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Abstract
High-efficiency photon-pair production is a long-sought-after goal for many optical quantum
technologies, and coherent photon conversion (CPC) processes are promising candidates for
achieving this. We show theoretically how to control coherent conversion between a narrow-band
pump photon and broadband photon pairs in nonlinear optical waveguides by tailoring frequency
dispersion for broadband quantum frequency mixing. We reveal that complete deterministic
conversion as well as pump-photon revival can be achieved at a finite propagation distance. We
also find that high conversion efficiencies can be realised robustly over long propagation distances.
These results demonstrate that dispersion engineering is a promising way to tune and optimise the
CPC process.

1. Introduction

Optical nonlinearities play a vital role in the development of quantum-enhanced technologies based on
quantum optics and photonic quantum information [1–4]. Typically realised in the optical regime through
interactions with individual atomic systems [5–7] or atomic media [8–13], such nonlinearities are very
weak at the few-photon level unless enhanced by, e.g., cavity confinement [14, 15], coherent ensemble
effects [8, 9, 16] or strong classical pump fields [12, 17]. In 2001, the pioneering KLM proposal [1]
demonstrated that direct photon–photon nonlinearities could be circumvented using the strong local
nonlinearity provided by avalanche photodetection, with feedforward and teleportation, to enable efficient,
fault-tolerant quantum computation with linear optics [2]. While subsequent proposals have greatly
reduced the significant physical resource overheads of a linear optics approach [18–20], nonlinear optical
quantum computing [21–24] still provides an enticing alternative, with strong, direct photon–photon
nonlinearities promising to minimise the intensive resource requirements entailed by probabilistic
interactions.

After initial proposals [21–23] based on photon–photon cross-phase modulation, developments in
nonlinear optical quantum computing slowed for some time after several theoretical ‘no-go’ theorems
(e.g. [25, 26]). These suggested the goal of directly realising multiphoton gates between travelling photon
pulses using optical nonlinearities faced fundamental roadblocks, due to finite-bandwidth and spectral
entanglement effects that create a trade-off between nonlinear interaction strengths and gate fidelities. Later,
Langford et al introduced a new photon-level nonlinear process, coherent photon conversion (CPC), that
could sidestep these issues and provide a versatile building block for a new, scaleable quantum computing
architecture [24]. Generalising well-established concepts in spontaneous parametric down-conversion
(SPDC) and single-photon up-conversion [10, 17, 27], CPC provides a nonlinear module that enables
deterministic multiphoton gates, high-quality heralded single- and multiphoton states free from
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higher-order imperfections, and robust, high-efficiency detection. Initial analysis suggested similar
fundamental roadblocks also limit the performance of CPC-based operations for pulsed (broadband)
photons [28]. Subsequent work, however, including by the authors of reference [28], has identified
operational paradigms for CPC and other nonlinear optical quantum operations that potentially
circumvent these issues [29–34], for example by using dispersion and group-velocity engineering to control
the pulse interactions [29, 35, 36] or atom-mediated pulse interactions [27, 30]. Despite these promising
steps, however, it remains an important open question to identify the ultimate limitations to high-efficiency
CPC operations.

SPDC, the major workhorse for nonclassical light sources in quantum optics and quantum information
experiments, has found important application in two different operating paradigms. When implemented
with pulsed pump lasers, SPDC produces more narrowband, possibly factorable photon pairs, enabling the
synchronised, multipair photon production that is vital for quantum computing [37–40], quantum
networking [41–43] and quantum sensing [44, 45] applications. When implemented with narrowband
pump lasers, SPDC leads to highly broadband, spectrally entangled output photons, which can be
important for quantum communication, imaging and sensing tasks [46–50].

To date, experimental and theoretical investigations of CPC have mostly focused on the broadband
pump paradigm. In this regime, experimental demonstrations include conversion of a single photon to two
in an optical fiber [24], and two to one in a nonlinear waveguide [51]. While the demonstrated conversion
efficiency was relatively low in these first experiments, it can be improved by orders of magnitude by using
strongly nonlinear materials and optimizing the waveguide geometry [52], based on solutions derived in the
low-conversion regime. In the narrowband-pump regime, it has also been predicted that complete
conversion of a single pump photon to two down-converted photons can be achieved in a nonlinear
waveguide with quadratic frequency dispersion [53, 54], provided the sufficient nonlinearity is available.
Recent progress demonstrates significant advances in that respect [55], opening the opportunities for future
experimental realisations of efficient single-photon splitting.

