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Abstract: Polycystic Ovarian Syndrome (PCOS) comprises a set of symptoms that pose significant risk
factors for various diseases, including type 2 diabetes, cardiovascular disease, and cancer. Effective
and safe methods to treat all the pathological symptoms of PCOS are not available. The gut microbiota
has been shown to play an essential role in PCOS incidence and progression. Many dietary plants,
prebiotics, and probiotics have been reported to ameliorate PCOS. Gut microbiota shows its effects
in PCOS via a number of mechanistic pathways including maintenance of homeostasis, regulation
of lipid and blood glucose levels. The effect of gut microbiota on PCOS has been widely reported
in animal models but there are only a few reports of human studies. Increasing the diversity of gut
microbiota, and up-regulating PCOS ameliorating gut microbiota are some of the ways through which
prebiotics, probiotics, and polyphenols work. We present a comprehensive review on polyphenols
from natural origin, probiotics, and fecal microbiota therapy that may be used to treat PCOS by
modifying the gut microbiota.

Keywords: PCOS; gut microbiota; prebiotic; probiotic; polyphenol

1. Introduction

Polycystic ovarian syndrome (PCOS) is a complex metabolic disorder. It combines
various symptoms such as anovulation, hirsutism, amenorrhea, infertility, obesity, and
polycystic ovaries. Globally, it is known to affect 6% to 20% of women [1]. PCOS is associ-
ated with various other diseases, including obesity, diabetes, cardiovascular implications
and cancers. This has led to an increased economic burden and has attracted interest in
this field [2]. The therapeutic options available for PCOS include a change in lifestyle, diet,
exercise, and pharmacotherapy. However, the standard pharmacological approaches have
not given satisfactory results, and PCOS prevalence is still on the rise [3]. In recent years,
the strong association of gut microbiota with physiology of female reproductive functions
has been reported [4]. Research suggests that there is a link between gut microbiota and
the host metabolism, through various metabolites secreted by them like short-chain fatty
acid [5], timethylamine N-oxide (TMAO), and inosine-5-monophosphate (IMP), etc. These
metabiotics, in turn, show their effects on supplying energy for colonic epithelial cells,
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formation of white adipose tissue and metabolism of lipids in the host [6]. Moreover, the
gut microbiota is also known to regulate the host immune system and control the secretion
of bile acids related to the digestion and metabolism of the host [7]. Dysbiosis of the gut is
widely reported to be responsible for certain intestinal diseases, including; Crohn’s disease,
ulcerative colitis, and inflammatory bowel disorder, that are reported to be more frequent
in PCOS patients [8].

The association between PCOS and gut microbiota is majorly attributed to the release of
endotoxins and gut inflammation. Enteroendocrine cells [less than 1% of all gastrointestinal
(GI) epithelial cells] release gut hormones that play important role in the hormonal networks
throughout interdigestive and postprandial periods. Over 30 such gut hormones have
now been identified. This suggests that eating behavior and GI motility are collaboratively
regulated by gut hormone production [9,10]. It is also reported that gram-negative bacteria
cause inflammation in the gut due to the production of lipopolysaccharide [11]. Microbiome
diversity is a significant facor indicative of the health of the host. Obese-PCOS individuals
have lesser alpha (diversity of the microbiome relevant to a single sample) and beta diversity
(diversity of the microbiota relevant to diverse samples) of microbiota as compared to lean
individuals [12]. Therefore, modulation of the gut microbiota could be effective in the
treatment of PCOS. Even the underlying mechanism of the diseases such as diabetes,
hyperlipidemia and obesity are considered to be associated with the composition and
diversity of gut microbiota. Therefore, the role of gut microbiota in other diseases having
metabolic significance and relevance with PCOS also assumes very high significance [13].

Literature search was carried out by screening the manuscripts from the following
databases; Web of science, PubMed, Scopus, Embase and Science Direct. The following
combinations of keywords were used to search the literature: “Gut Microbiota”, “PCOS”,
“Bacteria”, “Fungi”, “Virus”, “Ovarian”, “Ovaries”, “Obese”, “Insulin Resistance”. The
manuscripts which highlighted the role of gut microbiota in PCOS as well as PCOS related
metabolic abnormalities were selected and classified into the following subsections for
this review.

2. Gut Microbiota and the Endocrine System

The human gut hosts numerous microbes, including bacteria, viruses, fungi, and
archaea. Alteration in the composition of these species is believed to be related to change
in the endocrine function of the host [14]. The microbiota in the gut is reported to play a
significant role in the endocrinal physiology of humans [15]. There are many reports on
the interplay of the intestinal bacteria and the sex hormones of an individual. A study by
Mueller et al. in 2006, indicated an increase in Bacteroides, Eubacterium, and Blautia in males
as well as an increase in Treponema in females [16].

There are some reports that indicate that specific gut microbes play a significant
role in the synthesis of sex hormones [17,18]. Table 1 highlights the recent studies on
gut microbiota and its effects on hormonal signaling. Most of these studies use the 16S
ribosomal ribonucleic acid (16S rRNA) technique and metagenomic analysis for their
understanding of the gut microbiota. Moreover, there are several reports on the association
of gut microbiota and estrogen effects on hormone induced women reproductive health. For
instance, in a cross sectional analysis in women, changes in gut microbiome were observed
between postmenopausal and premenopausal women, matching the variations between
men and premenopausal women. It was, therefore, inferred, that female hormone deficiency
causes gut microbial alterations during menopause [19]. In another study it was found
that premenopausal women had an abundance of the microbial steroid downregulation,
which was positively linked with plasma progesterone levels [20]. Total urine estrogen was
reported to be strongly linked with gut microbial diversity in 7 postmenopausal women
and 25 men [21]. Similarly, higher gut microbial diversity was linked to serum estradiol
in 26 women, but this study did not compensate for menstrual timing [22]. In another
study, among 16 women, the use of combination hormonal contraceptives, which reduce
serum estradiol and progesterone, was linked to a reduction in gut microbial diversity [23].
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These findings imply that menopause and low estrogen are linked to a reduction in gut
microbiota diversity, highlighting the close relationship of the gut microbiota community
and its action on production of estrogen.

Table 1. Recent studies on gut microbiota and endocrine function.

