problems that threaten user privacy and security in the ap-

plication process of IoMT. First, due to the limited resources of data acquisition

equipment[12], it is easy to be attacked by adversaries. Second, recent studies

have found that machine learning and neural network algorithms are very likely40

to cause data leakage during the training process, thereby posing a threat to

user privacy. A large amount of data can help companies bring users a more

convenient and faster experience; at the same time, the private information im-

plicit in the data is also something users do not want others to obtain. Relevant

laws and regulations have also made clear provisions on the use, management,45

storage and other aspects of data, such as: GDPR promulgated by the European

Union[13],and many more. How to use data security and rational has become

an urgent problem[14].

1.1. Related work

In response to the problems described above, the majority of scholars have50

carried out relevant research in order to find a balance between data use and

privacy protection. In 2017, Mohassel et al.[15] proposed the first privacy pro-
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tection computing protocol used in machine learning algorithms, sending data

to two servers in a non-competitive relationship, and using secure two-party

computing to jointly train various Machine Learning Model. Yang et al.[16]55

published a review paper on federated learning, which mentioned three param-

eter exchange modes, which can complete the machine learning training process

without sending or uploading user data.

Hasan et al.[17] are difficult to apply encryption algorithms such as RSA

for IoMT data acquisition equipment, so a lightweight encryption algorithm is60

proposed to protect patient privacy. Hamza et al.[18] used a chaotic system to

build a fast and secure image encryption system, which can effectively protect

the privacy of image data in IoMT.

Liu et al.[19] used two participants to construct triples and outsourced data

encryption to two untrusted clouds. In the process of calculation and query65

using the KNN classification algorithm, the data and results are security. Wang

et al.[20] designed a secure support vector machine outsourcing computing so-

lution in the smart medical scheme, which proved to be security in an honest

and curious environment. In order to reduce the computing cost of individuals

and enterprises, Wu et al.[21] proposed a cloud database ciphertext calculation70

scheme, and conducted experiments based on the KNN algorithm[22]. Zhou et

al.[23] used differential privacy and Paillier encryption algorithm to implement a

federated learning scheme under fog computing, which can complete the neural

network training process without multiple participants exchanging data. Yang

et al.[24] designed a data outsourcing KNN classification algorithm based on vec-75

tor homomorphism algorithm, and verified it on multiple data sets. In addition

to the above-mentioned work, there have been many researches based on homo-

morphic encryption[25, 26], secure two-party (multiple) computing[27, 28, 29],

etc. designed neural network, linear regression, SVM, KNN and other model

training programs under ciphertext data. At the same time, due to the huge80

amount of data stored in the cloud. Dishonest cloud service providers also pose

a huge threat to data security and privacy.
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1.2. Problems and challenges

As shown in Fig. 1, medical institutions give patients early warning or treat-

ment based on real-time patient data. The query user will submit the user data85

it owns to the medical institution for testing, and determine whether to provide

the user with corresponding services (such as simple treatment measures, medi-

cal insurance, credit loans, etc.) based on the results of the medical institution’s

testing.

Throughout the IoMT application process, the processing of data may face90

the following three privacy and availability issues:

Figure 1: Framework diagram of the Internet of Medical Things

(1) The use of machine learning algorithms to classify results requires a large

amount of data to participate, which is difficult for a single node or organization

to complete.

(2) The data may be attacked by the adversary in the process of collection,95

transmission, processing, storage, etc. Including: untrusted cloud, malicious

node, etc.At the same time, sensor nodes have limited resources, and it is neces-

sary to find nodes with rich resources to provide them with computing, storage

and other services[30].

(3) The data contains the user’s private information, especially in some100

special application scenarios. For example: medical data, patients do not want

their data to be known by others; at the same time, medical institutions cannot

share the data with other institutions. If other institutions want to obtain

information from their own data, they need to submit the data to the medical
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institution for analysis. It can be done. In this scenario, medical institutions105

will be burdened in terms of computation, and it is also possible to leak the

identity information of the user being detected.

1.3. Our contribution

In this paper, aiming at the security issues involved in the process of data

, a security and efficient multi-party joint intelligent decision-making scheme is110

proposed in the IoMT - SEMMI (Security, Efficient, Medical IoT, Multi-party,

Intelligent decision). First of all, in the scheme designed in this paper, all links

are calculated and processed in the form of ciphertext; at the same time, taking

into account the calculation pressure of all parties, the calculation process is

outsourced to the cloud. Secondly, combined with the characteristics of data in115

practical applications, it is proposed to convert floating-point data into integer

data for calculation, as far as possible to retain data information and improve

classification accuracy. Specifically, the main contributions of this paper have

the following three parts:

(1) In the scheme, each processing will be done by encrypted data. The120

scheme does not need to exchange the original data of users, and uses homo-

morphic encryption to ensure the security of data during processing and trans-

mission. In order to ensure that the normal business of trusted institutions is

not affected, the amount of calculation is reduced as much as possible.