Following our original proposal [56], in this work, we show how dispersion engineering can be used to
tune the photon-conversion process. This addresses a key open goal in this context, which is to study the
optimal conditions for achieving deterministic photon conversion both from a single photon to a pair and
also backward. We study a range of dispersion scenarios and show that we can reach 100% forward and
backward conversion efficiency at a finite propagation length. We also show that it is possible to realise
robust conversion between one and two photons, where high conversion efficiencies can be realised over a
large propagation distance range. These are nontrivial results due to the complex dynamics involving the
one- and two-photon states across a broad optical frequency spectrum.

2. Model

2.1. Conceptual framework
We start by considering the coherent conversion of a pump photon with a central frequency ωp into signal
and idler photons, see figure 1(a). This process can be realized in media with cubic nonlinearity through
four-wave mixing involving a high-power control wave at a different frequency ωc [24]. For narrow-band
spectra (i.e. single frequency modes) of the input photon and the control wave, the signal (index s) and
idler (index i) frequencies are related due to the energy conservation as ωs + ωi = ωp + ωc. On the other
hand, the splitting between the two photon frequencies can be arbitrary, ωs − ωi = Ω, effectively creating a
multimode regime for the generated biphoton with entangled frequencies. In the following, we show how to
utilize a larger number of CPC channels corresponding to different detunings Ω (figure 1(b)) in order to
reach complete photon conversion in the forward and backward directions.

The dynamics of the CPC is determined by the phase mismatch of the four-wave-mixing process across
a range of photon frequencies, Δβ(Ω) = β(ωs) + β(ωi) − β(ωp) − β(ωc), where β is the propagation
constant of the waveguide mode at the corresponding optical frequency. Whereas it is generally accepted
that most efficient conversion occurs in the regime of phase matching [52], the shape of the mismatch
dependence around the phase-matching point plays a critically important role in the high-conversion
regime. We consider coupled equations for the single and two-photon wavefunctions in the strong
conversion regime [53], and establish their mathematical equivalence to the fundamentally important
phenomenon of the decay of a discrete atomic state to a continuum [57], however the role of temporal
evolution is replaced by the propagation distance along the waveguide (z). Therefore, by choosing a
particular waveguide length, we can access any intermediate stage of the decay dynamics.
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Figure 1. (a) The concept of coherent conversion of a pump photon into signal and idler photons with frequencies ωs and ωi,
respectively. (b) Photon conversion channels associated with different frequency detunings between the signal and idler photons.
Utilising a larger number of CPC channels by increasing the generated photon-pair bandwidth can drastically increase the
efficiency of the process.

2.2. Theoretical model
Now let us derive a model following reference [52] and restricting four-wave mixing to only one
polarization component in a single-mode waveguide. We note that in this case we will be neglecting
spurious nonlinear effects (including competing four-wave-mixing processes) [58]. In this case the
propagating field can be written in the form

Ê(z, t) =

√
�

4πε0cAeff

∫ ∞

0
dω

√
ω

n(ω)
â(ω, z)e−iωt + h.c., (1)

where effective area of the waveguide mode Aeff is taken to be the same for all frequency components in the
waveguide. Length L of the fiber is assumed to be large enough for the continuous limit to be valid. Note
that operators â(ω, z) in equation (1) are chosen to be dimensional with units of (δω)−1/2 [59], where δω is
the frequency spacing due to periodic boundary conditions δω = 2π/T and T = L/c is the quantization
time.

