
ar
X

iv
:2

21
0.

05
90

3v
1

 [
cs

.S
E

]
 1

2
O

ct
 2

02
2

Towards Web3 Applications: Easing the Access and Transition

Guangsheng Yu
Data61, CSIRO

Sydney, NSW, Australia
Saber.Yu@data61.csiro.au

Xu Wang
GBDTC, UTS

Sydney, NSW, Australia
Xu.Wang-1@uts.edu.au

Qin Wang
Data61, CSIRO

Sydney, NSW, Australia
qinwangtech@gmail.com

Tingting Bi
Data61, CSIRO

Melbourne, VIC, Australia
Tingting.Bi@data61.csiro.au

Yifei Dong
GBDTC, UTS

Sydney, NSW, Australia
Yifei.Dong@uts.edu.au

Ren Ping Liu
GBDTC, UTS

Sydney, NSW, Australia
RenPing.Liu@uts.edu.au

Nektarios Georgalas
Applied Research, British Telecom
Martlesham, Woodbridge, UK
nektarios.georgalas@bt.com

Andrew Reeves
Applied Research, British Telecom
Martlesham, Woodbridge, UK

andrew.reeves@bt.com

ABSTRACT

Web3 is leading a wave of the next generation of web services

that even many Web2 applications are keen to ride. However, the

lack ofWeb3 background forWeb2 developers hinders easy and ef-

fective access and transition. On the other hand,Web3 applications

desire for encouragement and advertisement from conventional

Web2 companies and projects due to their low market shares. In

this paper, we propose a seamless transition framework that tran-

sits Web2 toWeb3, namedWebttCom
1, after exploring the conno-

tation of Web3 and the key differences between Web2 and Web3

applications. We also provide a full-stack implementation as a use

case to support the proposed framework, followed by interviews

with five participants that show four positive and one natural re-

sponse. We confirm that the proposed framework WebttCom ad-

dresses the defined research question, and the implementationwell

satisfies the framework WebttCom in terms of strong necessity,

usability, and completeness based on the interview results.

KEYWORDS

Web3, Web2, Dapp, Blockchain, Software Engineering

1 INTRODUCTION

Web3 has drawn intensive attention from communities and in-

vestors. As an umbrella term, Web3 covers a series of blockchain-

based decentralized applications (Dapps), services and economics

[1–5] that bring significant impacts on both traditional finance

and cryptocurrency markets. To date (as of Sep, 2022), over 12, 143

Dapps2 have been developed on-chain and 285, 152 smart contracts

are deployed across 48 protocols.A total of 1.67Musers are actively

interacting with the smart contracts within 24h, as evidenced by

their wallet addresses. In this sense, Web3 impresses users by pro-

viding such a connect the wallet button on the upper-right corner of

each webpage. Users can use Dapps through embedded wallet en-

tries by invoking specific functions that are deployed on blockchain-

engined platforms (e.g., Ethereum [6]). The shift of back-end servers

1
WebttCom stands for Web2 (Two)–Web3 (Three) Communicator.

2Data source: Dappradar https://dappradar.com/industry-overview.

from centralized clouds to decentralized chains has mostly distin-

guished Web3 and previous web styles.

Following its narrative connotation, we observe thatWeb3 users

still occupy a pretty small percentage (around 0.03% of 4.95B3 Inter-

net users) over the Internet. The constraints majorly come from its

incompatibility: (i) a typical Web3 application cannot be smoothly

applied in a traditionalweb context due to the absence of a blockchain

engine; conversely, (ii) a traditionalWeb2 application can hardly be

integrated with blockchain due to the lack of proper Application

Programming Interfaces (APIs). Rational developers would start

their work on wide-adoption applications, namely Web2 Apps, for

higher user exposure and more potential revenues, rather than

sparing efforts on Web3 applications that are full of uncertainty.

Such concerns motivate this work:

How to ease the usage of Web3 applications and achieve a smooth

transition of applications between the Web2 and Web3 space?

We investigate the bottlenecks of transition between Web2 and

Web3 by digging into their distinctions in design and implementa-

tions. For most Web2 applications, user management, data manip-

ulation, and private-preserving policies are constructed upon cen-

tralized databases in a closedmanner. In contrast,Web3 Dapps usu-

ally apply asymmetric-encryption-based identity to establishmore

secure and robust user management in a decentralized manner

among many parties without prior trustworthiness. Data manipu-

lation differs from that of Web2 applications due to the immutabil-

ity of data storage in Web3, and access control also requires new

approaches to partition the visibility. In addition, existing Web3

Dapps lack flexible mechanisms to smooth the workflow of docu-

menting Restful APIs and test-suites during the development phase.

Therefore, the incompatible user management strategies, execu-

tion procedures for data manipulation, private-preserving policies,

and the lack of Web3-compatible API tools have greatly retarded

the smooth transition applications in different domains.

To fill the above gaps, in this work, we focus on proposing a prac-

tical solution to seamlessly integrate bothWeb3 andWeb2 applica-

tions and related services. We deconstruct the Web2 architecture

3Data source: Digital 2022: Global Overview Report
https://datareportal.com/reports/digital-2022-global-overview-report.

http://arxiv.org/abs/2210.05903v1
https://dappradar.com/industry-overview
https://datareportal.com/reports/digital-2022-global-overview-report

and extract three major components covering frontend APIs, back-

end servers, and supplementary databases. Aligning with the core

principles of Web3, we accordingly modify these components to

enable seamless integration with blockchain engines. Specifically,

we design three types of adjustable components: a SaaS module for

integrating Web2 software by providing generalized APIs, a back-

end interpreter that interprets and forwards requests fromWeb2 to

Web3, a blockchain layer that configures self-governed policies via

smart contracts as well as computes on-chain calculations through

chain Software Development Kits (SDKs). Our proposed solutions

can greatly promote the transition from classic Web2 applications

to theWeb3 space, without redundant development or complicated

middleware. In short, we highlight the contributions as follows.

• We explore the connotation of Web3 by investigating plenty

of in-the-wild Web3 projects. As a new concept, we compare

existingWeb2 solutions and so-claimedWeb3 projects to fig-

ure out the root features of Web3 applications and their de-

pendencies, extracting their differences compared with clas-

sic Web2 applications.

• Based on comprehensive analysis, we propose a seamless tran-

sition framework that transitsWeb2 toWeb3, namedWebttCom.

Our proposed solution establishes an interpreter to bridge

the Web2 applications and the Web3 backend engines. In

particular, the proposed framework WebttCom can offer

effective and reliable access control and user management

across the decentralized Web3 and centralized Web2, and

provide an approach to conduct transitionwith existing pop-

ular SaaS, and the framework.While operating,WebttCom

can also effectively improve production by automatically

generating API documents for developers and communities.

• We provide a full-stack implementation ranged from the fron-

tend and backend APIs, the structure design and smart con-

tract programming, to the on-cloud dockerized deployment.

Code size reaches up to 11,351 lines4. The system is applied

to daily service management processes, and promotes the

establishment of effective, flexible, reliable, and trustworthy

Web3-driven applications. Notably, our prototype has been

being inspected by the British Telecom (BT) in practice.

• We further conduct an evaluation from the developers’ per-

spective by holding interviewswith five skilled developers.The

interview feedback shows that the research question is well

satisfied by the proposed framework WebttCom, and the

presented full-stack implementation proves its strong capa-

bility of smoothing the transition in term of necessity, us-

ability, and completeness.

The remainder of this paper is organized as follows. Section 2

provides the Web3 basics. Section 3 proposes the research method-

ology and presents our research question. Section 4 introduces a

use case that implements the new pattern, followed by discussion

about the implementation notices and limitations shown in Sec-

tion 5. Section 6 provides existing studies related to this work. Sec-

tion 7 concludes this paper and highlights our contributions.

4Specifically, we present the detailed size distribution. The frontend takes 4 MB with
image resources, while 253 KB with code only (5367 lines). The backend is a 1.3 MB
project and 249 KB for codes (4831 lines). Web3 takes 265KB (1153 lines).

2 APPROACHING WEB3: A PRELIMINARY

In this section, we show the Web3 basics by making a compari-

son with Web2 and providing a typical Web3 instance.

