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a b s t r a c t

Sterculia foetida derived biodiesel is a potential fuel for a diesel engine. The Sterculia foetida biodiesel
required a pre-refining process called degumming and an acid pretreatment process before converting
them to methyl ester using the transesterification process. This study blended fuel from Sterculia foetida
biodiesel and diesel with different volume ratios (5% to 30% of biodiesel blend with 95% to 70% diesel
fuel). Sterculia foetida biodiesel and blended fuels met the ASTM D6751 and EN 14214 standards. The
blended fuel is examined to obtain its influences on the performance and emission when operating at
a diesel engine (1300 rpm to 2400 rpm). From the outcome, the engine performance of the SFB5 blend
shows better performance than diesel fuel in terms of BTE (28.84%) and BSFC (5.86%). Artificial neural
networks and extreme learning machines were employed to predict engine performance and exhaust
emissions. The developed models gave excellent results, where the coefficient of determination is more
than 99% and 98% for BSFC and BTE, respectively. When the engine is operated with SFB5, there is a
significant reduction in CO, HC, and smoke opacity emissions by 8.26%, 2.08%, and 3.08%, respectively,
and at the same time, an increase in CO2 by 3.53% and NOX by 22.39%. The comparison is made with
diesel fuel. The extreme learning machine modelling is powerful for predicting engine performance
and exhaust emission compared to artificial neural networks in terms of prediction accuracy. Sterculia
foetida biodiesel–diesel blends of 5% show its capability to replace diesel fuel by providing engine peak
performance than diesel fuel.
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1. Introduction

Diesel engines are widely used in power generation and have
wide applications due to its high reliability and durability than
petrol engines and gas turbines (Chen et al., 2019b). However, the
pollution derived from the diesel engine application has caused
severe pollution to the environment through greenhouse gas
emissions such as carbon dioxide (CO2), carbon monoxide (CO),
nitrogen oxides (NOx), unburned hydrocarbons (UHC) and par-
ticulate matter (PM) (Adam et al., 2018; Goh et al., 2020). This
long-term exposure of diesel consumption has gradually affecting
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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he global ecology through the air pollutions and global warming.
lternatively, biodiesel has worked as an option fuel to substi-
ute diesel usage (Tulashie et al., 2018; Mofijur et al., 2013).
everal researchers such as Yesilyurt (2019), Vijay Kumar et al.
2018) and Ashok et al. (2018) have blended biodiesel with diesel
uel and assessed it in a direct-injection engine without mod-
fying the engine. Blending conventional diesel with biodiesel
as been shown to minimise smoke opacity, particulates, UHC,
O2 and CO, but NOx levels have risen significantly. No seri-
us engine problems were identified during a diesel engine’s
erformance, durability test and tribological analysis powered
ith biodiesel–diesel blending (Milano et al., 2022, 2021; Dharma
t al., 2019). Furthermore, the blending fuel has improved brake
hermal efficiency and lowered NOx emission when compared to
onventional diesel and hydrocarbon and CO emissions was rose
lightly (Ilkılıç et al., 2011). Nevertheless, the usage of biodiesel
uel requires experimental and numerical testing of their in-
luences on engine performance and emission exhaust. These
equires numberous of experimental and testing that were time
onsumed and costly. Instead, modelling simulations are gain-
ng more attention as it very useful to exploit and handle in-
ormation for biodiesel–bioethanol–diesel performance param-
ter studies which influence engine operating conditions and
missions exhaust.
Several typical techniques of modelling simulations with the

bility to predict the data accurately within the entire domain
f experimental study were used artificial intelligence (AI) such
s artificial neural network (ANN) and extreme learning machine
ELM) as a robust system identification tool (Lešnik et al., 2014;
ğuz et al., 2010). AI-based engine performance and emission
xhaust modelling is a fast adaptive model system that hav-
ng inherent robustness to accommodate data with appreciable
egrees of observation uncertainties which allowing prediction
nd interpolations for control results (Tasdemir et al., 2011; Roy
t al., 2014). The ANN is a mathematical model to solve a wide
ariety of problems in science and engineering, such as biofuel
roduction, heat transfer and engine performance tests (Hulwan
nd Joshi, 2011). A well-trained ANN can be used as a predic-
ive model for a specific application, a data-processing system
nspired by the biological neural system (Oğuz et al., 2010).
he predictive ability of an ANN results from the training on
xperimental data and validation by independent data. An ANN
an re-learn to improve its performance if new data are avail-
ble (Canakci et al., 2009). The literature studies showed that
NN has a powerful modelling technique to predict engine per-
ormance and exhaust emissions including the thermal contact
onductance in the exhaust valve (Tasdemir et al., 2011; Roy et al.,
014; Ghobadian et al., 2009; Goudarzi et al., 2015). Furthermore,
NN could also estimating the periodic contact heat transfer in
he exhaust valve. As reported by Mohamed Ismail et al. (2012),
NN was used to predict emission exhaust such as CO, CO2 and
itrogen monoxide (NO) respectively. As observed ANN provides
ood level of accuracy in modelling the emission concentration of
O, CO2, and NOx with the average correlation coefficient is 0.98
espectively.

Alternatively, ELM is also mathematical modelling that ac-
ively been used due to its strong generalisation performance and
ts straightforward solution (Huang et al., 2006). It is a single-
idden layer feed-forward neural network where the hidden
ayer parameters are initialised randomly. Moreover, ELM can cal-
ulate the output weights analytically with extremely fast learn-
ng speed and better generalisation capability (Wong et al., 2013,
015a). As studied by Mozaffari and Azad (2014), ELM was used
o identify the exhaust gas temperature (Texh) and the engine-
ut hydrocarbon emission (HCraw) of a cold start phenomenon by

btaining the mean absolute percentage error (MAPE) of sparse t

8334
ayesian extreme learning machine (SBELM) is 0.08%. Similarly,
ong et al. (2015a) compared two mathematical modellings such

s ELM and least-squares support vector machine (LS-SVM), to
etermine the optimal biodiesel ratio to reduce exhaust emis-
ions for various engine operating conditions. The result showed
he MAPE test data sets for K-ELM and LS-SVM is 2.97% and 3.06%,
ndicating that K-ELM is 0.09% better than LS-SVM. Besides, K-
LM is also superior in training time and executive time for fast
earning speed and short computation time.

Nevertheless, the prediction modelling is a complicated that
equires extra computational resources and high computational
ower (Chen et al., 2019a). Unlike traditional learning algorithms,
he ELM tends to reach the slightest training error and the small-
st norm of output weights compared to the conventional learn-
ng algorithms, making the regression performance better. The
ssence of ELM is that the hidden layer parameters can be in-
ependent of training samples, and the hidden layer of the gen-
ralised SLFNs need not be tuned (Wong et al., 2015b). There-
ore random sub-sampling cross-validation was adopted in this
tudy to evaluate the performance of the modelling methods
or ELM (Wong et al., 2013, 2015a). In this attempt, ANN and
LMmathematical modelling were adopted to predict engine per-
ormance and study the exhaust emission parameters. Biodiesel
erived from Sterculia foetida oil was used for blending with
iesel. This research studies and evaluates the main properties of
he biodiesel–diesel blends then compares them with diesel fuel
s baseline (reference). The blending of various volume ratios of
iodiesel–diesel was performed to determine the blended fuel’s
ptimal properties. The aim of blending biodiesel with diesel was
o increase the oxygen content of the blended fuel while keeping
ther properties such as viscosity, oxidation stability and calorific
alue within the permissible range stipulated in ASTM and EN
imits. Besides, this research was performed as a comparative
f ANN and ELM modelling to evaluate the visibility of Sterculia
oetida biodiesel as a sustainable feedstock. The findings is to
olve the approximation, optimisation and the control problems
unction in biodiesel research using ANN and ELM as a modelling
ystem.

