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and conflict coefficients will degrade into traditional coefficients. The complex conflict coefficient satisfies nonnegativity, symmetry,
boundedness, extreme consistency, and insensitivity to refinement properties, which are desirable for conflict measurement. Several
numerical examples validate through comparisons the superiority of the complex conflict coefficient. In this context, a weighted
discounting multisource information fusion algorithm, which is called the CECC-WDMSIF, is designed based on the CECC to improve the
performance of CET-based expert systems. By applying the CECC-WDMSIF method to the pattern classification of diverse real-world
datasets, it is demonstrated that the proposed CECC-WDMSIF outperforms well-known related approaches with higher classification
accuracy and robustness.
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1 INTRODUCTION

The issue of approaching uncertainty reasoning in
knowledge-based systems with an interpretable manner has
attracted much attention [1–3]. To date, various methods
have been presented, such as extended fuzzy sets [4], ev-
idence theory [5], Z numbers [6], and others, which are
broadly used in uncertain expert systems [7]. Among these
methods, Dempster–Shafer evidence (DSE) theory [8, 9] has
several satisfying traits for handling uncertainty in expert
systems, and it is applied in a number of fields of data
engineering, such as reliability evaluation [10], network
community detection [11, 12], metro systems control [13],
clustering [14], and classification [15]. Evidence theory can
quantitatively represent uncertainty [16], while Dempster’s
combination rule (DCR) follows the commutative and as-
sociative laws [17]. In addition, the fused result of DCR
is fault-tolerant, and uncertainty can also be decreased
after DCR. As a result, DSE theory can better support
decision making [18]; therefore, this theory has been well
investigated and extended in studies on evidential reason-
ing [19, 20], belief rule-based systems [21], evidence reliabil-
ity evaluation [22], etc.
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It is well known that the complex-valued model has
stronger presentational capabilities [23, 24]; for example,
its novelty is manifested in the phase of the grade of
membership with the physical meaning as a manner of
expressing cyclical phenomena, which is significant in in-
corporating more information. Various traditional theories
have been generalized, such as complex fuzzy sets [23], com-
plex intuitionistic fuzzy sets [25], and complex Pythagorean
fuzzy sets [26], including the following applications: pattern
recognition [26, 27], quantum information fusion [28], and
parrondo effects [29]. Therefore, in recent work on complex
evidence theory (CET) proposed by Xiao [30, 31], the new
concepts of complex mass functions (CMFs) or CBBAs are
defined on the basis of the complex plane. Naturally, the
complex-value-modeled CET [30, 31] inherits the advan-
tages of traditional evidence theory. In addition, due to the
superiority of CBBAs with the additional dimension of the
phase of complex mass function, CET can similarly express
data fluctuations at a given time phase, and handle uncer-
tainty when an event occurs simultaneously with changes
in the periodicity of the data [25]. In particular, when
CBBAs are without phase terms and turn into classic BBAs,
CET degrades to DSE theory under the condition with the
conflict coefficient |K| less than 1 (Details will be illustrated
in Section 2). Therefore, CET provides a more promising
approach to uncertainty reasoning in expert systems than
that in DSE [28].

In real-world applications of data engineering, conflict-
ing information is inevitable. Accordingly, conflict manage-
ment in evidence theory-based expert systems plays an
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important role in the performance of uncertainty reasoning.
In traditional DSE theory, it is well known that the con-
flict coefficient k [8, 9] combines the mass assigned to the
empty set. k takes into account the conflict among focal ele-
ments while ignoring the global consistency among different
pieces of evidence. To address this issue, lots of studies put
forward potential solutions from different perspectives. For
instance, some work presented different kinds of distance
functions [32–34]; some researchers came up with infor-
mation quality [35]; other methods, such as entropy [36]
and divergence measures [37, 38], have been introduced to
quantify the consistency of the evidence; other conflict man-
agement methods based on ordered visibility graph [39],
networks [40], and autoencoder-K-means [41] are also pre-
sented; another study also discussed the conflict measure
viewed from correlation coefficients [42]. In addition to CET
theory, several research focus on conflict management based
on distance. For example, Xiao [43] generalized Jousselme
et al.’s [32] distance measure for complex mass functions.
Although the abovementioned conflict measures are effec-
tive for classic DSE theory-based expert systems, they are
difficult to handle the conflict problem in CET-based expert
systems. In summary, the conflict management in CET is
still in an early research stage with various challenges.

In this paper, we address this problem from the per-
spective of correlation coefficient, where a complex eviden-
tial correlation coefficient (CECC) is proposed that mea-
sures the correlation coefficient between CBBAs for conflict
management in CET-based expert systems. On the basis
of the CECC, a complex conflict coefficient is then pre-
sented to measure the conflict between CBBAs. We next
analyze and prove that the complex conflict coefficient
has satisfying nonnegativity, symmetry, boundedness, ex-
treme consistency, and insensitivity to refinement proper-
ties for conflict measurement. In particular, when CBBAs
turn into classic BBAs, the correlation and conflict coef-
ficients degrade into traditional coefficients. The complex
conflict coefficient is also compared with related works,
and the results validate the proposed method’s superiority.
Moreover, a weighted discounting multisource information
fusion algorithm, which is called the CECC-WDMSIF, is
designed based on the CECC to improve the performance of
CET-based expert systems. By applying the CECC-WDMSIF
method to the pattern classification of real-world datasets,
we demonstrate that the proposed CECC-WDMSIF has ad-
vantages for diverse datasets and outperforms well-known
related works with higher classification accuracy and ro-
bustness.

The main contributions are summarized below.

• This is the first work to study the correlation and
conflict coefficients between complex mass functions
in CET. This work proves that the complex conflict
coefficient has satisfying nonnegativity, symmetry,
boundedness, extreme consistency, and insensitivity
to refinement properties, which are desirable for
conflict measurement in CET.

• On the basis of the CECC, a weighted discounting
multisource information fusion algorithm, which is
called the CECC-WDMSIF, is first designed to im-
prove the performance of CET-based expert systems.

Through a weighted discounting process for complex
evidence, the CECC-WDMSIF can well handle the
influence of conflicting data on CET-based expert
systems to improve the decision level with a better
robustness.

• To demonstrate the effectiveness of the proposed
CECC-WDMSIF, it is applied to the pattern classi-
fication of real-world datasets to validate its prac-
ticability and superiority. The experimental results
illustrate that the outcomes of the proposed CECC-
WDMSIF offer the highest classification accuracy and
robustness on diverse real-world datasets compared
to eleven well-known related methods.

The rest of this paper is organized as follows: The CET
is introduced in Section 2. The CECC and conflict coeffi-
cient between CBBAs are proposed in Section 3. Section 4
compares the proposed complex conflict coefficient with
related works to demonstrate its superiority. In Section 5,
a weighted discounting multisource information fusion al-
gorithm is designed based on the CECC. In Section 6, the
CECC-WDMSIF algorithm is applied to pattern classifica-
tion to validate its practicability and superiority. Finally,
Section 7 concludes this work.

2 COMPLEX EVIDENCE THEORY

To handle uncertainty problems in expert systems,
many methods have been presented [44–47]. Among them,
CET [30, 31] is a useful method that is briefly introduced
below.

Definition 1 (Frame of discernment) Let Ω be a set of mutually
exclusive and collective nonempty events. The frame of discern-
ment (FOD) is defined by Ω = {C1, C2, . . . , Cp, . . . , Cn}.

Definition 2 (Hypothesis) The power set of Ω is denoted by

2Ω = {∅, {C1}, {C2}, . . . , {Cn}, {C1, C2}, . . . , {C1, C2, . . . ,

Cn}, . . . ,Ω},
(1)

and ∅ is an empty set. Aj ∈ 2Ω is defined as a proposition or
hypothesis.

Definition 3 (Complex mass function) A CMF M in FOD Ω is
modeled by a complex number, which is represented as a mapping:

M : 2Ω → C, (2)

which satisfies

M(∅) = 0,

M(Aj) = m(Aj)e
iθ(Aj), Aj ⊆ Ω∑

Aj∈2Ω

M(Aj) = 1,
(3)

where i =
√
−1; m(Aj) ∈ [0, 1] represents the magnitude of

M(Aj), and θ(Aj) represents a phase of M(Aj).

CMF M is also called a CBBA or complex evidence and
is a generalized model of a classic basic belief assignment
(BBA) in DSE theory. Since a BBA can effectively model
uncertainty, its operations have been well studied, such as
probability transformation [39], information fractal dimen-
sion [48] and information volume [49, 50].
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In Eq. (3), M(Aj) is also expressed in another form:

M(Aj) = x+ yi, Aj ∈ 2Ω (4)

with √
x2 + y2 ∈ [0, 1]. (5)

Then, it can be deduced that

m(Aj) =
√
x2 + y2, and θ(Aj) = arctan

( y
x

)
, (6)

in which x = m(Aj) cos(θ(Aj)) and y = m(Aj) sin(θ(Aj)).
In addition,

|M(Aj)|2 = M(Aj)M̂(Aj) = x2 + y2, (7)

where M̂(Aj) = x− yi is the complex conjugate of M(Aj).
Therefore,

m(Aj) = |M(A)|, and θ(Aj) = ∠M(Aj), (8)

in which when M(Aj) is a positive real number, M(Aj) =
m(Aj) = |x|.

For Aj ∈ 2Ω, when |M(Aj)| > 0, Aj is called a focal
element of M. The value of |M(Aj)| expresses the support
degree for Aj .

Definition 4 (Complex evidence combination rule) Let Mh and
Mk be two independent CBBAs in FOD Ω. The CECR, which is
denoted as M = Mh ⊕Mk, is defined by

M(A) =

{ 1
1−K

∑
Ai∩Aj=A

Mh(Ai)Mk(Aj), A ̸= ∅,

0, A = ∅,
(9)

with
K =

∑
Ai∩Aj=∅

Mh(Ai)Mk(Aj), (10)

where Ai,Aj ∈ 2Ω, and K is the conflict coefficient between Mh

and Mk. Note that the CECR is only feasible when K ̸= 1.