(2) This paper analyzes the practicality of the algorithm and discusses de-125

ployment examples in other machine learning algorithms. At the same time, in

view of the lack of deployment flexibility of the existing solutions, this paper

also proposes a multi-key model, but it is currently limited by the computational

overhead of related encryption algorithms.

(3) This paper evaluates the system’s security, execution efficiency and ac-130

curacy of final results through theoretical and experimental methods. Since the

encryption scheme can only operate on integers, in order to ensure the accuracy

of the results, a method is proposed to increase the floating point number and

then take the integer part to reduce the influence of this factor on the training
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results. During the calculation and storage process, the Cloud does not know135

the meaning of the calculation results and the labels corresponding to the data

itself, so the Cloud does not know anything about the information contained in

the data.

1.4. Organization

The following will introduce the summary arrangements of the paper. In140

the second and third sections, some basic knowledge, system framework, threat

model and design goals used in the thesis will be introduced. In the fourth

section, we will discuss the main algorithms of the system. In the fifth section,

the security and performance of the system will be analyzed. Section VI will

summarize the research work of this paper.145

2. Preliminary

First, introduce the symbols in this paper. Z is defined as the set of integers,

and N is defined as the set of natural numbers. a
R← χ means that a is selected

randomly under the χ distribution, and b
U← Z means that the only b is selected

in the set of integers Z. Use uppercase and bold letters to represent the matrix,150

for example: M; use lowercase and bold letters to represent the vector, for

example: v, vi represents the i-th element in the vector. It is specifically stated

here that G and G−1 are not matrices and their inverse matrices, but specific

operations, such as: G = I · g =


1 2 4 0

1 2 4

0 1 2 4

 , where g =

20, 21, 22, so there is GG−1M = M155

2.1. Homomorphic encryption and GSW scheme

1) Homomorphic encryption is a form of encryption, which allows the ci-

phertext to be subjected to a specific form of algebraic operation, and the result

obtained is the same as the result calculated in the plaintext[31]. The homomor-

phic encryption scheme mainly includes four algorithms (KeyGen, Enc, Dec,160

Eval), which will be briefly introduced in the following.
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KeyGen(1λ) → (sk, pk, evk): Given the initialization parameters, the al-

gorithm will output the private key sk, the public key pk,, and the public

transformation key evk required by the homomorphic encryption system.

Enc(m, pk) → (c): Encrypt the plaintext information m with the given165

public key pk to obtain the ciphertext c.

Dec(c, sk)→ (m): Decrypt with the given private key sk and ciphertext m,

and finally get the plaintext m.

Eval(f, c1, c2, · · · , cx)→ (ceval): Given algebraic operations f and c1, c2, · · · , cx
ciphertexts, get the ciphertext calculation result ceval.170

(2) GSW homomorphic encryption scheme [32]. The homomorphic encryp-

tion scheme was proposed by Gentry, Sahai, and Waters in 2013. Since the

encryption scheme proposed by Gentry et al. can only encrypt a single bit

of data, its encryption efficiency is low. After that, [33, 34, 35, 36] proposed

improvements to it, enabling it to perform encryption operations on integer175

matrices. Next, the GSW program will be briefly introduced.

GSW.Setup(1λ, 1d) → (pp): First, select the grid dimension parameter as

n = n(λ, d), the noise distribution as χ = χ(λ, d), the integer q = q(λ) ≥

2, and the random matrix B ∈ Z(n−1)·m
q , and the output parameter pp =

{n, χ, q,B,G}.180

GSW.KeyGen(pp) → (sk, pk): In the GSW encryption scheme, first select

s
R← Zn−1q , and then generate the private key sk = t = (−s, 1) ∈ Znq ; then the

public key generation process, randomly select random noise e← χm, and then

calculate b = sB + e ∈ Zmq to obtain the public key pk = A =

B
b

 ∈ Zmq .

GSW.Enc(msg, pk)→ (c): First, randomly select the matrix R
R← {0, 1}m×m185

and the message msg ∈ {0, 1}, and then calculate the ciphertext matrix C =

AR + (msg)G ∈ Zn×mq .

GSW.Dec(C, sk) → (msg′): First, define the vector v = [0, 0, . . . , 0, dq/2e],

then calculate v = tGG−1(wT) ∈ Zmq , and finally output msg′ =| dv/(q/2)c |.

GSW.Add(C1,C2) → (C3): Given two ciphertext matrices C1 and C2,190

output their sum C3 = C1 + C2 ∈ Zn×mq .
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GSW.Mult(C1,C2) → (C3): Given two ciphertext matrices C1 and C2,

output their product C3 = C1G
−1C2 ∈ Zn×mq .

3. Scheme model and Design Goal

In this section, we will first introduce the SEMMI system model, including195

the participants and their functions in the system. The threat model mainly

introduces the security threats that the system faces or can resist. Finally, four

important goals that can be achieved by the scheme proposed in this paper will

be introduced.