2.1 Differences between Web 1/2 and Web3

Traditional Internets, including so-claimedWeb1 andWeb2, have

been developed for decades. Web1 is regarded as a suite of read-

only protocols that contain static sites to present images, text, and

videos. Users search for the targets by accessing web portals.Web2

changes the way of interaction by enabling user-generation con-

tent (UGC). Users can publish their original content, such as im-

ages, reviews, testimonials, or even podcasts on social media web-

sites (e.g., Facebook, Twitter). In this sense, Web2 is regarded as

read-write. Web3 differs from previous styles by adding features of

ownership and transfer. Users will create self-controlled accounts,

generally in the forms of wallets, to manage digital assets and vir-

tual data. Rather than relying on centralized servers, Web3 users

can freely transfer their assets under the governance of smart con-

tracts, which brings the advantages of auto-execution, being ac-

countable, and being globally verified. These smart contracts con-

nect both upper-layer DApps and underlying blockchain platforms.

Table 1: Comparisons amongWeb1/Web2/Web3 and Our Work

Functions Architecture Instance

Web1 read client-server Yahoo

Web2 read/write client-server Facebook, Google

Web3 read/write/own/transfer client-SC-chain Ethereum, BSC

Web2→3 read/write/own/transfer client-Int.-SC-chain WebttCom

2.2 Typical Web3 Architecture

Tradition web architecture is based on a client-server model.

The client is used for sending and receiving requests, while the

server is used to process these requests and corresponding logic.

The server side is also known as the backend, covering many fun-

damental aspects like operating systems (Windows, Linux), plat-

forms (.Net, LAMP), and storage. API is to connect the application

tier to servers. In contrast, the Web3 architecture replaces central-

ized backend servers with distributed ledgers. The backend con-

tains two sectors, smart contracts (SC) for defining logic and rules,

and blockchain platforms for processing transactions and achiev-

ing consensus. Web3 is more complex than traditional Web2 due

to its complete decentralization which requires dealing with the

consistency problem [7]. In this work, we aim to ease the tran-

sition between the Web2 application tier and blockchain-backend

systems.We establish an interpreter (short for Int.) to seamless con-

nect them.

3 RESEARCH DESIGN

In this section, we conduct an exploratory study [8], which pro-

poses a new Web3 driven framework, named WebttCom, for im-

plementing applications; and we define the research question (RQ)

for identifying and extracting the evidence (e.g., the benefits of

Web3 applications) for evaluating our proposed Web3 framework.

2

Web3 Driven Framekwork Use Case Exploration

!"#$%&'()*""$&+
,-$.&#/%*#0$

1*0#3*%&.

4$56'&/'4$57

8*&*'10#9*2:'

8*&*'8$2$%&0*"#;*&#/%

<1='8/2'>$%$0*&#/%

8<33.

?@*0&'2/%&0*2&A

B"/2C2D*#%.

Stage1 Stage2 Stage3

EvaluationImplementation

Interview

Figure 1: Overview of the study design

3.1 Research Question

This study aims to design and analyze whether ourWeb3 frame-

work is effective and practical in terms of the quality attributes (i.e.,

smooth transition) and development productivity. Such character-

ization of Web3 will shed light on future Web3 applications and

developments. Specifically, this work aims to address the Research

Question (RQ) as:

Given the proposedWeb3 framework (i.e.,WebttCom), is it ef-

fective, regarding the transition of Web2 to Web3 application

development?

• Web2 toWeb3 Transition: Given that many developers do

not have relevant development background for Web3 appli-

cations, is the proposed framework practical and helpful for

them to transit the Web2 to Web3 applications for meeting

and implementing the specific requirements?

• Dataprivacy andGovernance: In the evolution fromWeb2

to Web3, various issues related to data privacy and security,

data privacy and governance in Web3 is one of the most

discussed challenges for different stakeholders. As such, to

address this concern, our RQ can explore whether the pro-

posed Web3 framework (i.e., WebttCom) ensures data pri-

vacy and governance.

• Development Productivity: If the proposed Web3 frame-

work impacts developers’ productivity? For example, (1) prac-

titioners’ daily development tasks and documentation. (2)

problem-solving for Web3 application development.

3.2 Study Design Process

Our research methodology consists of three stages, as depicted

in Fig. 1. In the first stage, we proposed a Web3 transition frame-

work (i.e., WebttCom), which includes an interpreter to help de-

velopers transit and bridge theWeb2-based toWeb3-based applica-

tions. We implemented a full stack project based on the proposed

WebttCom in the second stage. In the last stage, to evaluate the

effectiveness of the proposedWebttCom and the feasibility of the

full-stack project, we interviewed five developers for their feed-

back and opinions.

Phase 1: Web3 Driven Framework.We proposed aWeb3 frame-

work (WebttCom), which allows developers to implement ef-

fective and reliable applications. The framework guarantees:

• Web2 to Web3 smooth transition: our framework provides

a trustworthy transition.

• Blockchain backend: the framework ensures the decentral-

ization of Web3-driven applications.

The details of the framework are described in Section 4.1.

Phase 2: Web3 Application Implementation. In this phase, we

implemented a full-stack application, which is based on theWeb3

framework that we proposed. The details of the application are

described in Section 4.2.

Phase 3: Interviews. As depicted in Fig. 1, in this phase, we in-

vited five developers to participate in comprehensive interviews

to confirm the effectiveness of our proposedWeb3-driven frame-

work and implementation. Each lasted 30 minutes.

• We invited five developers, who work at BT, to attend our

interviews. These interviews were anonymous.

• We designed an interview questionnaire, which consists of

three main questions (see Section 4.3.1) to get developers’

opinions on the effectiveness of our proposed framework

and the implementation that we developed.

• We applied qualitative data analysis and consistent compar-

ison to summarize the statements from developers, in terms

of the productivity of using our framework and application.

Each interview consists of three parts of questions:

• Part 1: We asked demographic questions, such as the in-

terviewees’ experience in Web3 development and manage-

ment.

• Part 2: We asked open-ended questions to understand their

opinions on Web3 design and development in practice.

• Part 3: We prepared candidate topics by carefully reading

the contents of representative textbooks. We picked a list

of topics that had not been explicitly mentioned in the open

discussion and asked the participants to discuss those topics

further. At the end of each interview, we thanked the par-

ticipant and briefly informed them what we plan to do with

his/her response.

4 RESEARCH RESULT

In this section, we propose a new framework, namedWebttCom,

which not only smooths the transition between Web2 and Web3

but also achieves high data privacy and data governance, and im-

proves development productivity. A full-stack implementation is

presented as a use case to support the framework. We also con-

duct 30-minute interviews where five developers were invited to

confirm the effectiveness of the proposed framework and imple-

mentation.

4.1 A New Framework:WebttCom

A new framework, namedWebttCom (Web2 to Web3 Commu-

nicator) is proposed as a result. WebttCom provides trusted and

reliable service management across multiple organizations. The

structure of WebttCom consists of a blockchain layer, a backend

interpreter, and a Web2 Software as a Service (SaaS), as in Fig. 2.

The blockchain layer saves service management data and sup-

portive data and controls access to the service data. To this end, the

blockchain layer includes a smart contract for data provisioning, a

private data repository for service data, and a public data reposi-

tory for data access policies and data hash checksum. In the smart

3

Policy

Resolver

Write

Control

Update

Control

Read

Control

P2L

Mapping

Blockchain

Layer

Smart Contract

Data

Collection 1

Data

Collection 2

D
ata

RepositoryPrivate Data

M
eta D

ata

Repository

Policy

Rules

Data

Hash

Public Data

Data Provisioning
Software as a Service

(SaaS)

Backend

Interpreter

Start

Asset

Service

Style

Service

JS

Service

!"#$

!%&&

!"&

React

Container

Creation File
!'()*

cre
a
te

d
e
p

lo
y

d
e
p

lo
y

REST

API

Interpret

& Forward

Blockchain

SDK

S
to

ra
g

e

S
to

ra
g

e

Frontend

Backend

Service

Provider

SaaS

Platform

Our case: ServiceNow

…

User

Management

Web2-Web3

Transition

…

Service

Management

Automated

Development
Return

Results

Figure 2: Overview of the instantiated service management platform.

contract, the policy resolver module extracts attributes of requests,

such as requested data, request location, and user affiliation, and

identifies effective access control policies. The write control mod-

ule enforces data storage policies, such as data storage location

and data expiration. The update control module takes charge of

data updates, while the read control module enforces data access

policies. The Physical-to-Logical (P2L) mapping module updates

data presentation according to pre-defined physical data formats

for data storage and logical data formats required by the SaaS.