3 THE CORRELATION AND CONFLICT COEFFI-
CIENTS FOR COMPLEX MASS FUNCTIONS

In this section, a CECC is first proposed to measure the
correlation coefficients among CBBAs, as inspired by [42].
Additionally, the properties of the CECC are analyzed and
proven. Based on the CECC, a complex conflict coefficient
is then defined. We find that the complex conflict coefficient
has satisfying nonnegativity, symmetry, boundedness, ex-
treme consistency, and insensitivity to refinement properties
for conflict measurement.

Definition 5 (CECC between CBBAs) Let Mh and Mk be two
CBBAs on FOD Ω, where Ai and Aj are the hypotheses of
Mh and Mk, respectively; M̂h(Ai) and M̂k(Aj) are complex
conjugates of Mh(Ai) and Mk(Aj), respectively. The CECC
between CBBAs Mh and Mk, which is denoted as C(

−→
Mh,

−→
Mk),

is defined by

C(
−→
Mh,

−→
Mk) =

√
⟨
−→
Mh,

−→
Mk⟩⟨

−→
Mk,

−→
Mh⟩

∥
−→
Mh∥∥

−→
Mk∥

, (11)

where ⟨·⟩ is the inner product

⟨
−→
Mh,

−→
Mk⟩ =

−→
Mh ·

−→
Mk =

2n−1∑
i=1

2n−1∑
j=1

Mh(Ai)M̂k(Aj)
|Ai ∩ Aj |
|Ai ∪ Aj |

,

⟨
−→
Mk,

−→
Mh⟩ =

−→
Mk ·

−→
Mh =

2n−1∑
j=1

2n−1∑
i=1

Mk(Aj)M̂h(Ai)
|Aj ∩ Ai|
|Aj ∪ Ai|

;

∥ · ∥ is the norm of the CBBA

∥
−→
M∥2 = ⟨

−→
M,

−→
M⟩ =

2n−1∑
i=1

2n−1∑
j=1

M(Ai)M̂(Aj)
|Ai ∩ Aj |
|Ai ∪ Aj |

.

For Eq. (11), since CBBAs Mh and Mk are complex-
valued, we can learn that

⟨
−→
Mh,

−→
Mk⟩ ̸= ⟨

−→
Mk,

−→
Mh⟩. (12)

When the belief values of CBBAs Mh and Mk convert
into positive real numbers from complex numbers, we have
M(A) = m(A) = x, while y = 0, such that

⟨
−→
Mh,

−→
Mk⟩ = ⟨

−→
Mk,

−→
Mh⟩ =

2n−1∑
i=1

2n−1∑
j=1

mh(Ai)mk(Aj)
|Ai ∩ Aj |
|Ai ∪ Aj |

= ⟨−→mh,
−→mk⟩.

(13)
In this case, because

∥
−→
M∥2 =

2n−1∑
i=1

2n−1∑
j=1

m(Ai)m(Aj)
|Ai ∩ Aj |
|Ai ∪ Aj |

= ∥−→m∥, (14)

C(
−→
Mh,

−→
Mk) can then be expressed in the following form:

C(
−→
Mh,

−→
Mk) =

⟨
−→
Mh,

−→
Mk⟩

∥
−→
Mh∥∥

−→
Mk∥

=
⟨−→mh,

−→mk⟩
∥−→mh∥∥−→mk∥

. (15)

From Eq. (15), it is obvious that when CBBAs are de-
graded from complex numbers into positive real numbers,
the CECC degrades into Jiang’s correlation coefficient [42].

Property 1 The CECC is a generalization of the classic correla-
tion coefficient, i.e., that of Jiang [42].

Theorem 1 The CECC has nonnegativity, nondegeneracy, sym-
metry and boundedness properties.

Property 2 Let Mh, Mk and M3 be three arbitrary CBBAs:
P 2.1 Nonnegativity: C(Mh,Mk) ≥ 0.
P 2.2 Nondegeneracy: C(Mh,Mk) = 1 iff Mh = Mk.
P 2.3 Symmetry: C(Mh,Mk) = C(Mk,Mh).
P 2.4 Boundedness: 0 ≤ C(Mh,Mk) ≤ 1.

The proofs are provided in the Appendix.
Next, several numerical examples illustrate the CECC’s

properties.

Example 1 Consider two CBBAs, Mh and Mk, in FOD Ω =
{A1,A2}:

Mh :Mh({A1}) = 0.7280ei arctan(−0.2857),

Mh({A2}) = 0.1803ei arctan(0.6667),

Mh({A1,A2}) = 0.1803ei arctan(0.6667);

Mk :Mk({A1}) = 0.7280ei arctan(−0.2857),

Mk({A2}) = 0.1803ei arctan(0.6667),

Mk({A1,A2}) = 0.1803ei arctan(0.6667).

From Example 1, we can see that Mh and
Mk have the same CBBAs, where Mh({A1}) =
Mk({A1}) = 0.7280ei arctan(−0.2857), Mh({A2}) =
Mk({A2}) = 0.1803ei arctan(0.6667), and Mh({A1,A2}) =
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(a) ψ = 0.1 and ω = {A2}.
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(b) ψ = 0.1 and ω = {A1,A2}.
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(c) ψ = 0 and ω = {A2}.
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(d) ψ = 0 and ω = {A1,A2}.

Fig. 1. Comparisons of different correlation coefficient measures under the value and subset variations of focal elements in Example 3.

Mk({A1,A2}) = 0.1803ei arctan(0.6667). Additionally, |Mh|
and |Mk| have the same value of 0.7280 to support A1.

Next, we calculate the CECC between Mh and Mk:

C(Mh,Mk) = 1.

This result shows that when Mh and Mk are the same,
the CECC measure is one, which demonstrates the expected
behavior.

Example 2 Consider two CBBAs, Mh and Mk, in FOD Ω =
{A1,A2}:

Mh :Mh({A1}) = 0.7280ei arctan(−0.2857),

Mh({A2}) = 0.1803ei arctan(0.6667),

Mh({A1,A2}) = 0.1803ei arctan(0.6667);

Mk :Mk({A1}) = 0.1414ei arctan(1.0000),

Mk({A2}) = 0.7762ei arctan(−0.2667),

Mk({A1,A2}) = 0.1803ei arctan(0.6667).

In Example 2, it is obvious that Mh and
Mk have different CBBAs, where Mh({A1}) =
0.7280ei arctan(−0.2857) and Mk({A1}) =
0.1803ei arctan(0.6667); Mh({A2}) = 0.1803ei arctan(0.6667)

and Mk({A2}) = 0.7762ei arctan(−0.2667); and
Mh({A1,A2}) = 0.1414ei arctan(1.0000) and
Mk({A1,A2}) = 0.1803ei arctan(0.6667).

Additionally, |Mh| is 0.7280 to support A1, while |Mk| is
0.7762 to support A2.

Then, we calculate the following:

C(Mh,Mk) = 0.3948.

This result describes the CECC’s expected behavior.
When two CBBAs are not equal to one another, the CECC
measure is greater than zero.

Furthermore, we calculate the CECC between Mk and
Mh:

C(Mk,Mh) = 0.3948.

It is obvious that C(Mh,Mk) = C(Mk,Mh), which
verifies the symmetry property of the CECC.

Example 3 Consider the two CBBAs of Mh and Mk in FOD
Ω:

Mh : Mh({A1}) = ϕ+ ψi,Mh(ω) = 1− ϕ− ψi;

Mk : Mk({A1}) = 1− ϕ+ ψi,Mk(ω) = ϕ− ψi.

In Example 3, Mh and Mk vary in accordance with ϕ
and ω. In this example, ϕ ∈ [0, 1] and ψ = 0.1. ω is {A2} or
{A1,A2}. The results are described in Figs. 1(a) and 1(b).

When ϕ = 0.5, we have Mh({A1}) = Mk({A1}) =
0.5 + 0.1i and Mh(ω) = Mk(ω) = 0.5 − 0.1i. Regardless
of the variation in ω as {A2} or {A1,A2}, the correlation
coefficient measurements C(Mh,Mk) still have the largest
value of 1 since Mh = Mk, which is totally correlated.
Therefore, the CECC’s nondegeneracy property is verified.

Conversely, from Figs. 1(a) and 1(b), it is obvious that
C(Mh,Mk) ≥ 0 and C(Mh,Mk) ≤ 1, which verifies the
CECC’s boundedness property.

Additionally, when ψ = 0, Mh and Mk degrade
into positive real numbers from complex numbers so that
Mh({A1}) = Mk(ω) = ϕ and Mh(ω) = Mk({A1}) = 1−ϕ.
In this situation, regardless of how ω changes as {A1}
or {A1,A2}, we notice that the proposed C(Mh,Mk) is
exactly the same as Jiang’s correlation coefficient method, as
shown in Figs. 1(c) and 1(d). This result verifies that when
CBBAs are degraded from complex numbers into positive
real numbers, the CECC degrades into Jiang’s correlation
coefficient.

Specifically, when ϕ = 0 and ω = {A2}, we
have Mh({A1}) = Mk({A2}) = 0 and Mh({A2}) =
Mk({A1}) = 1; when ϕ = 1 and ω = {A2}, we
have Mh({A1}) = Mk({A2}) = 1 and Mh({A2}) =
Mk({A1}) = 0. In the above two cases, the CECC and
Jiang’s method obtain a result of 0. This seems reasonable
because under the case where ω = {A2}, the subsets be-
tween Mh({A1}) and Mk({A2}) or between Mk({A1}) and
Mh({A2}) have no intersection. Conversely, when ϕ = 0
and ω = {A1,A2}, we have Mh({A1}) = Mk({A1,A2}) =
0 and Mh({A1,A2}) = Mk({A1}) = 1; and when ϕ = 1
and ω = {A1,A2}, we have Mh({A1}) = Mk({A1,A2}) =
1 and Mh({A1,A2}) = Mk({A1}) = 0. In these two
cases, the CECC and Jiang’s method obtain the result
of 0.5. This also seems reasonable because in the case
where ω = {A1,A2}, the subsets between Mh({A1}) and
Mk({A1,A2}) or between Mk({A1}) and Mh({A1,A2})
intersect at {A1}. Therefore, the correlation coefficient mea-
sures are equal to 0.5 instead of 0.