Hormone Model Finding Microbiota studied Reference

Insulin Honey Bees
Changes in insulin signaling
reduces gut pH and
gustatory response

Gilliamella apicola and
Lactobacillus spp. [24]

Testosterone,
estradiol Human Correlation of diversity of

microbiota with sex hormones

Acinetobacter, Dorea, Ruminococcus,
and Megamonas, Bacteroidetes
and Firmicutes

[22]

Adrenocorticotropic Wistar rats Role of gut microbiota
in depression

Desulfovibrionales, Desulfovibrio,
Klebsiella, Burkholderiales,
and Bifidobacterium

[25]

Ghrelin Wistar rats
Short-chain acid-producing
bacteria and its effects on
gut microbiota

Turicibacter, Brevibacterium,
Parasutterella, and Oscillibacter [26]

Juvenile hormone III Riptortus
pedestris

A more significant number of eggs
produced as a result of
Burkholderia gut symbiont

Burkholderia [27]

Adrenocorticotrophic
hormone Wistar rats Changes in the

microbiome diversity Akkermansia and Lactobacillus [28]

Epinephrine and
Norepinephrine

Bacterial
growth

Stress hormones can affect the
growth of anaerobic bacteria
in the gut

Fusobacterium nucleatum, Prevotella,
Porhyromonas spp., Tanerella forsythia,
and Propionibacterium acnes

[29]

Thyroxine Mice Reduced diversity of some
bacterial species

Bacteria belonging to families
Lactobacillaceae and Bifidobacteriaceae [30]

Androgen Pigs
Influence of host gender on gut
microbiota and sex-biased
bacterial taxa

Bacteria belonging to families
Veillonellaceae, Roseburia, Bulleidia,
and Escherichia

[31]

Androgen Wistar rats
Prenatal androgen was associated
with the abundance of
gut microbiota

Akkermansia, Bacteroides,
Lactobacillus, Clostridium,
Nocardiaceae, and Clostridiaceae

[32]

Glucagon-like
peptide 1 Mice Intestinal microbiota increases

GLP-1 levels
L. paracasei, L. bulgaricus, and
Streptococcus thermophilus [33]

Corticosterone,
adrenocorticosterone

Probiotics in rats
and humans

Bacteria reduce levels of
stress hormones L. helveticus and B. longum [34]

3. Role of Gut Microbiota in PCOS

Steroidal hormonal levels are reported to have a relationship with the gut microbiome
changes, and women suffering from PCOS exhibit higher amounts of androgens linked
with a change in metabolic activity [35]. Several studies have been carried out to correlate
gut microbiota, and PCOS with an overall inference that any decrease in the alpha and beta
diversity of the microbiome in the gut is correlated with the occurrence of PCOS [36]. There
is a link between lower alpha diversity of gut microbiota and obesity, which is one of the
most prominent co-morbidies of PCOS in women [37]. Since the last decade, much research
has been carried out to understand gut bacteriome’s association and its relationship with
PCOS. Though consideration of the concept of the existence of a mycobiome or virome
would reflect on the role of microbiome as a whole, such reports are quite limited [38,39].

3.1. Bacteria Involved in PCOS
3.1.1. Firmicutes

This phylum of bacteria represents the maximum diversity within the human gut [40].
Firmicutes mainly comprise Lactobacillus, Clostridium, and Ruminococcus. Of all the phyla of
Firmicutes, the effect of Lactobacillus on human health has been extensively studied, and
its direct relationship with PCOS has been established [41]. The ratio of Firmicutes and
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Bacteroidetes has been correlated to gut microbiota in obese people [42]. A study by Liu
et al. found a decrease in Ruminococcaceae and Clostridium in the PCOS group who were
obese [43]. Another study found a decrease in Clostridiales [44] while another study by
Insenser et al. confirmed a higher abundance of Lachnospiraceae oribacterium [45].

The genus Lactobacillus consists of many species, some of which are related to obesity
and PCOS. These bacteria have been associated with a lack of dextrin synthases [46]. A close
relationship has been reported between weight gain and the abundance of L. acidophilus
species in an individual [47]. In a study involving Sprague dawley rats, L. plantarum was
found to increase the synthesis of isobutyric acid and isovaleric acid, which are known to
play a role in lipid metabolism and are critical for PCOS [48]. Contrastingly, another study
found that treatment of postmenopausal women with L. plantarum reduced the glucose
levels and lowered C-reactive proteins in white adipose tissue [49]. The administration
of L. johnsonii to rats increased their granulosa layers and the formation of corpora lutea
alleviating PCOS [50]. In a study carried out on Iranian women. oral administration of
Lactobacillus strains (L. acidophilus, L. plantarum, L. fermentum, and L. gasseri) for 12 weeks
was found to reduce the Interleukin-6 (IL-6) and high-sensitivity C reactive protein (hs-
CRP) levels, improving inflammation associated with PCOS [51]. In another study on
PCOS-induced rats, L. reuteri was reported to improve reproductive function and restore
the gut microbiota [52].

L. reuteri is reported to improve insulin resistance (IR) and browning of white adipose
tissue [53]. In another study, reduction in blood glucose levels, an improvement in insulin
sensitivity, and concentration was seen in the postpartum period in women when they
were treated with L. rhamnosus [54]. The role of L. acidophilus and L. casei in reducing
plasma glucose, improving insulin levels and increased insulin sensitivity were highlighted
similarly in another report [55]. Mice that were treated with a high-fat diet (HFD) showed
a decrease in body weight and downregulation of Tumor Necrosis Factor α (TNF-α) and
Interleukin -1β after treatment with L. sakei [56] Female C57BL/6 mice, when fed with
Lactobacillus JBD301, increased the fecal excretion and the gut fluid, inhibiting the weight
gain, which is commonly seen in PCOS women [57]. Another study pointed out the role
of L. gasseri BNR17 in decreasing visceral fat mass and waist circumference [58]. Often
Lactobacillus is used in combination with certain prebiotics to make synbiotics for the
treatment of PCOS symptoms. Some of the studies using synbiotics for treatment of PCOS
are highlighted in Table 2.

Table 2. Synbiotic treatment and outcomes related to PCOS.

Synbiotic Treatment Model Outcome Reference

L. bifidum, L. acidophilus, L. casei and inulin Clinical study No change in hirsutism [59]
Lactobacillus, Bifidobacterium, and Selenium Clinical study Improved testosterone and hirsutism [60]
L. bifidum, L. acidophilus, L. casei and inulin Clinical study Improved insulin sensitivity [59]

L. acidophilus, L. reuteri, L. fermentum, B. bifidum
and selenium Clinical study Increased insulin sensitivity [61]

L. plantarum and inulin Wistar rats
Decrease hyperglycemia, IR,
hyperlipidemia, and ameliorate
oxidative stress

[62]

L. acidophilus, L. casei, L. rhamnosus and inulin Clinical study Reduced low-density lipoprotein (LDL) and
increased high-density lipoprotein (HDL) [63]

3.1.2. Actinobacteria

Actinobacteria constitute one of those significant phyla of gut bacteria that play a sig-
nificant role in its eubiosis [64]. These are primarily gram-positive, non-spore-forming,
anaerobic bacteria. This phylum includes three prominent families i.e., Bifidobacteria, Pro-
pionibacteria, and Corynebacteria [65]. The family that is abundantly present in the human
gut is Bifidobacteria [66]. The metabolic pathway functional in the bacteria in this phylum is
the one involving fermentation of sugars, releasing hydrogen and short-chain fatty acids
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(SCFAs) [67]. This phylum is also involved in regulating lipid metabolism [68]. All these
aspects point towards its role in the regulation of PCOS symptoms.

