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1.  INTRODUCTION 

The ocean off south-eastern Australia is a global 
warming hotspot (Hobday & Pecl 2014), warming 3−4 
times faster than the global average (Malan et al. 
2021). Climate predictions for Australia’s east coast 
also suggest a continued increase in mean air tem-
peratures and more common heat waves as well as 
extended periods of drought (Evans et al. 2014). These 
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Growth histories hidden in the ear-bones of an estuarine 
predator (Argyrosomus japonicus) uncover decades of in-
creasing growth rates, suggesting positive growth trajecto-
ries under future warming scenarios 
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ABSTRACT: Understanding the effects of climate 
change on fish biology and ecology is crucial for ef-
fective management of fisheries resources. Estuaries 
are warming at a faster rate than nearby oceans in 
south-eastern Australia, yet there is little understand-
ing of how this may impact the growth of estuarine 
fish. We examined long-term changes and drivers of 
growth in an ecologically and economically important 
estuarine fish in this region, the mulloway Argyroso-
mus japonicus, using a growth chronology spanning 
39 yr (1980−2018). The chronology was developed us-
ing 3112 otoliths collected over 12° of latitude. Mixed 
effects models identified a long-term increase in the 
growth rate of A. japonicus spanning nearly 3 de cades 
in south-eastern Australia and a positive growth re-
sponse to temperature. Temperature during the months 
of November−February best explained this growth re -
sponse, likely representing a specific growing season 
for the species. However, there also remained some 
variation in growth not explained by increasing tem-
perature over the period. We also found evidence of 
faster growth in individuals sampled at both younger 
and older ages, potentially caused by selectivity mech-
anisms. Regional climate forecasts predict that, based 
upon the observed response to temperature, the mean 
annual growth rate of A. japonicus in south-eastern 
Australia may increase by up to 8.9% by 2099. These 
results add to the growing body of literature demon-
strating positive growth responses by marine species 
in warming environments and highlight the value of 
understanding the drivers of long-term growth varia-
tion in exploited fish stocks in order to predict future 
productivity under a range of environmental and fish-
eries management scenarios.  
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changes are particularly evident in estuaries; key 
coastal ecosystems that are highly influenced by both 
neighbouring terrestrial and oceanic conditions (Gill -
anders et al. 2011, Statham 2012, Kimmerer & Weaver 
2013). Estuaries in south-eastern Australia are warm-
ing at twice the rate of the neighbouring Pacific 
Ocean (Scanes et al. 2020). Understanding how envi-
ronmental change affects estuarine species, both 
directly and indirectly, may help to better define 
individual species vulnerability to future change and 
inform conservation and fisheries management. 

The rate at which organisms convert food to energy 
(metabolic rate) is directly influenced by environ-
mental conditions such as temperature (Gillooly et al. 
2001). Metabolic rates largely determine individual 
rates of growth, development, reproduction and many 
aspects of species ecology, including ecosystem lev-
els of biomass production (The Metabolic Theory of 
Ecology; Brown et al. 2004, Clarke 2006). The Meta-
bolic Theory of Ecology proposes that metabolic rate 
is a fundamental biological rate, controlling the major-
ity of observed ecological patterns. Relationships 
between environmental variables and metabolic rates 
are often tested within a controlled laboratory set-
ting, which generates a metabolic performance curve 
(Claireaux & Lagardère 1999, Sinclair et al. 2016, 
Lawson et al. 2018). Considering fishes’ ectothermic 
physiology, such studies commonly focus on meta-
bolic response to temperature changes, which can 
reveal a thermal optimum — the temperature above 
which an organism’s metabolic function and linked 
physiological performance such as growth begin to 
decline (Pirozzi & Booth 2009, Vinagre et al. 2015). 
However, such laboratory studies are incapable of 
testing the metabolic responses of organisms in a 
natural setting or over large spatio-temporal scales 
(10s to 100s of km and years). Metabolically optimal 
and critical thermal temperatures in the wild often 
differ from those determined within laboratory settings 
due to the range of additional factors influencing 
physiological performance (Martin & Huey 2008, Sun-
day et al. 2012, Norin et al. 2014, Payne et al. 2016). 

Biochronological studies generate long-term data 
from biological growth increments such as tree rings, 
revealing a temporally resolved individual growth 
history (Douglass 1941, Fritts 1971, Ricker et al. 2020) 
By combining long-term growth data with environ-
mental data, historical archives of hard anatomical 
structures from long-lived individuals can provide 
insights into ecological responses over extended 
periods that are not possible to resolve in a contem-
porary experimental setting. One benefit of such 
long-term ecological data is the ability to test for sto-

chastic and slowly manifesting changes such as cli-
mate change, and hence more accurately isolate 
drivers of growth throughout an individual’s life his-
tory (Morrongiello & Thresher 2015). However, the 
nature of such investigations means that exact pro-
cesses affecting growth may not be resolved. For 
example, faster growth may be linked to increasing 
environmental temperature, but whether this was 
driven directly through altered metabolic rate or 
indirectly through altered ecological interactions 
(e.g. increased prey availability), or some combina-
tion thereof, cannot be determined. 

Otoliths are metabolically inert calcified structures 
found within the ear of all bony fish that can be used 
to develop growth chronologies. Increments are 
formed on an annual basis and can be counted to 
estimate age, a process extensively used in fisheries 
science (Campana 2001, 2005). The distance be tween 
otolith increments (widths) can be used to estimate 
growth because otolith growth usually correlates 
strongly with somatic (body) growth (Cassel man 
1990). Combining time series of an nual increment 
widths across multiple fish provides a data set of tem-
porally discrete annual growth estimates for a popu-
lation. Examined through mixed effects modelling 
frameworks, the biological and environmental vari-
ables which affect growth can be examined (Mor-
rongiello & Thresher 2015). This ap proach has been 
used to investigate long-term growth trends and envi-
ronmental drivers for numerous fish species (Mor-
rongiello & Thresher 2015, Barrow et al. 2018, Tan-
ner et al. 2019, Morrongiello et al. 2021), but few 
studies have investigated large-bodied species 
inhabiting estuaries. Mixed effects modelling is 
required to investigate drivers of growth in fishes, 
given the numerous intrinsic and extrinsic factors 
involved. Annual growth rate is primarily dictated 
by  age and decreases throughout life, with faster 
growth usually occurring before maturity is reached 
(Charnov 2008). Growth may also vary between in -
dividuals (Morrongiello & Thresher 2015), sexes 
(Silberschneider et al. 2009) and cohorts (Whitten et 
al. 2013), while being in fluenced by environmental 
factors like temperature (Morrongiello et al. 2014), 
rainfall/flow (Doubleday et al. 2015) and associated 
changes in productivity and food availability (Tanner 
et al. 2019). 