When ϕ changes from 0 to 0.5, regardless of whether ω =
{A2} or ω = {A1,A2}, C(m1,m2) is gradually increasing,
as shown in Figs. 1(a), 1(b) 1(c) and 1(d). This satisfies the
expected result since Mh and Mk are going to be similar
when ϕ changes from 0 to 0.5. Moreover, as ϕ increases from
0.5 to 1, regardless of whether ω = {A2} or ω = {A1,A2},
C(m1,m2) is gradually decreasing, which is also intuitive,
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because Mh and Mk are increasingly different as ϕ changes
from 0.5 to 1.

Based on Definition 5, the conflict coefficient between
CBBAs is defined as follows.

Definition 6 (Complex conflict coefficient between CBBAs) Let
Mh and Mk be two CBBAs on FOD Ω. The complex conflict
coefficient between CBBAs Mh and Mk, which is denoted as
KCBBA(Mh,Mk), is defined by

KCBBA(Mh,Mk) = 1−C(Mh,Mk)

= 1−

√
⟨
−→
Mh,

−→
Mk⟩⟨

−→
Mk,

−→
Mh⟩

∥
−→
Mh∥∥

−→
Mk∥

.
(16)

Theorem 2 KCBBA has nonnegativity, symmetry, bounded-
ness, extreme consistency, and insensitivity to refinement prop-
erties for conflict measurement [42].

Property 3 P 3.1 Nonnegativity: KCBBA(Mh,Mk) ≥ 0.
P 3.2 Symmetry: KCBBA(Mh,Mk) = KCBBA(Mk,Mh).
P 3.3 Boundedness: 0 ≤ KCBBA(Mh,Mk) ≤ 1.
P 3.4 Extreme consistency: 1) KCBBA(Mh,Mk) = 0 iff Mh

is completely conflicting with Mk such that for the focal elements
Ai and Aj of Mh and Mk, respectively, (∪Ai)∩ (∪Aj) = ∅; 2)
KCBBA(Mh,Mk) = 1 iff Mh is completely nonconflicting with
Mk.

P 3.5 Insensitivity to refinement: the complex conflict co-
efficient measure is insensitive to refinement so that Mh and
Mk are refined from FOD Ω to Ω′, KCBBA(M

Ω
1 ,M

Ω
2 ) =

KCBBA(M
Ω′

1 ,MΩ′

2 ).

Proof (P 3.1)–(P 3.5) are trivial.

When CBBAs Mh and Mk degrade into positive real
numbers from complex numbers, we have y = 0 such that
M(A) = m(A) = x. Through Eq. (15), KCBBA(

−→
Mh,

−→
Mk)

can then be represented as

KCBBA(
−→
Mh,

−→
Mk) = 1− ⟨

−→
Mh,

−→
Mk⟩

∥
−→
Mh∥∥

−→
Mk∥

= 1− ⟨−→mh,
−→mk⟩

∥−→mh∥∥−→mk∥
. (17)

According to Eq. (17), we observe that when the CBBAs
are degraded from complex numbers into positive real num-
bers, the KCBBA degrades into Jiang’s conflict coefficient
kr [42].

Property 4 The complex conflict coefficient KCBBA is a gener-
alization of Jiang’s kr [42].

4 COMPARISON WITH EXISTING METHODS

In this section, we provide five numerical examples
to show different conflict measures’ features and analyze
whether they meet the properties for conflict measurement,
including |K| [30], dCBBA [43], kr [42] and the proposed
KCBBA.

Example 4 Consider two CBBAs, Mh and Mk, in FOD Ω =
{A1,A2,A3,A4}:

Mh : Mh({A1}) = 0.5099ei arctan(0.2000),

Mh({A2}) = 0.5099ei arctan(−0.2000),

Mh({A3}) = 0.0,Mh({A4}) = 0.0;

Mk : Mk({A1}) = 0.0,Mk({A2}) = 0.0,

Mk({A3}) = 0.5099ei arctan(0.2000),

Mk({A4}) = 0.5099ei arctan(−0.2000).

In Example 4, it is obvious that for the focal ele-
ments Ai and Aj of Mh and Mk, respectively, we have
(∪Ai) ∩ (∪Aj) = ∅. This indicates that Mh and Mk are
totally conflicting, such that the conflict grade between Mh

and Mk is taken to be one.

TABLE 1
Conflict measures in Example 4.

CBBAs |K| dCBBA KCBBA

(Mh,Mk) 1 0.7211 1

By analyzing the results in Table 1, it is found that the
conflict values of |K| and KCBBA are 1, which is intuitive.
Conversely, dCBBA generates the value of 0.7211. Therefore,
dCBBA does not meet the extreme consistency property.
Note that kr cannot measure the conflict coefficient between
CBBAs.

Example 5 Consider two CBBAs, Mh and Mk, in FOD Ω =
{A1,A2,A3,A4}:

Mh : Mh({A1}) = 0.2693ei arctan(0.4000),

Mh({A2}) = 0.2693ei arctan(0.4000),

Mh({A3}) = 0.2693ei arctan(−0.4000),

Mh({A4}) = 0.2693ei arctan(−0.4000);

Mk : Mk({A1}) = 0.2693ei arctan(0.4000),

Mk({A2}) = 0.2693ei arctan(0.4000),

Mk({A3}) = 0.2693ei arctan(−0.4000),

Mk({A4}) = 0.2693ei arctan(−0.4000).

In Example 5, obviously, Mh is the same as Mk. This
means that Mh and Mk are totally nonconflicting, where
the conflict between Mh and Mk is taken to be 0.

TABLE 2
Conflict measures in Example 5.

CBBAs |K| dCBBA KCBBA

(Mh,Mk) 0.7900 0 0

By analyzing the results in Table 2, it can be seen that the
conflict degrees calculated by dCBBA and KCBBA are zero,
which achieves the expected result, whereas |K| = 0.79 and
does not meet the extreme consistency property.

Example 6 Consider two CBBAs, Mh and Mk, in Ω =
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(a) ϕ = 0.
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(b) ϕ = 0.1.
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(c) ϕ = 0.3.
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(d) ϕ = 0.5.

Fig. 2. Comparisons of conflict coefficient measures in Example 7.
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(a) ψ = 0.
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(b) ψ = 0.1.
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(c) ψ = 0.3.

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

T
h
e
 c

o
n
fl

ic
t 

m
e
a
s
u
re

s

(d) ψ = 0.5.

Fig. 3. Comparisons of the conflict coefficient measures in Example 8.

{A1,A2} and Ω′ = {A1,A2,A3}, respectively:

Mh : Mh({A1}) = 0.8139ei arctan(0.1875),

Mh({A2}) = 0.2500ei arctan(−0.7500);

Mk : Mk({A1}) = 0.2500ei arctan(−0.7500),

Mk({A2}) = 0.8139ei arctan(0.1875).

In Example 6, consider the same CBBAs Mh and Mk

in different FODs Ω = {A1,A2} and Ω′ = {A1,A2,A3},
respectively. As expected, the conflicts between Mh and Mk

in FODs Ω and Ω′ are taken to be equal.

TABLE 3
Conflict measures in Example 6.

CBBAs |K| dCBBA KCBBA

(Mh,Mk)
Ω 0.6600 0.6708 0.6207

(Mh,Mk)
Ω′

0.6600 0.6708 0.6207

As shown in Table 3, we note that |K| = 0.66, dCBBA =
0.6708, and KCBBA = 0.6207, regardless of whether in Ω or
Ω′. These results meet our expectations, where |K|, dCBBA

and KCBBA satisfy the insensitivity to refinement property.
Accordingly, the three examples show the disadvantages

of well-known related works. The proposed KCBBA satis-
fies the properties for conflict measurement, whereas |K|
and dCBBA do not meet the extreme consistency property.
Next, we discuss two examples to show the effectiveness of
KCBBA.

Example 7 Consider two CBBAs, Mh and Mk, in FOD Ω =
{A1,A2, . . . ,A19}:

Mh : Mh(Ω) = 0.1,Mh({A2,A3,A4}) = 0.05 + ϕi,

Mh({A7}) = 0.05,Mh(ωi) = 0.8− ϕi;

Mk : Mk({A1,A2,A3,A4,A5}) = 1.

TABLE 4
The variation in ωi.

i ωi

1 {A1}
2 {A1,A2}
3 {A1,A2,A3}
4 {A1,A2,A3,A4}
5 {A1,A2,A3,A4,A5}
6 {A1,A2,A3,A4,A5,A6}
7 {A1,A2,A3,A4,A5,A6,A7}
8 · · ·
19 {A1,A2,A3,A4,A5, . . . ,A19}

In Example 7, the ωi of Mh varies from {A1} to
{A1, . . . ,A19} in Table 4. Here, Mk has one focal element:
Mk({A1,A2,A3,A4,A5}) = 1. The expected result in this
example should be that when the subset ωi of Mh becomes
{A1,A2,A3,A4,A5}, the conflict degree between CBBAs
Mh and Mk is taken to be the minimal value.

When ϕ = 0, which means that the CBBAs are degraded
from complex numbers into positive real numbers, KCBBA

degrades into Jiang’s conflict coefficient kr . Therefore, in
this situation, KCBBA has the same conflict measure as
Jiang’s kr , as shown in Fig. 2(a). When ϕ varies from 0.1
to 0.3 and 0.5, kr cannot measure the conflict coefficient
between CBBAs. dCBBA and the proposed KCBBA can
well measure the conflict degree between CBBAs, while |K|
always maintains a value of 0.05, which cannot distinguish
the conflict, regardless of how the ωi changes and ϕ varies,
as shown in Figs. 2(a), 2(b), 2(c) and 2(d).

From the result in Fig. 2, when the ωi of Mh varies
from {A1} to {A1,A2,A3,A4,A5}, dCBBA and KCBBA

become increasingly smaller. In particular, when i = 5,
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Mh has the subset {A1,A2,A3,A4,A5}. dCBBA achieves its
minimum values of 0.1315, 0.1427, 0.2119 and 0.3070 when ϕ
is equal to 0, 0.1, 0.3 and 0.5, respectively. KCBBA achieves
its minimum values of 0.0094, 0.0257, 0.0688 and 0.1259
when ϕ is equal to 0, 0.1, 0.3 and 0.5, respectively. As ωi

increases from {A1,A2,A3,A4,A5} to {A1, . . . ,A19}, the
conflict degrees generated by dCBBA and KCBBA increase,
which achieves the expected result.