Administration of Bifidobacterium lactis 420 to C57BL/6J mice for 12 weeks [69] resulted
in weight loss. Increase in gut permeability is linked to a decreased proportion of Bifidobac-
teria [66]. This, in turn, leads to the transport of lipopolysaccharides into the blood serum,
thereby triggering the immune system resulting in chronic inflammatory responses. Mice
on a high-fat diet that were administered with B. pseudocatenulatum CECT 7765 showed
a reduced production of cytokines such as IL-6 [70]. Glucose tolerance is reported to be
directly linked with these specific inflammation markers. This study also highlighted the
fact that after administration of the specific bacterial species, the inflammation marker IL-10
rose exceptionally high. Phagocytic function in the peritoneal macrophages was a result
of oxidative stress, causing inflammation. It is pertinent to add here that the number of
Actionbacteria and regulation of the inflammation levels are correlated to each other. Certain
subspecies of B. longum (B. infantis) have shown their effect on the T cells activity in various
animal models [71]. In a study involving the administration of B. infantis for the treatment
of ulcerative colitis and psoriasis, it was found to lead to a reduction in the C reactive
protein (CRP) levels [72]. Moreover, in an in vitro study using Caco-2 cells, B. adolescentis
decreased tumor necrosis factors (TNF-α) expressions [73].

Administration of B. pseudocatenulatum CECT 7765 to mice showed an improvement in
regulation of fatty acids and cholesterol, metabolism [74]. Treatment of mice with B. longum
decreased the weight of mice and reduced the levels of cholesterol, triglycerides, serum
aspartate transaminases, and alanine transaminases [75]. Another study involving the
administration of Bifidobacterium MKK4 to obese mice reported reduced triglyceride and
cholesterol levels and regulated the gut microbiota [76]. In a randomized control trial (RCT),
administration of B. breve B-3 showed alterations in the levels of γ-glutamyltranspeptidase
and high-sensitivity CRP that is linked with low-fat mass [77]. Another study, evaluating
the role of Bifidobacterium levels in women, found it to be in lower abundance in the PCOS
group than in the control group [78]. All these studies highlight the fact that the members
of phylum, Actinobacteria is actively involved in various metabolic and inflammatory
pathways leading to PCOS.

3.1.3. Proteobacteria

Proteobacteria is one of the major phyla of bacteria that are gram-negative [79]. They
represent most of the pathogenic bacteria that include Salmonella, Vibrio, Heliobacteria, and
Yersinia. Alink has been established between Proteobacteria and the imbalance caused in
the lower reproductive tract of women and inflammation [80]. Escherichia fergusonii from
this phylum is reported to be responsible for acute cystitis (an underlying risk factor for
PCOS) [81]. Interestingly, some clinical data shows a relationship between acute cystitis
and PCOS [82]. The genus Salmonella belonging to this bacterial phylum though commonly
known to be associated with typhoid, has also been reported to be associated with PCOS.
Certain species of Salmonella are known to cause egg contamination and reproductive tract
infections in chickens [83].

Salmonella typhimurium is known to reduce ovarian cancer in metastatic and dissemi-
nation mouse models and warrants further study on its effects on PCOS [84]. Helicobacter
bacteria belonging to this phylum have also been implicated in PCOS. H. pylori is known
to cause inflammation in the gastric tract. However, its role PCOS was reported where
the seropositivity of H. pylori was found higher in the PCOS group along with a higher
concentration of C reactive protein than that in the control group [85].

Another pathogen found abundantly in PCOS patients is Comamonas kerstersii, which
has been linked to peritonitis and urinary tract infections [86,87]. A recent study by Chu
et al., indicated that the PCOS group had a higher abundance of the genus Shigella [88].
These are thought to cause disease by secreting virulence factors, producing severe in-
flammation, and mediating colon enterotoxic effects. They inject virulence effectors into
epithelial cells to facilitate invasion of the cells and downgrade inflammation [89]. In
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women with PCOS, there is an increase in gram-negative bacteria such as Desulfovibrio [43].
higher abundance of Desulfovibrio bacteria is correlated to short-chain fatty acids, an increase
in follicle-stimulating hormone, and IL-10 [90].

3.1.4. Bacteroidetes

Bacteroidetes constitute the largest phylum of gram-negative bacteria found in the
gastrointestinal system, and are considered as the key players in the gut microbiota’s
healthy state and homeostasis [91]. Bacteroides, Prevotella, and Porphyromonas represent
the three main genera of this phylum. The host’s metabolism is regulated by Bacteroidetes,
which harvest polysaccharides and produce short-chain fatty acids [92]. In a cohort study,
it was pointed out that the presence of family S24-7of Bacteroidetes was significantly lower
in stools of PCOS patients and was associated with reproductive hormones such as thyroid
stimulating hormone (TSH) and luteinizing hormone (LH) [93]. Another study indicated
that B. fragilis was significantly higher in the PCOS group [88]. Liu and coworkers revealed
that bacteria belonging to Bacteroides were significantly higher in the PCOS group and were
negatively correlated to ghrelin and positively correlated to testosterone as well as body
mass index (BMI) levels [43].

Similarly, Arroro et al., pointed out that the abundance of Parabacteriodes was sig-
nificantly decreased when the mice were treated with letrozole, an agent used to in-
duce PCOS [94]. In an interesting study that analyzed the gut microbial composition
in 100 women from rural Ghana and urban America (50 lean women and 50 obese women),
it was found that lean American women had more Bacteroides whereas lean Ghanaians had
more butyrate-producing gut bacteria. Mice transplanted with the faeces of a lean Ghana-
ian were found to be resistant to obesity, produced by a 6-week high-fat diet (p < 0.01),
highlighting the fact that this phylum can play a role in the management of weight in
PCOS women [95]. The genus Alistipes belonging to this phylum and family Rikenellaceae
was reported to be associated with increased gut inflammation and showed a negative
correlation with LDL and a positive correlation with triglycerides in rats induced with
PCOS on an ordinary diet [96].