In absence of nonlinearity, evolution of operators â can be found [60] to be â(ω, z) = â0 eiβ(ω)z , where
β(ω) = n(ω)ω/c. In the nonlinear medium operators â0 become functions of coordinate and frequency. If
the strong control wave can be taken as classical (â0(ωc, z) ≡ Ac(z)) and undepleted (|Ac(z)|2 = |Ac(0)|2),
then the evolution of the weak single-photon pump and generated signal and idler modes is governed by
the following set of equations [52] 5

∂â0(ωp, z)

∂z
= 2iγ

√
Pcζp

T

2π

∫
dωs â0(ωs, z)â0(ωc + ωp − ωs, z)ei(Δk−γPc)z + 2iγPcâ0(ωp, z), (2)

∂â0(ωs, z)

∂z
= 2iγ

√
Pcζpâ†0(ωc + ωp − ωs, z)â0(ωp, z)e−i(Δk−γPc)z + 2iγPcâ0(ωs, z). (3)

Here γ(ωs) = 3χ(3)ωs/[2ε0c2n2(ωs)Aeff ] is the standard waveguide parameter. We will assume that the
value of γ is approximately the same for all the frequency modes [61]. Parameter Pc = 2π�ωcT

−2|Ac|2
measures the peak power of the strong control wave. Parameter ζp = 2π�ωpT−2 is defined so that
Pp = ζp × 〈a†(ωp, 0)a(ωp, 0)〉 is the photon population of the weak pump at the entrance of the medium. In
case of a single-photon pump we have Pp = ζp × T/(2π). Δk is a phase mismatch based on the waveguide
geometry. The total phase mismatch Δβ = − (Δk + γPc) can be modified dynamically by changing the
strong pump power.

Now let us introduce the function for the pump photon dynamics

U(z) = e2i γPcz 2π

T
〈0|â0(ωp, 0)â†0(ωp, z)|0〉. (4)

This is the probability amplitude to find a weak pump photon at distance z (creation operator at distance z)
provided that there was one photon at distance z = 0 (annihilation operator at the origin z = 0). Factor

5 Equation (17) in [52] contains a typo. Factor 2π/T should be replaced by T/2π.
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2π/T accounts for units of operators â0 and exponential factor is introduced for convenience. Taking
coordinate derivative and comparing with equation (2) we obtain the following equation [53]

dU

dz
= −iχ

T

2π

∫
dωs V(ωs, z), (5)

where χ = 2γ
√

PcPp. New quantity V(ω, z) in equation (5) is defined as follows

V(ωs, z) =

(
2π

T

)3/2

ei(3γPc−Δk)z × 〈0|â0(ωp, 0)â†0(ωc + ωp − ωs, z)â†0(ωs, z)|0〉. (6)

Its physical meaning is the probability amplitude to find a pair of photons ωs and ωi = ωc + ωp − ωs at
distance z, provided that there was a single pump photon with frequency ωp at distance z = 0.
Differentiating V(ωs, z) with respect to z we get a second equation

dV

dz
= −iΔβV − iχU , (7)

where we took into account that â0(ω, z)|0〉 ≡ 0 and â0(ω, z)â†0(ω, z)|0〉 ≡ T/(2π)|0〉. Equations (5) and (7)
together with ‘initial conditions’ U(0) = 1, V(ω, 0) = 0 can be used to describe dynamics of our system,
effectively representing solutions of the operator equations (2) and (3). The temporal dynamics for the
photon pair packet can then be calculated via Fourier transform Ṽ(τ , z) = (2π)−1/2

∫∞
−∞U(ω, z)eiωτ dω. We

note that in the framework of equations (5) and (7), the combined population of pump photons Ip and
signal-idler pairs Is is conserved,

d

dz

[
Ip(z) + Is(z)

]
= 0, (8)

where

Ip(z) = |U(z)|2, Is(z) =

∫
dωs|V(ωs, z)|2 =

∫
dτ |Ṽ(τ , z)|2. (9)

With no loss of generality, in the numerical examples below we consider a normalization of variables such
that χT/(2π) = 1. We also introduce a notation Ω = ωs − ωs0, where ωs0 is a characteristic signal photon
frequency.