. Materials and methods

.1. Materials

Sterculia foetida oil was purchased from West Java, Indonesia.
he chemicals used for biodiesel production and properties iden-
ification were phosphoric acid (H3PO4, purity: 85%), sulphuric
cid (H2SO4, purity: >98.9%), sodium hydroxide (NaOH, purity:
9%), methanol (CH3OH, purity: 99.9%), sodium sulfate (Na2SO4,
urity: >99%), FAME mix (C8 − C24, purity: >99.5%), and methyl
onadecanoate (C19, purity: >99.5%). Petroleum pure diesel was
urchased from Hakita Sdn Bhd, at Kuala Lumpur, Malaysia.

.2. Biodiesel production

The Sterculia foetida biodiesel is produced through three pro-
ess (degumming, acid-pretreatment, and transesterification pro-
esses). Three-process was performed in a double jacketed reac-
or at Biofuel Laboratory, Level 3, Block M, Faculty of Mechanical
ngineering, University Malaya. For the degumming process, ster-
ulia foetida crude oil was mixed with 0.5% vol. of phosphoric
cid with 20% concentration at temperature of 60 ◦C for 30 min.
ensity separation was done by placing the mixture in a sepa-
ation funnel, where the gum and impurities were found at the
ottom. Then the oil was washed with distilled water several

◦
imes and dried in a rotary evaporator at 60 C for 30 min. Then
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he degummed oil is ready for the next process, which is called
sterification.
The esterification process required mixing degummed oil with

ethanol/oil molar ratio of 10:1, 1% vol. of sulphuric acid, stirring
peed of 1200 rpm, reaction temperature set at 60 ◦C, and reac-
ion time are 180 min. Separation was performed in a separation
unnel. Two distinct layers were observed from the separation
unnel. The upper layer consisted of methanol, while the bottom
ayer was esterified sterculia foetida oil. Then collect the esterified
terculia foetida oil for the transesterification process.

The transesterification process was performed by mixing es-
erified oil with methanol/oil molar ratio of 10:1, 1% vol. of
odium hydroxide, stirring speed of 1200 rpm, reaction tempera-
ure set at 50 ◦C, and duration of reaction was 120 min. There are
lso two distinct layers formed in the separation funnel. The top
ayer consists of fatty acid methyl ester, while the bottom consists
f methanol, glycerol and other impurities. The fatty acid methyl
ster was collected for the purification and drying process. The
atty acid methyl ester was washed with distilled water several
imes to remove the remaining impurities and glycerol. Then the
ethyl ester was dried using a rotary evaporator for 60 min at
0 ◦C. Then sodium sulfate was added to dried fatty acid methyl
ster to ensure a 100% water-free product.

.3. Blending

The preparation of biodiesel diesel blends was performed at 26
C using a beaker glass. The agitation speed was set at 2000 rpm,
o ensure homogeneity between biodiesel and diesel. SFB5, SFB10,
FB20, and SFB30 blends were obtained by mixing diesel and
iodiesel in the following proportions by volume: 5% biodiesel
ith 95% diesel, 10% biodiesel with 90% diesel, 20% biodiesel with
0% diesel, 30% biodiesel with 70% diesel, respectively.

.4. Physicochemical properties of fuel

We examined and analysed the physicochemical properties of
he sterculia foetida crude oil, biodiesel, and biodiesel blend. The
uel properties were measured based on the fuel specification
tipulated in ASTM D 6751 and EN 14214 standard. The tested
roperties were viscosity kinematic at 40 ◦C, density at 15 ◦C,
cid value, calorific value, flash point, pour point, cloud point, and
xidation stability at 110 ◦C. The results is shown in Table 4. All
roperties testing was performed in Energy Efficiency Laboratory,
evel 2, Block M, Faculty of Mechanical Engineering, University
alaya.

.5. Engine evaluation

In a diesel engine, the performance and emissions of Ster-
ulia foetida biodiesel–diesel blends were studied. The engine
erformance test was performed in Heat engine laboratory, Level
, Block M, Faculty of Mechanical Engineering. For the engine
valuation analysis, the four mixed fuels were acquired and then
ompared to diesel (baseline/reference). The experimental setup
or the engine’s performance and emission test was shown in
ig. 1. In addition, a gas exhaust analyser was used to detect the
xhaust emissions such as NOx, CO, CO2 and smoke opacity. The
pecification of the diesel engine used in this study was tabulated
n Table 1. An eddy current dynamometer and electronic data
ollecting devices were used in conjunction with the engine. The
est began with diesel to warm up the engine for 15 min. The
ngine performance and emission produced will be recorded after
he engine stabilises. Then, the diesel engine is supplied with
iodiesel blends (SFB5, SFB10, SFB20, and SFB30). The engine will
dle for another 15 min with the blended fuels before the next
8335
Table 1
Technical specification of the test engine.
Type
Injection system
Cylinder number
Cylinder bore × stroke volume
Displacement
Compression ratio
Maximum power
Maximum engine speed
Cooling system
Injection timing
Injection pressure

TF 120 M Yanmar
Direct injection
1
92 mm × 96 mm
0.638 L
17.7:1
7.7 kW
2400 rpm
Water cooling
17.0 bTDC
200 kg/cm2

Table 2
Technical data and specification of the gas analyser device.
Technical data

Exhaust component Measurement range Resolution

CO
CO2
O2
NO

0.000–10.00% vol.
0.00–18.00% vol.
0.00–22.00% vol.
0–5000 ppm vol.

0.001% vol.
0.01% vol.
0.01% vol.
≤1 ppm vol.

Smoke opacity meter module

Measured quantity
Degree of opacity

Measurement range
0%–100%

Resolution
0.1%

Oil temperature

Measured quantity
Temperature

Measurement range
−20–+150 ◦C

Resolution
0.16 ◦C

experimental recording. All engine parameters were measured
after, including torque, power, specific fuel consumption, and ex-
haust temperature. The speed was measured at 100 rpm intervals
from 1300 to 2400 rpm. The BOSCH BEA 150 analyser was used
to measure emissions and smoke opacity after the engine had
reached a stable functioning condition. The exhaust emissions
were measured using a sensor filter by placing it at the exhaust
pipe. Table 2 shows the specification of gas analyser. The results
was tripleted and the average was calculated.

2.6. ANN Modelling

2.6.1. Normalisation
The training model dataset was normalised so that the values

are within the range of [0,1] using the following equation:

N (v) = ei =
(ei − Emin)

(Emax − Emin)
(1)

where: ei represents the normalised parameter, whereas Emax and
Emin represent the upper and lower bound, respectively. Since all
of the values in the training process are normalised, the values
predicted by the models need to be denormalised using the
inverse of Eq. (1).