3.2. Fungi Involved in PCOS

Characterizing the human gut mycobiome has been aided by next-generation se-
quencing techniques [97,98]. More than 66 genera and 184 species of fungi have been
discovered in the human gut, with Candida, Saccharomyces, and Cladosporium being the
most popular [99]. Inflammatory diseases such as Crohn’s disease and ulcerative colitis
are linked to mycobiome dysbiosis [100] However, no link was reported between the role
of mycobiome and PCOS by Illiev et al. [101]. Mihms and coworkers, showed that the
genera Thermomyces and Saccharomyces have links with host metabolism. Analysis of gut
mycobiome by using random forest machine learning models and performing variable
importance analysis to identify critical fungal taxa, revealed that a positive correlation
existed between Thermomyces and weight gain, Cladospoirum and serum triglyceride con-
centration, and Saccharomyces, as well as Aspergillus, with fasting ghrelin levels. Moreover,
the production of secondary bile acids was previously attributed to various microbionts
that were considered essential for producing metabolic hormones such as leptin, resistin,
ghrelin, and Glucagon like peptide-1 (GLP-1). However, it is evident now that fungi such
as Fusarium, Aspergillus, and Penicillium also produce secondary bile acids [101]. A study
pointed out that Candida, Nakaseomyces, and Penicillium are the most abundant genera
in obese patients. The relative abundance of strains of the phylum Zygomycota and the
class Eurotiomycetes, family Mucoraceae, was negatively related to serum total cholesterol,
LDL-cholesterol, and fasting triglycerides. The relative abundance of strains from the
Dipodascaceae family, on the other hand, was positively linked to serum total cholesterol
and fasting triglycerides. Eupenicillium was negatively associated with homeostatic model
assessment (HOMA) value [102]. Of all fungal species, Candida has successfully been
identified from the intestine of healthy people [103]. Some research has also revealed a
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relationship between the abundance of Candida spp. with diabetes and inflammation in the
gastrointestinal tract [104,105]. However, more extensive studies are required to further
elucidate the role of mycobiome in PCOS.

3.3. Virus Involved in PCOS

Intestinal bacteriophages have been identified as the gut virome’s primary component,
accounting for over 90% of its makeup [106]. A prospective virome investigation in a
group of 19 children was conducted before and after the onset of islet autoimmunity.
There were no significant alterations in the gut virome before or after the formation of
islet autoimmunity or after the onset of diabetes [107]. The virome may or may not have
a role in the pathogenesis of PCOS or any other metabolic disease and its role remains
speculative. However, manipulation of virome has been found to benefit for managing
intestinal inflammation [108]. Toll like receptor-3,7 (TLR3) and (TLR7) recognized resident
viruses promote intestinal homeostasis by secreting anti-inflammatory cytokines such
as interferon-beta (IFN-β) produced mainly by plasmacytoid dendritic cells [109]. The
abundance of pathogenic and opportunistic viruses in the guts of PCOS patients is still
unreported. In the absence of protective immunity, a significant number of viral species
are likely to coexist and maybe transiently removed just to resurface later. Prospective
longitudinal studies aimed at characterizing the dynamics of the gut virome at a steady
state in healthy and PCOS are needed to understand better the driving forces that shape the
gut microbiome, to monitor and ideally predict pathogenesis associated with these viruses.

4. Mechanistic Pathways in PCOS
4.1. Correlation between Gut Microbiota and Hyperandrogenism

While the cause of PCOS is not clear in absolute terms, two different but related
theories have been proposed to link the development of hyperandrogenic PCOS traits
to changes in the gut flora [110]. One study pointed out that gut dysbiosis caused by a
high-fat diet and a high carbohydrate diet influences the gut barrier function, leading to
insulin resistance, hyperandrogenism, and dysfunction of the ovaries. This hypothesis
strongly points towards the diet and gut dysbiosis as driving forces from where pathogenic
features of PCOS related to hyperandrogenism emerge [111]. This hypothesis, however,
does not consider that despite differences in diet also, occurrence of PCOS is observed [2].
Qi and his colleague transplanted fecal microbiota of PCOS women into antibiotic-treated
mice and noticed reproductive and metabolic abnormalities in the recipients. In addition
to hyperandrogenism, the PCOS control mice experienced altered estrous cyclicity and
decreased ovulation, as evidenced by a reduction in the number of corpora lutea in the
ovaries and ovarian cysts’ formation along with a reduction in fertility [112]. This study
reveals that dysbiotic gut microbiota from women with PCOS is sufficient to elicit a PCOS-
like phenotype in mice, supporting the theory that changes in the gut microbiome may
play a causative role in this condition. Another hypothesis is based on the fact that
testosterone could affect the gut microflora through a direct effect as a substrate for gut
microbial enzymes and an indirect influence via activation of host androgen receptors or
immune system regulation [113,114]. Since it is not pragmatic to induce gut dysbiosis to
cause hyperandrogenism in a clinical setting, several studies have deciphered this link
between hyperandrogenism and gut microflora in animal models. In two studies, the genus
Collinsella was found to be positively linked with testosterone levels in women [78,115].
The genus Bacteroides was also positively correlated with testosterone levels [88]. The genus
Prevotella, on the other hand, was found to be negatively correlated with testosterone in
another study [116].

Further, hyperandrogenism may potentially cause dysbiosis of the gut microbiome,
according to evidence from animal models. Letrozole, a nonsteroidal inhibitor of aromatase
and used as an inducing agent for PCOS, has been used to determine any changes in gut
microbiota. Treatment with letrozole was found to result in a change in the abundance of
Bacteroidetes and Firmicutes. The result was in line with the fact that hyperandrogenemia
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in PCOS alters the gut microbiota independent of diet [44]. Another study pointed out
that letrozole treatment resulted in greater relative abundances of Coprococcus, Allobacu-
lum, Bifidobacterium, and Ruminococcaceae genus members in pubertal female mice [117].
Surprisingly, these letrozole-induced changes in the gut microbiome appear to be activa-
tional rather than organizational, as stopping the letrozole treatment after induction of gut
dysbiosis was found to restore gut bacterial diversity.

Another study pointed out that the number of Bacteroidetes increased after adminis-
tration of dihydrotestosterone (DHT) (inducing agent for PCOS) and resulted in a lower
abundance of Proteobacteria, Spirochaetae, and Verrucomicrobia. All these results suggest the
strong relationship of testosterone with the gut microbiota. However, it is still specula-
tive whether testosterone exerts its effects directly or indirectly in the androgenic tissue.
Further, investigations on inhibition of androgen receptors using antiandrogens such as
spironolactone, cyproterone and androgen receptor knockdown in specific host tissues will
determine which androgen action sites are essential for gut dysbiosis in women.

4.2. Correlation between Gut Microbiota and Energy Absorption

Intestinal fermentation of complex carbohydrates requires interactions among mem-
bers of the microbiome community, which comprise both nutritionally specialized and
generally adapted species. Many genes, encoding carbohydrate-active enzymes, are found
in certain dominating species, particularly among the Bacteroidetes. This enables them
to quickly switch between different energy sources in the gut, based on the source avail-
ability. This is attributed to their sophisticated sensing and regulatory processes that
control gene expression [118].. Kocelak and coworkers studied the resting energy ex-
penditure (REE), body composition, and the gut microbial population in 50 obese and
30 lean, healthy, weight-stable subjects. They found that obese people had a significantly
higher total microbial count, but no significant variations in the Bacteroidetes/Firmicutes
ratio was found, which had previously been reported to be lower in obese people in other
investigations [119]. The gut microbiota can aid in the usage of calories from consumed
foods. Turnbaugh et al. found that the obese (ob/ob) mouse microbiota, whether present
in ob/ob or gnotobiotic mice, had a higher potential to harvest energy from the food.
More importantly, transplanting an obese mouse’s caecal microbiota into gnotobiotic mice
resulted in enhanced energy harvesting, as well as increased intestinal monosaccharide
absorption. As a result, hepatic lipogenesis got enhanced, and hepatic lipoprotein lipase
(LPL) as well as sterol regulatory element-binding proteins (SREBPs) were stimulated [120].
The link between gut microbiota, energy metabolism, and obesity was validated in this
investigation. Over half of PCOS individuals were overweight or obese, according to data
in the study [121].