3. Results

3.1. Complete conversion of one photon into two
Now we analyze the effects of frequency dispersion Δβ(Ω) on the photon dynamics. A linear dispersion
corresponds to Markovian decay and allows 100% conversion efficiency only in the limit of infinite
propagation distance z →∞. In contrast, the higher-order dispersion enables complete conversion.
Specifically, 100% conversion efficiency (figure 2(a)) at a finite propagation distance in normalized units
zc = 0.83 can be enabled by the shifted quadratic dispersion Δβ = Ω2 − 2.88 (figure 2(b)). We find that
there appear multiple parameter regions corresponding to the full conversion, see appendix A, whereas only
specific cases we identified in previous studies [53, 54]. We note that the mathematical model of complete
conversion under quadratic dispersion is equivalent to a decay of atomic state to a continuum near a
photonic band-edge [62], and accordingly the effect of complete transitional decay can also happen for
atoms, see appendix A for details. Interestingly, after the rebound from complete conversion, in the
temporal domain an entangled state with an approximate form |0〉s|0〉i + |τ 0〉s| − τ 0〉i + | − τ 0〉s|τ 0〉i is
generated, where τ defines delay or advance for the signal/idler photons in a moving frame. Specifically, the
signal and idler photons are either travelling together in the central peak or with a time delay ±τ 0 linearly
growing with propagation distance z (figure 2(c)). A similar state with three peaks is also formed in the
spectral domain, although the distance between the peaks remains constant with increasing z (figure 2(d)).
The considered quadratic dispersion typically occurs near the degeneracy point when ωs ≈ ωi [58], which
can be readily accessed experimentally.

3.2. Photon conversion reversal
A regime which is of particular interest in the context of photonic quantum computing is where coherent
conversion can be realised in both forwards and backwards directions, allowing a pair of photons to also
completely convert back into one photon, similar to Rabi oscillations [24, 52]. However, when dispersion is
present, this regime is no longer possible in homogeneous waveguides. This is because the spectral
distribution of the generated pair of photons interacts in a complex way with the nontrivial waveguide
dispersion, and does not produce full coherent recombination in the backwards process [53, 54].

4



New J. Phys. 24 (2022) 065002 A S Solntsev et al

Figure 2. Complete conversion of one photon into two at a finite propagation distance (zc = 0.83). (a) Pump (dashed blue) and
signal/idler (solid red) photon populations vs the propagation distance z in the case of quadratic waveguide dispersion
Δβ = Ω2 − 2.88 shown in (b). (c) Temporal and (d) spectral dynamics of the biphoton population |V|2 vs the propagation
distance z.

Figure 3. Forward and backward conversion between one- and two-photon states achieved by reversing the sign of the
dispersion. (a) Pump (dashed blue) and signal/idler (solid red) photon populations vs the propagation distance z. (b) Quadratic
waveguide dispersion Δβ = Ω2 − 2.88 for z � zinv 	 2.53 (solid blue line) and the specially inverted dispersion
Δβ = −Ω2 + 2.88 for z > zinv (dashed red). (c) Temporal and (d) spectral dynamics of the biphoton population |V|2 vs the
propagation distance z.
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Figure 4. Robust conversion between one and two photons achieved through engineering higher-order frequency dispersion.
(a) Pump (dashed blue) and signal/idler (solid red) photon populations vs the propagation distance z in the case of cubic
waveguide dispersion. (b) Temporal dynamics of the biphoton population |V|2 vs the propagation distance z. (c) Dispersion
Δβ = β3Ω

3 +Ω, with β3 = 0.02. (d) Spectral dynamics of the biphoton population |V|2 vs the propagation distance z.
(e) Pump photon population |U|2 shown in logarithmic scale vs the propagation distance z and third-order dispersion coefficient
β3. (f) Pump photon population |U|2 vs the coordinate of dispersion sign inversion zinv and the normalized distance z/zinv for
β3 = 0.02.

Here, however, we show that complete forward and backward conversion between one- and two-photon
states can be achieved through waveguide dispersion engineering. Specifically, by inverting the sign of the
dispersion Δβ →−Δβ at the point of maximum conversion, the photon population dynamics reverses
according to the symmetry of the governing equations. Thereby, at twice the complete forward conversion
distance, a biphoton converts back into a single pump photon (figure 3(a)). In this case, mirroring the
dispersion at zinv 	 2.53 (figure 3(b)) is sufficient, which can be achieved through a tailored waveguide
engineering. The biphoton wavepacket in the temporal domain (figure 3(c)) as well as its spectrum
(figure 3(d)) also show complete reversal. During this process, the phase of the original photon is shifted by
π, in a similar way to the nonlinear optical control-phase gates realised in [24]. Given the complex spectral
dynamics that takes place during CPC in the presence of nontrivial waveguide dispersion, it is already
interesting to observe that complete reversal is still possible, and surprising that it can be achieved with such
a mathematically simple dispersion modification.