2.6.2. ANN generalisation
MATLAB 7.10.0 was used to train the developed back-

propagation of ANN to generate the neural network. In this study,
a three-layer feed-forward was used. The hyperbolic tangent sig-
moid (TANSIG) transfer function was used from input to hidden
layer, while the PURELIN transfer function was used from hidden
layer to output. The tan sig and the pure lin transfer function are
expressed as Eqs. (2) and (3) as below:

tan sig (x) =
2(

1 + e−2x
) − 1 (2)

A = purelin x = x (3)
( )



A.H. Sebayang, J. Milano, A.H. Shamsuddin et al. Energy Reports 8 (2022) 8333–8345

h
b
s
w
e
E
(

2

s
h
u
t
E
u
t
2

f

Fig. 1. Schematic layout of the direct injection diesel engine experimental setup.
x

The ANN architecture consists of three layers named input,
idden and output layers, connected through the neurons. The
ack-propagation with Levenberg–Marquard was used in this
tudy. For all the ANN models, the engine’s speed and fuel type
ere considered the input function to predict the BSFC, BTE and
missions. The ANN was trained until the minimum Mean Square
rror (MSE) was reached and the average Correlation Coefficient
R) was closed or equal to 1.

.7. ELM Modelling

Extreme Learning Machine (ELM) was initially developed for
ingle-hidden-layer feed-forward networks (SLFNs). Single-
idden layer feed-forward neural networks (SLFN) are widely
sed to approximate complex nonlinear mappings directly from
he input samples where the hidden layer parameters in the
LM are initialised randomly. The output weights were calculated
sing Moore–Penrose generalised inverse. The output function of
he ELM for generalised SLFNs (Eq. (4)) is given by (Wong et al.,
013; Wu et al., 2013):

L (x) =

L∑
i=1

βiG (wi, bi, x) , x ∈ Rn, ai ∈ Rn (4)

where wi and bi are the hidden notes learning parameters. βi is
the weight which connects the ith hidden note and the output
node. G (wai, bi, x) shows the output value of the ith hidden note
for the input x. The additive hidden note with the activation
function of g (x) : R → R (e.g., sigmoid and threshold), G (wi, bi, x)
(Eq. (5)) is:

G (wi, bi, x) = g

⎛⎝ n∑
j=i

wijxj + bi

⎞⎠ , bi ∈ R (5)

where wij = [wi1, wi2, . . . , win]T is the weight vector which
connects the input layer and ith is the hidden node to i with
input to j. Also, bi is the bias of the ith the hidden node ai, x =

[x , x , . . . , x ]T is the inner product of vector a in Rn.
1 2 n i

8336
Using Eq. (3) can find G (wij, bi, X) for RBF hidden note with
activation function g (x) : R → R (e.g., Gaussian) (Eq. (6)) :

G (wi, bi, x) = g

⎛⎝bi

√ n∑
j=i

(
xj − wij

)2⎞⎠T

, b ∈ R+ (6)

wi and bi represent the center and impact factor of ith RBF node,
R+ represent set of all positive real values. A particular case of
SLFN that has RBF nodes in its hidden layer forms RBF network.
For N , arbitrary distinct samples (xi, ti) ∈ Rn x Rm where, n x
1 input vector is represented by xi and m x 1 target vector is
represented by ti. If an SLFN with L hidden nodes approximates
N samples with zero error then it implies there exist βi,wi and bi
such that.

fi (x) =

L∑
i=1

βiG (wi, bi, x) , j = 1, . . . ,N (7)

Eq. (7) may expressed compactly as

Hβ = T (8)

where

H
(
w̃, b̃, x̃

)
=

[
G(w1, b1, x1) . . . G(wL, bL, x1)
G(w1, b1, xN ) . . . G(wL, bL, xN )

]
NxL

(9)

With w = w1, . . . , wL; b̃ = b1, . . . , bL; x̃ = x1, . . . , xL

β =

⎡⎢⎣βT
1
...

βT
L

⎤⎥⎦
Lxm

and T =

⎡⎢⎣tT1
...

tTL

⎤⎥⎦
Nxm

(10)

H is the hidden layer output matrix of SLFN with ith column of H
being the ith hidden node’s output with respect to inputs x1, . . . ,
n (Eqs. (8)–(10)).
Unlike traditional learning algorithms, the ELM tends to reach

the slightest training error and the smallest norm of output
weights compared to the conventional learning algorithms, mak-
ing the regression performance better. The essence of ELM is
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hat the hidden layer parameters can be independent of training
amples, and the hidden layer of the generalised SLFNs need not
e tuned (Wong et al., 2015a; Wu et al., 2013).

.8. Random subsampling cross-validation of ELM

Therefore random sub-sampling validation cross-validation
as adopted in this study to evaluate the performance of the
odelling methods for ELM (Wong et al., 2013; Yuan, 2015).
andom sub-sampling is multiple holdouts based on randomly
plitting the data into subsets, whereby the user defines the size
f the subsets. We used 48 data for training and 12 data for
esting and repeated 10 times.

.9. Data verification for ANN and ELM

The coefficient of determination (R2), and mean absolute per-
centage error (MAPE), which as defined below was used to deter-
mine the performance of the both mathematical modellings (Eqs.
(11)–(12)):

R2
= 1 −

n∑
i=1

((
yei − ypi

)2(
ym − ypi

)2
)

(11)

APE =

n∑
i=1

⏐⏐⏐⏐yei − ypi
yei

⏐⏐⏐⏐× 100% (12)

where n is the number of experimental data while yei is the
xperimental output value, ypi is the predicted output value and
m is the average experimental output value. The greatest R2

nd the smaller MAPE were acquired to define the accuracy and
erformance of the mathematical model.

. Results

.1. Properties biodiesel diesel blends

Table 3 measures and tabulates the physicochemical proper-
ies of diesel, biodiesel, and blended biodiesel–diesel fuels. SFME’s
verall fuel characteristics were satisfactory. However, they had a
lightly higher viscosity (5.92 mm2/s) and a lower calorific value
40.493 MJ/kg) as compared to diesel (2.91 mm2/s and 45.83
J/kg). Furthermore, SFME’s oxidation stability was 4.42 h, which

s less than the EN 14214 requirement of 6 h. On the other hand,
FME achieved more oxidative stability than the ASTM D6751
ecommended limit of 3.0 h (minimum value). Blending SFME
ith diesel fuel has improved the overall oxidation stability of
he blended fuel (10–16.5 h), which are a highly recommended
ethod to improve the target properties. The presence of cy-
lopropene ester in SFME’s malvalic (2.19%) and sterculic acids
45.12%) causes oxidation stability to be reduced. The cyclo-
ropene ring have a weaker carbon chain than palmitic (22.75%),
leic (7.71%), (linoleic (11.70%), steric (6.04%), and arachidic acid
2.96%) of carbon chains. Other fatty acid methyl ester such as
auric (0.13%), myristic (0.26%), palmitoleic (0.26%), and linolenic
cid (0.90%) was found less than 1%. Due to high value of cyclo-
ropane ester, thus SFME is susceptible to fast oxidation. The flash
oint of SFME is higher than that of diesel by 85 ◦C. Hence, when
he biodiesel concentration in blends increased, the blended fuel’s
inematic viscosity, density, and flash point rose due to the func-
ion of biodiesel’s properties. However, biodiesel’s calorific value
s much lower than diesel by 5.34 MJ/kg. Hence we expected that
he calorific value of the blending fuel will decreases as the con-
entration of biodiesel increases, as shown Table 3. Additionally,
he increased flash point property revealed that biodiesel is safer
o store and use in transportation sector. Low oxidation stability
8337
as the limitation of SFME, but blending with diesel, improved
he stability of the blended fuel. Hence SFME and diesel fuel are
deal fuels that work to compromise each shortage and benefits
n terms of fuel property.