Furthermore, both gut microbiota richness and phylogenetic diversity in PCOS pa-
tients are dramatically reduced [122]. A study compared the gut microbiota composition of
groups of obese women with PCOS, non-obese women with PCOS, obese women without
PCOS, and normal controls to further evaluate the association between obesity, PCOS,
and gut microbiota. The findings indicated that obese and non-obese women with PCOS
had significantly different levels of β diversity [122]. It was hypothesized that gut mi-
crobiota might uniquely influence weight and energy metabolism in patients with PCOS.
From the initial studies, it can be assumed that gut microbiota disturbances can hasten the
progression of PCOS by impairing energy absorption also.

4.3. Correlation between Gut Microbiota and Short Chain Fatty Acid Metabolism

Short-chain fatty acids (SCFAs), the primary metabolites generated in the colon due
to bacterial fermentation of dietary fibers and resistant starch, are thought to play a
critical role in neuro-immunoendocrine control. However, the fundamental processes
through which SCFAs may affect PCOS physiology, hitherto remains unknown [123].
Den Besten et al. reported that SCFAs activate the peroxisome proliferator-activated recep-
tor gamma (PPAR-γ) in the liver and muscles, controlling glucose absorption and fatty acid
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oxidation. Additionally, gut microbiota may alter insulin sensitivity through branched-
chain amino acid-mediated inflammatory responses (BCAAs) [124,125]. Another study
revealed that the more BCAAs the individuals consumed, the greater is their risk of develop-
ing type 2 diabetes [126]. The reason for this was thought to be 3-hydroxybutyrate (3-HIB),
a valine catabolite that increases fatty acid absorption in the muscle tissue. This, in turn,
results in fat buildup and insulin resistance [127]. Another study linked gut microbiota and
BCAA metabolism. Prevotella was discovered to be involved in BCAA production. Mice
that were given a high-fat diet had increased BCAA levels in their blood after two weeks,
while, after three weeks, they developed insulin resistance. This animal model accurately
mimiced the metabolic condition of PCOS patients who are obese or eat a high-fat diet.
SCFAs may decrease the production of the appetite-stimulating hormone (ASH) by the
stomach mucosa when combined with free fatty acid receptor-2, and 3 (FFAR-2/3). These
are generally thought to be the contributing factors [128].

ASH not only suppresses gonadotropin hormone-releasing hormone (GnRH) secre-
tion but also sex hormone transformation [129]. Moreover, ASH is known to inhibit the
production of aromatase CYP19A1 in adipo-stromal cells, preventing androgen conversion
to estrogen. Reduced ASH means more androgen levels [130]. A meta-analysis reported
that PCOS patients had lower ASH levels than non-PCOS women [131]. An altered SCFA
metabolism induced by an abnormal gut microbiota seems to be linked to IR and hyperan-
drogenemia in PCOS. To make matters worse, high testosterone levels may exacerbate the
problem leading to a vicious cycle.

4.4. Correlation between Gut Microbiota and Lipopolysaccharide (LPS) Metabolism

Certain Proteobacterial lipopolysaccharides (pro-inflammatory LPS, P-LPS) have been
reported to cause septic shock or even death in animals as well as people. Although P-LPS
from various bacterial species have comparable structural and chemical characteristics, they
have modest and variable immune activation actions. However, a subset of LPS molecules
generated by some microbes, such as Bacteroidetes, have a muted or even antagonistic effect
in initiating pro-inflammatory reactions affecting insulin sensitivity and leading to insulin
resistance [132]. In one of such studies, mice received either a low-fat or high-fat diet, and
the change in gut microbiota was noticed. After four weeks, mice consuming a high-fat
diet were found to be obese and exhibited symptoms of insulin resistance. Their blood LPS
concentration was 2–3 times greater than that of the control group and their gut microbiota
composition was also reported to be altered [133].

The LPS pathway is also known to promote insulin resistance and obesity in PCOS
when gut microbiota is aberrant [134]. Low pro-inflammatory factor release over time, may
cause hyperandrogenism and obesity in PCOS [135]. Elevated androgen levels increase
inflammation in PCOS patients. A study demonstrated that testosterone increases the
response of 3 T3-L1 adipocytes to LPS, resulting in enhanced production of IL-6, which
validates this hypothesis [136]. Gut microbiota mediates insulin resistance through LPS.
Some experts claim insulin resistance is the key to PCOS’s aberrant metabolism and creates
a persistent inflammatory state.

4.5. Correlation between Gut Microbiota and Choline Pathway

Higher plasma levels of trimethylamine N-oxide levels have been reported in PCOS
without the association of hyperandrogenism [137]. PCOS is widely reported to be asso-
ciated with a high cardiovascular risk [138]. The bacterial formation of trimethylamine
(TMA) has been linked to cardiovascular disease. Until recently, the metabolic mechanisms
involved in bacterial TMA production were unclear [139]. The choline-TMA lyase, CutC
protein, needs a glycyl radical to break the carbon-nitrogen bond, while the carnitine-TMA
lyase, CntA protein, uses a mononuclear iron in the active center. CutC is part of a broader
enzyme family that includes glycerol dehydratase and pyruvate formate lyase. CntA is
a novel Rieske-containing oxygenase with substantial sequence similarity to numerous
Rieske protein family members. While these enzymes responsible for TMA production
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have been identified, finding the microbiota species responsible for TMA generation in
the human gut still remains a challenge and even more so, for those involved in PCOS.
However, there are some studies that highlight its role in PCOS [140].

First, TMA is metabolized to trimethylamine oxide (TMAO) which regulates choles-
terol metabolism, IR, platelet aggregation, and inflammation [141]. Further, a rise in TMAO
levels due to increased TMA-producing bacteria in the gut, may cause atherosclerotic
lesions and cardiovascular disease. PCOS patients often have hyperlipidemia and IR which
may cause endothelial damage and thrombosis. These metabolic anomalies raise coronary
heart disease risk. Nevertheless, the chemical mechanism causing this diseased condition
is unknown [142]. The link between gut microbiota and its impact on cardiovascular health
through the choline route is reported, but it is yet unknown whether this mechanism
contributes to cardiovascular problems in PCOS patients.