3.3. Robust photon conversion mediated by higher-order dispersion
We then find that more robust operation of photon conversion can be achieved by further tailoring the
higher-order waveguide dispersion. As discussed above, in the case of quadratic dispersion, the pump
photon population quickly rebounds after complete conversion, which would require highly precise
optimisation of the frequency dispersion and optical nonlinearity in experiments. We find that conversion
with strongly reduced sensitivity to experimental inaccuracies can be achieved in waveguides with
engineered cubic frequency dispersion. We show an example of 100% conversion efficiency at zc 	 0.8 in
figure 4(a), followed by an extended region of over 99.5% conversion. This flat behaviour with respect to an

6
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increase of the propagation distance z indicates high robustness against the experimental deviations. In
terms of temporal dynamics, the biphoton shows very limited spreading with a moderate, extended tail
(figure 4(b)), when a tailored cubic dispersion with Δβ = β3Ω

3 +Ω with β3 = 0.02 is utilized
(figure 4(c)). In the spectral domain, there are two merged peaks (figure 4(d)). We show the effect of the
third-order dispersion strength on the pump photon evolution in figure 4(e). We observe that for
β3 	 0.02, the zero position zc effectively does not depend on variations of β3, indicating robustness with
respect to β3 variations. Importantly, the robustness of back-conversion from two photons to one photon
based on a general approach formulated above, where the dispersion sign is inverted at zinv, can be also
enhanced by third-order dispersion optimization. We show in figure 4(f) that for a large range of
zinv � zc 	 0.8, there is nearly complete back-conversion with |U|2 → 1 at z = 2zinv.

4. Conclusions

In conclusion, we have shown that complete deterministic conversion between one and two photons can be
achieved in nonlinear waveguides with specially engineered frequency dispersion. In particular, quadratic
dispersion can facilitate 100% conversion efficiency between one and two photons in the forward and
backward directions at finite propagation lengths, allowing the pump photon to complete a full oscillation.
Furthermore, specially optimized cubic dispersion enables highly robust photon conversion, with strongly
reduced sensitivity to potential experimental inaccuracies. This work shows that dispersion can be designed
for the high-efficiency production of spectrally entangled, broadband photon pairs, with no higher-order
multiphoton terms, which may provide significant benefits for use in advanced quantum communication
technologies.
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Appendix A. Asymptotic analysis of photon populations

Let us explore the quadratic dispersion approximation to the total phase mismatch Δβ = Δβ0 + β2Ω
2 in

more detail. Applying Laplace transform f (s) =
∫∞

0 f (z)e−sz dz to equations (5) and (7) and taking into
account conditions at the left waveguide boundary U(0) = 1, V(Ω, 0) = 0 we find

U(s) =

[
s +

α
√

i√
s − iΔβ0

]−1

, (A.1)

where α = πχ2/
√
β2. The inverse Laplace transform then yields

U(z) = eiΔβ0z
∑

k

ep2
kz

3 + iΔβ0/p2
k

(
1 + erf(pk

√
z)
)

, (A.2)

where erf(x) is the error function and pk are the three roots of the following cubic equation:

p3 + iΔβ0p + α
√

i = 0.
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Figure A1. (a) Scaled optimal waveguide length ξm(γ) corresponding to the global minimum of pump photon population.
Dashed lines mark discontinuities due to changes of local minima. (b) Pump photon population at optimal waveguide lengths
Ip,m(γ) = |U(ξm(γ), γ)|2. Red dashed line in (b) corresponds to pump photon population at infinite distance according to
equation (A.8).

Table A1. First five roots of Ip,m(γ) and corresponding scaled waveguide
lengths ξm.