Argyrosomus japonicus (mulloway) are predatory 
fish within the estuarine and near-shore environments 
of Australia, Africa, India, Pakistan, China, Korea and 
Japan (Silberschneider et al. 2009). The species is 
large (up to 75 kg and 180 cm), long-lived (over 40 yr 
old) and likely to play an important role in estuarine 
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ecosystem function via predator-mediated top-down 
control (Hughes et al. 2013). A. japonicus have signif-
icant economic, cultural and ecological importance 
throughout their global distribution (Griffiths & Heem-
stra 1995, Taylor et al. 2006). In New South Wales 
(NSW), Australia, they are a single genetic stock 
(Barnes et al. 2016) and a key species of the $3.4 billion 
annual recreational fishery (McIlgorm & Pepperell 
2013), with approximately 90 t being retained each 
year by the recreational fishery (Murphy et al. 2020) 
and similar annual landings by the commercial har-
vest over the past decade (Earl et al. 2020). 

Interannual variability in growth has been re -
ported for A. japonicus (Izzo et al. 2016). Recruitment 
has also been linked to rainfall, with freshwater in -
creases hypothesised to drive increases in ecosystem 
productivity and food availability (Stewart et al. 2020). 
Growth of the species has been linked to tempera-
ture in a laboratory setting (Pirozzi & Booth 2009), 
but the single previous field investigation was con-
fined to one estuary and did not find any significant 
relationships between growth and environment (Izzo 
et al. 2016). Investigating the growth history of A. 
japonicus across a larger spatial and temporal distri-
bution may capture a greater range of environmental 
conditions faced by individuals, improving power for 
detecting environment−growth relationships. 

The aims of this study were therefore to (1) develop 
a multidecadal, annually resolved growth index for 
A. japonicus in south-eastern Australia using a bio -
chronological analysis of otoliths; (2) examine poten-
tial biological and environmental drivers of growth 
variation in A. japonicus using a mixed effect model-
ling framework; and (3) apply climate model fore-
casts to predict how A. japonicus growth may be im -
pacted by future temperature change in south-eastern 
Australia. 

2.  MATERIALS AND METHODS 

2.1.  Study area and sample collection 

Argyrosomus japonicus individuals were collected 
from the south-east coast of Australia, between 
Fraser Island in Queensland and Eden in NSW 
(25.24−37.07°S; Fig. 1). This section of coastline 
spans more than 1500 km and contains hundreds of 
individual estuaries (Roy et al. 2001). 

A. japonicus were collected via 2 NSW Department 
of Primary Industries (NSW DPI) sampling programs: 
the NSW Research Angler Program (using recre-
ational hook and line methods) and the Commercial 

Fisheries Port Monitoring Program (using commer-
cial hook and line and mesh-netting methods). Be -
tween 1988 and 2018, all sampled A. japonicus were 
measured to the nearest 0.1 cm total length (TL) and 
the sagittal otoliths removed. For each individual, 
capture location and date information were also re -
corded. A total of 73 estuaries are represented in our 
data set. Otoliths and associated sampling data were 
accessed through the NSW DPI Otolith Archive. 

2.2.  Biochronology development and analysis 

Prior to this study, otoliths from each fish were re -
moved and processed as described in Silber schnei -
der et al. (2009). Briefly, each otolith was set in epoxy 
resin (EpoFix), a transverse section was taken 
through the core with a diamond saw (Allied Tech-

Fig. 1. (a) Sample collection area (black ribbon) in south-
eastern Australia from Fraser Island in Queensland (25.24°S) 
to Eden in New South Wales (37.07°S). (b) Number of otolith 
increments across 1° latitudinal bands and calendar years.  

Note the quasi-log scale of point size
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cut 4) and then polished (Struers LaboPol 4) to reveal 
annual growth increments (Fig. S1 in the Supple-
ment at www.int-res.com/articles/suppl/m688p001_
supp.pdf). The section was then attached to a glass 
microscope slide and imaged using a dissecting 
microscope and mounted camera (QImaging MP5.0-
RTV-CLR-10) under reflected light and constant mag-
nification (6.70×). Starting from the core and then 
proceeding to the proximal edge, all otolith incre-
ment widths were measured for each otolith section 
(Fig. S1). Increment width was defined as the distance 
(μm) between the mid-points of 2 successive incre-
ments. The measuring process was performed using 
the ObjectJ package of Fiji 2 (Schindelin et al. 2012). 
Consistent with previous studies, first-year in crement 
widths (core to first increment) and final year incom-
plete increment widths (Fig. S1) were omitted from 
the data set, as they are unlikely to represent a full 
growth year due to the temporal variability in birth 
and capture months (Morrongiello & Thresher 2015). 

A marginal increment analysis (MIA) was per-
formed to determine the timing of increment for-
mation, and thereby define the growing season, for 
correlation with environmental data. MIA involves 
comparing the distance from the most recently com-
pleted (proximal) increment to the otolith edge and 
expressing this value as a proportion of the previous 
completed increment width throughout the year. A 
small MIA value suggests the proximal increment has 
formed recently. MIA results indicated that opaque 
increments in A. japonicus were fully formed by 
November each year (Fig. S2). A growth year was 
therefore assigned to be the 12 months starting on 1 
November and ending on 31 October the following 
year. Environmental data could then be related to 
this growth year for analyses. A. japonicus are known 
to have very small movement ranges, and most indi-

viduals stay within single estuary systems (Hughes et 
al. 2022). Using this knowledge, we as sumed the 
region of capture is consistent with where a fish 
spent the majority of its life, allowing us to align his-
torical environmental data to each increment in the 
biochronology. 

To confirm the relationship between otolith growth 
and somatic growth, an allometric validation was 
performed. The relationship between otolith accre-
tion and somatic growth was quantified for the sam-
ples used in the present study by regressing total 
otolith radius (proximal; μm) against fish TL (cm). 
This analysis demonstrated a significant positive lin-
ear relationship (r = 0.91, p < 0.0001; Fig. S3), sug-
gesting a 1 μm increase in otolith width is equivalent 
to a 0.23 mm increase in total fish length. 