The backend acts as a Web2-Web3 interpreter forwarding re-

quests from the Web2 SaaS to the Web3 smart contract and for-

matting Web3 results for Web2 SaaS, as in the Web2-Web3 transi-

tion module. The backend interpreter meanwhile manages Web2

and Web3 users for the transition. On the Web2 side, the backend

interpreter provides REST API [9] to the SaaS. The backend in-

terpreter employs automated development technology for the au-

tomatic route and document generation. The backend interpreter

communicates with the blockchain via the blockchain SDK.

The Web2 SaaS provides a service management interface in Ser-

viceNow, enabling users to submit, view and process service tickets

after logging in to the platform. The service management is real-

ized in the form of ServiceNow React Container [10] so that the

Web3-enhanced service management can be seamlessly integrated

with popular service management platforms, i.e., ServiceNow in

our case.

4.2 Implementing WebttCom: A Use Case in a

Service Management System

An implementation of the proposed framework WebttCom is

discussed inwhich a trusted and reliable service management across

the University of Technology Sydney (UTS) and BT is established.

The HyperLedger Fabric blockchain [11] is set up with one order-

ing service5 and two organizations (representing UTS and BT, re-

spectively) in the same channel6 for the Web3 service. Each of the

ordering service and the organizations has one Certificate Author-

ity (CA) node and one peer node. Service ticket data are recorded

5The ordering service validates transactions and assembles valid transactions into
ordered blocks.
6A Fabric channel is a private sub-network for permitted members.

in the Hyperledger Fabric in real-time and are certified by the data

hash. With Web3 technology, the two organizations have a con-

sistent view of service data. The platform is developed in Type-

Script 4.4 using VSCode 1.69.1 and runs on the elastic servers of

Amazon Web Service (AWS). MySQL 5.7 is selected to handle the

Web2-based registries whereas the Web3-based registries rely on

the native CouchDB of HyperLedger Fabric 1.4.

The implementation design of a service management system,

as a use case of the proposed WebttCom, is illustrated in Fig. 3

using the class diagram. Blockchain maintains a blockchain net-

work with several registered SmartContract. SmartContract is in-

herited by three classes, i.e.,Web3UserRegistry,Web3ObjectRegistry,

and Web3PolicyRegistry. The Web3UserRegistry registers the user

Web3 information in Hyperledger Fabric CAs and interacts with

the corresponding customizable offchain-storedWeb2UserRegistry

in which the local user management is conducted. All objects in-

cluding the product inventory, product order, service inventory,

and trouble ticket service are onchain-stored inWeb3ObjectRegistry

with dedicated policies of access control stored inWeb3PolicyRegistry.

All registries are composed of Record in which the user-defined

data record attributes are stored. Accessing the attribute values in

Record relies onWeb3Config in which the settings of Blockchain are

defined. AutoOpenAPIGenerator auto-generates the OpenAPI stan-

dard [12] documentation for modules includingWeb2UserRegistry,

Web3UserRegistry,Web3ObjectRegistry, and Web3PolicyRegistry.

4.2.1 A�ribute-based Access Control in Web3. In the Hyperledger

Fabric, each of the two organizations has one private data collec-

tion [13], which excludes the other organization, such that pri-

vate business data are only saved and managed by the permitted

organization. All blockchain members can access public onchain

data. Web3 users are registered to CAs with their attributes, in-

cluding organizations, departments and user types. The attributes

are used for the attribute-based access control to the service data.

EachWeb3 user has a unique private key to signWeb3 transactions

and access Web3 services.

Smart Contract: A service smart contract is developed to man-

age service tickets. The exposed entry points of the smart contract

4

<< Interface >>

Web3Config

connection: String

walletPath: String

walletID: String

channelID: String

contractID: String

collection: String

transientID: String

AutoOpenAPIGenerator

routeGenerate(func[])

docGenerate(path, docType,

 Dictionary<registry, <attributes[], func[]>>)

uiSetup(ip, port)

Smart Contract

entryPoint : String

Operations(params): returnType

Web3 (Blockchain)

block: String

consensus: String

user: Web3User

smart contract: contract

consensus(params):block

deplyContract(contract): entryPoint

updateContract(contract): String

runContract(Web3User, request): String

Record

ID: String

attributeName: String

attribute: Type (user-defined attributes)

query(ip, id, Web3Config):Record

delete(ip, id, Web3Config)

create(ip, record, Web3Config)

update(ip, record, Web3Config)

Web3PolicyRegistry

record: Record

writePolicy: String

readPolicy: String

updatePolicy: String

create(Web3User,payload)

update(Web3User,payload)

read(Web3User,payload)

Web3ObjectRegistry

record: Record object

Information: String

accessPolicy: jsonString

create(Web3User,payload)

update(Web3User,payload)

read(Web3User,payload)

Web2UserRegistry

record: Record

Web2Identity: String

Web2Credential: type

Web2UserType: type

Web3Identity: type

Web3Credential: type

new():returnType

login(): returnType

invokeContract(

 loginToken,

 Web3Identity,

 Web3Config,

 contractEntryPoint,

 contractRequest

): returnType

Block i-1

Block iWeb3UserRegistry

record: Record

Web3Identity:type

Web3Credential: type

new():returnType

invokeContract(

 Web3Config,

 contractEntryPoint,

 contractRequest

): returnType

Blockchain

Layer

Representative

 Layer

1 1

1

0…!

Figure 3: The class diagram of the instantiated service management platform.

are shown in Listing 1. The smart contract extends the Fabric Con-

tract class and exports functions as APIs.

In the smart contract, create/update/read functions are devel-

oped forWeb3PolicyRegistry and Web3ObjectRegistry, as shown in

Fig. 3. Web3PolicyRegistry is implemented with the Fabric public

data scheme where all blockchain peers have a copy of the public

data, while Web3ObjectRegistry is realized with the Fabric private

data scheme where only permitted peers have data copies. Vari-

able ctx collects the context of the transaction calling the smart

contract, including user attributes and timestamp for access con-

trol and transient service data7. Variable attributes provides Web2

attributes for access control, such as geolocation information. Vari-

able publicPayload gives the data requested by the smart contract

and recorded on the Fabric blockchain, such as access control poli-

cies.

Access Control: The smart contract enables attribute-based ac-

cess control (ABAC) where access control policies are designed

based on user attributes and environment attributes and are orga-

nized as theWeb3PolicyRegistry. A policy can be either writePolicy,

readPolicy, or updatePolicy, and each of them has unique fields de-

scribing access control requirements. All the policy types also have

general metadata, including an updated time, an effective time and

a priority level, for policy conflict resolver. All policies are created

by organization admins and saved in the public data repository,

such that policies can be accessed by all Web3 users and applied to

all private data collections.

The policy resolving process is shown in Listing 2. The policy

resolver first extracts theWeb3 user attributes and environment at-

tributes of the transaction, such as transaction timestamp, from the

7Transient data is a type of data for Fabric private data collection, which can be read
by smart contracts but does not be recorded in on-chain transactions.

ctx variable. Next, the policy resolver module retrieves all related

policies according to the policy IDs embedded in the request data.

Then, the policy resolver identifies effective policies by checking

Web3 user roles, effective timestamps, policy priority, and geoloca-

tions. At last, the policy resolver returns effective policies for the

request.

Thewrite control, update control and read control modules then

process the request according to the request data in the request

transactions and effective policies. The request is rejected if no ef-

fective policy is returned from the policy resolver module. For a

data write/update request, the write control and update control

modules firstly identify the right private data collection from ef-

fective writePolicy and updatePolicy. The modules also check re-

quest attributes against the requirements specified in the effective

policies and terminate the request for failed checks. The modules

then extract transactional data and transient data from the request

transaction and create a Web3 object with object information and

related access policy IDs. Then, the modules can write/update the

Web3 object to the data collection. For a data read request, the read

control module gets the private data collection from the request

transaction and reads the requested data out following the effec-

tive readPolicy. The read control module also implements the P2L

mapping on the data keys following the mapping rules stated in

effective readPolicy.

4.2.2 Web2-Web3 Transition. Each of organizations has an inter-

preter to convert Web2 requests to Web3 requests and forwards

requests to specific Web3 nodes according to request attributes for

Web3 processing. The interpreter then monitors Web3 processing

results and creates returns for Web2 requests.

5

Web2 APIs: The interpreter provides REST APIs supporting cre-

ate, read, update operations in Web2 applications and implements

Bearer Authentication scheme [14].