γ −1.4057 −2.3981 −3.0159 −3.5085 −3.9330
ξm 1.7895 3.6828 5.0337 6.1353 7.0843

Roots pk can be expressed using Vieta’s formula as

pk = α1/3σk(γ),

σk(γ) = e−
iπ
4
(
ζkA + ζ2kB

)
,

A =
3

√
1

2
+

1

2

√
1 − 4γ3

27
,

B =
γ

3A
,

k = 0, 1, 2,

(A.3)

where γ = Δβ0/α
2/3 and ζ = e2πi/3 is one of the cubic roots of unity. It is convenient to introduce new

spatial variable ξ = α2/3z, then solution in equation (A.2) depends on single parameter γ:

U(ξ, γ) = eiγξ
∑

k

eσ
2
k ξ

3 + iγ/σ2
k

(
1 + erf(σk

√
ξ)
)

, (A.4)

where σk are given by equation (A.3) and are functions of γ only.
Let us calculate the asymptotic value of the pump wave population at infinite distance. The asymptotics

of error function at z →∞ is given by [63]:

erfz ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − e−z2
/(z

√
π), z ∈ Ω1,

−1 − e−z2
/(z

√
π), z ∈ Ω2,

−e−z2
/(z

√
π), z ∈ Ω3,

where Ω1, Ω2 and Ω3 are sectors of complex plane with −π/4 < arg z < π/4, 3π/4 < arg z < 5π/4 and
π/4 < arg z < 3π/4 ∪ 5π/4 < arg z < 7π/4 respectively. As γ changes from −∞ to γ∗ = 3/41/3, roots
σk(γ) move in complex plane so that σ1(γ) ∈ Ω3 and σ2(γ) ∈ Ω2. For ξ →+∞ the contributions from

8
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these two roots vanish:

eσ
2
1ξ
(

1 + erfσ1

√
ξ
)
∼ eσ

2
1ξ − 1

σ1
√
πξ

→ 0, (A.5)

eσ
2
2ξ
(

1 + erfσ2

√
ξ
)
∼ − 1

σ2
√
πξ

→ 0. (A.6)

In equation (A.5) we used the fact that R
(
z2
)
< 0 in Ω3 and the corresponding exponent rapidly decreases.

The only term surviving at large distances comes from σ0, which lies on the line arg z = −π/4 for all γ.
One can show by direct evaluation that limx →∞ erf

(
x e−iπ/4

)
= 1 and thus

eσ
2
0ξ
(

1 + erfσ0

√
ξ
)
∼ 2 eσ

2
0ξ , (A.7)

where σ2
0 is purely imaginary and the exponent is oscillatory. For γ > γ∗ both σ1 and σ2 lie on the line

arg z = 3π/4 and by direct evaluation one can show that limx →∞ erf
(
x ei3π/4

)
= −1. Similarly to

equation (A.6), these roots do not contribute to the asymptotic value and the only important term on big
distances is equation (A.7). This results in the following asymptotic pump photon population (red dashed
line in figure A1(b))

lim
ξ→∞

|U(ξ, γ)|2 = 4(
3 + iγ/σ2

0

)2 . (A.8)

A mathematically equivalent problem of spontaneous emission of an atom with a resonant transition within
photonic band gap was studied in [62]. Specifically, Laplace image equation (A.1) is equivalent to equation
(2.18) from [62], up to a substitution Δβ0 ↔ δ, α ↔ −iβ3/2. Since this problem is formulated in time
domain, only asymptotic atomic population, equivalent to equation (A.8), can be observed experimentally.
On the contrary, in our problem it is possible to adjust the waveguide length to achieve maximum
conversion efficiency. Minimizing numerically |U(ξ, γ)|2 with respect to ξ for different values of γ we find
optimal scaled waveguide length ξm and therefore zm = α−2/3ξm (see figure A1(a)). It is clear from
figure A1(b) that for certain values of γ the minimum pump wave population Ip,m(γ) = |U(ξm(γ), γ)|2
becomes zero. First few such roots are shown in table A1. Discontinuities in ξm(γ) observed in figure A1(a)
and cusps in figure A1(b) correspond to switching between different local minima.
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[15] Gröblacher S, Hammerer K, Vanner M R and Aspelmeyer M 2009 Observation of strong coupling between a micromechanical

resonator and an optical cavity field Nature 460 724–7
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[55] Flórez J, Lundeen J S and Chekhova M V 2020 Pump depletion in parametric down-conversion with low pump energies Opt. Lett.