TABLE 5
The variation in ξi.

i ξi

1-10 ωi

11 {A2,A3,A4,A5,A6,A7,A8,A9,A10}
12 {A3,A4,A5,A6,A7,A8,A9,A10}
13 {A4,A5,A6,A7,A8,A9,A10}
14 {A5,A6,A7,A8,A9,A10}
15 {A6,A7,A8,A9,A10}
16 {A7,A8,A9,A10}
17 {A8,A9,A10}
18 {A9,A10}
19 {A10}

Example 8 Consider two CBBAs, Mh and Mk, in FOD Ω =
{A1,A2, . . . ,A19}:

Mh : Mh(Ω) = 0.1− ψi,Mh({A2,A3,A4}) = 0.05,

Mh({A7}) = 0.05,Mh(ξi) = 0.8 + ψi;

Mk : Mk({A10}) = 1.

In Example 8, the subset ξi of Mh changes from ξ1 to
ξ19 in Table 5. As i = 1, 2, . . . , 10, ξi is equal to ωi. When
i changes from 11 to 19, the ξi of Mh is trimmed from
its first element until it becomes {A10}. Here, Mk has one
focal element: Mk({A10}) = 1. The expected result in this
example should be that when subset ξi of Mh becomes
{A10}, the conflict degree between CBBAs Mh and Mk

should be the minimal value.
When ψ = 0, which indicates that the CBBAs are de-

graded from complex numbers into positive real numbers,
KCBBA degrades into Jiang’s conflict coefficient kr , where
KCBBA has the same conflict measure as kr, as shown in
Fig. 3(a). When ϕ varies from 0.1 to 0.3 and 0.5, kr can-
not measure the conflict coefficient between CBBAs. From
Figs. 3(a), 3(b), 3(c) and 3(d), dCBBA and the proposed
KCBBA are preferred to measure the conflict between CB-
BAs rather than |K| since |K| always maintains a certain
value as i changes from 1 to 9 and from 10 to 19.

When i increases to 10, since Mh includes {A10}, the
conflict measures are taken to be smaller than those of other
cases i = 1, . . . , 9. From Fig. 3, we can see that dCBBA and
KCBBA satisfy the expected result. As ξi changes from 11
to 19, because {A2, . . . ,A10} gradually decreases to {A10},
the dCBBA and KCBBA methods have increasingly smaller
conflict degrees. In particular, when i = 19, dCBBA achieves
its minimum values of 0.1658, 0.1772, 0.2531 and 0.3678
when ψ is equal to 0, 0.1, 0.3 and 0.5, respectively; KCBBA

achieves its minimum values of 0.0128, 0.0391, 0.0957 and
0.1508 when ψ is equal to 0, 0.1, 0.3 and 0.5, respectively.

TABLE 6
Characteristics of different conflict measures.

Situations
Conflict measures

|K| [30] dCBBA [43] kr [42] KCBBA

Real number X X X X
Complex number X X % X

Nonnegativity X X X X
Symmetry X X X X
Extreme consistency % % X X
Insensitivity to refinement X X X X

Accordimgly, from Examples 7 and 8, it is obvious that
the proposed KCBBA and dCBBA are more effective at
distinguishing conflict. Recall Example 4; since dCBBA does
not meet the extreme consistency property, the proposed
KCBBA is superior to the related works, as it is more
effective in measuring the conflict between CBBAs.

In summary, the characteristics of different conflict mea-
sures are summarized in Table 6.

5 CECC-BASED WEIGHTED DISCOUNTING MULTI-
SOURCE INFORMATION FUSION ALGORITHM

Multisource information fusion problems have attracted
much attention [51–53]. It is considered that CECC can
well measure conflicts between CBBAs. To overcome the
limitation of CET-based expert systems when facing highly
conflicting CBBAs, we take advantage of CECC to obtain
the weights to discount the original CBBAs. In this way,
the impacts of highly conflicting CBBAs on the system can
be alleviated to better support decision-making. Therefore,
in this section, a weighted discounting multisource informa-
tion fusion algorithm called the CECC-WDMSIF is designed
based on the CECC to improve the performance of CET-
based expert systems.

Problem statement: Let {C1, ..., Cp, ..., Cn} be a set of
objectives in FOD Ω. Let M = {M1, ...,Mq, ...,Ms} be a
set of CBBAs modeled based on the collected data from
multiple sources. Then, according to the given CBBAs, a
decision can be made after implementing the CECC-based
WDMSIF algorithm.

Step 1: On the basis of the CECC, a correlation matrix is
constructed between arbitrary CBBAs:

MC =

C(M1,M1) · · · C(M1,Ms)
...

...
...

C(Ms,M1) · · · C(Ms,Ms)

 . (18)

Step 2: The support degree for Mq is calculated:

Sud(Mq) =

s∑
h=1|h ̸=q

C(Mq,Mh). (19)

Step 3: A weight in terms of Mq is calculated:

λq =
Sud(Mq)

max
1≤q≤s

Sud(Mq)
. (20)
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Step 4: In accordance with λ, the discounting evidence M̃ is
obtained:

M
λ
q =

{
λqMq(Aj), if Aj ⊂ Ω,
1− λq + λqMq(Aj), if Aj = Ω,Aj ̸= ∅.

(21)
Step 5: Mλ

q are fused by DCR:

Ṁ
λ = (((Mλ

1 ⊕M
λ
2 )⊕ · · · ⊕M

λ
q )⊕ · · · ⊕M

λ
s ). (22)

Step 6: By using the complex Pignistic belief transformation
(CPBT) function [28], the belief values of singletons
in terms of these objectives are calculated:

CBet(Cp) =
∑

Cp∈Aj

Ṁλ(Aj)

|Aj |
, (23)

where |Aj | represents the cardinality of Aj .
Step 7: The φ with the largest |CBet(Cφ)| is recorded:

φ = argmax
1≤p≤n

{|CBet(Cp)|}. (24)

Step 8: Hypothesis Cφ is selected as the predicted target for
decision making.

This CECC-based weighted discounting multisource in-
formation fusion algorithm for CET-based expert systems is
given in Algorithm 1.

Algorithm 1: CECC-based weighted discounting
multisource information fusion for CET-based ex-
pert systems.

Input: Ω = {C1, ..., Cp, ..., Cn}; M = {M1, ...,Mq , ...,Ms};
Output: Decision making;

1 for q = 1; q ≤ s do
2 Construct a matrix of correlation MC with Eq. (18);
3 end
4 for q = 1; q ≤ s do
5 Calculate the support degree of Sud(Mq) with Eq. (19);
6 end
7 for q = 1; q ≤ s do
8 Produce the weight of λq with Eq. (20);
9 end

10 for q = 1; q ≤ s do
11 Calculate the discounting evidence of Mλ

q with Eq. (21);
12 end
13 for q = 1; q ≤ s do
14 Obtain the fused Ṁλ with Eq. (22);
15 end
16 for q = 1; q ≤ s do
17 Obtain the belief values of singletons in terms of these

objectives with Eq. (23);
18 end
19 Select φ = argmax

1≤p≤n
{|CBet(Cp)|} with Eq. (24);

20 Hypothesis Cp is selected as the predicted target for decision
making.

6 APPLICATION TO PATTERN CLASSIFICATION

Pattern classification has attracted much attention in
recent decades [54, 55]. In this section, we apply the CECC-
WDMSIF algorithm to pattern classification to validate
its practicability. Furthermore, we compare the proposed
CECC-WDMSIF algorithm to well-known related works on
several real-world datasets from the UC Irvine (UCI) Ma-
chine Learning Repository (http://archive.ics.uci.edu/ml/)
to validate its practicability and superiority.

TABLE 7
Summarized information of the experimental datasets in Section 6.1.

Dataset #Sample #Class #Attribute Missing Value

Iris 150 3 4 NO
Wine 178 3 13 NO
Heart 270 2 13 NO
Parkinson’s 197 2 22 NO
Australian 690 2 14 YES

6.1 Implementation and evaluation of the CECC-
WDMSIF

Here, the proposed CECC-WDMSIF has been success-
fully verified on the five datasets of Iris, Wine, Heart, Parkin-
son’s and Australian, where the information of sample,
class, attribute and missing value are summarized in Table 7.

For each dataset, multiple attributes can be considered
as independent sources to supply different information. In
particular, when a dataset has a few missing values or
involves noise, it is desirable that a reliable decision be
made according to such multisource information. The first
primary merit of the CECC-WDMSIF is that the missing
values of datasets can be considered as having a status
of “ignorance” for the actual state in the evidence theory
framework. This indicates that we have no idea about which
class the missing value belongs to in the situation of “igno-
rance”, so the complex mass function can be constructed
as M(Ω) = 1. Therefore, it is not necessary to manage the
missing values of datasets externally. The second primary
merit of the CECC-WDMSIF is that the influence caused
by dataset noise on the fusion system can be alleviated
by applying the weighted discounting process for complex
evidence. The decision level can be improved by fusing
multi-attribute information through the CECC-WDMSIF.

To implement the proposed CECC-WDMSIF, CBBAs
should first be generated from the multiattributes of each
dataset. By integrating the extended method of [56] with
the eiθ function, the corresponding CBBAs are acquired
based on the training samples. Of note, we also provide
an example to illustrate CBBA generation in accordance
with different attributes of a testing sample in terms of Iris
dataset in Appendix. Furthermore, for each testing sample,
the CECC-WDMSIF is implemented to fuse the generated
CBBAs from the multi-attributes to classify the testing sam-
ple within a certain pattern for decision-making support.
Through analyzing the computational complexities of the
CECR-MSIF and the proposed CECC-WDMSIF algorithms,
it is noticed that in the case of s CBBAs and n classes, both
of them have the same computational complexity ofO(s2n).

Since the variation of θ impacts CBBA generation, to
study the performance of the proposed CECC-WDMSIF in
this situation, all data are selected as training data and
testing data in this experiment. After executing the CECC-
WDMSIF, we evaluate its classification accuracy and stan-
dard deviation regarding θ variation in the range of [0, 2π].
In particular, when θ = 0, the CBBAs convert to traditional
BBAs. Meanwhile, the proposed CECC-WDMSIF requires to
be compared with the classic CECR-MSIF [30], because both
of them can provide uncertainty reasoning for not only real-
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TABLE 8
Comparison of the classification accuracy and standard deviation in a five-fold cross validation with θ variation in Section 6.1.