A Web2 request includes payloads describing create, read, and

update operations on Web3 objects and policies. Besides that, the

Web2 request contains a bearer token for authentication by the

interpreter. The bearer token also allows the interpreter to iden-

tify the corresponding Web3 identity and private key for signing

Web3 transactions. The Web2 request also gives details for the cor-

responding Web3 request, including the channel name, smart con-

tract name and targeted private data collection, such that the inter-

preter can create correct Web3 request transactions and send them

to the right Web3 node for processing.

Web3 Interaction: Interpreters manage user identities and inter-

act with the service smart contract using the Hyperledger Fabric

SDK [15], as shown in Listing 3. The channel and service smart con-

tract are specified by variables channelName and scName in lines

10-11.

For everyWeb3 request, the interpreter needs to create a request

transaction and sign the transactions with a valid Web3 user iden-

tity. To this end, the interpreter saves the Web3 user identities of

all Web2 users in the organization, i.e., walletPath and walletID in

Listing 3, and maintains the mapping between Web2 and Web3

identities. The interpreter is an organization admin user who can

register and revoke users. During the user registration process, a

user provides user information and credentials to the interpreter

like general Web2 user registration. The interpreter firstly creates

a new user record on itself and then sends the registration informa-

tion to the organization CA node to create a Web3 identity. Then,

the interpreter keeps the user’s Web3 wallet including a private

key and records the mapping between theWeb2 identity andWeb3

identity.

The interpreter needs to connect specific Web3 nodes that have

requested private data collections. To this end, the interpretermain-

tains connection profiles8 to Web3 nodes from different organiza-

tions and records the mapping between private collections and the

hostingWeb3 nodes.When the interpreter receives aWeb2 request,

the interpreter identifies the data collection related to the request.

The interpreter forwards the request to any Web3 node if the re-

quested data is public. If the request points to some private data col-

lection, the interpreter firstly identifies the hostingWeb3 node and

then forwards the request to the Web3 node using pre-configured

connection profiles.

4.2.3 Transitionwith SaaS: ServiceNow-basedWeb Application. Ser-

viceNow is a popular cloud-based workflow automation platform

for enterprises by streamlining and automating routine work tasks.

In many cases, companies are seeking a simple solution for con-

necting their existing ServiceNow applications to Web3 systems.

As a result, we chose ServiceNow as our frontend system.

We intend to solve the following problems with our scheme:

• ServiceNow’s existing system could be transformed in an

efficient manner.

• Programmers’ coding can bemade easier by following a few

simple steps.

8A connection profile describes the Web3 node to be connected, such as ID and
IP/port.

In order to resolve these issues, we implement a ServiceNow

container concept as shown in the left part of Fig. 2. We develop

a web application using React and embedded it in ServiceNow. By

using REST APIs, the embedded application can smoothly commu-

nicate with the backend and the interpreter.

Theweb applicationwas developed using React, an open-source

JavaScript library for creating user interfaces. There is a large com-

munity of programmers who use React. Therefore, most program-

mers are familiar with it and can easily obtain assistance from

other members of the community.

A modern website deployment method - Webpack - is used for

the deployment of this web application. Instead of deploying all

resource files directly to the web server, Webpack binds multiple

files into a single deployment file. Multiple HTML files are com-

bined into one HTML file, and multiple Javascript files are com-

bined into one Javascript file. This deployment method simplifies

the resource access path, which is exactly what we require.

• The deployment utilizes two ServiceNow concepts: the UI

page and the web service.

• The ServiceNow UI page allows developers to customize

web pages using HTML or XML. In this case, we create one

UI Page and insert the combined HTML code using Web-

pack.

The ServiceNowweb services provide access to resources through

RESTAPIs. Three web services have been developed: the Asset Ser-

vice, the Style Service, and the JS Service. All images are accessible

through the asset service. The style service provides all CSS access.

The JS service provides access to JavaScript code.

There are three functions of the web application: user login, pol-

icy management, and ticket management. As part of implementing

these functions, the embedded application communicates with the

intrepreter using HTTP REST APIs.

4.2.4 Backend and Automated Development Tools. Express frame-

work is used to offer a flexible Node.js web applicationwithMySQL

being used forWeb2UserRegistry andWeb3Config. Sequelize is used

to provide effective connections to the Web2 local registry in the

manner of Object-relationalMapper (ORM). The platform is docker-

based by default, and docker-compose is used to offer an orches-

tration service for distributed and flexible docker containers.

The system also offers automated generation and documenta-

tion of OpenAPI-compliant REST APIs [12] for Web2UserRegistry,

Web3UserRegistry,Web3ObjectRegistry, andWeb3PolicyRegistry via

TSOA 3.11 [16]. The TSOA framework integrates OpenAPI com-

piler to construct Node.js serve-side application in type-safe Type-

Script at runtime, as TypeScript is used for the programming of

smart contracts at theWeb3 side and backend/frontend at theWeb2

side. The function, routeGenerate, can easily generate theAPI routes

automatically with no pain based on the definition of controllers

of all registries above; see the lower half of each registry in Fig. 3.

At the same time, the YAML-based OpenAPI documentation and

test suite are also generated to ease API testing and smooth the

development of transition via docGenerate.

6

4.3 Interview Results

We conducted a set of interviews to assess the Necessity, Usabil-

ity, and Completeness of the proposed framework WebttCom and

the implementation.

4.3.1 Interview �estions. The technical background and Web3

experience were asked, followed by the following questions from

the domain experts to ensure the Necessity of the new proposed

framework WebttCom:

• What do you think of the pros and cons of Web2 and Web3

by now under your background?

• What do you think of the necessity of a smooth transition

between Web2 and Web3 (both Web2 to Web3 and Web3 to

Web2) from your organizational and personal perspectives?

• What are the possible challenges during the transition do

you think is required to be resolved immediately?

Further, we asked following questions for feedback onWebttCom

and overall Usability and Completeness of the implementation.

• To what extent the Service Management System developed

by UTS and BT, the implementation of the proposed frame-

work WebttCom, matches the principles of WebttCom

and address the challenges above?

• What are your suggestions to enhance the suitability of the

new framework WebttCom and its implementation?

4.3.2 Key Findings. We summarized key findings from the inter-

views that can support the proposed framework and implementa-

tion as a use case. The overall feedback of four developers was

positive with the fifth one being neural. Key findings are as:

1) Necessity - Enable Guided and Structured Design: Build-

ing Web3 technology into Web2 systems can solve critical secu-

rity and trust issues in Web2 systems, especially for businesses

across multi-organizations. Web2 systems are centralized and can

hardly achieve trust across organizations, while the inherent con-

sensus mechanism ofWeb3 technology can provide verified single-

ground truth and thus build trust across parties. The second inter-

viewee stated “A transition from Web2 to Web3 will bring the data

trustworthiness and cybersecurity guarantee fromWeb3 to Web2 sys-

tems. ”.

It is of importance to have a smooth transition between Web2

and Web3. This is because Web2 is a mature technology, but de-

veloping Web3 applications could be challenging. As stated by the

fourth interviewee with limited Web3 knowledge “The modifica-

tion of the existing Web2 system should not be difficult. In order

to avoid overloading the programmers with Web3 knowledge, they

should not learn too much.”, and the fifth interviewee stated “Web2

and Web3 should be able to coexist and interact smoothly.” Detailed

challenges during the transition between Web2 and Web3 include

• The transition of two different technologies, as stated by the

fourth interviewee “Due to the differences in concept, technol-

ogy and tools between Web2 and Web3, it is difficult to inte-

grate the Web2 system with the Web3 system.”

• New access control schemes in Web3. The first interviewee

stated “Web3 is transparent, how to apply flexible and feasi-

ble access control becomes important for cases where data pri-

vacy is considered”, and the third interviewee stated “DLTs

are a promising solution due to the ability of smart contracts

to ensure that the required country-specific data management

policies are agreed and enforced.”

• Heterogeneous user management across Web2 and Web3.

The first interviewee stated “Approach to apply the user man-

agement in a shared ledgermay be a challenge asWeb2 parties

tend to have separate user management systems at local.”

• High development and transition cost. The first and the fifth

interviewees stated “Easing the transition by using automated

tools is normal in Web2 applications and is also essential dur-

ing the transition between Web2 and Web3.” and “Challenges

include lack of experience developers, lack of available devel-

opment resources, tools.”