.2. Engine performance and exhaust emissions

.2.1. Brake thermal efficiency (BTE)
The experiment was conducted using diesel and Sterculia

oetida biodiesel fuel blends (SFB5, SFB10, SFB20 and SFB30) in
diesel engine. The performance and emission characteristics of
iodiesel–diesel blends and diesel are examined and discussed.
s demonstrated in Fig. 2, the BTE trend for SFB5 is slightly
igher than diesel but still comparable. SFB10 till SFB30 had
ower BTE than SFB5 and diesel, indicating that SFB5 and diesel
ave better combustion properties and lower viscosity than other
lends. SFB5 was shown to be more appropriate than other blends
ith greater BTE values. At 1900 rpm, the maximum BTE for
FB5, SFB10, SFB20 and SFB30 were 25.96%, 21.28%, 20.25% and
9.28%, respectively. The SFB’s increased the viscosity that caused
oorly formed fuel sprays, which affected the engine’s combus-
ion (Misra and Murthy, 2011). Increased viscosity causing poor
pray atomisation and formed bigger droplets that significantly
nterrupt the complete combustion. Other than that, another
lement determining the BTE is the calorific value of the biodiesel.
urthermore, it is seen that when engine speed reaches a specific
imit, the thermal efficiency trend reverses and begins to decrease
s a function of fuel blends concentration, which is consistent
ith the findings of Vairamuthu et al. (2016). Moreover, better
ixture formation of 5% of Sterculia foetida biodiesel and diesel

uel with air is the result of better air utilisation.

.2.2. Brake specific fuel consumption (BSFC)
Fig. 3 depicts the BSFC trend of Sterculia foetida biodiesel–

iesel blend and diesel operation at various engine speeds. At
900 rpm, the optimum BSFC for SFB5, SFB10, SFB20, and SFB30
ere approximately −5.86%, 26.87%, 30.91% and 38.79% than
iesel fuel, respectively. While at 2400 rpm, the highest BSFC
alues were obtained, diesel, SFB5, SFB10, SFB20, and SFB30 were
pproximately 681, 603, 869, 907, and 951 g/kWh. SFB10–SFB30
lends shown higher fuel consumption than diesel and SFB5,
hich caused by fuel’s properties such as higher density and
iscosity. The average 22% increment in BSFC is observed in
omparison with neat diesel. Generally, the BSFC will decrease
hen the engine speed’s increases. Indeed, the decreases in BFSC
ere found when the engine speed is increased from 1300 to
900 rpm, followed by a slight increase after the engine speed
xceeds 1900 rpm. BSFC increases with an increase in biodiesel
oncentration in the blends. This result is consistent with the re-
ult found by Qi et al. (2009) that engines required more amount
f biodiesel in order to obtain similar BSFC of diesel fuel. Hence,
FB30 required the highest BSFC among all tested fuel blends.
he result was due to the low calorific value of the biodiesel.
n this study, the difference between diesel and SFME was 5.34
J/kg. Engine fuel with SFB10 and above will produce lower
rake torque due to the low energy content of biodiesel blends. A
imilar finding was found in Buyukkaya (2010) and Hebbal et al.
2006), both of them noted that the fuel consumption for a higher
ercentage of biodiesel in the blends is larger to produce the same
mount of energy.

.2.3. Nitrogen oxides (NOX)
Fig. 4 illustrates the NOx (ppm) emissions at full throttle at

ngine speed varies from 1300 rpm to 2400 rpm for SFB with
iesel as the baseline. The NOx emissions for SFB5, SFB10, SFB20
nd SFB30 were higher than diesel fuel by 17.49%, 26.67%, 31.78%,
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Table 3
Properties of petrol diesel, biodiesel and biodiesel diesel blends.
Properties Unit Range values Standard method Diesel SFME SFB5 SFB10 SFB20 SFB30 SFME (Kavitha and

Murugavelh, 2019)

Kinematic viscosity at 40 ◦C mm2/s 1.9–6.0 ASTM D445 2.91 5.92 3.24 3.6 4.05 4.6 5.67
Density at 15 ◦C kg/m3 860–900 EN ISO 3675 839 876.9 822.6 841.5 848.5 857.8 932
Acid value mg KOH/g 0.5 (max.) ASTM D664 0.17 0.38 0.17 0.17 0.18 0.18 0.74
Calorific value MJ/kg – EN 14214 45.83 40.49 45.32 45.25 44.15 43.86 38.39
Flash point ◦C 100–170 ASTM D93 71.5 156.5 80.5 82.5 85.5 87.5 162
Pour point ◦C −15–16 ASTM D97 1 2.8 1 2 3 3 −3
Oxidation stability at 110 ◦C h 3 (min.) EN 14112 23.7 4.42 16.45 15.34 11.39 10.2 –
Fig. 2. BTE with various engine speeds at full throttle for blended fuels and diesel.
Fig. 3. BSFC with engine speed vary at 1300 to 2400 rpm at full throttle for the blended fuels and diesel.
nd 37.50%, respectively, when compare with baseline diesel fuel.
t is evident that all of the sterculia foetida biodiesel diesel blends
ave significantly higher NOx emissions than diesel. The highest
mount of NOx emissions was found at an engine speed of 2400

rpm for all fuel blend. Injection timing and injection pressure
was one of factor affecting the combustion temperature that
eventually influenced the NOx emissions. This study shows that
higher engine speed and higher concentration of sterculia foetida
biodiesel in the blend will cause higher NOx emissions. Higher
NOx emissions are due to higher oxygen content percentages in
the blended fuel that caused higher combustion temperature in
the premixed and diffusion combustion phase. At lower engine
speed, the NOx emissions for SFB5, SFB10, SFB20 and SFB30 are
higher than diesel fuel with a value of 222.4, 238.6, 250.1, and
261.1 ppm vol., respectively. The NOx emissions is 152 ppm vol.
for diesel fuel. The NOx emissions is lesser during low engine
speed is due to weak air swirl movement and low in-cylinder
heat temperature. Besides, the biodiesel’s cetane number will also
deliver more NOx emissions during high engine speed (Misra
and Murthy, 2011; Çelikten et al., 2012). Then, high cylinder
temperature and exhaust temperature means there is an increase
in the efficiency of combustion and the performance efficiency
8338
of the engine. Similar finding can be obtained from Karabektas
et al. (2008) and Nabi et al. (2009). The higher engine’s air/fuel
ratio and higher peak pressure of blended fuel also lead to higher
NOx emissions. The presence of oxygen in the blends cause an
increase in the combustion temperature that cause higher NOx
formation, indicating high exhaust temperature (Lin et al., 2009).
According to Keskin et al. (2008), increasing biodiesel concen-
tration in the biodiesel–diesel blend causes a small rise in NOx
emissions. However, the NOx emissions depend on various pa-
rameters, such as biodiesel type, engine technology, operation
conditions, combustion temperature, and injection parameter.