Times Accuracy
Iris Wine Heart Parkinson’s Australian Avg

CECR- CECC- CECR- CECC- CECR- CECC- CECR- CECC- CECR- CECC- CECR- CECC-
MSIF WDMSIF MSIF WDMSIF MSIF WDMSIF MSIF WDMSIF MSIF WDMSIF MSIF WDMSIF

1st

Max 96.67% 96.67% 94.12% 94.12% 79.63% 83.33% 89.47% 94.74% 90.51% 89.05% 90.08% 91.58%
Min 86.67% 86.67% 73.53% 79.41% 61.11% 75.93% 60.53% 76.32% 86.86% 83.94% 73.74% 80.45%
Avg 88.95% 91.31% 85.18% 88.75% 77.16% 80.86% 79.98% 84.31% 89.61% 86.35% 84.18% 86.32%
Std 2.76% 3.10% 4.51% 3.58% 3.33% 2.40% 6.03% 4.89% 0.85% 1.30% 3.50% 3.05%

2nd

Max 96.67% 96.67% 94.12% 94.12% 85.19% 83.33% 86.84% 84.21% 83.21% 86.86% 89.20% 89.04%
Min 86.67% 86.67% 70.59% 82.35% 68.52% 74.07% 52.63% 52.63% 54.74% 81.75% 66.63% 75.50%
Avg 91.18% 92.22% 88.64% 89.39% 78.00% 80.14% 76.83% 76.21% 78.82% 84.43% 82.69% 84.48%
Std 2.63% 3.07% 5.59% 3.50% 5.50% 2.94% 7.07% 5.83% 6.17% 1.24% 5.39% 3.31%

3th

Max 96.67% 96.67% 97.06% 97.06% 88.89% 88.89% 86.84% 86.84% 91.24% 87.59% 92.14% 91.41%
Min 80.00% 83.33% 67.65% 85.29% 55.56% 79.63% 44.74% 52.63% 75.91% 83.94% 64.77% 76.97%
Avg 90.52% 91.31% 90.37% 91.52% 80.94% 84.93% 75.75% 78.64% 87.72% 85.73% 85.06% 86.43%
Std 5.17% 3.85% 6.46% 3.67% 6.29% 2.23% 8.83% 7.12% 3.40% 0.73% 6.03% 3.52%

4th

Max 93.33% 93.33% 91.18% 94.12% 90.74% 87.04% 81.58% 86.84% 84.67% 86.86% 88.30% 89.64%
Min 83.33% 90.00% 67.65% 76.47% 51.85% 72.22% 50.00% 71.05% 76.64% 81.02% 65.89% 78.15%
Avg 91.50% 92.55% 84.26% 87.43% 80.07% 81.66% 76.16% 78.02% 81.41% 82.77% 82.68% 84.49%
Std 3.12% 1.41% 6.35% 5.94% 7.29% 4.04% 7.21% 3.33% 1.88% 1.38% 5.17% 3.22%

5th

Max 100.0% 100.0% 100.0% 97.30% 87.04% 88.89% 87.50% 80.00% 89.21% 85.61% 92.75% 90.36%
Min 93.33% 93.33% 83.78% 89.19% 70.37% 79.63% 50.00% 52.50% 81.29% 79.14% 75.76% 78.76%
Avg 95.56% 97.45% 91.79% 91.63% 84.10% 86.93% 74.66% 72.30% 84.72% 82.51% 86.16% 86.16%
Std 3.07% 1.93% 3.86% 2.69% 3.18% 2.18% 9.01% 7.24% 2.39% 1.19% 4.30% 3.05%

1st∼5th
(Average)

Max 96.67% 96.67% 95.29% 95.34% 86.30% 86.30% 86.45% 86.53% 87.77% 87.20% 90.49% 90.41%
Min 86.00% 88.00% 72.64% 82.54% 61.48% 76.30% 51.58% 61.03% 75.09% 81.96% 69.36% 77.97%
Avg 91.54% 92.97% 88.05% 89.74% 80.05% 82.90% 76.68% 77.90% 84.46% 84.36% 84.15% 85.57%
Std 3.35% 2.68% 5.35% 3.87% 5.12% 2.76% 7.63% 5.68% 2.94% 1.17% 4.88% 3.23%

TABLE 9
Comparison of the different average accuracy and standard deviations from the maximal accuracy and minimal standard deviation in terms of

different datasets for a five-fold cross evaluation in Section 6.1.

1st∼5th
(Average)

Iris Wine Heart Parkinson’s Australian ACC
CECR- CECC- CECR- CECC- CECR- CECC- CECR- CECC- CECR- CECC- CECR- CECC-

MSIF WDMSIF MSIF WDMSIF MSIF WDMSIF MSIF WDMSIF MSIF WDMSIF MSIF WDMSIF

Max 0.00% 0.00% 0.05% 0.00% 0.00% 0.00% 0.08% 0.00% 0.00% 0.57% 0.13% 0.57%
Min 2.00% 0.00% 9.90% 0.00% 14.81% 0.00% 9.45% 0.00% 6.87% 0.00% 43.03% 0.00%
Avg 1.42% 0.00% 1.70% 0.00% 2.85% 0.00% 1.22% 0.00% 0.00% 0.10% 7.20% 0.10%
Std 0.67% 0.00% 1.48% 0.00% 2.36% 0.00% 1.95% 0.00% 1.77% 0.00% 8.24% 0.00%

ACC 4.10% 0.00% 13.13% 0.00% 20.03% 0.00% 12.70% 0.00% 8.64% 0.67% 58.60% 0.67%

TABLE 10
Comparison of the classification accuracy and standard deviations generated by different methods in Section 6.2.

Dataset
Classifiers Evidence theory-based MSIF

NaB NMC kNN REPTree SVM SVM-RBF MlP RBFN kNN-DST NDC EvC
CECC-

WDMSIF

Iris 94.67% 90.67% 95.33% 92.00% 94.67% 94.67% 93.33% 92.67% 95.33% 94.00% 94.67% 96.67%

Wine 95.51% 70.44% 70.19% 84.92% 96.62% 96.63% 94.93% 95.49% 93.84% 96.63% 97.17% 95.34%

Heart 82.59% 60.37% 57.78% 70.74% 83.70% 82.96% 75.19% 81.85% 76.30% 82.59% 83.70% 86.30%

Parkinson’s 68.75% 70.77% 83.02% 80.94% 70.13% 81.03% 74.39% 82.05% 78.01% 70.26% 81.64% 86.53%

Australian 79.56% 64.21% 67.40% 80.59% 80.29% 79.86% 82.32% 82.61% 78.41% 80.01% 80.60% 87.20%

Avg 84.22% 71.29% 74.74% 81.84% 85.08% 87.03% 84.03% 86.93% 84.38% 84.70% 87.56% 90.41%

Std 10.00% 10.45% 13.07% 6.90% 9.73% 7.13% 8.71% 5.91% 8.38% 9.63% 6.95% 4.60%
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(a) Iris: all classes. (b) Iris: Setosa. (c) Iris: Versicolor. (d) Iris: Virginica. (e) Wine: all classes.

(f) Wine: Class 1. (g) Wine: Class 2. (h) Wine: Class 3. (i) Heart: all classes. (j) Heart: Class 1.

(k) Heart: Class 2. (l) Parkinson’s: all classes. (m) Parkinson’s: Class 1. (n) Parkinson’s: Class 2. (o) Australian: all classes.

(p) Australian: Class 1. (q) Australian: Class 2.

Fig. 4. The performance of the CECR-MSIF and CECC-WDMSIF as a variation of θ in Section 6.1 (the broken line represents the classification
accuracy, and the shadow represents the standard deviation).

number-modeled information but also complex-number-
modeled information. The results of these two methods are
depicted in Fig. 4. Specifically, Fig. 4(a) presents their clas-
sification accuracies for all classes of the Iris dataset, while
Fig. 4(b), Fig. 4(c) and Fig. 4(d) present their classification
accuracies for each class. Fig. 4(e) presents their classifica-
tion accuracies for all classes of the Wine dataset, while
Fig. 4(f), Fig. 4(g) and Fig. 4(h) present their classification
accuracies for each class. Fig. 4(i) presents their classifica-
tion accuracies for all classes of the Heart dataset, while
Fig. 4(j) and Fig. 4(k) present their classification accuracies
for each class. Fig. 4(l) presents their classification accuracies
of all classes of the Parkinson’s dataset, while Fig. 4(m)
and Fig. 4(n) present their classification accuracies for each
class. Fig. 4(o) presents their classification accuracies for
all classes of the Australian dataset, while Fig. 4(p) and
Fig. 4(q) present their classification accuracies for each class.
Correspondingly, according to the variation of θ, Table 12A
shows their maximum (Max), minimum (Min), and average
(Avg) accuracies for each class, all classes, and the standard
deviation (Std) of accuracy.

To compare the relative performance of the proposed
CECC-WDMSIF with that of the CECR-MSIF, we use the
metrics including Max, Min, Avg, and Std of accuracy of all
classes. According to the results of each dataset in Table 12A,

the different accuracies from the maximal accuracy and the
different standard deviations from the minimal standard
deviation for each dataset are calculated in Table 13A. Next,
these differences are accumulated over five UCI datasets
(which is denoted as ACC in Table 13A) to evaluate the
relative performance of each fusion method. In Table 13A,
the best performance is highlighted in bold style. The pro-
posed CECC-WDMSIF achieves the best performance in
four of five cases and is only inferior to the CECR-MSIF for
the Australian dataset. Moreover, for the proposed CECC-
WDMSIF, the total accumulated difference across the five
UCI datasets and in the Max, Min, Avg and Std of accuracy
of all classes is only 2.86%, whereas for the CECR-MSIF,
its total accumulated difference is 49.12%. Therefore, the
total difference from the best performing CECR-MSIF is
approximately 17.19 times greater than that of the proposed
CECC-WDMSIF.

A five-fold cross validation is carried out, where four
folds (80%) of the total data are randomly chosen as training
data, while the leftover one fold (20%) of the total data,
serves as testing data. We repeat this procedure five times
and then average the Max, Min, Avg and Std of accuracy
of all classes for each of the five runs for further com-
parison. Of note, the results about performance of CECR-
MSIF and CECC-WDMSIF are shown in Table 8. For all but
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(a) Iris: 1st. (b) Iris: 2nd. (c) Iris: 3rd. (d) Iris: 4th. (e) Iris: 5th.