2.3.  Statistical modelling 

To investigate sources of growth variation within 
the otolith increment biochronology, linear mixed 
effect models were used following the procedure 
detailed in Morrongiello & Thresher (2015). This pro-
cess allowed for the partitioning of multiple sources 
of variance, isolating the individual effects of biolog-
ical, temporal and environmental factors. The models 
tested the degree to which otolith increment widths 
(μm; log-transformed) were explained by a range of 
intrinsic (Table 1) and extrinsic factors (Table 2). All 
continuous factors were centred and scaled to facili-
tate model convergence, and the non-independence 
of increments common to individual fish was ad -
dressed using the random model structure defined 
below. Forward stepwise model selection was con-
ducted with Akaike’s information criterion (AIC), 
balancing both the overall explanatory power and 
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Variable                            Description                                                                                                                  Variable type 
 
FishID                                Individual fish identifier. Accounts for non-independence of increments        Random: biological 
                                          sourced from the same fish 

Age                                    Biological age of fish when each increment was formed. Each increment  
                                          has its own age                                                                                                         Fixed: biological 

Age-at-Capture (AAC)    The age of each fish at capture. Accounts for potential growth selectivity         Fixed: biological 

Cohort                               Back-calculated spawning year (Year of Capture − AAC). Each fish has         Random: temporal 
                                           one Cohort value. Accounts for potential differences in growth rate among 
                                          different cohorts                                                                                                                      

Year                                   Calendar year of increment formation. Each increment has its own                 Random: temporal 
                                          Year value

Table 1. Intrinsic (biological and temporal) variables tested using mixed modelling (following Morrongiello & Thresher 2015)

https://www.int-res.com/articles/suppl/m688p001_supp.pdf
https://www.int-res.com/articles/suppl/m688p001_supp.pdf
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simplicity of the models. Models were built using the 
‘glmmTMB’ package (Brooks et al. 2017) in R v.4.0.3 
(R Core Team 2020). 

Following Morrongiello & Thresher (2015), our 
modelling procedure first considered the degree to 
which intrinsic (biological and temporal) factors could 
explain growth. All models included the full intrinsic 
fixed effect parameterisation of Age and Age-at-
Capture (AAC) (Zuur et al. 2009) as well a random 
intercept of FishID, after which forward stepwise 
model selection was used. Firstly, non-linear AAC 
fixed effect terms were tested for model improve-
ment. Then, random intrinsic variables were tested 
with both fixed and random Age slopes. Once the 
best performing intrinsic model was determined, 
environmental variables were tested as fixed effects. 
The best performing environmental variable pro-
ceeded to the next modelling step, where other envi-
ronmental variables were included in the same 
model. Model selection was based on AIC values; 
however, if AIC values were considered equivalent 
(difference < 2; Burnham & Anderson 2002), the sim-
plicity of the model was considered so as to omit 
terms that provide little explanatory power from the 
final model. Where fixed effect terms were com-
pared, maximum likelihood estimation was fit to 
each model; alternatively, when random terms were 
compared, restricted maximum likelihood was fit. 
Ef fect size estimates and p-values are presented for 
all fixed terms in the final model. 

2.4.  Intrinsic variables 

The intrinsic variables tested in this study were the 
biological age of the fish when the increment was 
formed (i.e. Age), AAC, an individual fish identifier 

(i.e. FishID), the calendar year in which the fish 
formed the increment (Year), and the year the fish 
was born (Cohort) (Table 1). 

Age and AAC were tested as fixed factors and log 
transformed to meet model assumptions. AAC was 
included to test for possible sampling or survival bias 
resulting from fishing selectivity (Ricker 1969) or nat-
ural selection (Sogard 1997, Munday et al. 2013), 
whereby the growth of an individual determines its 
likelihood of selection in the data set. FishID was 
tested as a random intercept variable to account for 
the non-independence of increment widths derived 
from the same fish, allowing the model intercept to 
vary with each individual fish. Year was tested to 
induce correlation between fish that formed incre-
ments in the same calendar year, revealing otherwise 
unexplained annual variability in the growth chro-
nology. Similarly, Cohort was tested to account for 
possible unexplained spawning strength and age 
class density effects on growth. Age was included as 
a varying slope for the FishID, Year and Cohort ran-
dom effects, developing an age-dependent relation-
ship for each random effect. Intra-class correlation 
(ICC) is a statistic that describes how strongly the 
variance within units of the same group resemble 
each other, represented as a number between 0 and 
1, with low numbers indicating poor agreement. ICC 
was used to explore the relative contribution of ran-
dom temporal factors in the model. 

2.5.  Extrinsic variables 

Three classes of environmental (extrinsic) data 
were included in the modelling process: estuary 
surface (air) temperature, rainfall and climate in -
dices (Table 2). As there was high correlation be -
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Variable                               Description                                                                                                                         Data sources 
 
Temperature                        Spatially resolved mean monthly surface air temperature (°C)                                          [1], [2] 

Max. temperature               Spatially resolved mean maximum monthly surface air temperature (°C)                        [1], [2] 

Rainfall                                 Spatially resolved total monthly average rainfall (mm)                                                       [1], [2] 

Climate                                Mean monthly Southern Oscillation Index (SOI)                                                                    [3] 
 indices                               Mean monthly Interdecadal Pacific Oscillation (IPO)                                                             [4] 
                                             Mean monthly Southern Annular Mode (SAM)                                                                      [4] 
                                             Mean monthly Indian Ocean Dipole (IOD)                                                                              [4]

Table 2. Environmental (extrinsic) modelling variables. All variables spanned 1980−2018, and all were fixed effects. Data sources: 
[1] BARRA reanalysis (Su et al. 2019); [2] ECMWF ERA5 reanalysis (4th Gen) (Hersbach et al. 2020); [3] Bureau of Meteor-
ology Climate data archives (http://www.bom.gov.au/climate/enso/soi); [4] National Oceanic and Atmospheric Administration  

(NOAA) climate data archives (https://psl.noaa.gov/data/climateindices/list/)
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tween variables of the same class (i.e. between tem-
perature variables; Fig. S4), each model in cluded 
no more than one variable from each environmen-
tal class. The best performing single environmental 
variable within each class was used to test for ad -
ditive environmental effects, where more than one 
environmental data class was tested in the same 
model. 

Model-derived estimates of temperature and rain-
fall were obtained from the Australian Bureau of 
Meteorology (BOM) BARRA reanalysis (post-1990, 
~12 km resolution; Su et al. 2019) and the ECMWF 
ERA5 reanalysis (4th Gen) model (Pre-1990, ~30 km 
resolution; Hersbach et al. 2020). Both these models 
are constrained by and show high agreement with 
observed values for both temperature and rainfall. 
The BARRA reanalysis is itself nested within the 
ERA-Interim reanalysis model (superseded by ERA5) 
to force the model boundaries; hence the models we 
used are highly compatible. Monthly temperature 
and rainfall data were extracted from the reanalysis 
models based upon the capture location of each fish 
and then averaged over the annual growing season 
defined by the MIA (November−October) or as spec-
ified in the sliding window analysis described later. 
The 12−30 km spatial scale matches the known 
movement and estuary-resident patterns of A. japon-
icus (Taylor et al. 2006, 2014, Hughes et al. 2022). 