2) Usability - Flexible Access Control: The developed flex-

ible access control can implement access control policies as de-

signed. The service provider can define access control policies, in-

cluding data storage policies, write policies and read policies. The

smart contract on the Hyperledger Fabric enforces all the policies

and controls access to onchain data. The developed access control

mechanism has been confirmed by all interviewees. The second in-

terviewee stated “The system can enforce all the expected data gover-

nance and access control policies.”, and the third interviewee stated

“In evaluating the solution we have demonstrated that a DLT Hyper-

ledger layer can meet the required success criteria related to cross-

country access control and user-management; as well as, connecting

to a traditional SaaS workflow management layer.”

3)Usability - Compatible User Management: The developed

usermanagement compatiblymanagesWeb2 andWeb3 users.When

a user submits a Web2 registration request, both Web2 and Web3

accounts are simultaneously created and then managed by the de-

veloped framework. When users log in and submit requests, the

framework can perform authentication with the users’ Web2 cre-

dentials and process Web3 requests and responses in the represen-

tation of the users. All interviewees are satisfied with the devel-

oped usermanagement. The second and fourth interviewees stated

“A user can use one identity to access Web2 and Web3 services.” and

“Web2 programmers are not required to touch too much.”

4)Usability - Easy Integrationwith Existing Platforms and

Services: The developed system seamlessly integrates with exist-

ing service management on ServiceNow. All operations are con-

ducted in ServiceNow, including login, access control policy man-

agement and service ticket management. The workflow keeps the

same with the Web2 version. Nevertheless, all data are securely

saved on the Hyperledger rather than disconnected databases and

can be verified with theWeb3-certified data hash. As the second in-

terviewee stated “Users can access Web3-certified data services from

the SaaS. The complicated Web3 details are transparent to users.”

5) Usability -HighlyAutomatedDevelopment Tools: Highly

automated development tools are implemented for automated gen-

eration and documentation of OpenAPI-compliant REST APIs of

bothWeb2 and Web3 registries. This significantly improves the ef-

ficiency of programming by sharing the same development work-

flows and schema formats between Web2 and Web3. As the 1st,

2nd, and 4th interviewees gave positive feedback by stating “Auto-

mated development tools significantly reduce the programmers’work-

load and has almost become a must-use tool during the current work-

flow.”.

7

6) Completeness - Sufficient Decentralization with Strong

Data PrivacyandGovernance: The interviewees satisfy the frame-

workWebttCom and the use case in regard to achieving sufficient

decentralization level while ensuring strong data privacy and gov-

ernance; as the first interviewee stated “The framework appears

to be covering most perspectives including the access control, data

privacy, data governance, user management, connections to existing

SaaS, and development productivity.”

7) Completeness - Limited Cases: The fourth and fifth inter-

viewees stated “More commercial Web2 systems should be integrated

with Web3.” and “Need to find suitable business use cases to demon-

strate the benefit of Web3”. Three interviewees noted that the pro-

posed frameworkWebttCom requires more business use cases to

support by potentially integrating the existing commercial Web2

projects. While we admit this limitation at the time of writing, this

work originates from solving the transition issue from Web2 to

Web3 which is come across by our business partner proceeding

with their latest strategy. This work is new and lacks sufficient ex-

isting use cases. Therefore, this work focuses on demonstrating

how WebttCom solves the research question, and we postpone

extending use cases to improvements and future works.

8) Potential Improvements: Four interviewees stated that the

framework and the given use case appear to be restricted to per-

missioned blockchain platforms such as HyperLedger Fabric while

applying the same framework on other popular platforms such

as Ethereum also requires further testing. One interviewee men-

tioned that the attempt to integrate with ServiceNow is a good

start, but the connection with the existing services and functionali-

ties provided by Platform as a Service (PaaS) or even Infrastructure

as a Service (IaaS), such as AWS and Azure, also requires further

testing.

5 LIMITATIONS AND VALIDITY

We apply the guidelines [17] in to discuss key threats to the

validity (construct, internal,external) of this work.

Construct validity reflects what extent the research questions

and methodology are appropriately used in a study. A threat in

Stage 3 (i.e., the interviews) is whether or not our interviewees

are representative. To reduce this threat, we invited five practi-

tioners who come from the company that is applying our Web3

implementation. In addition, the areas that the participants have

worked on cover a wide range of domains (e.g., blockchain and AI

applications). However, they may not be representative of all prac-

titioners. To mitigate this potential bias, we have carefully chosen

questions and topics. Our interview respondents completed the in-

terviews based on their opinions and perception. It is possible that

they conflate the skills that are very important and the skills that

are very relevant to their projects or industrial contexts.

Internal validity focuses on factors that may influence the va-

lidity of the results. The main threat in our study is whether the

study process we designed and the Web3 framework and applica-

tion that we proposed can answer our research questions. It is also

possible that we draw the wrong conclusions about respondents’

perceptions from their comments. To minimize this threat, we read

transcripts many times and checked the interview results and the

corresponding comments several times.

The selection of statements produced at the end of the inter-

views may not be comprehensive and may be biased to the back-

ground of experts—who may not be able to articulate their own

opinions. To mitigate this bias, we have taken the following steps:

• Aside from asking direct questions about their opinions about

Web3 and applications that we designed and implemented,

we also asked them to discuss general topics that they had

not explicitlymentioned. The topicswere selected fromWeb3

textbooks and online resources; they include concepts, com-

prehension, programming language, requirements, design

implementation, testing, and tool usage.

• Three authors have performed data analysis to cross-check

their answers by using card sorting [18], and we carefully

examined and only included relevant statements.

External validity concerns the generality of our study results

to other settings. Our results and summaries are based on theWeb3

framework and application and interview participants’ opinions in-

stead of a rigorous analysis of the claims participants make. It is

possible that the opinions in terms of Web3 framework and appli-

cation differ from participant and participant. To improve the gen-

eralizability of our results, we interview five respondents. Still, our

findings may not generalize or represent the perception of all soft-

ware engineers. For example, the respondents are from one com-

pany. It would be interesting to perform another study to investi-

gate more software engineers to perceive the benefits and limita-

tions of the Web3 framework and application in the future.

6 RELATED WORK

In this section, we give a quick overview of the notion of Web3

and then introduce ways of building Dapps on top of blockchains.

Notion ofWeb3.The concept ofWeb3was first proposed byWood [19]

with an initial discussion focusing on blockchain-based digital in-

frastructure. Later, Weyl et al. [1] illustrate the ways of building

a decentralized society by exploring Web3-related applications, re-

quirements, opportunities, and challenges. Wang et al. [3] provide

the discussion between Web3 and blockchain from the perspective

of architecture design. Thework has identified a total of 12 types of

designs according to the data workflow of access, computation and

storage. A series of reports from Consensys [20] investigates the

economic performances created by decentralized networks. Web3

economy covers many on-chain protocols such as stablecoins, bor-

rowing, lending, and leverage. These protocols are built on top of

smart contracts. Liu et al. [21] explore three types of infrastruc-

tural enablers, including the single smart-contract powered chain,

federated contracts, and interoperable blockchain platforms. How-

ever, Web3 sofar still confronts high-level controversies in terms

of its definition and application. We, in this paper, extend our ex-

ploration by complying with its core decentralization nature guar-

anteed by underlying blockchain services.

Constructing Web3 Applications. Traditional Web1 and Web2

applications rely on centralized backend servers for computations

and storage. Web3 applications [3] replace these servers with de-

centralized blockchain platforms [6][22]. Building a Web3 appli-

cation requires three phases: (i) embedding the wallet for access,

8

(ii) connecting frontend with blockchain platforms and (iii) operat-

ing executions on-chain. A wallet [23][24] is backed by locally run-

ning lightweight nodes and helps Web3 users to create on-chain

accounts (in the form of address [25]) as their identities. A user

can initiate a request by sending a transaction from wallets to the

transaction pool. Smoothly processing the received requests from

the frontend requires a suite of standard protocols, including token

standards (e.g., EIP [26], BEP [27]) and unified APIs. All the com-

piled bytecodes will be executed on-chain by iterative state tran-

sitions. The consensus mechanism is critical in maintaining state

consistency and chain stability [28]. In some cases, external tech-

niques are needed for supportive functionalities such as distributed

storage [29], layer-two computations [30], cross-chain bridges [31]

or on-chain oracles [32]. Our work achieves more than building a

simple Dapp that is independent of operating blockchains. We, in-

stead, develop a general interpreter to connect Web2 applications

to the current leading Web3 platforms from the access layer to the

chain layer. This gives an educational study for the community.