(f) Wine: 1st. (g) Wine: 2nd. (h) Wine: 3rd. (i) Wine: 4th. (j) Wine: 5th.

(k) Heart: 1st. (l) Heart: 2nd. (m) Heart: 3rd. (n) Heart: 4th. (o) Heart: 5th.

(p) Parkinson’s: 1st. (q) Parkinson’s: 2nd. (r) Parkinson’s: 3rd. (s) Parkinson’s: 4th. (t) Parkinson’s: 5th.

(u) Australian: 1st. (v) Australian: 2nd. (w) Australian: 3rd. (x) Australian: 4th. (y) Australian: 5th.

Fig. 5. The performance of the CECR-MSIF and CECC-WDMSIF in a five-fold cross validation in Section 6.1 (the broken line represents the
classification accuracy, and the shadow represents the standard deviation).

TABLE 11
Comparison of the difference between the accuracy and standard deviation and the maximal accuracy and minimal standard deviations for eleven

different methods under several datasets in Section 6.2.

Dataset
Classifiers Evidence theory-based MSIF

NaB NMC kNN REPTree SVM SVM-RBF MlP RBFN kNN-DST NDC EvC
CECC-

WDMSIF

Iris 2.00% 6.00% 1.34% 4.67% 2.00% 2.00% 3.34% 4.00% 1.34% 2.67% 2.00% 0.00%

Wine 1.66% 26.73% 26.98% 12.25% 0.55% 0.54% 2.24% 1.68% 3.33% 0.54% 0.00% 1.83%

Heart 3.71% 25.93% 28.52% 15.56% 2.60% 3.34% 11.11% 4.45% 10.00% 3.71% 2.60% 0.00%

Parkinson’s 17.78% 15.76% 3.51% 5.59% 16.40% 5.50% 12.14% 4.48% 8.52% 16.27% 4.89% 0.00%

Australian 7.64% 22.99% 19.80% 6.61% 6.91% 7.34% 4.88% 4.59% 8.79% 7.19% 6.60% 0.00%

Accumulate 32.77% 97.39% 80.13% 44.66% 28.44% 18.70% 33.69% 19.18% 31.96% 30.36% 16.07% 1.83%
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one dataset, namely, the Australian, the proposed CECC-
WDMSIF is superior to the CECR-MSIF. The average classi-
fication accuracy on the five UCI datasets of Table 7 for the
proposed CECC-WDMSIF is 85.57±3.23%, which slightly
outperforms the 84.15±4.88% from the CECR-MSIF.

To further compare the relative performance of the pro-
posed CECC-WDMSIF and the CECR-MSIF, the differences
between Max, Min, Avg and Std of each method and those
of the best performing method are calculated for each
dataset. Then, we accumulate these differences over five
UCI datasets to evaluate the relative performance of the
CECC-WDMSIF and CECR-MSIF. As shown in Table 9,
for the proposed CECC-WDMSIF, the total accumulated
difference across the five UCI datasets of Table 7 and the
Max, Min, Avg and Std of accuracy of all classes is only
0.67%, yet the total accumulated difference showing 58.60%
from the CECR-MSIF. Accordingly, the total difference in
the best performance of the proposed CECC-WDMSIF is
approximately 87.08 times less than that of the CECR-MSIF.
It is thus concluded that the proposed CECC-WDMSIF
outperforms the CECR-MSIF overall.

By analyzing the algorithms of CECR-MSIF and the pro-
posed CECC-WDMSIF, it is learned that both of them lever-
age the fusion of CECR in CET for uncertainty reasoning.
The reason why the performance of the proposed CECC-
WDMSIF is superior to the CECR-MSIF is that the pro-
posed CECC-WDMSIF takes advantage of CECC to manage
conflicting CBBA effectively. As a result, the influence of
conflicting CBBA is mitigated in the process of fusion by
using CECC-WDMSIF.

6.2 Comparison

To validate the effectiveness of the proposed CECC-
WDMSIF, we also compare it with several well-known
related works, including the following eight state-of-the-
art classifiers: Naı̈ve Bayes (NaB) [57]; nearest mean clas-
sifier (NMC) [58]; k-nearest neighbor (kNN) [59]; Decision
Tree (REPTree) [60]; support vector machine (SVM) [61];
SVM with radial basis function (SVM-RBF) [61]; multilayer
perceptron (MlP) [62]; and RBF network (RBFN) [63]. We
also compare it with the following three evidence theory-
based fusion methods: k-nearest neighbor DS theory (kNN-
DST) [64]; normal distribution-based classifier (NDC) [65];
and evidential calibration (EvC) [66]. Here, we compare the
best performance of the CECC-WDMSIF with the above-
mentioned methods.

As a comparative method, a five-fold cross validation
is implemented as discussed in Section 6.1. The results
of the classification accuracy and standard deviation
generated by the different methods are shown in Table 10,
in which the best performance is highlighted in bold. For
all but one dataset, namely, Wine, the proposed CECC-
WDMSIF is superior to the other well-known methods. The
average classification accuracy on the five UCI datasets of
Table 7 for the NaB, NMC, kNN, REPTree, SVM, SVM-
RBF, MlP, RBFN, kNN-DST, NDC and EvC methods are
84.22%±10%, 71.29%±10.45%, 74.74%±13.07%, 81.84%±
6.90%, 85.08%±9.73%, 87.03%±7.13%, 84.03%±8.71%,
86.93%±5.91%, 84.38%±8.38%, 84.70%±9.63% and
87.56%± 6.95%. The proposed CECC-WDMSIF has an

average classification accuracy of 90.41%±4.6%, which is
higher than that of other well-known related methods.
This result demonstrates that the outcomes of the proposed
CECC-WDMSIF have the highest classification accuracy
and robustness on real-world datasets compared to eleven
well-known related methods.
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Fig. 6. Comparison of the accumulated difference between the accuracy
and the maximal accuracy for different methods under several datasets
in Section 6.2.

To better demonstrate the effectiveness of the proposed
CECC-WDMSIF, for each dataset, the difference between the
accuracy of each method and that of the best performing
method is calculated as shown in Table 11. Then, the dif-
ferences over five datasets are accumulated to evaluate the
relative performance of each method. For the best case of the
CECC-WDMSIF, the total accumulated difference across the
five datasets is only 1.83%. As shown in Fig. 6, compared
to the other methods, the total difference from the best
performance for the CECC-WDMSIF is approximately 8.79
times smaller than the suboptimal method of EvC.

TABLE 12
Summarized information of the experimental datasets in Section 6.3.

Dataset #Sample #Class #Attribute Missing Value

Connectionist Bench 990 11 10 NO
Ecoli 336 8 7 NO
Breasttissue 101 6 10 NO
Pageblocks 5472 5 10 NO
Knowledge 403 4 5 NO

6.3 Extension of experiments
By analyzing CECC-WDMSIF algorithm in previous sec-

tion, we notice that its complexity increases exponentially
with the increase of the elements of the frame of discern-
ment due to the CBBA generation method. It is considered
that pairwise learning can decompose Cn-classes classifica-
tion problem to Cn(Cn−1)

2 binary classification problems to
improve the processing efficiency of the algorithm. There-
fore, the CBBA generation method in Section 6.1 is inte-
grated with pairwise learning [67] to produce CBBAs here.
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TABLE 13
Comparison of the classification accuracy and standard deviations generated by different methods in Section 6.3.

Dataset
Classifiers Evidence theory-based MSIF

NaB NMC kNN REPTree SVM SVM-RBF MlP RBFN kNN-DST NDC EvC
CECC-

WDMSIF

Connectionist Bench 67.68% 99.09% 65.45% 88.48% 68.18% 80.40% 83.64% 94.42% 43.13% 76.33% 76.33% 100.00%

Ecoli 85.12% 84.94% 80.95% 83.93% 75.60% 42.56% 86.01% 94.94% 82.26% 52.77% 81.07% 92.63%

Breasttissue 61.32% 48.11% 50.00% 53.77% 46.23% 46.23% 50.00% 60.38% 61.43% 62.47% 55.43% 100.00%

Pageblocks 91.36% 29.96% 95.93% 96.75% 91.19% 89.80% 95.87% 94.25% 95.56% 85.79% 93.04% 95.81%

Knowledge 84.62% 74.94% 79.65% 88.34% 80.89% 32.01% 91.81% 90.07% 82.49% 72.66% 90.66% 100.00%

Avg 78.02% 67.41% 74.40% 82.25% 72.42% 58.20% 81.47% 86.81% 72.97% 70.00% 79.31% 97.69%

Std 11.47% 25.07% 15.55% 14.83% 15.09% 22.65% 16.31% 13.33% 18.50% 11.40% 13.41% 3.00%

TABLE 14
Comparison of the difference between the accuracy and standard deviation and the maximal accuracy and minimal standard deviations for eleven

different methods under several datasets in Section 6.3.

Dataset
Classifiers Evidence theory-based MSIF

NaB NMC kNN REPTree SVM SVM-RBF MlP RBFN kNN-DST NDC EvC
CECC-

WDMSIF

Connectionist Bench 32.32% 0.91% 34.55% 11.52% 31.82% 19.60% 16.36% 5.58% 56.87% 23.67% 23.67% 0.00%

Ecoli 9.82% 10.00% 13.99% 11.01% 19.35% 52.38% 8.93% 0.00% 12.68% 42.17% 13.87% 2.31%

Breasttissue 38.68% 51.89% 50.00% 46.23% 53.77% 53.77% 50.00% 39.62% 38.57% 37.53% 44.57% 0.00%

Pageblocks 5.39% 66.79% 0.82% 0.00% 5.56% 6.94% 0.88% 2.50% 1.19% 10.96% 3.71% 0.94%

Knowledge 15.38% 25.06% 20.35% 11.66% 19.11% 67.99% 8.19% 9.93% 17.51% 27.34% 9.34% 0.00%

Accumulate 101.60% 154.65% 119.70% 80.42% 129.60% 200.68% 84.36% 57.62% 126.82% 141.67% 95.15% 3.25%

After that, we utilize CECC-WDMSIF algorithm to combine
these CBBAs generated from multi-attribute of training
samples in terms of different datasets. In this content, the
computational complexity of the proposed CECC-WDMSIF
algorithm decreases to O(sn2).