2.6.  Temperature 

As estuary-specific water temperature was not 
available for all locations in this study (modelled or 
observed), consistent with similar studies in the 
region (Morrongiello et al. 2014, Izzo et al. 2016), we 
tested the correlation between observed monthly 
average air temperature (Bureau of Meteorology 
2020) and observed monthly average surface water 
temperature (WaterNSW 2021) in 3 estuaries with 
sufficient data. Over a 7 yr period (2013−2020), aver-
age monthly estuary water temperature and average 
monthly surface air temperature were highly corre-
lated (Clarence River, 29.5°S: r = 0.94, p < 0.001; 
Hunter River, 33°S: r = 0.92, p < 0.001; Shoalhaven 
River, 35°S: r = 0.89, p < 0.001). Modelling then pro-
ceeded with the use of estuary surface air tempera-
tures as a proxy for estuary water temperature. Both 
average monthly and mean maximum monthly tem-
perature were tested in the mixed model process. 
The correlation between estuary temperature and 
nearby coastal sea surface temperature (SST) was 
also tested for 3 locations and found to be significant 

(Eden, 37°S: r = 0.81, p < 0.001; Sydney, 33°S: r = 
0.52, p = 0.006; Yamba, 29.4°S: r = 0.67, p < 0.001). 
However, the previously tested estuary air tempera-
ture was more highly correlated with estuary water 
temperatures; hence, we retained the use of air tem-
perature as a proxy. 

2.7.  Rainfall 

As estuary-specific freshwater flow was not avail-
able (modelled or observed) for all locations in this 
study, rainfall data (total monthly average; mm) was 
used to represent the physical and biological effects 
of changing freshwater input, such as changes to 
primary productivity, salinity and turbidity, as per 
the method used in Stewart et al. (2020). The 12−
30  km spatial scale of the reanalysis models were 
considered coarse enough to represent the influence 
of rainfall effects on A. japonicus individuals in both 
estuarine and nearshore marine habitats but fine 
enough to separate neighbouring estuarine sys-
tems. The data was log transformed to meet the 
assumptions of normality and homoscedasticity in 
the model. 

2.8.  Climate indices 

The strength of 4 monthly resolved climate indices 
were tested in the model (Southern Oscillation Index 
[SOI], Interdecadal Pacific Oscillation [IPO], Indian 
Ocean Dipole [IOD] and the Southern Annular 
Model [SAM]; Table 2). These indices represent gra-
dients of temperature or mean sea level pressure 
across the Pacific, Indian and Southern Oceans, and 
capture the effects of large-scale weather trends 
(Murphy & Timbal 2008). This study was situated 
within the Western Pacific (Eastern Australia), mak-
ing the SOI and IPO indices most spatially relevant. 
However, due to the large spatial extent of the study, 
SAM was tested for possible influence in the south-
ern section of the population (Gillett et al. 2006). IOD 
was included as it has considerable influence on 
eastern Australian climate, especially during the 
winter months (Ashok et al. 2003). 

2.9.  Sliding window analysis 

Following the identification of environmental vari-
ables that maximised model performance, a sliding 
window analysis was performed. This analysis tested 
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which time window within sub-annually resolved 
environmental data best explained an environmental 
relationship with growth, thereby identifying key 
months during which the environment is contribut-
ing most to growth variation (Denechaud et al. 2020, 
Reis-Santos et al. 2021). This was done by testing all 
combinations of monthly averaged environmental 
variables in the model, varying the temporal scale of 
the window (1−12 mo) as well as the start and end 
months, constrained by the growth season deter-
mined by the MIA. To ensure the best sliding win-
dows were not selected by chance alone (i.e. false 
positive), a randomisation test was run, comparing 
the likelihood of the best performing model against 
the distribution of AIC values from 1000 iterations of 
the model with randomised environmental data and 
varying sliding windows (van de Pol et al. 2016, Reis-
Santos et al. 2021). 

2.10.  Climate change forecasting 

The best overall performing environmental growth 
model was used to predict how the growth of A. 
japonicus in NSW may change over the next 80 yr. 
Growth forecasting was performed using projections 
from the NSW and ACT Regional Climate Modelling 
(NARCLiM) project (Evans et al. 2014). The NAR-
CLiM v1.5 project consists of 3 global climate models 
(CSIRO BOM ACCESS 1.0, CSIRO BOM ACCESS 
1.3 and CCCma-CanESM2), 2 downscaling models 
(R1, R2) and 2 emission scenarios (RCP 4.5, RCP 8.5), 
forecasting daily resolution data from 2020−2099 at a 
10 km resolution. The RCP 4.5 emission scenario is 
described by the IPCC as an intermediate emission 
scenario, with RCP 8.5 representing continued high 
emissions, remaining ‘highly plausible’ in 2100, and 
which best tracks the current global emission sce-
nario (Schwalm et al. 2020). We used all 6 model out-
puts (3 climate models × 2 downscaling models) for 
each emission scenario to calculate ensemble mean 
monthly temperatures between 2020 and 2099 for 3 
locations in our study. The 3 locations were Yamba 
(29.4°S), The Hawkesbury River (Sydney) (33.5°S) 
and Eden (37.3°S), chosen to represent the northern, 
central and southernmost part of the distribution of 
A. japonicus in eastern Australian. The variation in 
predicted temperatures between climate models 
(within ensemble error) was small relative to the 
error in our linear mixed model. Changes in future 
rainfall and climate indices were not included, as the 
best performing environmental mixed model did not 
include these variables. 

3.  RESULTS 

Between 1980 and 2018, otoliths from a total of 
3112 individual Argyrosomus japonicus were col-
lected. TL at capture ranged from 39−168 cm, and 
AAC ranged from 2−34 yr. This resulted in a final 
data set of 9219 individual increment widths formed 
between 1980 and 2018 for use in the analyses. 

3.1.  Intrinsic growth effects 

After following the described stepwise selection 
process, the best performing intrinsic model in -
cluded Age, AAC and all random effects, with a 
random slope for log(Age) (M3b; Table 3). Age ex -
plained the most variability in growth chronology, 
with growth decaying exponentially as age in -
creased (Table 4, Fig. 2a). AAC improved model 
explanation as a non-linear effect, with growth rate 
initially decreasing and then increasing as AAC 
increased, indicating fastest growth in both young 
(AAC < 5) and old (AAC > 15) fish (Fig. 2b; here-
after ‘AAC curve or effect’). Both Age and AAC 
were significant factors (p < 0.001) and, together 
with a random effect for FishID, explained >85% of 
the variability in growth (con ditional R2 = 0.856). 
Both Cohort and Year terms explained temporal 
variability (Fig. 2c,d); however, the ICC was 0.08 for 
Cohort and 0.12 for Year, indicating relatively low 
temporal growth agreement in the data set. Despite 
considerable variation in growth among years, a 
long-term increase in growth rate was observed from 
the late 1980s−early 1990s through 2018 (Fig. 2d). 
This trend remained after the inclusion of extrinsic 
factors in the model (see Section 3.2). 