7 CONCLUSION

In this paper, we gave a research question by exploring the con-

notation ofWeb3 and the key differences betweenWeb2 andWeb3

applications. We proposed a new framework, named WebttCom,

to enable a seamless transition from Web2 to Web3. In particu-

lar,WebttComcan smoothly connect traditionalWeb2 applications

to mainstream Web3 blockchain platforms while additionally en-

suring high data privacy and governance, and improving develop-

ment productivity. Our design innovative introduces an interpreter

mechanism that can aggregate and deals with requests between

Web2 and Web3 spaces. Accordingly, we implement a full-stack

system with 11.351+ lines of code and launch a survey for evaluat-

ing the effectiveness of our framework. Corresponding interviews

with five experienced participants confirmedWebttCom satisfies

our research question with a few possible limitations of the frame-

work and its related business cases. We further provide our recom-

mended improvements, including the extension of the framework

to involve more blockchain platforms and search for more business

cases.

REFERENCES
[1] E GlenWeyl, Puja Ohlhaver, and Vitalik Buterin. Decentralized society: Finding

web3’s soul. Available at SSRN 4105763, 2022.
[2] Xu Wang, Xuan Zha, Wei Ni, Ren Ping Liu, et al. Survey on blockchain for

internet of things. Computer Communications, 136:10–29, 2019.
[3] QinWang, Rujia Li, QiWang, Shiping Chen, et al. Exploring web3 from the view

of blockchain. arXiv preprint arXiv:2206.08821, 2022.
[4] Guangsheng Yu, Xuan Zha, XuWang,Wei Ni, Kan Yu, Ping Yu, J. Andrew Zhang,

Ren Ping Liu, and Y. Jay Guo. Enabling attribute revocation for fine-grained ac-
cess control in blockchain-iot systems. IEEE Transactions on Engineering Man-
agement, 67(4):1213–1230, 2020.

[5] Guangsheng Yu, Litianyi Zhang, Xu Wang, Kan Yu, Wei Ni, J. Andrew
Zhang, and Ren Ping Liu. A novel dual-blockchained structure for contract-
theoretic lora-based information systems. Information Processing&Management,
58(3):102492, 2021.

[6] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper, 151(2014):1–32, 2014.

[7] Xu Wang, Wei Ni, Xuan Zha, Guangsheng Yu, et al. Capacity analysis of public
blockchain. Computer Communications, 177:112–124, 2021.

[8] Steve Easterbrook, Janice Singer, et al. Selecting empirical methods for software
engineering research. InGuide to advanced empirical software engineering, pages
285–311. Springer, 2008.

[9] Shaohua Wang, Iman Keivanloo, and Ying Zou. How do developers react to
restful api evolution? In International Conference on Service-Oriented Computing,
pages 245–259. Springer, 2014.

[10] Servicenow. https://www.servicenow.com/.
[11] Elli Androulaki, Artem Barger, et al. Hyperledger fabric: a distributed operating

system for permissioned blockchains. In Proceedings of the Thirteenth EuroSys
Conference (EuroSys), pages 1–15, 2018.

[12] OpenAPI. The openapi specification. https://github.com/OAI/OpenAPI-Specification,
2022.

[13] Hyperledger Fabric. PrivateData. https://hyperledger-fabric.readthedocs.io/en/release-2.2/private-data/private-data.html?highlight=private%20data,
2022.

[14] SmartBear. BearerAuthentication. https://swagger.io/docs/specification/authentication/bearer-authentication/,
2022.

[15] Hyperledger Fabric. Hyperledger Fabric SDK for node.js.
https://hyperledger.github.io/fabric-sdk-node/release-1.4/index.html, 2022.

[16] Lukeautry. Openapi-compliant rest apis using typescript and node.
https://github.com/lukeautry/tsoa, 2022.

[17] Claes Wohlin, Per Runeson, et al. Experimentation in software engineering.
Springer Science & Business Media, 2012.

[18] Sally Fincher and Josh Tenenberg. Making sense of card sorting data. Expert
Systems, 22(3):89–93, 2005.

[19] Gavin Wood. Why we need web 3.0.
https://gavofyork.medium.com/why-we-need-web-3-0-5da4f 2bf95ab, 2021.

[20] Consensys. Web3 report q3. https:// consensys.net/ reports/web3-report-q3-2021/ ,
2021.

[21] Zhuotao Liu, Yangxi Xiang, et al. Make web3. 0 connected. IEEE Transactions
on Dependable and Secure Computing, 2021.

[22] Binance smart chain. Accessible at https://www.bnbchain.org/en/smartChain,
2022.

[23] Panagiotis Chatzigiannis, Foteini Baldimtsi, and Konstantinos Chalkias. Sok:
Blockchain light clients. 2022.

[24] Kostis Karantias. Sok: A taxonomy of cryptocurrency wallets. Cryptology ePrint
Archive, 2020.

[25] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A
Kroll, and Edward W Felten. Sok: Research perspectives and challenges for bit-
coin and cryptocurrencies. In 2015 IEEE Symposium on Security and Privacy (SP),
pages 104–121. IEEE, 2015.

[26] Ethereum improvement proposals. Accessible at https:// eips.ethereum.org/ ,
2022.

[27] Instance: Bep-20. Accessible at https://academy.binance.com/en/glossary/bep-20 ,
2022.

[28] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone pro-
tocol: Analysis and applications. In Annual International Conference on the The-
ory and Applications of Cryptographic Techniques (EUROCRYPT), pages 281–310.
Springer, 2015.

[29] Juan Benet. Ipfs-content addressed, versioned, p2p file system. arXiv preprint
arXiv:1407.3561, 2014.

[30] Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and
Arthur Gervais. Sok: Layer-two blockchain protocols. In International Confer-
ence on Financial Cryptography and Data Security (FC), pages 201–226. Springer,
2020.

[31] Alexei Zamyatin et al. Sok: Communication across distributed ledgers. In In-
ternational Conference on Financial Cryptography and Data Security (FC), pages
3–36. Springer, 2021.

[32] Lorenz Breidenbach, Christian Cachin, et al. Chainlink 2.0: Next steps in
the evolution of decentralized oracle networks. Chainlink Labs, accessible at
https://naorib.ir/white-paper/chinlink-whitepaper.pdf , 2021.

APPENDIX

The entrance of the implemented service management contract

is shown in Listing 1. The service management contract extends

the Hyperledger Fabric Contract class. Users can invoke the func-

tions by sending transactions containing the function names and

parameters. Users can create, update, and readWithFilter objects

saved on the Hyperledger Fabric. Functions are implemented in

controller files.

1 import { Context, Contract, Info, Returns, Transaction } from 'fabric-

contract-api';

2 import { Controller } from 'web3-controller';

3

4 export class ServiceContract extends Contract {

5 @Transaction(true)

6 @Returns('string')

9

https://www.servicenow.com/
https://github.com/OAI/OpenAPI-Specification
https://hyperledger-fabric.readthedocs.io/en/release-2.2/private-data/private-data.html?highlight=private%20data
https://swagger.io/docs/specification/authentication/bearer-authentication/
https://hyperledger.github.io/fabric-sdk-node/release-1.4/index.html
https://github.com/lukeautry/tsoa
https://gavofyork.medium.com/why-we-need-web-3-0-5da4f2bf95ab
https://consensys.net/reports/web3-report-q3-2021/
https://www.bnbchain.org/en/smartChain
https://eips.ethereum.org/
https://academy.binance.com/en/glossary/bep-20
https://naorib.ir/white-paper/chinlink-whitepaper.pdf

7 public async create(ctx: Context, attributes: string, publicPayload:

string): Promise<string> {

8 return await new Controller(<'policy'|'object'|'user'>).

createRegistry(ctx, ctx.stub.getTxID(), attributes, publicPayload

);

9 }

10 @Transaction(true)

11 @Returns('string')

12 public async update(ctx: Context, dataId: string, attributes: string

, publicPayload:string): Promise<string> {

13 return await new Controller(<'policy'|'object'|'user'>).

updateRegistry(ctx, dataId, attributes, publicPayload);

14 }

15 @Transaction(false)

16 @Returns('string')

17 public async readWithFilter(ctx: Context, publicPayload:string):

Promise<string> {

18 return await new Controller(<'policy'|'object'|'user'>).

readRegistryWithFilter(ctx, publicPayload);

19 }

20 }

Listing 1: Entry Point of the Ticket Management Contract.