3.1. Scheme model200

In the program, there are five types of participants. Trusted organization.

They can also be called service providers, such as hospitals, physical examination

centers and other institutions, which have a large amount of sample information

and user data and can provide services to other users. Sensor equipment. It

is installed by the user or a medical institution, and the sensor collects data205

for the user and monitors the user’s physical health. Users. Collect their own

information through sensor equipment, and at the same time send useful data

after pre-processing the collected information to a trusted organization, and the

trusted organization will complete the diagnosis of the user. Query organization.

This type of users may come from community hospitals, private clinics, insur-210

ance, finance and other fields. By submitting the collected data and sending

them to trusted institutions for testing, they can obtain corresponding health

information. Cloud. The participant is untrustworthy. Although it has large

processing, computing, and storage capabilities, it may also spy on the data

stored by the user.215

Next, the program execution process will be introduced. As shown in Fig. 2:

(1) In the system initialization phase. A trusted institution (medical institu-

tion) generates the parameters, public key, and private key data in the process

of system operation, encryption, and decryption. The flow cipher key between

the sensor and the user is set by the user.220

9
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Figure 2: SEMMI system framework

The sensor equipment is located at the bottom of the scheme and is used

to collect user-related physical data. In order to reduce the calculation and

communication overhead of the sensor, the sensor encrypts the collected data

in the form of a one-dimensional vector −→v to generate a ciphertext Cs(
−→v i),

and then transmits it to the user for decryption and processing. Finally, the225

encrypted data C(−→v i) is stored in Cloud computing server. Since the encryption

scheme is only applicable to integer data types, in order to reduce the impact

of the loss of the decimal part of the data on the accuracy of the final result,

part of the floating-point data is amplified.

(2) Since trusted institutions and query institutions cannot share their own230

medical data, they cannot bear the large amount of computational expenses

that they bring. Therefore, the data needs to be encrypted and then calculated

by a third party, and there is no direct data interaction between the two parties.

In this way, data privacy can be guaranteed not to be leaked, and data from

both parties can be used to make predictions. When the query user applies235

for service, the trusted agency distributes the encrypted data public key pk.

After that, the inquiring user encrypts the data he owns and uploads it to the

cloud. Then, the data is calculated by the cloud, the decryption of the data

is pre-decrypted by the trusted organization, and finally the result of the pre-

decryption is sent to the query organization. The query user calculates the240

pre-decrypted data to obtain the final data result.
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This program consists of four phases, namely: (1) Use stream encryption for

data transmission between the sensor and the user.

(2) The user obtains public key information from a trusted institution, en-

crypts the data and uploads it to the cloud.245

(3) The query user requests services from the trusted agency, the trusted

agency sends the public key to the query user, the query user uses the public

key to encrypt the data and then sends the data to the cloud for calculation,

and the cloud feeds back the calculation result to the trusted agency.

(4) The trusted organization decrypts the calculation result and sends it to250

the query organization, and the query organization performs statistics on the

result to obtain the final decision result.

3.2. Threat Model

As shown in Fig. 2, there are a total of five participants in the scheme,

among which the trusted institution is completely credible, and the other four255

participants can be untrusted. Therefore, we assume an adversary A, which

may obtain data information from users other than trusted institutions. We

assume the following possible situations:

(1) The adversary A can obtain the encrypted data of all parties by moni-

toring the network communication link.260

(2) The adversary A can launch an attack on the cloud to obtain the en-

crypted data stored by the user in the cloud.

(3) The adversary A can unite some of its participants to infer other users’

plaintext information through ciphertext.

3.3. Project objectives265

In this scheme, we will achieve four goals to address security and efficiency

issues in specific scenarios.

Data security : Since medical data contains a large amount of patient infor-

mation, it is easy to obtain the correspondence between patient identity and
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data through reasoning. Therefore, the designed scheme should reduce the orig-270

inal data exchange between the participating parties as much as possible, and

it is best to complete the training prediction and task without exchanging the

original data.

Distributed system requirements: each participant in the system may be in

different regions, countries, etc. Therefore, it is necessary to build a distributed275

training and prediction system to meet the service needs of users in different

regions. At the same time, the distributed environment can also obtain more

data, thereby improving the accuracy of prediction classification.

Efficient operation: In the operation of the system, due to the limited com-

puting, storage, and processing capabilities of each participant. Therefore, it is280

necessary to outsource the computing tasks of each participant as far as possi-

ble to other computing nodes with stronger computing capabilities or more free

resources, so that other computing tasks of each participant are not affected.

Accurate classification: In the application process of the scheme, the results

of predictive classification cannot be prevented from affecting the normal use of285

the system, that is, there can be no major differences compared to the results

of classification using the original plaintext information.