4.6. Correlation between Gut Microbiota and Bile Acid Pathway

The gut microbiota influences bile acid composition and metabolism in the liver
through Farnesoid X receptor and G protein-coupled membrane receptor 5 signaling [143].
The gut microbiota acts by decreasing the activity of cholesterol 7-hydroxylase (CYP7A1),
which controls fat synthesis and triglyceride TG levels [144]. Abnormal lipid metabolism is
reported in women with PCOS, with a prevalence of up to 50%, and it mostly appears as
elevated levels of triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL),
and hormone-sensitive lipase (HSL) [145]. On the other hand, Qi and coworkers observed
that PCOS patients had substantially lower glycodeoxycholic acid (GDCA) and taurour-
sodeoxycholic acid (TUDCA) levels than the positive control group. Bacteroides forsythus
correlated adversely with GDCA and TUDCA and uncoupled the binding bile acids pro-
duced in the liver. These findings indicate that B. forsythus is present in the gut microbiota
of PCOS patients, influencing GDCA and TUDCA metabolism [112]. Deoxycholic acid also
improves the PCOS phenotype by inducing IL-22 production by intestinal lymphocytes
through GATA binding protein 3. This is in line with decreased IL-22 levels in PCOS indi-
viduals [146]. Gut microbiota may also alter insulin sensitivity through an inflammatory
response mediated by bile acids [147]. Based on previous research, we conclude that a
negative alteration in gut microbiota alters bile acid metabolism and chronic inflammation
in PCOS patients.

4.7. Correlation between Gut Microbiota and Intestinal Permeability

The mechanical component of the intestinal barrier is the mucosal lining. Tight
junctions (TJs) control paracellular or transcellular bacterial translocation. Increased perme-
ability indicates barrier function damage, as seen by dual sugar absorption studies. Obesity
has been linked to increased intestinal permeability [148]. This, in turn, corresponds with
insulin resistance (HOMA Index) [149] and is exacerbated by liver damage [150]. TNF
and INF have been found to decrease the expression of tight junction proteins ZO-1 and
occluding, resulting in tight junction breakdown and increased intestinal permeability. The
occluding and tricellulin loss also alters the tight junction proteins claudin and zonula
occludens [151]. PCOS is classified as a chronic inflammatory disorder, and the persistent
low release of pro-inflammatory factors results in ongoing damage, leading to increase in
intestinal permeability. This pathological process, in turn, is intimately linked to the gut
microbiota. It has been suggested that one of the pathogenic mechanisms of PCOS could be
that obesity and a high-sugar, high-fat diet with low dietary fiber promotes gut microbiota
imbalance, destroying the junction between intestinal epithelial cells and the reduction
in the expression of ZO-1 and occludin [152]. Besides, the expression of cannabinoid 1
(CD-1) is suppressed, which has the potential to act on tight junction proteins, resulting in
the development of “leaky gut.” By this process, LPS from gram-negative bacteria enters
the body circulation, contributing to an antigen-antibody reaction that activates the im-
mune system, induces chronic inflammation, impairs the function of insulin receptors, and
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thereby increases the level of insulin, resulting in elevated androgen levels and irregular
follicular development leading to PCOS [153].

4.8. Correlation between Gut-Brain Axis

Enteric microbiota seems to have a role in the gut-brain axis, interacting with intestinal
cells, the enteric nervous system (ENS), and the central nervous system (CNS) through
neuroendocrine and metabolic pathways. Dysbiosis occurs in functional gastrointestinal
disorders related to mood disorders and gut-brain axis dysfunction [154]. GLP-1, for
example, is disordered in PCOS patients [155]. GLP-1 affects the gastrointestinal system and
the CNS via the vagus nerve; GLP-1 plays a critical role in multiple functions such as stalling
gastric emptying time, lessening appetite, increasing satiety, promoting pancreatic islet cell
proliferation, and stimulating insulin [156]. PCOS patients often suffer from depression,
social phobias, anxiety, and aggressiveness. These symptoms are linked to a faulty brain-gut
axis. Enterochromaffin cells, a type of intestinal endocrine cells, produce most of the body’s
5-HT. This impacts brain growth, stress response, and vigorous activity such as anxiety and
sadness [157]. Compared to normal mice, PCOS mice were reported to exhibit decreased
5-HT, norepinephrine, and dopamine [158]. The intestinal microbiome has been shown to
disrupt host immune regulation through the brain-gut axis. The structural foundation for
immune control is in intestinal lymphoid tissues, which comprise 70–80% of the body’s
immune cells [159]. Using peripheral blood samples from individuals with PCOS-related
infertility, Lang and co-workers discovered that an imbalance of Th1 and Th2 cells leads to
poor oocyte quality and ovulation problems with poorer pregnancy rates [160].

Further, researchers discovered a link between gut microbiota imbalance and the
Th1/Th2 ratio, suggesting that gut microbiota and helper T cell balance are interdependent
and mutually limiting. There is no experimental proof that gut microbiota controls immu-
nity through the brain-gut axis. Therefore, further studies are needed to reach any definite
conclusion in this regard [161]. A figure explaining the role of the gut microbiota and its
pathways is shown in Figure 1.
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Acids; FXR5: Farnesoid X Receptor 5; GLP-1: Glucagon-Like Peptide-1; GPCR-41/43: G-Protein-
Coupled Receptor 41/43; IRS1: Insulin Receptor Substrate 1; LPS: Lipopolysaccharides; NAFLD: Non
Alcholic Fatty Liver Disease; PDE3-B: Phosphodiesterase 3B; PKA: PPAR-γ: Peroxisome Proliferator-
Activated Receptor γ; PKA: Protein Kinase; PYY: Peptide Tyrosine Tyrosine; SCFA: Short Chain Fatty
Acids; TG: Triglycerides; TGR5: G-protein-coupled receptor for bile acids TMA: Trimethylamine;
TMAO: Trimethylamine oxide; VDR: Vitamin D receptor; ZO-1: Zonula Occludens-1.

5. Potential Treatment Strategies for PCOS

The current PCOS therapy focuses on amelioration of the patient’s symptoms. These
symptoms include menstruation problems and infertility. Clomiphene is the first-line
therapy for infertile women [162]. Recent clinical trials show that letrozole (in the right
dose) improves ovulation rate, monofollicular formation, mean endometrial thickness, and
pregnancy rate better than clomifene citrate [163]. Metformin is another drug used in the
treatment of PCOS and is also used to help women conceive. Metformin lowers insulin and
testosterone levels, affecting the ovulatory cycle and periods. It also raises sex hormone-
binding globulin (SHBG) and improves lipid profiles [164]. Other infertility treatments
include gonadotropin-stimulating ovulation or laparoscopic surgery [165]. The other phar-
macological therapy for PCOS is the usage of oral contraceptives such as drospirenone for
decreasing hirsutism and reducing testosterone levels [166]. There is no current treatment
strategy for PCOS that regulates gut microbiota. We have outlined possible gut microbiota
therapy approaches for PCOS along with the new clinical treatment suggestions.