3.2.4. Carbon monoxide (CO)
Fig. 5 shows the trend of CO emissions for SFB blended fuel

and compare with the diesel as baseline. CO emissions for SFB
blended fuel were less than diesel for all varied engine speed. At
1900 rpm, the CO emissions for SFB5, SFB10, SFB20 and SFB30
were lower than diesel fuel by 8.73%, 18.86%, 26.77%, and 35.58%,
respectively. Besides, higher speed (2400 rpm) produces lesser
CO emission than low engine speed (1300 rpm). CO emissions
decreases especially during high engine speed due to turbulence

occurs in the combustion chamber. According to Ilkılıç and Aydın
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Fig. 4. NOx emissions with varied engine speed for the blended fuels and diesel.
Fig. 5. CO emissions with varied engine speed for the blended fuels and diesel.
b

2011) and Muralidharan et al. (2011) finding, the rising tempera-
ure in the combustion chamber cause incomplete combustion in
he chamber that cause CO emission increases. Significant reduc-
ion in CO can be observed at 1900 rpm for SFB30 in comparison
ith diesel. At higher engine speed, the difference of CO emission

or blended fuel with diesel fuel was less than 0.02%. SFB5 have
imilar CO emission compared with diesel fuel. Fuel viscosity
ill affect the fuel spray quality, which will cause increases in
O emission. However, it is not the same cause for this study.
he blended fuel with sterculia foetida biodiesel showed marginal
eduction in CO emission and it was due to improvement in the
ombustion that caused by the presence of biodiesel. Biodiesel
as higher cetane number which will helps to shorter the ignition
elays and reduces the CO emission especially at higher speed
iesel engines. Moreover, it is apparent that a higher concentra-
ion of biodiesel in the blend will cause lesser CO emissions in
his study. It may be due to limited time for a combustion cycle,
hich causes less formation of CO. It produced more unburned
ydrocarbon, as shown in Fig. 7. Preheating the biodiesel blends
ight be one method to improve the performance of the combus-

ion chamber in the engine, which contributes to improving the
uality and efficiency of the combustion. That will reduce the CO
nd HC emissions in the exhaust. Besides, inlet air temperature
s one of the factors that will also influence CO emission. The
igh air temperature will cause a higher in-cylinder temperature
hat will encourage the occurrence of oxygen with sterculia foetida
iodiesel.
8339
3.2.5. Carbon dioxide (CO2)
Fig. 6 illustrates the CO2 emissions for SFB at various speeds

compared with diesel fuel. Complete combustion can be seen
for SFB5 blends as it emits more CO2 emission than the other
lend, including diesel fuels. The CO2 emission for SFB5 is more

3.01% than diesel fuel, whereas the CO2 emission of SFB10, SFB20,
and SFB30 were 1.63%, 5.78%, and 9.57%, respectively, lesser than
diesel fuel. The result shows that SFB5 has higher CO2 emissions
than diesel fuel. It is generally known that adding biodiesel with
diesel will reduce the CO2 emission, but it is not for SFB5. Hence
SFB is much superior to diesel and other blending ratios. The oxy-
gen content in the biodiesel will cause more carbon to be oxidised
into CO2. Fig. 6 shows that a higher concentration of biodiesel
(SFB10, SFB20 and SFB30) in the fuel blend will lower the CO2
emission than diesel fuel (2.95%). The maximum difference be-
tween diesel and SFB30 is approximately an 8.52% reduction in
CO2 emission. A higher concentration of sterculia foetida biodiesel
reduces CO2 emission. One of the reasons for causing a reduc-
tion in CO2 emission was the viscosity of the blended fuel. The
viscosity of the blended fuel is increases as the concentration
of biodiesel increases. The effect of biodiesel viscosity will in-
terfere fuel consumption. Higher viscosity will reduce the size
of the droplet done by spray atomisation. Atomisation will en-
sures complete evaporation of liquid fuel and prepares for a
combustible mixture for combustion. A bigger droplet will cause
incomplete combustion and reduce the CO2 emission while caus-
ing the formation of CO and unburned hydrocarbon. Besides, the
lower calorific value of the biodiesel blends will cause higher fuel
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Fig. 6. CO2 emissions with varied engine speed for the blended fuels and diesel.
Fig. 7. HC emissions with varied engine speed for the blended fuels and diesel.
onsumption, where extra fuel was needed to produce the same
ngine power.

.2.6. Hydrocarbon (HC)
The HC emission values of sterculia foetida biodiesel–diesel

lends and diesel fuel within an engine speed of 1300–2400
pm are shown in Fig. 7. It is apparent that the HC emission
s highest for SFB30 compared with other blend mixtures and
iesel fuel at 1300 rpm. At low speed, HC emission for diesel,
FB5, SFB10, SFB20, and SFB30 was 37.73, 35.22, 44.36, 47.3 and
1.1 ppm vol., respectively. The lowest HC emission was found
t engine speed set at 1900 rpm. The diesel, SFB5, SFB10, SFB20,
nd SFB30 was 30.82, 30.18, 37.8, 40.26 and 41.3 ppm vol. It
an be observed that the HC emission is lowest for SFB5 when
ompared with that for diesel fuel. SFB5 was superior in helping
o reduce the HC emission compared with diesel fuel. It can be
larified that the biodiesel fuel’s oxygen content will enhance
he combustion process and reduce the unburned hydrocarbon.
owever, for a higher concentration of biodiesel, the HC was
igher than diesel fuel. The reason might arise from an increment
n other physiochemical properties such as viscosity, density, and
alorific value after the blending.

.2.7. Smoke opacity
Fig. 8 shows the smoke opacity with an engine speed range

f 1300–2400 rpm for the SFB blended fuels and diesel. Smoke
pacity indicates the amount of dry soot and emission of particu-
ate matter. The oxidised carbon that forms at the reaction zone is
alled soot oxidation. The soot will be produced when the oxygen
r local temperature does not support the oxidation process. It is
8340
evident that the SFB5 possesses better combustion characteristics
that induce complete combustion. For example, an engine speed
of 1900 rpm shows optimal combustion as it produces the lowest
smoke opacity. The SFB5 produced the lowest smoke opacity
with a value of 14.46% HSU, while diesel fuel produced smoke
opacity of 14.92% HSU. There is a significant reduction in the
smoke opacity by adding 5% of sterculia foetida biodiesel into
diesel fuel. The results show that SFB5 indicates better emission
performance when compared with diesel fuel. Other blended
fuels show incomplete combustion indicated by lower thermal
efficiency and higher smoke opacity, where SFB10, SFB20 and
SFB30 produce smoke opacity with a value of 15.15%, 20.44% and
21.12% HSU, respectively. The smoke opacity is marginally higher
for a high concentration of sterculia foetida biodiesel in the fuel
blends due to the viscosity and volatility of biodiesel. In addition,
it causes a larger fuel droplet size and reduces the fuel/air mixing
rate, resulting in poor spray formation in the combustion cham-
ber. A significant difference in smoke opacity between the test
fuels was found on high engine speed (2400 rpm). As mentioned
above, diesel and low sterculia foetida biodiesel fuel blends have
better combustion characteristics. It might be due to the presence
of oxygen molecules in the methyl ester that encourages com-
plete combustion during rich diffusion. This outcome was similar
to Senthil Kumar and Jaikumar (2014) and Haldar et al. (2009)
found that increasing the biodiesel ratio in the blends resulted in
slightly higher smoke opacity emission than diesel.