4. The proposed scheme

In this section, the specific implementation details of the SEMMI program

will be introduced. The execution relationship of each stage is shown in Fig. 3:290

4.1. User’s data collection

Phase 1: The sensor uses stream encryption to transmit data to the user.

First, generate the corresponding key := Xn according to the formula Xn+1 =

µ · Xn · (1 − Xn). During the experiment, the parameters adopt µ = 3.6, the

initial value X1 = 0.6316, and the number of iterations select n = 256. Then,295

input the key and the transmitted plaintext information
→
M into the encryption

algorithm to generate the corresponding ciphertext
→
C. Finally, it is sent to the

12



Figure 3: SEMMI system framework
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user, and the user uses the same parameters to generate a key, decrypts the

ciphertext
→
C, and obtains the corresponding plaintext

→
M .

4.2. User encrypted data upload and query service request300

There are two phases in this section: (1) User encrypted data upload; (2) The

query user issues a service request and uploads the data, and then the cloud cal-

culates the ciphertext data. Among them, the trusted organization establishes

the mapping relationship map(Tar:(Id-Data)) between the data and the result

tag, and then uploads the encrypted data and the key value map(Id:C(Data))305

to the cloud for storage. After the cloud computing is completed, the key-value

pair map(Id:Res) composed of the key value and the result ciphertext is re-

turned to the trusted agency, and the trusted agency decrypts the ciphertext

and returns the key-value pair map(Tar:Res) composed of the result and the

result tag to the test user. Test user statistics and get the corresponding result.310

Initialization:

Setup(params ← 1λ, r): First, determine the security parameter λ and the

depth L of the multiplication circuit; then, according to the security parameter

λ, determine the dimension n of the integer lattice, an integer modulus q, and an

χ in Z to obey the sub-Gaussian distribution. Let l := dlog2qe, m := O((n+r)l),315

N := (n+ r) · l · r is the length of the plaintext vector. The ciphertext space is

Z(n+r)×N
q . There are gT = (1, 2, . . . , 2l−1), G = gT ⊗ In+r.

params := (n, q, χ, l,m,N)← 1λ, r (1)

Key generation:

KeyGen(1λ, r): Randomly select the unique matrix A
U← Zn×mq the private

key matrix S′
R← χr×n, and the noise matrix E

R← χr×m. Set the size of the320

identity matrix Ir as r × r. B := ((S′A + E)/A) ∈ Z(n+r)×m
q . M(i,j) is the

matrix of r × r, its (i, j) position is 1, and the other positions are 0.

Therefore, we get:

S = [Ir ‖ −S′] ∈ Zr×(n+r)q (2)
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P′(i,j) = [
M(i,j)S

0
]G ∈ Zr×(n+r)q (3)

P(i,j) = BR(i,j) + P′(i,j) (4)

pk := (P(i,j),B ‖ 1 ≤ i, j ≤ r), sk := S (5)

Phase 2: The trusted organization sends the public key to all users of the

data. The user encrypts his data with the public key and stores the encrypted

data in the cloud.325

PubEnc(C ← pk,Mα): The plaintext matrix of user α is Mα, and the

matrix R
U← (0, 1)m×N is randomly selected to calculate the ciphertext

Cα := BR +
∑r
i=1

∑r
j=1M[i, j] ·P(i,j) ∈ Z(n+r)×N

q (6)

The user uploads Cα to the cloud for storage and calculation.

Phase 3: The query user requests services from the trusted agency, encrypts

the data by using the public key, and then uploads the ciphertext to the cloud

for calculation, and the cloud sends theciphertext of the calculation result to

the trusted agency.330

PubEnc(C← pk,Mrequest): The plaintext matrix information of the query

organization is Mrequest, and the matrix R
U← (0, 1)m×N is randomly selected

to calculate the ciphertext

Crequest := BR +
∑r
i=1

∑r
j=1Mrequest[i, j] ·P(i,j) ∈ Z(n+r)×N

q (7)

Then, the ciphertext Crequest calculated by the query user is uploaded to the

cloud for calculation.335

Add(C′add ← Cα, (−Crequest)): After the cloud receives the ciphertext cal-

culation request from the query user, add Cα and Crequest to get C′add.

Mult(C′ ← C′add,C
′
add): After the cloud receives the ciphertext calculation

request from the query user, multiply C′add to get the distance of each dimension

feature of the data, C′ = C′addG
−1,C′add ∈ Z(n+r)×N

q340
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The cloud then sends C′ to the trusted authority for pre-decryption calcu-

lation.

4.3. Decryption of data

Phase 4: The trusted organization pre-decrypts the result data, and then

sends the result (intermediate parameter) to the query user, and the query345

organization performs statistics and calculates the final result.

Dec(M← C,S): First: define O = SC = MSG + E ∈ Zr×Nq .

After that, pack the first rl column into a matrix O′, and the noise contained

in it is E′.