3.2.  Extrinsic growth effects 

Initial extrinsic modelling revealed annually aver-
aged temperature to be the most important environ-
mental variable, with a positive linear relationship 
over a temperature range of 16−25°C (M4a−M4c; 
Table 3). A quadratic effect of average annual tem-
perature was also tested to detect a potential thermal 
optima, but the model did not converge and was not 
considered further. 

SAM and mean annual rainfall (mm) were then 
tested as additive effects in the temperature model, 
but each addition provided no improvement from the 
base temperature model (M5a−M5b; Table 3). Ad -
ding SAM to the temperature model produced an 
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equivalent model in terms of AIC; however, the sim-
pler temperature-only model was retained. 

Sliding window analysis revealed that the average 
temperature starting in November and ending in 
February outperformed all other temporal periods, 
suggesting that changes to temperature in this sum-
mer period had the greatest influence on growth 

(Fig. 3). The randomisation test supported the use 
of summer temperature compared to a randomised 
set of temperature data (significantly different from 
chance alone, p = 0.001; Fig. S5). 

The best performing model including extrinsic 
factors was M5c (Table 3), which included a linear 
effect of temperature (average temperature between 
November and February). This model explained 
89% of growth variability (conditional R2 = 0.889), 
with all fixed model coefficients being statistically 
significant (p < 0.001; Table 4). The model indicated 
that a 1°C temperature increase resulted in a 2.02% 
increase in mean annual growth rate (Fig. 4). 

3.3.  Climate predictions 

Growth predictions showed strong initial increases 
in growth in all 3 locations, with divergence between 
the 2 emissions scenarios around 2060 (Fig. 5). After 
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Model name                  ΔAIC    Model structure/terms                                                            Description 
 
Intrinsic models 
M1a                               542.85   Increment ~ Age + AAC + AAC^2 + (1|FishID)                  FishID random effect 

M1b                              336.79   Increment ~ Age + AAC + AAC^2 + (Age|FishID)             FishID with random age slope 

M2a                               223.33   Increment ~ Age + AAC + AAC^2 + (Age|FishID) +          M1b + Year random effect 
                                                     (1|Year) 

M2b                               50.02   Increment ~ Age + AAC + AAC^2 + (Age|FishID) +          M1b + Year with random age slope 
                                                     (Age|Year) 

M3a                                27.29   Increment ~ Age + AAC + AAC^2 + (Age|FishID) +          M2b + Cohort random effect 
                                                     (Age|Year) + (1|Cohort) 

M3b                                0.00   Increment ~ Age + AAC + AAC^2 + (Age|FishID) +          M2b + Cohort with random age 
                                                     (Age|Year) + (Age|Cohort)                                                       slope (best intrinsic model) 

Extrinsic models 
M4a: rain                        1.94   Increment ~ Age + AAC + AAC^2 + (Age|FishID) +          M3b + annual mean rainfall 
                                                     (Age|Year) + (Age|Cohort) + av_rainfall 

M4b: temp                   −63.20   Increment ~ Age + AAC + AAC^2 + (Age|FishID) +          M3b + annual mean temperature 
                                                     (Age|Year) + (Age|Cohort) + av_temp_year 

M4c: SAM                      0.00   Increment ~ Age + AAC + AAC^2 + (Age|FishID) +          M3b + annual mean SAM index 
                                                     (Age|Year) + (Age|Cohort) + SAM                                         

M5a: temp and rain    −61.20   Increment ~ Age + AAC + AAC^2 + (Age|FishID) +          M4b + additive effect of annual mean 
                                                     (Age|Year) + (Age|Cohort) + av_temp_year + av_rainfall    rainfall 

M5b: temp and SAM  −63.20   Increment ~ Age + AAC + AAC^2 + (Age|FishID) +          M4b + additive effect of annual mean 
                                                     (Age |Year) + (Age|Cohort) + av_temp_year + SAM            SAM index 

M5c: temp sliding       −74.34   Increment ~ Age + AAC + AAC^2 + (Age|FishID) +          M3b + mean temperature during  
 window                                     (Age|Year) + (Age|Cohort) + av_temp_sliding window       Nov−Feb from the sliding window    
                                                                                                                                                         analysis

Table 3. Linear mixed effect model performance ranked by Akaike’s information criterion (AIC) score. Low AIC scores in -
dicate better model performance, centred on the best intrinsic model (M3b). ΔAIC represents the difference in AIC value from 
the best intrinsic model. All Age, Age-at-Capture (AAC) and rainfall terms are log transformed in the models, and all  

continuous factors were centred to assist model convergence. SAM: Southern Annular Model

                         Estimate           SE              z            Pr(>|z|) 
 
Intercept            6.2460          0.012         517.6        <0.001 
Log(Age)             −0.7720          0.024         −32.2        <0.001 
Log(AAC)           −0.2097             0.05            −4.2        <0.001 
Log(AAC)^2      0.0549          0.012           4.4        <0.001 
Av_temp            0.0211          0.002           8.8        <0.001

Table 4. Parameter estimates from best performing environ-
mental extrinsic model M5c, including SE, test statistic z-value 
and p-values (Pr(>|z|)) for each logged model term: Age, Age-
at-Capture (AAC) and Temperature (Nov−Feb). Av_temp  

represents average temperature (Nov–Feb)
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that time, RCP 8.5 (high emission scenario) showed a 
continued linear increase in growth, whilst RCP 4.5 
(low emission scenario) showed a flattened and fluc-

tuating growth trend reflective of forecasted temper-
ature changes. Under the RCP 8.5 scenario, by 2099, 
predictions indicate that fish currently near Eden will 
experience growth rates like those currently ob -
served 4° of latitude to the north, in Sydney. By 2050, 
predictions indicate that fish currently near Sydney 
will experience growth rates currently observed 4° of 
latitude to the north, in Yamba. 
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Fig. 2. Effect plots extracted from the best performing intrinsic model (M3b; Table 3). Both fixed and random variables are 
shown as the model mean otolith increment width, with all factors except the one of interest held constant. Error indicated for 
Cohort and Year (random factors) is standard deviation; error indicated for Age and Age-at-Capture (fixed factors) is standard 
error. (a) Growth age logarithmic decay relationship; (b) growth and Age-at-Capture (AAC) positive quadratic relationship; 
(c) relative lifetime growth deviation explained by Cohort (birth year); (d) relative annual growth deviation explained by the  

calendar year of growth

Fig. 3. Sliding window analysis of mean monthly tempera-
ture using the best performing environmental model before 
this analysis (M4b). All combinations of start (Nov−Oct) and 
finish month (Nov−Oct) for the window are shown. The 
ΔAIC comparison is based on the best intrinsic model (M3b; 
Table 3). The best performing temperature window was 
Start Month = November and End Month = February, with 
an AIC value 74.34 smaller relative to the M3b base model 
(highlighted by a black border). Grey squares represent  

model non-convergence
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Under the RCP 4.5 scenario, predictions indicate 
that by 2099, the growth rates of A. japonicus will still 
increase, but to a lesser extent than under the RCP 8.5 
scenario. Greatest growth increases are predicted in 
Sydney, matching the mean growth rates currently ob -
served in Yamba under both emission scenarios within 
the 80 yr forecast. Location-specific percentage changes 
in mean annual growth rates through the period of 
2020−2099 are Eden: RCP 4.5 = 4.83%, RCP 8.5 = 
8.02%; Sydney: RCP 4.5 = 5.58%, RCP 8.5 = 8.89%; 
Yamba: RCP 4.5 = 4.20%, RCP 8.5 = 8.11% (Fig. 5). 