5.1. Fecal Microbiota Transplant (FMT)

Fecal microbiota transpant is the transportation of gut microbiota from healthy donors’
feces into patients’ small intestines through oral or rectal routes [167]. In light of the
hypothesis that gut dysbiosis contributes to PCOS symptoms, treatment with an FMT
derived from healthy donors or representative microbes from a healthy gut is expected
to be a helpful to re-diversify the gut microbiome [9]. Performing an FMT from healthy
rats into a letrozole-induced PCOS rat model led to a reduction in androgen levels, better
estrous cycles, improved ovarian shape, higher levels of Lactobacillus, and Clostridium
species, and a decline in Prevotella species, according to one study conducted [50]. Co-
housing with healthy, placebo-treated mice reduced PCOS reproductive and metabolic
symptoms in letrozole-treated mice and altered the relative abundance of Coprobacillus and
Lactobacillus in another study [168]. Transplantation of fecal microbiota of PCOS women
into antibiotic-treated mice led to reproductive and metabolic abnormalities in the recipient
mice. They exhibited altered estrous cyclicity, decreased ovulation and a reduction in
fertility [112]. FMT, therefore, may be a potential treatment option for PCOS, but further
research is needed.

5.2. Prebiotics

In the gut, microorganisms break down prebiotics. The breakdown products of
prebiotics include short-chain fatty acids that have asignificant role in control of inflamma-
tion [169]. Prebiotics having positive effects on human health include fructooligosaccha-
rides and galactooligosaccharides [170]. Prebiotics have been shown to enhance microbial
fermentation, decrease appetite, and lower post-meal plasma glucose intake. Research
has looked at the impact of prebiotics on various metabolic disorders, including diabetes
and obesity [171]. Some investigations have shown that prebiotics may enhance microbial
fermentation while decreasing hunger and plasma glucose absorption after meals. A study
showed that intake of prebiotics increased the abundance of Bifidobacteria in the colon
and enhanced the production of GLP-1 by colon L-cells, resulting in improved insulin
resistance [172]. Based on these results, researchers are looking into the therapeutic effects
of prebiotics on PCOS. Another study evaluated the role of resistant dextrin on PCOS. For
three months, women with PCOS and women without the disease were given resistant
dextrin, a glucose polysaccharide digested in the colon by bacteria rather than absorbed in
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the small intestine. Free testosterone levels, hirsutism, the time between menstrual cycles,
fasting blood glucose, and lipid profile were all reduced by resistant dextrin [173]. In
dehydroepiandrosterone (DHEA) treated mice, who were fed a high-fat diet, the prebiotic
inulin was demonstrated to ameliorate intestinal dysbiosis, reduce testosterone, and boost
estrogen levels while improving ovarian morphology and weight gain [174]. According to
the gut microbiota sequencing performed, Bifidobacteria were found to increase in the inulin
group compared to the standard group, but Proteobacteria and Helicobacter levels declined.
Prebiotics, thus, play a significant role in the management of PCOS by regulating the gut
microbiota. However, more research leading to an understanding of the type, amount
and duration of administration of fermentable dietary fiber to achieve benefits in PCOS
is needed.

5.3. Probiotics

Probiotics are defined by the FAO and WHO (Food and Agriculture Organization of
the United Nations and World Health Organization) as “live microorganisms that bestow
a health benefit on the host when provided in suitable levels” [175]. Lactobacillus, in
particular, is a probiotic that plays a crucial role in immunomodulation in the intestinal
mucosa [72]. In clinical and experimental research, Lactobacillus strains have been shown
to effectively prevent and treat antibiotic-associated diarrhea, traveler’s diarrhea, and
illnesses caused by intestinal pathogens. Lactobacillus administered to rats given letrozole
treatment, lowered testosterone levels, enhanced estrous cyclicity, normalized ovarian
shape, increased Lactobacillus and Clostridium species, and decreased Prevotella species [50].
The effects of probiotic combinations on PCOS characteristics have been reported in several
studies. In a DHT-induced PCOS rat model, a combination of Bifidobacterium, L. acidophilus,
and E.faecalis enhanced reproductive and metabolic functioning, as well as gut microbiome
alpha diversity [176]. Another study indicated that supplementation with L. acidophilus,
L. casei, and B. bifidum (2 × 109 CFU/g each) significantly increased serum levels of SHBG,
reduced total serum testosterone levels, reduced modified Ferriman–Gallwey (mFG) scores,
and improved chronic inflammatory states as indicated by decreased level of IL-6 [177].

Current research on probiotic supplementation has certain limitations. Probiotics
employed in each study varied greatly and there were no standard dosages utilized. These
issues need to be addressed in future studies. The use of various probiotics and their
metabolic outcomes related to PCOS is highlighted in Table 3.

Table 3. The role of various probiotics and their metabolic outcomes related to PCOS.

Probiotic Used/Dose Design Source and
Duration

Number of
Participants Outcome Reference

L. acidophilus La5 (4.14× 106 CFU/g),
Bifidobacterium lactis Bb12 (3.61× 106

CFU/g)

Double-blind,
placebo Yogurt, 6 weeks 64 ↓ Cholesterol, ↓ LDL-C [178]

L. acidophilus La5 (7.23–1.85× 106

CFU/g), Bifidobacterium lactis Bb12
(6.04–1.79× 106 CFU/g)

Double-blind
placebo Yogurt, 6 weeks 64

↓ Fasting glucose, ↓serum
malondialdehyde
concentration, ↑ erythrocyte
superoxide dismutase, ↑
glutathione peroxidase

[179]

L. acidophilus (2 × 109 CFU)
L. casei (7 × 109 CFU)
L. rhamnosus (1.5 × 109 CFU)
L. bulgaricus (2 × 108 CFU), B. breve
(2 × 1010 CFU), B. longum (7 × 109

CFU), S. thermophilus (1.5 × 109 CFU)

Single blind,
placebo, parallel Capsule, 8 weeks 54 ↑ Serum insulin, ↑ LDL-C, ↑

GSH levels, ↓ serum hs-CRP [180]

L. acidophilus, L. bulgaricus, L. bifidum,
L. casei, L. sporogenes (1 × 108 CFU)

Single-blind,
placebo, parallel Capsule, 6 weeks 34 ↑ HDL-C, ↓ Insulin, ↓MDA,

↓ IL-6 [181]

L. sporogenes (1 × 108 CFU)
Double-blind,
placebo, parallel Bread, 8 weeks 81

↓ Serum insulin levels, ↓
HOMA-IR scores, ↓ HOMA-B,
↑ inflammation markers

[182]

L. acidophilus, B. lactis (3.7 × 106

CFU/mg)
Double-blind,
placebo, parallel Yogurt, 8 weeks 44 ↓LDL-C/HDL-C ratio,

↓ triglycerides [183]
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Table 3. Cont.