Then, the decryption operation will be performed. For M[i, j] =
∑l−2
k=02k ·xk,350

where xk is the value of the k bit after x is binary-encoded, the pre-decrypted

data M′ is finally generated, and M′ and map(tar : Res) are sent to the query

user.

The query user can successfully obtain the distance of each dimension feature

of the plaintext data through the pre-decryption results M′ and map(tar :355

Res) of the trusted organization. After that, the final prediction result can be

obtained by query user through the distance and the data label given by the

trusted organization.

4.4. The idea of multi-key construction to increase the flexibility of the scheme

For devices with richer computing resources, we have also improved the above360

algorithm and designed a more flexible encryption and decryption algorithm.

As shown in Fig. 4, we design a security model training scheme under multi-

key homomorphic encryption. In the multi-key mode, the functions of each

participant are basically the same as the previous scheme. But the computa-

tional task of trusted organization is lightened. Here, the trusted organization365

only needs to assign their respective public and private keys to the participants.

The query user can also independently decrypt the training results.

Next, we will introduce the training process under multi-key. Since the data

collection part is the same as the previous algorithm, it will not be repeated

16



Figure 4: System model under multi-keys.

here. In the IoMT, the number of participants is difficult to predict. Therefore,370

keys of a certain size cannot be generated in advance[37]. This flexibility, system

energy consumption, scalability will be restricted. In order to ensure that each

participant can join at any time, we refer to [38, 39] to construct a multi-key

scheme.

TrustedOrganizationSetup: First, a unique matrix A ∈ Zn×mq is randomly375

generated by a trusted organization.

TrustedOrganizationInit−KeyGen(A): A trusted organization generates

an initialization key t for one of the users. t = (−t̄, 1) ∈ Zn, where t̄ ← χn−1.

e ← χm, from which can get b := tA + e ≈ tA ∈ Zmq . Therefore, t is the

private key and b is the public key used for extending ciphertext.380

UserEnc(t, µ ∈ {0, 1}): First, find an LWE matrix C̄ ∈ Zn×nlq such that

tC̄ ≈ 0 holds. Therefore, C := C̄ + µ(In ⊗ g) ∈ Zn×nlq . Then, the matrix

R ∈ {0, 1}m×nl is randomly selected to define F := AR + µ(In ⊗ g) ∈ Zn×nlq .

Finally, the matrix D̄ ∈ Znml×nlq is chosen, where (Iml ⊗ t) · D̄ ≈ 0. Therefore,

D := D̄ + (R⊗ gT ⊗ eTn ) can be obtained. Therefore, the ciphertext group will385

be obtained (C, F, D)

UserCTExt(t∗i ,C,F,D): There are mainly three steps here. The first step

is to convert the key ti−1 to the key ti containing the current user, the sec-
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ond step is to convert the ciphertext C∗i−1 sent by the previous user into the

ciphertext Ci−1 corresponding to ti, and the third step is to convert the cur-390

rent user. The ciphertext data C∗i corresponding to the held plaintext is added

(multiplied) to Ci−1.

UserCTExt − 1: Suppose the private key of user i is t∗i , therefore, b∗i ≈

t∗iA ∈ Zmq can be obtained. t∗i converted key ti = (ti−1, t
∗
i ) ∈ Zn′

. n′ = ni.

UserCTExt − 2: Definition, F′ = F, R′ = R, D′ := (Iml ⊗ (
In′

0n×n′

)) ·395

D ∈ Z(n+n′)ml×nl
q . Then, C′ := (

C X

0 F
) ∈ Z(n+n′)ml×nl

q . Among them, s :=

G−1(−b∗) ∈ {0, 1}ml, X := (s⊗ In′ ) ·D ∈ Zn
′
×nl.

UserCTExt − 3: Suppose there are two sets of ciphertexts: (C1,F1,D1,

(C2,F2,D2. The final result is (C′,F′,D′ obtained by adding (multiplying) the

two sets of ciphertexts.400

It is not difficult to see that the above algorithm increases the flexibility of

solution deployment, but it will bring some overhead to users. The above scheme

can construct a centerless system, that is, only the corresponding ciphertext

needs to be stored in the cloud. But whether it is [37] or [38, 39] , there

are certain limitations in designing a multi-key system. A large amount of405

computing still needs to be deployed on the trusted organization or user side,

which will consume energy and other aspects for these participants.

Therefore, the ideas under this model are beneficial to the wide application

of IoMT. However, due to the complex calculation of the relevant encryption

algorithm and the low practicability at present, the deployment of this idea is410

limited.

5. Analysis and evaluation

In this section, we will evaluate the security and performance of the SEMMI

system. First, the security of the solution is proved by the assumption of the

security scenario. Then, the program is analyzed experimentally and tested on415
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real data sets and simulated data respectively to obtain the accuracy, calcula-

tion, and storage overhead of the system. Finally, the four security goals reached

in this paper are summarized.