4.  DISCUSSION 

This study identified a long-term increase in growth 
rate and a positive growth response to temperature 
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Fig. 4. Partial effect of average temperature (Nov−Feb) from 
best performing mixed effect model (M5c; Table 4). Grey  

shading: SE
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Fig. 5. Predicted annual otolith growth at 3 locations along the NSW coast (Yamba, Sydney and Eden) forecast under 2 emission 
scenarios (RCP 4.5, RCP 8.5), using NARCLiM climate model ensemble outputs between 2020 and 2099 (Evans et al. 2014). 
Error bands: SE associated with growth temperature relationships, as in Fig. 4. Year-to-year variance reflects the natural  

stochasticity captured by NARCLiM outputs
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for Argyrosomus japonicus in south-eastern Australia. 
Temperatures during November−February had the 
greatest influence on growth, likely representing a 
specific growing season for the species. We also 
found that growth initially declined and then consis-
tently increased with AAC, a pattern which was 
likely caused by selectivity mechanisms. We found 
no evidence of an influence of rainfall or climate 
indices on growth despite a previous study finding 
that rainfall increased recruitment of A. japonicus in 
the study region (Stewart et al. 2020). Based on pub-
lished projections of temperature increase in the 
study region (Evans et al. 2014) and assuming the 
temperature−growth relationship developed in our 
modelling for the past 40 yr remains true, the growth 
rate of A. japonicus will continue to increase in south-
eastern Australia, with the mean annual growth rate 
estimated to increase by up to 8.9% by 2099. 

4.1.  Intrinsic factors 

As expected from the logarithmic nature of fish 
growth, the age at which an increment was formed 
(i.e. Age) explained the majority of variability in A. 
japonicus growth, with growth rate decreasing with 
increasing age (Silberschneider et al. 2009, Mor-
rongiello & Thresher 2015). Other variables ex plained 
much smaller but still important fractions of variance 
in growth rate. The non-linear AAC effect suggests 
both sampling and environmental growth selectivity 
may have occurred. Otoliths for the current study 
were sourced from commercial and recreational fish-
eries, which potentially select for particular growth 
rates depending on fishing method and minimum le-
gal-size requirements (Jørgensen et al. 2009, Vasi-
lakopoulos et al. 2020). When young (AAC < 5 yr), the 
fastest growing fish may be selectively harvested by 
size-selective or behaviourally selective fishing gear 
(e.g. mesh nets) and therefore appear in the growth 
record before slower growing fish of the same age. 
Faster growing fish will also reach the minimum legal 
length (MLL; 70 cm TL in NSW) earlier than their 
slower growing conspecifics. These mechanisms are 
consistent with the Rosa Lee phenomenon (Ricker 
1969), whereby slower growing young fish incur less 
fishing mortality, and potentially explain the initially 
elevated growth observed in our data set. Slower 
growing fish are then progressively included in the 
data set as they reach legal size, resulting in the 
growth minimum observed at 6 yr of age in the AAC 
curve. This point likely represents the age at which 
fishing selectivity is most uniform across faster and 

slower growing phenotypes, with previous studies 
identifying that by age 6, the majority of A. japonicus 
have reached the MLL (Silberschneider et al. 2009). 

A negative relationship between AAC and growth 
has been found for another estuarine species in south-
ern Australia (black bream Acanthopagrus butcheri), 
with fishing selectivity also suggested as the driver 
(Doubleday et al. 2015). However, the current study 
detected an additional effect of AAC on growth in 
older individuals, whereby A. japonicus older than 
10 yr displayed increasing growth rate with age. We 
suggest there is a long-term survival advantage for in-
dividuals who have faster growth rates, resulting in 
old age classes with high representations of fast-
growing individuals. This hypothesised survival ad-
vantage of fast growers could result from superior 
competition for resources (Peters 1983), re duced pre-
dation pressure (the ‘Big is Better’ hypo thesis; Miller 
et al. 1988) or simply a genetic link between growth 
and natural mortality (Jørgensen & Holt 2013). Unsur-
prisingly, our sample sizes for these old fish are 
smaller relative to the rest of the data set (increments 
formed when age ≥ 20, n = 107 annual growth incre-
ments). However, sample sizes were still large 
enough to achieve adequate statistical power based 
on recommended guidelines (Smoliński et al. 2020). 

4.2.  Extrinsic factors 

4.2.1.  Temperature 

The positive effect of temperature on A. japonicus 
growth demonstrated here was expected, given the 
ectothermic physiology of fish and the inherent link 
between metabolism and growth (Brown et al. 2004). 
A controlled laboratory study suggested that optimal 
growth for A. japonicus is reached at a water temper-
ature of 26°C (Pirozzi & Booth 2009); however, coastal 
SSTs in the northern extent of the study region oc -
casionally exceeded 28°C during the study period 
(Condie & Dunn 2006), although these heightened 
temperatures may not currently be present long 
enough in the environment to be visible in an indi-
vidual’s annual growth record. Differences in ther-
mal performance between laboratory and field stud-
ies have often been reported, with the latter more 
likely to indicate ‘true’ thermal optima that integrate 
the broad range of intrinsic and extrinsic ecological 
factors influencing performance (‘ecologically opti-
mal’ temperature; Martin & Huey 2008, Norin et al. 
2014, Payne et al. 2016). Large sample sizes (annual 
growth increments) in the northern extent of the 
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study (average Nov−Feb temperature >23°C, n = 1667; 
>24°C, n = 400) provide confidence that there is no 
indication A. japonicus are approaching their critical 
thermal maximum in south-eastern Australia at pres-
ent. However, the species must eventually reach an 
‘ecological optimum’ if temperatures continue to rise, 
leading to a decrease in growth rates and eventually 
increased mortality (Vinagre et al. 2015, Jutfelt et al. 
2018). If these thresholds are exceeded, then our pro-
jections of increased growth rates with warmer tem-
peratures will not be valid. Given the north−south 
orientation of the NSW coast, the northernmost sec-
tion of the A. japonicus population will likely be the 
first region where the ‘ecological optimum’ is reached, 
providing an indicator of future deleterious change 
for more southerly (poleward) components of the 
stock. Marine heatwaves are increasingly common in 
this region (Kajtar et al. 2021), and it is possible that 
their effects could be obscured by focussing only on 
mean or maximum temperature. It would be interest-
ing to incorporate heatwaves into future an alyses of 
growth in this region, particularly for marine species. 