3.3. ANN and ELM modelling performance evaluation

All of the modelling methods were written in MATLAB R2012a
and run on a PC with an Intel Core i7 processor and 8 GB of
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Fig. 8. Smoke opacity produced from varied engine speed for blended fuels and diesel.
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Table 4
Random subsampling cross-validation.

Output variable Average MAPE

Performance BSFC 0.7009
BTE 1.0497

Emission

CO 0.4471
CO2 0.2609
NOx 0.4056
Smoke opacity 0.5666

RAM running Windows 8. The reports of the subsampling cross-
validation were combined and averaged to show how accurately
the models could perform Table 4. The statistical analysis for the
performance and emission model revealed that the developed
ELM model had low MAPE than ANN (Table 5). The MAPE for
ANN model for BSFC and BTE were 1.4687 and 1.8148, respec-
tively while the coefficient of determination (R2) were 0.9906 and
.9808, respectively. Meanwhile, the MAPE for the ELM model for
SFC and BTE were 0.4101 and 0.7929, respectively, while the R2

ere 0.9961 and 0.9879, higher than ANN model. Both mathe-
atical models were used to predict the emission, and Table 6
hows predicted results. Hence, ELM are better than ANN by
.55% for BSFC and 0.71% for BTE.
Based on ANN prediction, the MAPE for CO, CO2, NOx, HC and

moke opacity were 1.5124, 0.5618, 1.6427, 0.2549, and 1.5363,
espectively. Their R2 were 0.993, 0.985, 0.984, 0.977 and 0.987,
espectively. The developed ANN model can preciously predict
he fuel emission (>97%). Furthermore, the ELM model able to
redict the fuel emission even more accurately than ANN model
>98%). The MAPE of ELM model for CO, CO2, NOx, HC and
moke opacity were 0.2137, 0.1925, 0.3102, 0.1325, and 0.3565,
espectively, while the R2 were 0.999, 0.991, 0.998, 0.988 and
.995, respectively. The differences in R2 for ANN and ELM for CO,
O2, NOx, HC and smoke opacity were 0.6%, 0.6%, 1.4%, 1.1% and
.8%, respectively. The difference indicated that ELM is superior
han ANN in predicting pollutant produced by SFME. The R2 value
or all the data was close to 1 and it indicates that there is a strong
orrelation in modelling of both performance and emission.

.4. Performance comparison of ANN and ELM

Based on the MAPE and R2 for both ANN and ELM modelling,
ELM shown superior prediction model when compare with ANN.
Fig. 9 showed the prediction accuracy and error statistical indi-
cator result for the both ANN and ELM models. ELM model able
to accurately predict the engine performance and fuel emission

with relatively minimal error than ANN model. The analytical
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method adopted by ELM model was to solve based on the output
weights by single step. Whereby, ANN used the iterative method
to calculate the support vectors which make the accumulative
error resulting from all the steps may become large when the
final solution is returned. Therefore, ELM has a smaller error
compared than ANN. Small error means ELM is a more suitable
prediction model for this study.

4. Conclusion and future recommendation

Sterculia foetida biodiesel is a promising non-edible feedstock
that can be used in conjunction with diesel fuel in an engine.
This study has explored the engine performance and exhaust
emission characteristics of blended sterculia foetida biodiesel with
diesel, employing experimentation, ANN and ELM modelling. The
conclusion of this study are as below:

• Blending of SFME with diesel fuel enhances the blended
properties, especially viscosity and flash points. The blended
fuels in this study met the specification stipulated in the
D6751 or EN 14214 standard. The oxidation stability of
the blended fuels meets the minimum requirement of the
standard methods, with a value of more than 10 h.

• Among the blended fuel, SFB5 was seen as the promising
blending ratio among the blended fuel as it delivers bet-
ter engine performances (decreasing BSFC, increasing BTE)
compared with diesel fuel. Besides, SFB5 shows better ex-
haust emissions compared to diesel fuel. SFB10, SFB20, and
SF30 caused a marginal increment in NOx, HC and smoke
opacity except CO and CO2.

• A comparison between ELM and ANN modelling under the
same sample data sets was conducted in this study. The
MAPE and R2 results comparison show that the ELM mod-
elling is superior to ANN. Therefore, it can be concluded that
ELM is a promising technique for engine performance and
emission exhaust application.

In short, the proposed comparison modelling predictions for
he engine performance and exhaust emissions resulted in a bet-
er performance than ANN modelling. Based on the study, SFB5
s the most favourable blend that can outperform diesel fuel and
t verified that sterculia foetida biodiesel was a great asset to the
biofuel industry. Moreover, this study deduced that the ELMmod-
elling has excellent generalisation capability to precisely predict
the engine performance and important emission parameters for
different blending fuels and other biodiesel feedstocks. Besides,
this study’s experimental and numerical work will provide an
overview to researchers, scientists, and the automotive industry
to develop a new approach or modelling based on our study.
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Table 5
Experimental design matrix and experiment result for engine performance.
Run Speed

(rpm)
Fuel Performance

BSFC BTE

Experiment ANN prediction ELM prediction Experiment ANN prediction ELM prediction

1 1300

Diesel

641 629.31 640.93 21.84 21.58 21.83
2 1400 617 609.06 598.17 21.05 22.45 21.07
3 1500 595 586.09 583.86 23.03 23.85 23.03
4 1600 566 562.23 565.96 26.33 25.79 26.35
5 1700 541 540.10 533.54 28.25 28.12 28.24
6 1800 514 523.19 513.94 24.38 24.42 25.71
7 1900 495 515.58 495.06 24.27 22.62 24.28
8 2000 536 521.11 535.91 24.21 23.82 24.21
9 2100 547 541.76 547.02 23.47 23.64 23.47
10 2200 575 575.98 580.73 22.57 23.02 23.30
11 2300 629 618.21 639.97 25.13 23.27 25.12
12 2400 681 660.68 680.9 25.49 25.05 25.50

13 1300

SFB5

582 585.05 582.08 28.09 28.27 28.10
14 1400 566 562.00 566.00 31.60 31.55 33.52
15 1500 523 537.85 523.09 37.04 34.70 37.03
16 1600 502 513.4 502.02 30.68 30.51 30.69
17 1700 499 490.6 499.04 31.14 30.97 31.14
18 1800 482 472.92 486.92 30.64 32.48 30.91
19 1900 466 464.83 466.10 31.27 32.01 28.79
20 2000 500 470.58 491.55 30.80 29.76 30.79
21 2100 507 492.53 506.99 27.75 27.43 27.75
22 2200 528 529.44 528.06 26.52 26.76 26.52
23 2300 569 575.81 569.03 28.39 28.74 28.39
24 2400 603 623.61 603.12 32.43 32.39 32.42