5.1. Security Analysis

First, we will first analyze the security of the encryption and decryption420

algorithms in this paper. Then, suppose that the adversary A can obtain the

ciphertext and public key in the system, and even collude or control some nodes

to launch an attack on the system.

1) Security analysis of encryption and decryption schemes

Theorem 1 : The chaotic system and stream cipher provide security from the425

sensor device to the user.

Proof: This article uses the RC4 stream cipher. Although this stream cipher

system has been proven to have security risks, there is no way to crack it when

the key length is more than 128 bits. At the same time, although encryption

based on chaos theory cannot prove its security well at present, it is still difficult430

to crack chaotic systems[40].

Theorem 2 : In the scheme, the security of the FHE scheme First of all, our

security assumptions are based on the difficult assumptions of LWE. We will

certify that the encryption system is IND-CPA secure.

Proof : According to the scheme proposed in this paper, the challenger435

first generates the public key pk =
{
P(i,j),B ‖ 1 ≤ i ≤ j ≤ r

}
and private key

sk = S = [I ‖ −S′] required for encryption and decryption. Then, the adver-

sary A selects two plaintext information m0 and m1, and sends the plaintext

information to the challenger for encryption. When the challenger receives the

two plaintext messages, he randomly selects b = {0, 1}, and then encrypts the440

plaintext message mb,and the corresponding ciphertext message is Cb. After

that, the generated ciphertext Cb is sent to the adversary A, and the adver-

sary A guesses the plaintext information corresponding to the ciphertext Cb in

polynomial time.
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Because A
U← Zn×mq , S′

R← χr×n,and E
R← χr×m are randomly selected, B :=445

((S′A+E)/A) ∈ Z(n+r)×m
q is also random. B′

R← Z(r+n)×m
q is randomly selected,

and the adversary A cannot distinguish between B and B′. Furthermore, it can

be concluded that the public key information generated by B and B′ is also

indistinguishable from the adversary A. Next, based on the security proofs in

[32] and [34], we can conclude that the challenger encrypts the plaintext message450

mb to obtain the ciphertext Cb, and further, constructs a plaintext matrix Mb

from multiple mi, and constructs the noise e as The form of the matrix is E,

and the ciphertext matrix Cb := BR+
∑r
i=1

∑r
j=1M[i, j] ·P(i,j) ∈ Z(n+r)×N

q is

obtained by encryption. Assuming that C′
U← Z(n+r)×N

q is randomly selected,

it is not difficult to conclude that C′ and Cb are also indistinguishable, which455

belongs to the LWE problem. Therefore, it can be concluded that the scheme

is IND-CPA security.

2) Security analysis of the system

Theorem3 : The hypothesis of the scheme is that the cloud is honest but

curious, and the confidentiality of data and user privacy will not be obtained460

by adversaries.

Proof : First of all, except for the cloud, no other nodes in the system can

contact the data information of other nodes. Therefore, only the cloud will

guess and infer user data out of curiosity. According to Theorem1, it can be

concluded that if the cloud can crack the data of other nodes in polynomial465

time with only the ciphertext and public key, it can also crack any LWE-based

encryption system in polynomial time.

Theorem4 : In the proposed KNN classification algorithm, assuming that

the adversary A controls some user nodes, the system can still guarantee the

confidentiality of other users’ data and will not be paralyzed.470

Proof : Suppose that there is an adversary A, which can be a node in the

system or other nodes, which can control some user nodes in the system to launch

attacks. Since the tag data is stored in a trusted organization, the adversary A

cannot obtain the valid tag information corresponding to the data. It can be
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concluded from Theorem2 that when some nodes in the system are controlled475

by the adversary A, the confidentiality of the data of other user nodes in the

system will not be affected. The cloud is honest and curious, and it will not

reject the user’s computing request, so the query request of the inquiring user

will not be affected. Therefore, the system can be used normally when some

nodes in the system can be controlled by the adversary A.480

3) Achievement of program goals

Data security: In the previous section, we have discussed and proved the

encryption system and adversary’s attack methods. In the security hypothesis

and threat model proposed in this paper, the scheme is secure, so the security

of user data in the system is guaranteed.485

Distributed system requirements: In the solution proposed in this article,

users do not need to stay online at all times. After the user encrypts the pro-

cessed data, it is sent to a trusted organization for diagnosis, and then the

trusted organization forwards the data. After that, users and trusted institu-

tions are not required to perform any calculation and storage tasks, effectively490

reducing their system overhead. For the inquiring user, there is a prediction

task to establish a connection with a trusted organization. It can be seen that

in the entire program application process, data collection, storage, query and

other links meet the needs of distributed systems.

Efficient operation and accurate classification: This goal will be demon-495

strated through experiments in 5.2.