Positive relationships between temperature and 
growth have also been noted for several other estuar-
ine and marine fishes in south-eastern Australia, 
suggesting a common physiological response to rap-
idly rising temperatures in the region. These include 
the rock flathead Platycephalus laevigatus (Coulson 
et al. 2014, Barrow et al. 2018), black bream A. 
butcheri (Doubleday et al. 2015) and estuary perch 
Percalates colonorum (Morrongiello et al. 2014). How-
ever, the results presented here are not consistent 
with a biochronological study on A. japonicus in 
southern Australia, which did not find evidence of an 
effect of temperature on growth (Izzo et al. 2016). 
The latter finding is possibly due to its restricted spa-
tial scale (a single estuary system) in comparison 
with that of the present study (1500 km, 12° of lati-
tude) or differences in thermal performance among 
geographical regions or temperature ranges. 

This study estimates that a 1°C increase in mean 
summer (November−February) temperature drives 
a  2.02% increase in mean annual otolith growth, 
which we have demonstrated is a reliable proxy for 
somatic (body) growth. This study does not separate 
the mechanisms by which temperature controls 
growth (physiological vs. ecosystem-level); however, 
it supports the physiological explanation provided by 
the Metabolic Theory of Ecology (Brown et al. 2004), 
whereby increased temperatures below a thermal 
optimum increase an individual’s aerobic metabolic 
scope, allowing for greater somatic growth alloca-
tion. Although a significant relationship was found 

between growth and temperature, this study finds lit-
tle evidence that temperature explained high inter-
annual growth variability (Fig. 2d), nor did tempera-
ture alone explain the growth trends over the last 3 
decades (Fig. S6). It is therefore likely that there are 
additional factors to temperature which may help to 
explain the long-term increase in growth rates of A. 
japonicus observed in eastern Australia, as we dis-
cuss further in Section 5. 

4.2.2.  Rainfall 

This study did not find evidence that rainfall affects 
the growth of A. japonicus. This finding is contrary to 
previous research showing that catchment inflows 
control the productivity of estuarine ecosystems (e.g. 
Gillanders & Kingsford 2002, Gillson 2011). The cur-
rent study is, however, amongst a growing body of 
work identifying the variable sensitivity of estuarine 
species to environmental changes, including fresh-
water inflows (Doubleday et al. 2015, Izzo et al. 2016, 
Williams et al. 2017). A. japonicus have previously 
demonstrated sensitivity to rainfall and freshwater 
flows through recruitment success of juveniles, with 
increased abundance during periods following high 
rainfall (Stewart et al. 2020), which we hypothesised 
to potentially also be manifested in subsequent sur-
vival and growth. The current study did not consider 
the juvenile life history stage because of variation in 
birth date amongst individuals and the consequent 
variability in the duration of the recruitment year 
(Morrongiello & Thresher 2015). While we did not 
find evidence that rainfall influenced growth, the 
Cohort term in our intrinsic modelling captured life-
time growth variability common to individuals of the 
same spawning year, and it is possible that this 
included a residual growth effect associated with 
strong recruitment years driven by the rainfall-
induced productivity (Stewart et al. 2020). 

4.2.3.  Climate 

Biochronological studies have recently demon-
strated significant relationships between fish growth 
and climate indices in other Western Pacific marine 
and estuarine predators such, as black bream A. 
butcheri (SOI; Doubleday et al. 2015), pink snapper 
Chrysophrys auratus (SOI; Martino et al. 2019), blue 
grenadier Macruronus novaezelandiae (IPO; Mor-
rongiello et al. 2021) and pink ling Genypterus bla-
codes (IPO; Morrongiello et al. 2021). Martino et al. 
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(2019) found that the growth of pink snapper in 
Southern Australia was negatively influenced by 
extreme SOI events; however, climate indices did not 
make a significant contribution to explaining growth 
variability in A. japonicus in the current study, poten-
tially indicating that either A. japonicus are less vul-
nerable to such broadscale climatic events or that 
extreme SOI events have a larger influence in the 
more southern waters of the Great Australian Bight. 
The climate indices may also have been too coarse 
spatially (single regional values) to explain the 
growth variability of A. japonicus, which are highly 
residential (Taylor et al. 2006, 2014, Hughes et al. 
2022). Fine-scale (e.g. estuary-specific) environmen-
tal metrics are therefore likely more biologically rel-
evant for this species. 

4.3.  Ecological implications of increased growth 

Increased growth is often considered biologically 
advantageous, as growth has been linked to resource 
acquisition, body maintenance and hence individual 
survival, reproductive output and offspring fitness 
and success (Peters 1983, Hendry et al. 2001, Sibly 
et al. 2015, Marshall & White 2019). This concept is 
consistent with our finding of increasing growth rate 
with age for A. japonicus, suggesting selection for 
faster growth rates throughout life. By virtue of their 
body size, larger fish are more fecund than smaller 
individuals, and in some cases, contribute dispropor-
tionately to the reproductive output of fish popula-
tions (e.g. Longhurst 2002, Berkeley et al. 2004, 
Barneche et al. 2018). Given sufficient time, the evo-
lutionary selection of faster growing A. japonicus 
individuals via decreased mortality rates, greater 
reproductive output and stronger recruitment could 
potentially result in a population containing increas-
ing proportions of fast-growing individuals if suffi-
cient numbers survive to older ages and do in fact 
have disproportionate reproductive output, an idea 
which should be examined further for A. japonicus. 

Variable growth responses to environmental change 
have been reported, both within and between mar-
ine species (Doubleday et al. 2015, Izzo et al. 2016). 
In this study, A. japonicus demonstrated a positive 
growth response to temperature increases through-
out its distribution; however, it is clear that not all 
marine species respond positively, with the average 
response of over 600 marine fish species to warming 
temperatures being decreased growth (Cheung et 
al.  2013). Generally, growth responses are species-
specific, related to individual tolerance to environ-

mental change (Brown et al. 2004). Such variability 
amongst marine species in their growth responses to 
temperature may therefore have future impacts on 
ecosystems that are difficult to predict. While faster 
growth may be advantageous for A. japonicus, in -
creased foraging associated with accelerated growth 
rates and potentially greater population size of this 
large predator in the future may have top-down 
impacts on ecosystem structure and function within 
estuaries (Audzijonyte et al. 2020, Chapman et al. 
2020). However, the population size of this species is 
currently classified as depleted in NSW, with bio-
mass estimated to be below 20% of unfished levels 
(Earl et al. 2020). An increase in predation pressure 
and population size may therefore represent a return 
to pre-existing ecosystem conditions. 