In this section, we compare the proposed CECC-
WDMSIF algorithm with those well-known related work
discussed in Section 6.2 based on datasets of Table 12
with 4, 5, 6, 8 and 11 classes. A five-fold cross validation
is also implemented as the same as in Section 6.2.
Through implementing different methods, the results of the
classification accuracy and standard deviation are shown
in Table 13, where the best performance is highlighted
in bold. For datasets of Connectionist Bench, Breasttissue
and Knowledge (http://archive.ics.uci.edu/ml/), the
proposed CECC-WDMSIF outperforms the other well-
known methods. The average classification accuracy on
the five UCI datasets of Table 12 for the NaB, NMC, kNN,
REPTree, SVM, SVM-RBF, MlP, RBFN, kNN-DST, NDC
and EvC methods are 78.02%±11.47%, 67.41%±25.07%,
74.40%±15.55%, 82.25%±14.83%, 72.42%±15.09%,
58.20%±22.65%, 81.47%±16.31%, 86.81%±13.33%,
72.97%±18.50%, 70.00%±11.40% and 79.31%±13.41%.
The proposed CECC-WDMSIF has an average classification
accuracy of 97.69%±3.00%, which is higher than that of
other well-known related methods.

To further illustrate the superiority of the proposed
CECC-WDMSIF, the difference between the accuracy of each
method and that of the best performing method for each
datasets of Table 12 is calculated in Table 14. Next, the
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Fig. 7. Comparison of the accumulated difference between the accuracy
and the maximal accuracy for different methods under five datasets in
Section 6.3.

differences over all datasets of Table 12 are accumulated
to assess the relative performance of each method. It is
obvious that the best case is the CECC-WDMSIF, in which
the total accumulated difference across the five datasets
is only 3.25%; the worst case is the SVM-RBF, where the
total accumulated difference across the five datasets is up
to 200.68%. Compared to the other methods as shown in
Fig. 7, the total difference from the best performance for the
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CECC-WDMSIF is approximately 17.74 times smaller than
the suboptimal method of RBFN.

6.4 Discussion

From the above comparisons and evaluations, it is con-
cluded that the proposed CECC-WDMSIF has the high-
est classification accuracy and robustness on real-world
datasets. The dominant reasons are that 1) the proposed
CECC can efficiently measure the correlation coefficients
between CBBAs, so that the CECC-WDMSIF can man-
age conflict in the process of fusion effectively; 2) CECC-
WDMSIF has an inherent advantage in solving missing
value problems by taking advantage of CET framework;
3) CECC-WDMSIF reduces the influence of dataset noise
on the decision-making system by fusing discounted com-
plex evidences. Consequently, these merits of the proposed
CECC-WDMSIF contribute to a higher decision level.

Although the proposed CECC-WDMSIF is effective to
solve the pattern classification problem, its computational
complexity depends on the cardinality of the frame of dis-
cernment in terms of generated CBBAs. A potential solution
to mitigate this issue is deploying quantum information
processing technology to CECC-WDMSIF to make our pro-
posed CECC-WDMSIF more capable of handling complex
and real-word application problems.

7 CONCLUSIONS

In this paper, a CECC was proposed to measure the
correlation coefficient in complex evidence theory. Addition-
ally, the CECC’s properties—namely, nonnegativity, nonde-
generacy, symmetry and boundedness—were defined and
analyzed. Furthermore, a complex conflict coefficient was
proposed in complex evidence theory. It was proven that
the complex conflict coefficient had nonnegativity, symme-
try, boundedness, extreme consistency, and insensitivity to
refinement properties for conflict measurement. Moreover,
several numerical examples demonstrated the superiority
of the proposed complex conflict coefficient through com-
parisons. Finally, a weighted discounting multisource infor-
mation fusion algorithm, called the CECC-WDMSIF, was
designed based on the CECC to improve the performance
of CET-based expert systems. By applying the proposed
CECC-WDMSIF to the pattern classification of real-world
datasets, it was demonstrated that the proposed CECC-
WDMSIF had an advantage for diverse datasets and was
more effective than the other well-known related methods.

The primary contribution of this article is that it is the
first work to study the correlation and conflict coefficients
between complex mass functions in CET. The complex cor-
relation and conflict coefficients are generalized models for
not only real numbers but also complex numbers. Therefore,
the corresponding CECC-WDMSIF provides a promising
way for uncertainty reasoning in expert systems, which has
broad application prospects.
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proof for the positive definiteness of the jaccard index
matrix,” International Journal of Approximate Reasoning,
vol. 54, no. 5, pp. 615–626, 2013.

[69] E. W. Weisstein, “Conjugate transpose,”
https://mathworld. wolfram. com/, 2003.



17

APPENDIX

Proof
Proof (1) Considering two arbitrary CBBAs Mµ and Mν in
FOD Ω, we have

C(Mµ,Mν) =

√
⟨
−→
Mµ,

−→
Mν⟩⟨

−→
Mν ,

−→
Mµ⟩

∥
−→
Mµ∥∥

−→
Mν∥

.

Obviously, C(Mµ,Mν) ≥ 0 can be conducted, which proves
the nonnegativity property of the CECC.

(2) Considering two arbitrary CBBAs Mµ = Mν in FOD Ω
with hypotheses Ai and Aj , we have

C(Mµ,Mν) =

√
⟨
−→
Mµ,

−→
Mµ⟩⟨

−→
Mµ,

−→
Mµ⟩

∥
−→
Mµ∥∥

−→
Mµ∥

=

√
⟨
−→
Mν ,

−→
Mν⟩⟨

−→
Mν ,

−→
Mν⟩

∥
−→
Mν∥∥

−→
Mν∥

= 1.

Conversely, considering C(Mµ,Mν) = 1, we have√
⟨
−→
Mµ,

−→
Mν⟩⟨

−→
Mν ,

−→
Mµ⟩

∥
−→
Mµ∥∥

−→
Mν∥

= 1.

Then, we obtain
2n−1∑
i=1

2n−1∑
j=1

Mµ(Ai)M̂ν(Aj)
|Ai ∩ Aj |
|Ai ∪ Aj |

·

2n−1∑
i=1

2n−1∑
j=1

Mν(Aj)M̂µ(Ai)
|Aj ∩ Ai|
|Aj ∪ Ai|

=

2n−1∑
i=1

2n−1∑
j=1

Mµ(Ai)M̂µ(Aj)
|Ai ∩ Aj |
|Ai ∪ Aj |

·

2n−1∑
i=1

2n−1∑
j=1

Mν(Aj)M̂ν(Ai)
|Aj ∩ Ai|
|Aj ∪ Ai|

.

This equation is only satisfied for 1 ≤ i, j ≤ 2n

M̂µ(Ai) = M̂ν(Ai) and M̂µ(Aj) = M̂ν(Aj),

such that

Mµ = Mν .

Therefore, C(Mµ,Mν) = 1 ⇐⇒ Mµ = Mν , which proves
the nondegeneracy property of the CECC.

(3) Consider two arbitrary CBBAs Mµ and Mν in FOD Ω
with hypotheses Ai and Aj .

For ⟨−→Mµ,
−→
Mν⟩, we have

⟨
−→
Mµ,

−→
Mν⟩ =

2n−1∑
i=1

2n−1∑
j=1

Mµ(Ai)M̂ν(Aj)
|Ai ∩ Aj |
|Ai ∪ Aj |

. (1A)

Additionally, for ⟨−→Mν ,
−→
Mµ⟩, we have

⟨
−→
Mν ,

−→
Mµ⟩ =

2n−1∑
i=1

2n−1∑
j=1

Mν(Aj)M̂µ(Ai)
|Aj ∩ Ai|
|Aj ∪ Ai|

. (2A)

From Eqs. (1A) and (2A), it is obvious that

⟨
−→
Mµ,

−→
Mν⟩⟨

−→
Mν ,

−→
Mµ⟩ = ⟨

−→
Mν ,

−→
Mµ⟩⟨

−→
Mµ,

−→
Mν⟩.

Since

C(Mµ,Mν) =

√
⟨
−→
Mµ,

−→
Mν⟩⟨

−→
Mν ,

−→
Mµ⟩

∥
−→
Mµ∥∥

−→
Mν∥

,

and

C(Mν ,Mµ) =

√
⟨
−→
Mν ,

−→
Mµ⟩⟨

−→
Mµ,

−→
Mν⟩

∥
−→
Mν∥∥

−→
Mµ∥

,

it is easily concluded that

C(Mµ,Mν) = C(Mν ,Mµ),

which proves the symmetry property of the CECC.
(4) Consider two arbitrary CBBAs Mν and Mµ in FOD Ω.
Since D is a Hermitian positive-definite matrix [68], for a

2n × 2n lower triangular matrix M , it can be as follows:

D =MHM,

where H is the conjugate transpose [69].
Thus, from [42, 69], we have

⟨
−→
Mµ,

−→
Mµ⟩ = pHDp = pHMHMp;

⟨
−→
Mµ,

−→
Mν⟩ = pHDq = pHMHMq;

⟨
−→
Mν ,

−→
Mµ⟩ = qHDp = qHMHMp;

⟨
−→
Mν ,

−→
Mν⟩ = qHDq = qHMHMq.

Thus,

C(Mµ,Mν) =

√
pHMHMq

√
qHMHMp√

pHMHMp
√
qHMHMq

.

Because pHMHMp = (Mp)H(Mp) = ∥Mp∥2, by using
the triangle inequality on the vector 2-norm [42, 69], we obtain

∥M(p+ q)∥2 ≤ (∥Mp∥+ ∥Mq∥)2 =⇒
(p+ q)HMHM(p+ q) ≤ (

√
pHMHMp+

√
qHMHMq)2 =⇒

pHMHMp+ pHMHMq + qHMHMp+ qHMHMq ≤
pHMHMp+ qHMHMq + 2

√
pHMHMpqHMHMq =⇒

pHMHMq + qHMHMp ≤ 2
√
pHMHMpqHMHMq.

Since pHMHMq = (pHMHMq)H = qHMHMp [42, 69],
we obtain

pHMHMq√
pHMHMpqHMTMq

≤ 1,

qHMHMp√
pHMHMpqHMTMq

≤ 1,

so that √
pHMHMq

√
qHMHMp√

pHMHMp
√
qHMTMq

≤ 1.