Probiotic Used/Dose Design Source and
Duration

Number of
Participants Outcome Reference

L. actobacillus, L. helveticus Double-blind,
placebo control Yogurt, 12 weeks 41 ↓ Blood glucose concentration,

↓serum glucose [184]

Lactobacillus species
Double-blind,
placebo control,
parallel

Sachet, 12 weeks 136 ↓HbA1c, ↓ triglycerides,
↓ insulin resistance [185]

HbA1c: Hemoglobin A1C; HDL-C: High-density lipoprotein-cholestrol; HOMA: Homeostatic model assess-
ment; hs-CRP: High senstivity c reactive protein; IL: Interleukin; LDL: Low density lipoprotein-cholestrol;
MDA- malondialdehyde.

5.4. Polyphenols

Recent research suggests that dietary phenolic compounds reaching gut bacteria and
the aromatic metabolites produced by them can alter and change the microflora community
by acting as prebiotics and antimicrobials against pathogenic intestinal microflora alleviat-
ing the PCOS disease state [186]. Polyphenols may be transformed into bioactive chemicals
by colonic bacteria, altering gut ecology and human health. In animal and human studies,
prescribing quantities of a specific polyphenolic chemical have been demonstrated to alter
the gut microflora composition, inhibiting certain bacterial groups while allowing some
others to thrive in the ecosystem’s available niche [187]. Several studies investigating the
effects of polyphenols in treating PCOS in animal models and patients have been conducted,
with promising results. According to one study, resveratrol therapy reduced reactive oxy-
gen species (ROS) generation and increased insulin sensitivity in ovarian tissue in rats
induced with testosterone enanthate-induced PCOS [188]. According to another study,
quercetin successfully restored PCOS-induced alterations in lipid profile, anti-oxidant
status, steroidogenesis, and ovarian architecture in rats with letrozole-induced PCOS [189].

Similarly, curcumin was demonstrated to correct anomalies in glucose and glycosy-
lated haemoglobin levels, lipid profile, serum hormonal profile, and antioxidant activity in
letrozole-induced PCOS [190]. Until now, only a few clinical trials have been conducted
to assess the efficacy of polyphenols in the treatment of PCOS. Thus, it is indicated that
the findings of in vitro and in vivo research warrant further clinical trials with diverse
polyphenolic substances. However, there exists very little literature on the role of polyphe-
nols in the modulation of the gut microbiota to treat PCOS. Nevertheless, some common
polyphenols and gut microbiota interventions to metabolic parameters exhibited by PCOS
that are available in the literature are highlighted in Table 4.

Table 4. Polyphenol’s role on the gut and metabolic parameters.

Source Polyphenol Animal Used, Number
of Treatment Controls

Changes in Gut
Microbiota

Changes in Metabolic
Parameters Reference

Apple (Pyrus
Malus) Procyanidins C57BL/6J mice, n = 10

↓The ratio of Firmicutes to
Bacteroidetes, ↑ Akkermansia,
Bacteroidetes
and Lactobacillus

↓Pro-inflammatory factors
TNF-α, IL-1β, MCP-1, and
chemokine ligand 1,
metabolic endotoxemia

[191,192]

Grapes (Vitis
Vinifera) Resveratrol Male Kunming mice,

n = 8

↑ Bacteroidetes to
Firmicutes ratio,
Lactobacillus, and
Bifidobacterium, ↓
Enterococcus faecalis

↓Weight
gain and visceral
adipose weight

[193]

Berries Anthocyanins
SD rats, n = 8
Wistar, n = 8
C57BL/6J mice, n = 8

↑ Akkermansia and
Desulfovibrio,
Faecalibacterium,
Gammaproteobacteria

↓TNF-α and IL-1β
levels, [194–196]
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Table 4. Cont.

Source Polyphenol Animal Used, Number
of Treatment Controls

Changes in Gut
Microbiota

Changes in Metabolic
Parameters Reference

Citrus fruits Piceatannol C57BL/6J mice, n = 8 ↑ Prevotella

↓ Lipid droplets, perilipin 1
protein, and
sterol regulatory
element-binding protein 1

[197]

Japanese
Persimmon
(Diospyros kaki)

Tannin SD rats, n = 6

↑ Bifidobacterium and
Lactobacillus, ↓ Firmicutes,
Escherichia coli, and
Enterococcus

↓Serum lipids and
cholesterol [198]

Turmeric
(Curcuma Longa) Curcumin C57BL/6J mice, n = 6 ↑ Prevotella, Bacteroidaceae,

and Rikenella

↑Expression
of tight junction proteins,
gut permeability, ↓NF-κB

[199,200]

Chilli (Capsicum
frutescens) Capsaicin ob/ob mice, n = 5

↑ Firmicutes to Bacteroidetes
Ratio, ↓ Bacteroides and
Parabacteroides

↑Fecal butyrate
and plasma total
glucagon-like peptide-1
(GLP-1) levels, and ↓total
ghrelin, TNF-α, IL-1 β, and
IL-6 levels

[201]

Rosemary (Salvia
rosmarinus) Carnosic acid Zucker obese rats, n = 10 ↑ Blautia coccoides and

Prevotella ↓ Bodyweight [202]

C57BL/6J- C57 black 6; MCP-1—Monocyte chemoattractant protein-1; NF-κB—nuclear factor kappa light chain
enhancer of activated B cells; ob/ob- obese mice; SD- Sprague Dawley.

6. Conclusions

The gut microbiota is critical in influencing human energy metabolism and is strongly
linked to PCOS. Some gut bacteria of genus Lactobacillus, Firmicutes, and Bacteroidetes are
linked positively to PCOS development, whereas some species of Bifidobacterium, most
Lactobacillus, and some Bacteroidetes display PCOS ameliorating effects. Recently, much
focus has been laid on understanding the role of gut microbiota in pathogenesis of PCOS.
Alterations in gut microbiota are known to have both positive and negative effects on PCOS
development. Metabolites from gut microbiota can promote weight loss through various
mechanisms. These include promotion of browning of white adipose tissue, regulation
of fatty acid metabolism and hyperandrogenism, decrease in appetite, alleviation of gut
inflammation, regulation of lipogenesis genes, decrease in serum levels of triglyceride,
cholesterol, and glucose. I It is, however, now important to identify the microorganisms
that cause PCOS and those that alleviate its symptoms..

Bacterial consortia and certain stool-derived microbial products that contain fewer
taxa of bacteria, viruses, and fungi also seem to be promising approaches [203]. Although
no such product is yet in the market, a number of them are in development phases. As
these consortia are easier to characterize and standardize, they areanticipated to be better
accepted in terms of safety and efficacy.
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