5.2. Experiment and evaluation

Experimental environment: hardware device is Intel Xeon(R) Gold 5218R

2.10GHz 2core, 32GB memory; software environment is Windows 10, using Ana-

conda3, Python version is 3.8, programming tool is Pycharm 2021 , The program500

uses the numpy toolkit to complete the calculation process of the matrix in the

program. The source code of this paper is referenced to [41] during the writing

process, and the data sets in [42] and [43] are used for simulation experiments.

The value of the security parameter q is 231 − 1. All data sets use 25% as the
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test set and 75% as the training set.505

Figure 5: Key generation time consumption

We compared the time consumption of each stage of the encryption scheme.

As shown in Fig. 5 and Fig. 6. As the dimension of the data features that need

to be encrypted increases, the time overhead required for the system to generate

the key will also increase. However, the computational time overhead required

in the encryption and decryption process is relatively low. In the operation of510

the system, they will not cause excessive computing costs due to factors such

as encryption and decryption.

Figure 6: Encryption and decryption time consumption
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As shown in Fig. 7, comparing with the encryption method of [23], it is not

difficult to find that although the amount of ciphertext data in this scheme is

relatively large, it has obvious advantages in the time consumption of encrypted515

data. With the increase of data dimensions, the increase in ciphertext in this

paper is much smaller than that of Paillier’s algorithm.

Figure 7: Comparison chart of ciphertext calculation time and required storage space

As can be seen in Fig. 8, the growth of the key storage space is directly

proportional to the parameter setting. Therefore, under the premise of ensuring

security, it is possible to select smaller parameters for calculation as much as520

possible, thereby reducing communication and storage overhead.

It is worth noting that because the data in some data sets has data between

0-1 or the accuracy of data in each dimension is quite different. For example:

In the data set Fetal health, some dimension values can reach 500, and some

dimension data is 0.003. Processing such data may exceed the scope of digital525

processing. Therefore, in order to ensure that the data characteristics are not

affected, based on matrix theory and geometric characteristics, this paper will

shift and scale the data dimensions that are too small and too large. In this

way, the relative distance between the sample points and test points in the data

set will not be changed, thereby ensuring that the accuracy will not affect the530

accuracy of the test results due to the preprocessing of the data.

This paper conducted experiments on five data sets, as shown in table 1.
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Figure 8: The relationship between the parameter q setting and the growth of key storage

Table 1: Accuracy of the system in real data sets

Data Set KNN KNN-1 KNN-10 KNN-100

Iris 1.00 1.00 1.00 1.00

Breast 0.925 0.937 0.970 0.9175

Diabetes 0.736 0.718 0.738 0.732

Column 2c weka 0.855 0.836 0.8512 0.833

Fetal health 0.896 0.880 0.892 0.896
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In the experiment process, the data range is first transformed so that the data

of all dimensions are in the same numerical range, and then the KNN classifi-

cation prediction algorithm is performed. In the Iris data set, due to its small535

amount of data and fewer feature dimensions, the prediction results are better.

Experiments in other datasets will result in some loss of data in KNN-1, so the

accuracy will decrease; while in KNN-10, the accuracy of the data will increase,

so the classification accuracy will also increase. But for KNN-100, the test ac-

curacy of some data sets shows a downward trend. This is because after some540

values are increased by a factor of 100, the calculation result of the square of

the value may be too large when running in the program, which leads to loss of

accuracy when calculating the distance between two points. If the data overflow

during the experiment is not considered, the accuracy of the result will increase

as the data increases, and it will eventually approach the accuracy of plaintext545

training.

Next, use the UCI breast cancer data set to compare the computational time

costs of each participant in the program. There are 31-dimensional features in

the data set, and there are two classification result labels: ”malignant” and

”benign”.550

Table 2: The time consumption of each participant in the Breast dataset

Party Time(s)

Data provider users 87.9097

Query users 62.7396

Cloud 12885.2498

Trusted third party 145.0821

From the time expenditure of each stage in table 2, it is not difficult to see

that the cloud has undertaken most of the calculation, which can effectively

reduce the time consumption of trusted institutions, data providing users, and

query users.
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Table 3: Comparison between the scheme and the related literature scheme

Secure

Data Col-

lection

Main En-

cryption

Algorithm

User Cal-

culation

Cost

Communication

Overhead

Security

Query

Process

Offline

Query

[15] – Oblivious

Transfer

+ Multi-

plication

Triplets

Low Higher –
√

[19] – Multiplication

Triplets +

Paillier

Higher Higher
√ √

[23]
√

Differential

privacy +

Paillier

Higher Higher
√

–

[24] – SE-VHE Low Low
√ √

[30]
√

– Low Low
√ √

Ours
√

Stream

cipher +

GSW-FHE

Low Lowd
√ √
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As shown in table 3. In our solution, we will unload as many computing tasks555

as possible to the cloud by combining the computing tasks and computing power

requirements of all parties. At the same time, because users store ciphertext

data in the cloud, users do not need to be online or communicate with trusted

institutions in real time, reducing user communication overhead.