45 4264–7
[56] Solntsev A S and Sukhorukov A A 2015 Complete conversion of one to two photons in dispersion-engineered nonlinear

waveguides CLEO: QELS—Fundamental Science, CLEO_QELS

10

https://doi.org/10.1103/physrevlett.80.4157
https://doi.org/10.1103/physrevlett.80.4157
https://doi.org/10.1103/physrevlett.80.4157
https://doi.org/10.1103/physrevlett.80.4157
https://doi.org/10.1038/nature08171
https://doi.org/10.1038/nature08171
https://doi.org/10.1038/nature08171
https://doi.org/10.1038/nature08171
https://doi.org/10.1038/nature03064
https://doi.org/10.1038/nature03064
https://doi.org/10.1038/nature03064
https://doi.org/10.1038/nature03064
https://doi.org/10.1080/09500340408235283
https://doi.org/10.1080/09500340408235283
https://doi.org/10.1080/09500340408235283
https://doi.org/10.1080/09500340408235283
https://doi.org/10.1103/physrevlett.93.040503
https://doi.org/10.1103/physrevlett.93.040503
https://doi.org/10.1103/physrevlett.95.010501
https://doi.org/10.1103/physrevlett.95.010501
https://arxiv.org/abs/1810.09621
https://doi.org/10.1103/physreva.71.033819
https://doi.org/10.1103/physreva.71.033819
https://doi.org/10.1103/physrevlett.93.250502
https://doi.org/10.1103/physrevlett.93.250502
https://doi.org/10.1103/physreva.70.062302
https://doi.org/10.1103/physreva.70.062302
https://doi.org/10.1038/nature10463
https://doi.org/10.1038/nature10463
https://doi.org/10.1038/nature10463
https://doi.org/10.1038/nature10463
https://doi.org/10.1103/physreva.73.062305
https://doi.org/10.1103/physreva.73.062305
https://doi.org/10.1103/physreva.81.043823
https://doi.org/10.1103/physreva.81.043823
https://doi.org/10.1103/physreva.79.013804
https://doi.org/10.1103/physreva.79.013804
https://doi.org/10.1103/physreva.92.042330
https://doi.org/10.1103/physreva.92.042330
https://doi.org/10.1103/physrevlett.116.023601
https://doi.org/10.1103/physrevlett.116.023601
https://doi.org/10.1103/physrevlett.117.080502
https://doi.org/10.1103/physrevlett.117.080502
https://doi.org/10.1103/physreva.97.032314
https://doi.org/10.1103/physreva.97.032314
https://doi.org/10.1103/physreva.87.042325
https://doi.org/10.1103/physreva.87.042325
https://doi.org/10.1103/physrevlett.120.160502
https://doi.org/10.1103/physrevlett.120.160502
https://doi.org/10.1364/oe.16.007551
https://doi.org/10.1364/oe.16.007551
https://doi.org/10.1364/oe.16.007551
https://doi.org/10.1364/oe.16.007551
https://doi.org/10.1103/physrevlett.100.133601
https://doi.org/10.1103/physrevlett.100.133601
https://doi.org/10.1364/oe.17.004670
https://doi.org/10.1364/oe.17.004670
https://doi.org/10.1364/oe.17.004670
https://doi.org/10.1364/oe.17.004670
https://doi.org/10.1103/physrevlett.99.250505
https://doi.org/10.1103/physrevlett.99.250505
https://doi.org/10.1038/nature03347
https://doi.org/10.1038/nature03347
https://doi.org/10.1038/nature03347
https://doi.org/10.1038/nature03347
https://doi.org/10.1016/j.revip.2016.11.003
https://doi.org/10.1016/j.revip.2016.11.003
https://doi.org/10.1016/j.revip.2016.11.003
https://doi.org/10.1016/j.revip.2016.11.003
https://doi.org/10.1103/physrevlett.121.250505
https://doi.org/10.1103/physrevlett.121.250505
https://doi.org/10.1038/35106500
https://doi.org/10.1038/35106500
https://doi.org/10.1038/35106500
https://doi.org/10.1038/35106500
https://doi.org/10.1103/physreva.71.060310
https://doi.org/10.1103/physreva.71.060310
https://doi.org/10.1103/physrevlett.110.133601
https://doi.org/10.1103/physrevlett.110.133601
https://doi.org/10.1088/1367-2630/13/5/055024
https://doi.org/10.1088/1367-2630/13/5/055024
https://doi.org/10.1038/nphoton.2010.268
https://doi.org/10.1038/nphoton.2010.268
https://doi.org/10.1038/nphoton.2010.268
https://doi.org/10.1038/nphoton.2010.268
https://doi.org/10.1103/physrevlett.113.130502
https://doi.org/10.1103/physrevlett.113.130502
https://doi.org/10.1103/physrevx.5.041017
https://doi.org/10.1103/physrevx.5.041017
https://doi.org/10.1103/physrevlett.95.260501
https://doi.org/10.1103/physrevlett.95.260501
https://doi.org/10.1364/aop.2.000405
https://doi.org/10.1364/aop.2.000405
https://doi.org/10.1364/aop.2.000405
https://doi.org/10.1364/aop.2.000405
https://doi.org/10.1063/1.5009766
https://doi.org/10.1063/1.5009766
https://doi.org/10.1103/physrevlett.113.173601
https://doi.org/10.1103/physrevlett.113.173601
https://doi.org/10.1103/physreva.90.043808
https://doi.org/10.1103/physreva.90.043808
https://doi.org/10.1016/j.optcom.2014.02.047
https://doi.org/10.1016/j.optcom.2014.02.047
https://doi.org/10.1016/j.optcom.2014.02.047
https://doi.org/10.1016/j.optcom.2014.02.047
https://arxiv.org/abs/2009.01457
https://doi.org/10.1364/ol.394925
https://doi.org/10.1364/ol.394925
https://doi.org/10.1364/ol.394925
https://doi.org/10.1364/ol.394925