25 1300

SFB10

758 768.93 757.96 39.04 38.98 39.03
26 1400 744 741.65 743.97 31.50 31.64 31.51
27 1500 720 713.51 718.86 31.88 31.85 30.54
28 1600 697 686.92 696.94 32.89 32.94 32.89
29 1700 667 665.13 657.61 32.46 33.02 32.46
30 1800 653 651.82 652.94 31.89 31.37 31.88
31 1900 628 650.54 628.00 20.80 21.25 20.81
32 2000 669 664.16 626.23 19.29 18.66 19.29
33 2100 704 694.13 703.95 20.75 18.90 20.75
34 2200 745 739.09 744.94 21.90 21.79 21.9
35 2300 788 793.83 788.08 24.31 24.34 24.31
36 2400 869 850.37 868.86 22.08 21.98 22.09

37 1300

SFB20

808 815.41 808.00 22.40 21.85 22.4
38 1400 781 778.59 781.03 22.34 22.75 22.34
39 1500 743 742.67 752.82 23.06 22.80 23.06
40 1600 714 710.15 714.02 22.62 21.35 22.61
41 1700 698 684.05 698.01 19.03 19.05 19.04
42 1800 672 667.83 671.97 18.62 18.39 18.62
43 1900 648 665.15 648.09 19.86 19.78 18.81
44 2000 692 679.42 691.96 20.97 20.99 20.97
45 2100 728 712.58 727.99 22.46 22.38 22.46
46 2200 764 763.64 763.97 21.40 21.67 21.40
47 2300 815 827.67 815.14 21.45 21.22 21.45
48 2400 907 896.68 906.96 21.27 21.05 19.68

49 1300

SFB30

841 844.96 840.94 22.04 22.12 22.04
50 1400 803 806.92 803.07 21.91 21.75 21.91
51 1500 780 771.92 779.96 18.07 18.28 18.07
52 1600 755 742.16 755.00 18.01 17.72 18.01
53 1700 737 720.03 737.00 19.10 19.38 19.1
54 1800 718 708.14 718.00 20.76 20.58 20.76
55 1900 687 709.35 709.08 22.26 21.12 22.26
56 2000 721 726.38 720.99 21.19 21.36 21.19
57 2100 773 761.01 772.98 21.49 21.48 21.31
58 2200 807 812.56 806.99 21.16 21.54 20.70
59 2300 856 876.57 856.10 21.51 21.45 20.84
60 2400 951 945.18 950.89 20.84 20.97 20.84
MAPE 1.4687 0.4101 1.8148 0.7929
R2 0.9906 0.9961 0.9808 0.9879
ELM modelling is beneficial for biodiesel research, and it can
be applied to various types of biodiesel and biodiesel blends.
Moreover, our study found that all sterculia foetida biodiesel–
iesel blends investigated qualify as an alternative fuel in diesel
8342
engines. SFB5 was superior among the blended fuel and even
performed much better than diesel as an emission reduction fuel.

Preheating the biodiesel–diesel blend before the blends were
introduced into the diesel engine and varied inlet air temperature
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Table 6
Experimental design matrix and experiment result for engine emission.
Run Speed

(rpm)
Fuel Emission

CO CO2 NOx HC Smoke opacity

Experi-
ment

Prediction Experi-
ment

Prediction Experi-
ment

Prediction Experi-
ment

Prediction Experi-
ment

Prediction

ANN ELM ANN ELM ANN ELM ANN ELM ANN ELM

1 1300

Diesel

0.181 0.185 0.181 2.83 2.83 2.83 152 160.11 152.01 37.73 35.544 37.73 22.61 21.99 20.83
2 1400 0.171 0.174 0.171 2.9 2.91 2.9 160 165.08 163.16 36.9 36.903 36.98 21.93 21.36 21.92
3 1500 0.162 0.163 0.162 3 2.99 2.99 177 177.63 176.99 35.86 35.211 33.86 20.57 20.48 20.57
4 1600 0.151 0.153 0.151 3.07 3.05 3.07 182.3 189.8 182.31 34.31 32.282 34.31 19.57 19.32 19.57
5 1700 0.143 0.142 0.143 3.1 3.1 3.1 194.4 194.5 195.34 33.18 35.179 33.18 18.11 17.87 18.11
6 1800 0.132 0.13 0.132 3.12 3.15 3.12 196 196.37 201.96 32.89 32.888 34.52 15.23 16.25 15.23
7 1900 0.121 0.121 0.121 3.12 3.12 3.12 201 200.48 209.8 30.82 30.82 30.72 14.92 15.11 14.92
8 2000 0.114 0.117 0.114 2.91 2.92 2.97 222 211.12 222 31.53 31.533 31.53 15.95 16.02 15.95
9 2100 0.115 0.118 0.114 2.85 2.83 2.85 238.9 230.34 235.09 32.96 32.963 32.85 16.58 16.72 16.58
10 2200 0.117 0.119 0.117 2.8 2.83 2.8 247.7 252.54 247.7 33.43 33.432 33.43 17.06 17.21 17.06
11 2300 0.12 0.121 0.12 2.81 2.86 2.81 255.8 268.63 255.76 34.78 36.781 34.561 18.28 18.12 17.79
12 2400 0.124 0.122 0.124 2.89 2.9 2.89 268.1 276.77 262.66 35.62 35.618 35.52 18.7 18.57 18.7

13 1300

SFB5

0.18 0.18 0.18 2.89 2.89 2.85 222.4 225.06 222.39 35.22 38.22 35.56 21.07 21.85 20.91
14 1400 0.17 0.169 0.173 2.98 2.98 2.99 231.2 230.22 231.2 34.51 34.509 34.513 20.74 21.12 20.74
15 1500 0.16 0.158 0.16 3.06 3.06 3.06 240.5 242.03 242.67 33.36 33.358 33.46 19.83 20.13 19.83
16 1600 0.149 0.147 0.149 3.13 3.13 3.12 253 251.06 253 32.59 30.588 32.77 18.84 18.85 19.04
17 1700 0.137 0.134 0.138 3.16 3.19 3.16 264 252.17 263.99 31.23 31.7 31.231 17.59 17.29 17.58
18 1800 0.125 0.12 0.125 3.21 3.23 3.21 257 250.5 256.99 30.95 30.945 31.55 14.71 15.57 14.72
19 1900 0.111 0.111 0.111 3.23 3.21 3.23 246 250.69 246.02 30.18 28.18 30.58 14.46 14.34 14.46
20 2000 0.111 0.109 0.111 2.99 3 2.99 258 256.82 257.99 31.05 31.048 31.35 14.85 15.14 14.85
21 2100 0.113 0.112 0.114 2.91 2.89 2.87 272 271.54 272 31.42 30.419 31.421 15.69 15.78 15.53
22 2200 0.114 0.115 0.116 2.84 2.89 2.84 286 290.4 285.99 32.16 32.64 31.52 16.51 16.12 16.51
23 2300 0.12 0.117 0.12 2.85 2.9 2.89 297 304.1 297.03 33.05 33.047 33.05 17.06 17.16 17.06
24 2400 0.122 0.12 0.122 2.93 2.93 2.93 315 309.74 314.98 34.96 34.958 36.24 17.95 17.99 17.95