The read and update policy checking is shown in Listing 2. The

function checks all policies linked to the corresponding objects,

which are given by the parameter policyIDs. The function fetches

the policies with the policyIDs, checks user, location, validTime, up-

dateTime, and priority, and returns the effective policy.

1 public async getActiveReadAndUpdatePolicy(ctx: Context, location:

string, policyIDs: string[]): Promise<any> {

2 let effectivePolicy: any = {};

3 let user = lla.getUserInfo(ctx);

4 let ts = ctx.stub.getTxTimestamp().getSeconds() * 1000;

5 let latestTimestamp = 0;

6 let highestPriority = 0;

7 for (let policyID of policyIDs){

8 let policyObj: any = await new pc.policy().loadPolicyFromID(

ctx, policyID);

9 let updateTime = await lla.getLastUpdateTime(ctx,policyID);

10 let permittedUser = new userInfo(policyObj.privilege.

rowPolicy.userAffiliation)

11 if (user.match(permittedUser)) {

12 if (location == policyObj.privilege.rowPolicy.location.

countryName) {

13 let startStamp = new Date(policyObj.validFor.

startDateTime).valueOf();

14 let endStamp = new Date(policyObj.validFor.

endDateTime).valueOf();

15 if (ts >= startStamp && ts <= endStamp) {

16 if (policyObj.priority > highestPriority) {

17 effectivePolicy = policyObj;

18 latestTimestamp=updateTime;

19 highestPriority=policyObj.priority;

20 }

21 if (policyObj.priority == highestPriority) {

22 if (updateTime > latestTimestamp) {

23 effectivePolicy = policyObj;

24 latestTimestamp=updateTime;

25 }}}}}}

26 return effectivePolicy;

27 }

Listing 2: Read and Update Policy Checking Function.

The Web2-Web3 interpreter is shown in Listing 3. When receiv-

ing a Web2 request, the interpreter creates a Hyperledger Fabric

connection, including the connection profile, Fabric user, channel

name, and contract name, according to the payload of theWeb2 re-

quest. The interpreter then forwards the Web2 request and param-

eters to the corresponding functions in the Web3 contract. When

receiving Web3 results, the interpreter returns them to the Web2

request.

1 export async function Trans(

2 _fabric: ITransient, context?: Required<Pick<IUserManagement, "

userID" | "userPWD">>, fnc: string, ...args: string[]

3): Promise<string> {

4 let promise: Promise<string> = new Promise(async (resolve, reject)

=> {

5 try {

6 const fabricConCof: FabricConfiguration = new

FabricConfiguration(

7 _fabric.connection, /* The Fabric connection profile */

8 _fabric.walletPath, /* The path to Web3 credentials */

9 _fabric.walletID, /* The Web3 user */

10 _fabric.channelName, /* The Fabric channel name */

11 _fabric.scName, /* The smart contract name */

12 _fabric.listen /* Fabric event listener*/

13);

14 const [gateway, connectionProfile, connectionOptions] = await

getFabricConfig(context, _fabric);

15 await gateway.connect(connectionProfile, connectionOptions);

16 let network = gateway.getNetwork(fabricConCof.channelName);

17 let contract = (await network).getContract(fabricConCof.scName

);

18 const channel = (await network).getChannel();

19 let result: Buffer | any;

20 result = await contract.submitTransaction(fnc, ...args);

21 await gateway.disconnect();

22 if (result) { resolve(result.toString()); }

23 else { resolve("Invoking ${fnc} succeeds."); }

24 } catch (error) { reject(error); }

25 });

26 return promise;

27 }

Listing 3: Web2-Web3 Interpreter.

APPENDIX-B

First response

1.What is your job in the organization? Technical or

non-technical?

I am a software developer in my organization.

2. What is your Web3 background?

I have 4-year developing experience on Web3 (expert)

3. What do you think of the pros and cons of Web 2

and Web3 at present?

Web 2:

Pros: mature, design pattern, tools, workflows have

been thoroughly explored and developed, and have been

proven applicable for many huge and complicated tasks.

Cons: heavily relies on trustworthy centralized entities.

Building trust among parties heavily relies on social en-

gineering, which often causes interests dispute.

Web3:

Pros: achieve trustworthy relationship among parties

without centralized entities in a decentralized manner.

Cons: immature, lack design pattern, tools, workflows.

Popularity is not as good as Web 2.

4.What do you think of thenecessityof smooth tran-

sition betweenWeb 2 andWeb3 from your organiza-

tion and your personal perspectives?Web 2 toWeb3

and Web3 to Web 2?

It is of importance to have smooth transition betweenWeb

2 and Web3.

Web 2 project sometimes not only needs to focus on the

trust issue, but also need to have an efficient incentive

10

mechanism to encourage the public to use the services.

And Web3 fits the requirement by applying the decentral-

ized ledger technology.

Many Web3 applications have proven the potential in

many areas including finance, asset trading, gaming,

law. . . However, Web3 is still a new to the market, and

needs to increase its popularity by having collaboration

with those giant companies and their mature products.

5. What are the possible challenges during the tran-

sition do you think is required to be resolved?

(1) Web3 is transparent, how to apply flexible and fea-

sible access control becomes important for cases

where data privacy is considered.

(2) Approach to apply the user management in a

shared ledger may be a challenge because in Web

2 parties tend to have separate user management

systems at local.

(3) How to connect with existing mature products,

such as SaaS, may be a challenge.

(4) Easing the transition by using automated tools is

normal in Web 2 applications and is also essential

during the transition between Web 2 and Web3.

Having such tools that can also be seamlessly in-

tegrated in existing Web 2 and Web3 frameworks

may be a challenge.

6. To what extent the Service Management System

developed by UTS and BT UK matches the frame-

work and solve the questions?

a. Access control

Satisfied, the data-driven policy is smart.

b. User management

Satisfied

c. Connection with SaaS

Satisfied with the combination with ServiceNow which

has been widely used in many existing products.

d. Automated development tools

TSOA is an interesting tool as Typescript is very popular

and OpenAPI standard has almost been a must-use tool

during the current workflow in Web 2 development.

7.What are your suggestions to enhance the suitabil-

ity of the new frameworkWebttCom and its imple-

mentation?

The framework appears to be covering most perspec-

tives including the access control, data privacy, data

provenance, user management, connections to existing

SaaS, and development productivity. And the imple-

mentation also shows a good match to the framework.

One point that could be improved is the extension of

Web3 platforms where other platforms can be involved

other than HyperLedger. Then any possible changes of

the implementation to match the framework should be

considered.

Second response

1.What is your job in the organization? Technical or

non-technical?

I am a researcher and software developer in my organiza-

tion.

2. What is your Web3 background?

I have 4-year research and development experience on

Web3.

3. What do you think of the pros and cons of Web 2

and Web3 at present?

Web 2:

Pros: Web 2 technology has been developed for decades.

There are many mature solutions for various require-

ments and development tools for rapid development and

simple management. Consumers have been well educated

on the Web 2 service pattern.

Cons: The biggest challenge of Web 2 systems is the trust

issue. For a single Web 2 service, consumers have to trust

Web 2 service providers, and the service providers need to

trust developers, infrastructure providers, etc. When mul-

tiple Web 2 systems are connecting to each other, they

need to trust the services and data from others. In the case

of untrusted relations or inconsistent data, it is challeng-

ing to solve disputes and provide services as a whole.

Web3:

Pros: Web3 can provide single ground truth to all partici-

pants in a trustless way. Different parties do not have to

build trust with each other.

Cons: Web3 is a new technology. The architecture and

process of Web3 services are very different from those of

Web 2. Deploying and maintaining Web3 infrastructure

and applications could be very time-consuming and risky.

Consumers need to be educated about changes from

Web3.

4.What do you think of thenecessityof smooth tran-

sition betweenWeb 2 andWeb3 from your organiza-

tion and your personal perspectives?Web 2 toWeb3

and Web3 to Web 2?

We are aware of the benefit ofWeb3 and have a plan to em-

ploy Web3 technology in our business to provide trusted

services and reduce business loss.

11

A transition fromWeb 2 to Web3 will bring the data trust-

worthiness and cybersecurity guarantee from Web3 to

Web 2 systems. The Web3 token mechanism can support

incentive schemes in Web 2 applications.