It is first considered that the use of differential privacy and other encryption560

schemes during data collection will lose part of the data accuracy or bring certain

computational overhead to the sensor device. Therefore, this article uses stream

ciphers to transmit data. In the process of homomorphic encryption, tasks

are assigned based on the computing power of each participant. At the same

time, due to the large amount of data and calculation process in the calculation565

process, encryption methods such as Paillier may increase the communication,

calculation, and storage overhead. Therefore, the GSW scheme is adopted to

encrypt the data.

5.3. Extensions to other machine learning algorithms

In this section, we will discuss the scalability of the scheme and give its570

application in federated learning.

First of all, federated learning provides a good distributed machine learning

architecture, which can ensure the localized processing of user data and data se-

curity. However, with recent research findings: the gradient passed in federated

learning may also cause user data leakage. Therefore, it is necessary to design575

an algorithm that can effectively protect the user’s local gradient. Next, we will

show how to use the proposed scheme to build a secure gradient aggregation

algorithm under the federated learning.

In federated learning, FedAvg is one of the very famous algorithms, and it

has also received extensive attention and applications. On the basis of [44],580

we will improve FedAvg and complete the gradient aggregation process under

ciphertext, as shown in algorithm 1-algorithm 4. This can effectively reduce the

amount of user data information leaked by gradient.

First, a model gradient needs to be initialized as shown in algorithm 1.
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Algorithm 1 SEMMI-FedAvg-Init

1: for each participant Ki ∈ K do

2: Initialize model w0

3: end for

4: return w0;

Next, each participant needs to execute a model training algorithm with585

local data as shown in algorithm 2. When the gradient of the i-th round is

obtained, the public key needs to be used to encrypt the gradient, and then the

ciphertext is sent to the cloud, which is the algorithm 3.

After the cloud has received all the gradient information (of course, some

schemes can get a good model even when there are only partial gradients), the590

calculation will be performed under the ciphertext. Finally, the result of the

calculation is sent to a trusted organization.

The trusted organization decrypts the received calculation result and sends

it to all participants.

According to algorithm 1 to algorithm 4, our scheme can complete the train-595

ing process of FedAvg under ciphertext. During training, the only plaintext

information sent in the network is the global gradient. But since the global

gradient is a public information, this will not affect the security of the data.

6. Summary and Future Work

Compared with other application scenarios, the Internet of Medical Things600

has stricter requirements for data security protection. Due to the restrictions on

the circulation and use of data, some applications cannot be widely used. There-

fore, in order to meet the needs of data security and application scenarios. This

paper proposes SEMMI. It is a secure, efficient and intelligent decision-making

solution applied to the Internet of Medical Things (smart medical) scenarios.605

At the same time, this paper has carried out an example application in the KNN

classification algorithm and proved it experimentally. In this scheme, data is

carried out in the form of ciphertext during network transmission, calculation,
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Algorithm 2 SEMMI-FedAvg-Local

Input: Initialize model w0. / The return value of algorithm 4 is wSumj .

Output: Encrypted gradient Cwi
j
.

1: for each round j = 1, 2, 3, ... do

2: if Execute the function for the first time then

3: K is a randomly selected participant.

4: for each participant Ki ∈ K do

5: Cwi
j

= PubEnc(pk,wij)

6: end for

7: goto algorithm 3 (Cwi
j
, function )

8: else

9: K is a randomly selected participant.

10: for each participant Ki ∈ K do

11: wj =
wSum

j

N \\ N is the number of participants.

12: wij+1 = wj − αXT (X · wj −Y)

13: Cwi
j

= PubEnc(C← pk,wij+1)

14: end for

15: goto algorithm 3 (Cwi
j
, function )

16: end if

17: end for

18: return ;
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Algorithm 3 SEMMI-FedAvg-Cloud

Input: Encrypted gradient Cwi
j
.

Output: Ciphertext Cwj
after gradient aggregation.

1: Initialize: model Cwj

2: for each participant Ki ∈ K do

3: Cwj
= function(Cwi

j
, Cwj

)

4: Next Ki

5: end for

6: goto algorithm 4 Cwj

7: return ;

Algorithm 4 SEMMI-FedAvg-Server

Input: Ciphertext Cwj
after gradient aggregation.

Output: The return value is wSumj .

1: Dec(wSumj ← (Cwj
, sk))

2: return wSumj ;

and storage. This will effectively protect data from being stolen or leaked by

dishonest parties. All participants in the program do not need to stay online,610

effectively reducing the cost per participant. It can be seen from the theoretical

and experimental results that this scheme meets the four design goals proposed

in this paper. Finally, to demonstrate the flexibility of the scheme, we also

construct an algorithm in federated learning.

This paper also discusses the more flexible application protocol process, but615

because the relevant encryption algorithms are currently difficult to practically

apply, this is also the future research direction of this paper.
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