25 1300

SFB10

0.176 0.175 0.176 2.78 2.8 2.78 238.6 236.2 238.6 44.36 44.359 44.36 24 23.8 23.99
26 1400 0.168 0.164 0.17 2.87 2.87 2.87 244.16 243.02 244.17 43.33 43.326 43.332 22.72 22.96 22.72
27 1500 0.153 0.153 0.153 2.97 2.94 2.97 259.23 256.83 259.23 42.96 42.96 42.96 21.58 21.84 21.49
28 1600 0.139 0.141 0.139 3.01 3.01 3.01 265.3 266.26 265.31 41.86 41.862 40.36 20.84 20.41 20.84
29 1700 0.126 0.126 0.126 3.07 3.07 3.07 270.06 267.56 270.06 40.53 40.53 40.53 19.46 18.71 19.46
30 1800 0.108 0.111 0.108 3.08 3.11 3.08 266.8 265.93 266.79 38.33 38.333 37.58 16.42 16.87 16.42
31 1900 0.099 0.102 0.099 3.08 3.09 3.08 251.83 265.59 251.85 37.8 37.803 36.88 15.15 15.52 15.67
32 2000 0.104 0.102 0.103 2.86 2.89 2.94 263.26 270.46 263.26 36.53 36.528 36.559 16.43 16.19 16.39
33 2100 0.106 0.107 0.105 2.79 2.76 2.79 285.4 283.62 285.39 35.4 35.401 35.369 16.92 16.77 16.92
34 2200 0.11 0.111 0.11 2.74 2.75 2.74 303.93 301.8 303.93 36.7 36.701 36.7 17.38 16.87 17.38
35 2300 0.114 0.114 0.115 2.75 2.75 2.75 327.26 315.69 327.27 38.23 38.23 38.231 18.11 17.84 18.36
36 2400 0.116 0.117 0.116 2.82 2.78 2.82 339.6 321.3 339.59 39.03 39.031 39.53 18.79 18.94 18.79

37 1300

SFB20

0.168 0.165 0.167 2.67 2.68 2.67 250.13 248.72 250.12 47.3 47.297 46.259 25.22 25.32 25.21
38 1400 0.158 0.155 0.161 2.72 2.71 2.72 257.65 257.37 257.66 46.933 46.93 45.936 24.85 24.77 24.75
39 1500 0.144 0.143 0.144 2.77 2.76 2.76 268.98 271.15 267.69 45.766 45.765 45.726 23.75 24 23.76
40 1600 0.124 0.128 0.124 2.84 2.82 2.84 279.52 278.87 279.53 45.533 45.537 45.533 22.88 22.99 22.88
41 1700 0.111 0.11 0.111 2.88 2.89 2.88 286.9 280.7 286.88 44.833 44.832 45.833 21.66 21.82 21.66
42 1800 0.096 0.095 0.096 2.95 2.96 2.95 280.83 281.4 280.85 41.66 41.659 41.66 21 20.63 20.99
43 1900 0.089 0.09 0.089 3.01 2.98 3 273.86 283.56 280.04 40.26 40.261 40.26 20.44 19.95 20.44
44 2000 0.095 0.092 0.095 2.8 2.8 2.8 287.2 289.62 287.19 39.93 39.927 39.73 21.58 21.28 21.57
45 2100 0.102 0.099 0.102 2.71 2.68 2.71 298.2 302.65 298.2 40.53 40.527 40.33 22.03 22.65 22.04
46 2200 0.107 0.106 0.107 2.66 2.66 2.66 315.86 321.57 315.86 41.56 41.559 42.46 23.26 23.12 23.26
47 2300 0.111 0.11 0.112 2.65 2.67 2.68 340.23 337.86 340.24 41.76 41.759 39.54 24.28 24.33 24.52
48 2400 0.113 0.113 0.113 2.72 2.71 2.72 353.3 345.45 353.29 42.9 42.9 42.53 24.97 26.26 24.96

49 1300

SFB30

0.153 0.157 0.153 2.57 2.56 2.56 261.06 261.02 261.06 51.06 51.064 51.02 27.18 27.17 27.18
50 1400 0.148 0.146 0.148 2.57 2.58 2.57 275.63 272.74 275.62 50.26 50.258 51.26 26.69 26.7 26.69
51 1500 0.134 0.131 0.133 2.61 2.61 2.61 282 286.42 282.02 49.8 49.797 49.779 25.43 25.94 25.43
52 1600 0.11 0.113 0.11 2.67 2.66 2.67 292.16 292.31 292.15 48.3 48.303 48.3 24.71 24.88 24.71
53 1700 0.097 0.095 0.097 2.72 2.72 2.7 298.03 293.01 296.41 46.03 46.028 46.03 23.97 23.61 23.96
54 1800 0.087 0.084 0.087 2.79 2.79 2.79 290.83 292.58 290.83 42.9 42.897 42.9 22.32 22.31 22.32
55 1900 0.078 0.081 0.078 2.86 2.85 2.86 286.13 293.34 286.13 41.3 41.303 41.23 21.12 21.46 21.12
56 2000 0.081 0.084 0.081 2.72 2.72 2.72 294.4 298.02 294.39 42.4 42.403 42.6 22.32 22.51 22.32
57 2100 0.092 0.092 0.092 2.65 2.61 2.65 310.23 310.28 312.54 43.3 43.3 43.5 23.96 23.8 23.96
58 2200 0.101 0.101 0.1 2.59 2.62 2.59 333.76 330.84 333.76 44.81 43.51 43.807 24.03 23.87 24.03
59 2300 0.107 0.107 0.107 2.58 2.64 2.58 353.73 351.99 353.73 45.33 42.53 45.23 25.27 24.37 25.06
60 2400 0.109 0.111 0.108 2.68 2.69 2.68 368.63 364.96 368.62 45.76 45.762 45.758 25.81 25.86 25.81
MAPE 1.5124 0.2137 0.5618 0.1925 1.6427 0.3102 0.2549 0.1325 1.5363 0.3565
R2 0.993 0.999 0.985 0.991 0.984 0.998 0.977 0.988 0.987 0.995
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Fig. 9. Comparison of engine performance experimental and predicted value.
as our limitation in this study. We hope to include these two
tudies in our future studies to discover the appropriate working
emperature for biodiesel and the inlet air to reduce emission
haracteristics further. Besides, exhaust gas recirculation (EGR)
an be coupled with our engine to study the function of EGR
n reducing NOx emission. We can also perform similar studies
n other non-edible oil and other feedstocks available in our
ountry or any tropical country using our prediction method
nd modelling. In addition, the technoeconomy of the current
tudy can be performed to investigate the economic performance
f utilising sterculia foetida biodiesel as one of the non-edible

resources for the biodiesel industry.
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