The smooth transition from Web3 to Web 2 applications

will promote Web3 technology and applications. There

have been many Web3 applications, like tokens and

contracts. However, Web3 applications are only popular

among the Web3 community because the requirements

and access to Web3 applications are very different to

widely-used Web 2 applications and can be hard for

general users. A Web3 to Web 2 transition will simplify

access and encourage more users to try Web3 technology

and applications.

5. What are the possible challenges during the tran-

sition do you think is required to be resolved?

1) How to seamless integrate Web3 services into existing

Web 2 systems

2) How to implement data governance and privacy poli-

cies in Web3

3) How to manage Web 2 and Web3 user identities simul-

taneously

4) How to reduce integration and development cost

5) How to efficiently manage Web3 infrastructure

6) Can Web3 technology support large-scale applications

6. To what extent the Service Management System

developed by UTS and BT UK matches the frame-

work and solve the questions?

a. Access control

Satisfied. The system can enforce all the expected data

governance and access control policies.

b. User management

Satisfied. A user can use one identity to access Web 2 and

Web3 services.

c. Connection with SaaS

Satisfied. Users can access Web3-certified data services

from the SaaS. The complicatedWeb3 details are transpar-

ent to users.

d. Automated development tools

Satisfied. The automatic document generation technology

can save 20

7.What are your suggestions to enhance the suitabil-

ity of the new frameworkWebttCom and its imple-

mentation?

The developed WebttCom is a good start for transiting

Web 2 to Web3. I suggest the team develop more service

functions to the framework, such as managing ticket files

across multiple departments and organisations, such that

the system usability could be improved. The framework

can also be integrated with other Web 2 businesses, such

asworkflowmanagement. Besides new functions, compre-

hensive trials need to be conducted to verify the stability

and capacity.

Third response

Hence, there are two options for the paper: 1) The sur-

vey section could provide an aggregated view from the

project team’s view on how well the prototype addresses

the needs of Web3, without attributing views to individ-

ual organisations. Or 2) On the BT side we could write a

section for the evaluation part of the paper.

To give you a flavour of what a BT authored sectionwould

look like: It would explain that Web3 is not well defined

at the moment and is currently often linked to ideological

aims around openness and decentralisation, compared to

the current internet which is seen, by the Web3 commu-

nity, as dominated by “big tech”. The Web3 concept is a

very nascent area at the moment where it will be interest-

ing to see how it evolves and fits with the current Web 2

world which we live in.

Web3 needs to answer a number of core questions related

to related to complexity, scalability, cost; and, critically,

also cost-effectiveness and accountability, which are often

more important to commercial organisations than an ad-

herence to decentralisation principles. However, the lack

of well-formed answers to these high-level generic consid-

erations should not prevent us from identifying use cases

and prototyping solutions to further our knowledge of the

opportunities.

Looking at the Web3 technology portfolio it already in-

cludes some useful enabling technologies, including dis-

tributed ledger technologies (DLTs) which, with their in-

herently decentralised architecture, can be useful for spe-

cific applications. On their own they are unlikely to form

the universal technology base for the next generation of

the Internet; however, there are real use cases which exist

today where DLTs may have an important role to play.

The work with UTS is a example of this and examines

a real-world use case related to IT service management

across different country boundaries where different data

privacy regulations apply.

In this context, DLTs are a promising solution due to

the ability of smart contracts to ensure that the required

country-specific datamanagement policies are agreed and

enforced. For the current prototyping project, it was as-

sumed that the transition to a DLT based solution will

require interworking with the more traditionally archi-

tected solutions which are already in common usage in

commercial ecosystems. In evaluating the solution we

have demonstrated that a DLT hyperledger layer canmeet

12

the required success criteria related to cross-country ac-

cess control and user-management; as well as, connecting

to a traditional SaaS workflow management layer.

In meeting these criteria the prototype has demonstrated

sufficient promise that we are examining the next stage

in research and development, which is to run test sce-

narios, utilising realistic commercial data flows, through

the prototype. This measured exploration and transition

to DLT technologies shows the path which we believe

many established commercial organisations will follow as

they gain confidence that the decentralised approach can

meet the required business requirements. The approach

of monitoring the evolving Web3 concepts, and engaging

with the core technology developments, to experiment

and build early insight on use cases for these emerging

capabilities (e.g. DLT, smart contracts) is a pragmatic ap-

proach for ensuring that value can be gained.

Fourth response

1. What is your job in the organization? Technical or

non-technical?

I am a software developer in my organization. Technical.

2. What is your Web3 background?

I have a half year of Web3 background. My Web3 knowl-

edge is limited.

3. What do you think of the pros and cons of Web 2

and Web3 at present?

Web 2:

Pros: Web 2 has a large development community includ-

ing programmers, tools, and solutions. Web 2 has been

widely applied to many organizations and it has been ver-

ified as a stable technology.

Cons: In the case of multiple organizations, it is not used

for cross-validation and trust in the scenario.

4.What do you think of thenecessityof smooth tran-

sition betweenWeb 2 andWeb3 from your organiza-

tion and your personal perspectives?Web 2 toWeb3

and Web3 to Web 2?

Since most systems are based onWeb 2, we must focus on

the transition from Web 2 to Web3.

The modification of the existing Web 2 system should not

be difficult.

In order to avoid overloading the programmers withWeb3

knowledge, they should not learn too much.

It is also possible to apply the existing Web 2 technology

to Web3-based systems.

It is not necessary for normal users to recognize the

transition.

5. What are the possible challenges during the tran-

sition do you think is required to be resolved?

1) Because of their limited understanding of Web3, pro-

grammers are reluctant to transfer their existing Web 2

systems to Web3.

2) Due to the differences in concept, technology and tools

between Web 2 and Web3, it is difficult to integrate the

Web 2 system with the Web3 system.

6. To what extent the Service Management System

developed by UTS and BT UK matches the frame-

work and solve the questions?

a. Access control

Solved. Web3 implements access control, which means

that Web 2 programmers are not required to touch too

much.

b. User management

Solved. It’s similar to the above. Web3 implements access

control, which means that Web 2 programmers are not

required to touch too much.

c. Connection with SaaS

Solved, the modification of the existing Web 2 system is

not too extensive. It is also possible to apply the existing

Web 2 development method and architecture to the tran-

sition.

d. Automated development tools

Solved, automated development tools significantly reduce

the programmers’ workload.

7.What are your suggestions to enhance the suitabil-

ity of the new frameworkWebttCom and its imple-

mentation?

Attempts to integrate the existing commercial Web 2 sys-

tem’s functionality with Web3.

More commercial Web 2 systems should be integrated

with Web3.

Provides more Web3 services.

Fifth response

1.What is your job in the organization? Technical or

non-technical?

I am a developer, technical

2. What is your Web3 background?

3 years of exposure to Web3 development

3. What do you think of the pros and cons of Web 2

and Web3 at present?

13

Web 2: pros – mature technology, plenty of resources

available; cons – being a centralised system, trust can be

an issue Web3: pros – has built-in trust mechanisms; cons

– new tech, not much resources for developers

4.What do you think of thenecessityof smooth tran-

sition betweenWeb 2 andWeb3 from your organiza-

tion and your personal perspectives?Web 2 toWeb3

and Web3 to Web 2?

Certain businesses require the trusted services provided

by web3, but not all. Many existing services are fine with

Web 2. Only services that deal with multi-organisations

require web3. Web 2 and web3 should be able to coexist

and interact smoothly.

5. What are the possible challenges during the tran-

sition do you think is required to be resolved?

Challenges include lack of experience developers, lack of

available development resources, tools.

6. To what extent the Service Management System

developed by UTS and BT UK matches the frame-

work and solve the questions?

a. Access control

Completed.

b. User management

Completed.

c. Connection with SaaS

A good start in connection with ServiceNow

d. Automated development tools

Some tools developed.

7.What are your suggestions to enhance the suitabil-

ity of the new frameworkWebttCom and its imple-

mentation?

Need to find suitable business use cases to demonstrate

the benefit of web3.

14

	Abstract
	1 Introduction
	2 Approaching Web3: A PRELIMINARY
	2.1 Differences between Web 1/2 and Web3
	2.2 Typical Web3 Architecture

	3 Research Design
	3.1 Research Question
	3.2 Study Design Process

	4 Research Result
	4.1 A New Framework: WebttCom
	4.2 Implementing WebttCom: A Use Case in a Service Management System
	4.3 Interview Results

	5 Limitations and Validity
	6 Related Work
	7 Conclusion
	References