Therefore, as proven in (1), C(Mµ,Mν) ≥ 0, which obtains

0 ≤ C(Mµ,Mν) ≤ 1,

which proves the boundedness property of the CECC.
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TABLE 1A
An example of constructed complex interval number models for Sepal

length (SL) attribute.

Hypotheses
Attributes

SL

M({Se}) [4.6724+0.3166i, 5.3927+0.3166i]
M({V e}) [5.4316+0.3702i, 6.3351+0.3702i]
M({V i}) [5.9806+0.4139i, 7.1784+0.4139i]
M({Se, V e}) –
M({Se, V i}) –
M({V e, V i}) [5.9806+0.4139i, 6.3351+0.3702i]
M({Se, V e, V i}) –

TABLE 2A
An example of constructed complex interval number models for Sepal

width (SW) attribute.

Hypotheses
Attributes

SW

M({Se}) [3.0421+0.2163i, 3.8343+0.2163i]
M({V e}) [2.4333+0.1724i, 3.0459+0.1724i]
M({V i}) [2.6541+0.1873i, 3.2992+0.1873i]
M({Se, V e}) [3.0421+0.2163i, 3.0459+0.1724i]
M({Se, V i}) [3.0421+0.2163i, 3.2992+0.1873i]
M({V e, V i}) [2.6541+0.1873i, 3.0459+0.1724i]
M({Se, V e, V i}) [3.0421+0.2163i, 3.0459+0.1724i]

TABLE 3A
An example of constructed complex interval number models for Petal

length (PL) attribute.

Hypotheses
Attributes

PL

M({Se}) [1.2773+0.0921i, 1.6519+0.0921i]
M({V e}) [3.7565+0.2658i, 4.6918+0.2658i]
M({V i}) [4.9534+0.3452i, 6.0199+0.3452i]
M({Se, V e}) –
M({Se, V i}) –
M({V e, V i}) –
M({Se, V e, V i}) –

Example

Here, we provide an example to illustrate CBBA
generation in accordance with different attributes of
a testing sample in terms of Iris dataset with three
classes of Setosa (Se), Versicolor (V e) and Virginica
(V i). Based on the selected training data from Iris
dataset (http://archive.ics.uci.edu/ml/), the complex in-
terval number models are constructed in accordance with
four attributes of Sepal length (SL), Sepal width (SW), Petal
length (PL) and Petal width (PW) as shown in Table 1A-
Table 4A, respectively.

Next, taking a testing sample with four attributes of
Setosa class as an instance: SL = 5.1 cm, SW = 3.8 cm, PL

TABLE 4A
An example of constructed complex interval number models for Petal

width (PW) attribute.

Hypotheses
Attributes

PW

M({Se}) [0.1363+0.0157i, 0.3627+0.0157i]
M({V e}) [1.1059+0.0824i, 1.5140+0.0824i]
M({V i}) [1.7444+0.1270i, 2.2926+0.1270i]
M({Se, V e}) –
M({Se, V i}) –
M({V e, V i}) –
M({Se, V e, V i}) –

TABLE 5A
CBBAs generated from Sepal length (SL) attribute of a testing sample

in terms of Setosa class of Iris dataset.

Hypotheses
Attributes

SL

M({Se}) 0.9485-0.0007i
M({V e}) 0.0234+0.0003i
M({V i}) 0.0112+0.0001i
M({Se, V e}) 0
M({Se, V i}) 0
M({V e, V i}) 0.0170+0.0003i
M({Se, V e, V i}) 0

TABLE 6A
CBBAs generated from Sepal width (SW) attribute of a testing sample

in terms of Setosa class of Iris dataset.

Hypotheses
Attributes

SW

M({Se}) 0.5596-0.0196i
M({V e}) 0.0342+0.0008i
M({V i}) 0.0562+0.0017i
M({Se, V e}) 0.0786+0.0034i
M({Se, V i}) 0.1494+0.0092i
M({V e, V i}) 0.0433+0.0012i
M({Se, V e, V i}) 0.0786+0.0034i

TABLE 7A
CBBAs generated from Petal length (PL) attribute of a testing sample in

terms of Setosa class of Iris dataset.

Hypotheses
Attributes

PL

M({Se}) 0.9999+0.0047i
M({V e}) -0.0273-0.0028i
M({V i}) -0.0185-0.0019i
M({Se, V e}) 0
M({Se, V i}) 0
M({V e, V i}) 0
M({Se, V e, V i}) 0.0458+4.34E-19i
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= 1.6 cm, PW = 0.2 cm. We utilize the CBBA generation
method discussed in Section 6.1 to obtain four CBBAs in
accordance with those four attributes as shown in Table 5A-
Table 8A, respectively.

Then, by implementing the proposed CECC-WDMSIF
algorithm, a fused CBBA is generated as shown in Table 9A.
After that, the CBet values for hypotheses with singletons
are calculated as shown in Table 10A. Finally, by calculating
the absolute value of CBet, a predicted target is determined
as shown in Table 11A.

TABLE 8A
CBBAs generated from Petal width (PW) attribute of a testing sample in

terms of Setosa class of Iris dataset.

Hypotheses
Attributes

PW

M({Se}) 0.9997+0.0225i
M({V e}) -0.1273-0.0146i
M({V i}) -0.0719-0.0078i
M({Se, V e}) 0
M({Se, V i}) 0
M({V e, V i}) 0
M({Se, V e, V i}) 0.1995-3.47E-18i

TABLE 9A
Fused CBBA according to generated CBBAs in Table 5A-Table 8A.

Hypotheses Fused CBBA

M({Se}) 0.9999+8.50E-06i
M({V e}) -1.07E-05-5.30E-06i
M({V i}) 9.62E-06-3.91E-06i
M({Se, V e}) 3.08E-07+7.77E-09i
M({Se, V i}) 5.85E-07+2.50E-08i
M({V e, V i}) 2.40E-05+6.68E-07i
M({Se, V e, V i}) 4.75E-07+4.68E-09i

TABLE 10A
CBet value for hypotheses with singletons according to the fused CBBA

in Table 9A.

Hypotheses CBet

M({Se}) 0.9999+8.52E-06i
M({V e}) 1.59E-06-4.96E-06i
M({V i}) 2.21E-05-3.56E-06i
M({Se, V e}) –
M({Se, V i}) –
M({V e, V i}) –
M({Se, V e, V i}) –

TABLE 11A
Predicted target according to |CBet|.

Hypotheses |CBet| Predicted target

M({Se}) 0.9999 X
M({V e}) 5.21E-06 %

M({V i}) 2.24E-05 %

M({Se, V e}) – –
M({Se, V i}) – –
M({V e, V i}) – –
M({Se, V e, V i}) – –
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TABLE 12A
Classification accuracy and standard deviation generated by the CECR-MSIF and CECC-WDMSIF under θ variation.

Accuracy
Iris Wine Heart Parkinson’s Australian

CECR- CECC- CECR- CECC- CECR- CECC- CECR- CECC- CECR- CECC-
MSIF WDMSIF MSIF WDMSIF MSIF WDMSIF MSIF WDMSIF MSIF WDMSIF

Class 1

Max 100.0% 100.0% 96.61% 96.61% 98.67% 94.67% 83.33% 79.17% 93.21% 94.52%
Min 100.0% 100.0% 72.88% 83.05% 87.33% 88.00% 6.25% 12.50% 68.93% 85.38%
Avg 100.0% 100.0% 90.40% 91.76% 92.93% 91.73% 58.91% 54.78% 84.14% 92.85%
Std 0.00% 0.00% 6.09% 5.09% 2.37% 1.95% 24.39% 21.10% 5.85% 2.18%

Class 2

Max 98.00% 98.00% 95.77% 94.37% 73.33% 77.50% 98.64% 97.96% 92.51% 83.06%
Min 78.00% 80.00% 66.20% 78.87% 40.00% 59.17% 58.50% 70.07% 79.80% 70.68%
Avg 89.14% 92.94% 81.63% 85.03% 65.57% 73.30% 83.65% 86.83% 87.86% 75.38%
Std 5.96% 4.90% 7.77% 4.41% 7.23% 4.02% 9.14% 6.77% 3.74% 2.81%

Class 3

Max 92.00% 92.00% 100.0% 100.0% – – – – – –
Min 76.00% 80.00% 93.75% 95.83% – – – – – –
Avg 87.33% 87.33% 99.31% 99.47% – – – – – –
Std 4.22% 4.20% 1.47% 1.08% – – – – – –

All classes

Max 96.67% 96.67% 94.94% 93.82% 83.70% 85.93% 82.56% 83.08% 87.54% 86.52%
Min 86.67% 90.00% 80.90% 86.52% 72.59% 78.89% 50.26% 61.54% 78.84% 83.62%
Avg 92.16% 93.42% 89.30% 91.15% 80.77% 83.54% 77.56% 78.94% 85.80% 85.08%
Std 2.88% 1.94% 3.81% 2.09% 2.58% 1.31% 7.03% 4.64% 2.14% 0.64%

TABLE 13A
Comparison of the differences between the accuracy and standard deviation and the maximal accuracy and minimal standard deviations for two

different methods under several datasets.

Accuracy
(All classes)

Iris Wine Heart Parkinson’s Australian ACC
CECR- CECC- CECR- CECC- CECR- CECC- CECR- CECC- CECR- CECC- CECR- CECC-

MSIF WDMSIF MSIF WDMSIF MSIF WDMSIF MSIF WDMSIF MSIF WDMSIF MSIF WDMSIF

Max 0.00% 0.00% 0.00% 1.12% 2.22% 0.00% 0.51% 0.00% 0.00% 1.01% 2.74% 2.14%
Min 3.33% 0.00% 5.62% 0.00% 6.30% 0.00% 11.28% 0.00% 4.78% 0.00% 31.31% 0.00%
Avg 1.27% 0.00% 1.85% 0.00% 2.77% 0.00% 1.39% 0.00% 0.00% 0.72% 7.27% 0.72%
Std 0.94% 0.00% 1.71% 0.00% 1.27% 0.00% 2.38% 0.00% 1.50% 0.00% 7.80% 0.00%

ACC 5.54% 0.00% 9.18% 1.12% 12.56% 0.00% 15.57% 0.00% 6.28% 1.73% 49.12% 2.86%
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