4.4.  Management implications of increased growth 

Altered growth may be associated with biological 
changes that need to be considered in future fish-
eries and conservation management of A. japonicus 
in south-eastern Australia. In particular, the impact 
of changes to growth rates on the timing of maturity 
within fish is not well understood. Previous research 
on Atlantic salmon Salmo salar has suggested en -
vironmentally driven increased growth postpones 
maturation (increases age-at-maturity; Jonsson et al. 
2003, Otero et al. 2012); however, most evidence 
regarding the evolutionary responses of marine fish 
to climate change pressures indicate decreasing age-
at-maturity (Crozier & Hutchings 2014). Indeed, evi-
dence of both increased and decreased age-at-matu-
rity in response to reduced growth rate has been 
reported within a single estuarine fish species, black 
bream A. butcheri, over 22 yr in 4 separate estuarine 
environments in south-western Australia (Cotting-
ham et al. 2018). This variability suggests that the 
link between growth rates and maturity is inconsis-
tent even within marine species and hence should be 
specifically investigated in each species and region 
of interest. The projected increase in growth rates for 
A. japonicus identified here will result in fish more 
quickly reaching the current MLL (also the size-at-
maturity for female A. japonicus; Silberschneider 
et  al. 2009). Individuals will therefore be caught at 
a younger age despite their body length being equiv-
alent. The size and age-at-maturity of the A. japoni-
cus population in south-eastern Australia should 
therefore be monitored to avoid harvest of increas-
ingly immature individuals from the population (e.g. 
Dickey-Collas et al. 2010, Hsieh et al. 2010). 
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5.  LIMITATIONS AND FUTURE RESEARCH 

Due to the north−south orientation of the study 
region, temperature and latitude are highly colinear 
(r = −0.77). These 2 factors could therefore not be 
tested within the same model. Fish growth is more 
likely to respond to changes in temperature that 
occur with latitude rather than latitude per se, hence 
the inclusion of temperature in our models. We 
acknowledge that without testing for the potential 
effect of space, the model lacks the ability to account 
for spatial differences in growth rates that are unre-
lated to temperature, e.g. potential differences aris-
ing from stock structure and resulting divergent biol-
ogy. However, as there is no evidence of stock 
structure throughout southeastern Australia (Silber-
schneider et al. 2009, Barnes et al. 2016), we believe 
the space-independent temperature growth relation-
ships as found in this study are valid. Due to the cor-
relative nature of the current study, it is not possible 
to disentangle the exact mechanisms (direct or indi-
rect) through which temperature has influenced 
growth, but future studies which attempt to decouple 
space and temperature within the study region to 
further investigate fine geographic patterns may also 
provide some insights into different mechanisms. 
This lack of an identified mechanism for the temper-
ature effect implies the forecast growth changes 
based on temperature alone should be interpreted 
cautiously. 

It is now well documented that the East Australian 
Current, the dominant oceanographic feature influ-
encing marine processes in south-eastern Australia, 
is strengthening (Sun et al. 2012, Cetina-Heredia et 
al. 2014). The strengthening of this current is associ-
ated with local ocean warming 3−4 times the global 
average since the early 1990s (Malan et al. 2021). 
The ocean SST along coastal south-eastern Australia 
has also not warmed uniformly over the past 3 
decades, with areas further south warming fastest 
(Malan et al. 2021). However, differences in estuar-
ine warming trends seem to be driven by estuary 
type, not latitude (Scanes et al. 2020). Future studies 
may aim to develop estuarine-specific water metrics 
throughout south-eastern Australia, or to provide a 
more comprehensive understanding of the true driv-
ers of estuarine temperature, allowing for the most 
accurate forecasts of estuarine temperature. 

Results presented here suggest that once past the 
first year of life, Argyrosomus japonicus growth rates 
are predictable based on fish age, AAC and environ-
mental temperature. However, there are several 
additional factors which may influence A. japonicus 

growth that we did not specifically examine and 
should be considered in future research efforts. 
Commercial landings of mulloway in NSW steadily 
declined from almost 400 t in the mid-1970s to a his-
toric low of 37 t in 2008−2009 (Earl et al. 2020). It is 
possible that historical fishing pressure, particularly 
through the 1980s and 1990s (Silberschneider et al. 
2009), has reduced the abundance of A. japonicus in 
this region to the point that competition for resources 
is reduced, and that the increasing growth rates in 
recent decades are due to a release of density-limited 
growth (Lorenzen & Enberg 2002, Amundsen et al. 
2007, Bacheler et al. 2012). There is some evidence 
that this may have occurred, as A. japonicus have 
previously been shown to exhibit density-dependent 
behaviour (Taylor et al. 2013). This could be tested 
with our data set in the future if a reliable index of 
mulloway density could be generated. 

Finally, the difference in growth between male and 
female A. japonicus was not included as a variable in 
our modelling, as the sex of each fish was not 
recorded for most individuals in the data set. A. 
japonicus do, however, exhibit significant differ-
ences in growth between males and females (Silber-
schneider et al. 2009), and the inclusion of sex would 
likely improve model performance, as has occurred 
in similar otolith-based biochronological studies on 
other Australian estuarine species (e.g. Morrongiello 
et al. 2014, Izzo et al. 2016, Barrow et al. 2018). 
Insights into possible sex-specific growth rates may 
help to inform the knowledge gap in environmen-
tally determined changes in maturation rate and 
hence are critical to informing the management and 
stock health of A. japonicus into the future. 

6.  CONCLUSIONS 

We demonstrated that the growth rates of Argyro-
somus japonicus have increased over the 39 yr period 
of our data set and will likely continue to do so 
throughout south-eastern Australia based on climate 
predictions for coming decades, highlighting the 
need to better understand the physiological implica-
tions of environmental changes for coastal aquatic 
organisms. Temperature during the summer growing 
season (November−February) was identified as the 
key environmental driver of A. japonicus growth, 
with modelling indicating that a 1°C increase in tem-
perature results in a ~2% increase in mean annual 
growth rates. Based on climate forecasts for 2099, the 
mean annual growth rate of A. japonicus in south-
eastern Australia may increase by up to 8.9%. Since 
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growth is a key driver of population dynamics and is 
closely linked with other critical biological processes 
like individual development and reproduction, our 
results highlight the value of understanding the driv-
ers of long-term growth variation in exploited fish 
stocks to predict future productivity under a range of 
environmental and fisheries management scenarios. 
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