New J. Phys. 24 (2022) 065002 A S Solntsev et al

[57] Akulin V M 2014 Dynamics of Complex Quantum Systems 2nd edn (New York: Springer)
[58] Solntsev A S, Sukhorukov A A, Neshev D N and Kivshar Y S 2012 Photon-pair generation in arrays of cubic nonlinear waveguides

Opt. Express 20 27441–6
[59] Blow K J, Loudon R, Phoenix S J D and Shepherd T J 1990 Continuum fields in quantum optics Phys. Rev. A 42 4102–14
[60] Huttner B, Serulnik S and Ben-Aryeh Y 1990 Quantum analysis of light propagation in a parametric amplifier Phys. Rev. A 42

5594–600
[61] Agrawal G P 2013 Nonlinear Fiber Optics 5th edn (New York: Academic)
[62] John S and Quang T 1994 Spontaneous emission near the edge of a photonic band gap Phys. Rev. A 50 1764–9
[63] Olde Daalhuis A B, Chapman S J, King J R, Ockendon J R and Tew R H 1995 Stokes phenomenon and matched asymptotic

expansions SIAM J. Appl. Math. 55 1469–83

11

https://doi.org/10.1364/oe.20.027441
https://doi.org/10.1364/oe.20.027441
https://doi.org/10.1364/oe.20.027441
https://doi.org/10.1364/oe.20.027441
https://doi.org/10.1103/physreva.42.4102
https://doi.org/10.1103/physreva.42.4102
https://doi.org/10.1103/physreva.42.4102
https://doi.org/10.1103/physreva.42.4102
https://doi.org/10.1103/physreva.42.5594
https://doi.org/10.1103/physreva.42.5594
https://doi.org/10.1103/physreva.42.5594
https://doi.org/10.1103/physreva.42.5594
https://doi.org/10.1103/physreva.50.1764
https://doi.org/10.1103/physreva.50.1764
https://doi.org/10.1103/physreva.50.1764
https://doi.org/10.1103/physreva.50.1764
https://doi.org/10.1137/s0036139994261769
https://doi.org/10.1137/s0036139994261769
https://doi.org/10.1137/s0036139994261769
https://doi.org/10.1137/s0036139994261769

	Complete conversion between one and two photons in nonlinear waveguides: theory of dispersion engineering
	1.  Introduction
	2.  Model
	2.1.  Conceptual framework
	2.2.  Theoretical model

	3.  Results
	3.1.  Complete conversion of one photon into two
	3.2.  Photon conversion reversal
	3.3.  Robust photon conversion mediated by higher-order dispersion

	4.  Conclusions
	Acknowledgments
	Data availability statement
	Appendix A. Asymptotic analysis of photon populations
	ORCID iDs
	References


