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Abstract 

Background: Squamous cell carcinoma (SqCC) is a subtype of non‑small cell lung cancer for which patient progno‑
sis remains poor. The extracellular matrix (ECM) is critical in regulating cell behavior; however, its importance in tumor 
aggressiveness remains to be comprehensively characterized.

Methods: Multi‑omics data of SqCC human tumor specimens was combined to characterize ECM features associ‑
ated with initiation and recurrence. Penalized logistic regression was used to define a matrix risk signature for SqCC 
tumors and its performance across a panel of tumor types and in SqCC premalignant lesions was evaluated. Con‑
sensus clustering was used to define prognostic matreotypes for SqCC tumors. Matreotype‑specific tumor biology 
was defined by integration of bulk RNAseq with scRNAseq data, cell type deconvolution, analysis of ligand‑receptor 
interactions and enriched biological pathways, and through cross comparison of matreotype expression profiles with 
aging and idiopathic pulmonary fibrosis lung profiles.

Results: This analysis revealed subtype‑specific ECM signatures associated with tumor initiation that were predictive 
of premalignant progression. We identified an ECM‑enriched tumor subtype associated with the poorest prognosis. 
In silico analysis indicates that matrix remodeling programs differentially activate intracellular signaling in tumor and 
stromal cells to reinforce matrix remodeling associated with resistance and progression. The matrix subtype with the 
poorest prognosis resembles ECM remodeling in idiopathic pulmonary fibrosis and may represent a field of canceriza‑
tion associated with elevated cancer risk.

Conclusions: Collectively, this analysis defines matrix‑driven features of poor prognosis to inform precision medicine 
prevention and treatment strategies towards improving SqCC patient outcome.
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Background
The squamous subtype of non-small cell lung cancer 
(NSCLC) is the second most common lung cancer sub-
type [1, 2], contributing to a lung cancer survival rate of 
only 20.2% [3]. The lack of actionable mutations in this 
cancer type has hindered the development of precision 
medicine protocols that have substantially improved 
patient survival in subgroups of adenocarcinoma patients 
[4]. Platinum doublet therapy remains the first-line 
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treatment for the majority of SqCC patients; however, it 
is not yet possible to predict which patients will respond. 
In early-stage patients, where surgery is the treatment of 
choice and potentially curable, up to 30% will have their 
disease recur [5].

Worldwide, lung cancer screening programs have 
demonstrated substantial improvements in patient mor-
tality through early detection and intervention [6]. The 
increased detection of early, pre-invasive lesions also 
raises clinical challenges as 30% of pre-invasive lesions 
will spontaneously regress in the absence of intervention 
[7, 8]. There is currently no way of identifying which pre-
malignant lesions will become invasive and progress to 
cancer. Robust identification of individuals at high risk of 
premalignant progression will be an important keystone 
for the successful implementation of screening strategies 
for lung cancer patients globally.

The high degree of subclonal tumor heterogeneity [9] 
and high mutational burden [10] in SqCC tumors make 
it difficult to achieve sustained clinical responses when 
treating cancer cells alone. This has been illustrated in 
recent precision medicine trials targeting specific cancer 
cell mutations in advanced stage patients who were ineli-
gible for surgery or radiotherapy or those who had previ-
ously failed platinum doublet therapy, where only a small 
proportion of patients demonstrated clinical responses 
[11, 12]. The tumor microenvironment is increasingly 
acknowledged to play an important role in regulating 
the clonal evolution of the tumor, and the sensitivity of 
cancer cells to both chemotherapy and immunothera-
pies. Evidence in other cancer types indicates that the 
cell extrinsic factors from the tumor microenvironment 
have the potential to override cancer cell intrinsic sign-
aling to regulate tumor progression independently of the 
clonal heterogeneity of the tumor [13]. Complementary 
treatment approaches that target the tumor-supporting 
components of the local microenvironment have the 
potential to simultaneously target multiple cancer cell 
clones to achieve more durable clinical responses in these 
highly heterogeneous tumors.

Fundamental to the success of a co-targeting approach 
is the ability to identify prognostic features of SqCC 
tumors and exploit these vulnerabilities for therapeutic 
benefit. A number of approaches have been employed 
to develop prognostic signatures in lung cancer, with the 
majority being developed in adenocarcinoma subtypes 
only [14–16], or of mixed NSCLC subtypes including 
both adenocarcinoma and squamous NSCLC [17–20]. 
Those developed for SqCC specifically have been devel-
oped by genome wide profiling and show little over-
lap [21–23]. Molecular subtyping of SqCC tumors has 
revealed distinct and heterogeneous SqCC tumor types 
at the transcript and protein level that are characterized 

by varying degrees of immunological activation, prolif-
eration, and differentiation [24, 25]. Importantly, these 
appear to have a distinct biology from lung adenocar-
cinomas [26–28], suggesting that prognostic programs 
operate differently between these major NSCLC sub-
types. Improvements in SqCC treatment will require a 
thorough understanding of how SqCC biology differs 
from adenocarcinoma, and identification of therapies 
that may be more effective in this specific subtype.

The extracellular matrix (ECM) is an important regula-
tor of cell behavior [29, 30] and is increasingly recognized 
to regulate tumor progression in multiple cancer types 
[31]. The ECM and its remodeling by cancer, stromal and 
immune cells have been shown to promote the growth, 
survival, and metastasis of cancer cells [32–34]. Associa-
tions between ECM expression and prognosis have been 
identified in NSCLC generally [17] and the expression 
and prognostic value of specific ECM proteins, such as 
tenascin-C [14], have been more extensively studied in 
adenocarcinoma than squamous NSCLC [35]. In SqCC 
tumors, for example, higher expression of the glycopro-
tein periostin was observed compared with adenocar-
cinomas, where it is expressed by activated fibroblasts 
[36] and is associated with survival [36, 37]. In addition, 
the glycoproteins thrombospondin 1 and 2 are overex-
pressed in SqCC [38]. However, it remains unclear how 
the SqCC ECM environment differs from that of the nor-
mal lung, and if ECM remodeling can inform diagnostic 
and therapeutic strategies in this poor-prognosis cancer. 
In addition, matrix molecules do not operate in isola-
tion, but rather as integrated macromolecular networks 
[31]. A broad perspective of how these matrix networks 
are modulated in SqCC tumors, and the impact of this on 
cancer cell behavior is needed. The approval of the anti-
stromal therapy nintedanib as a second-line therapy in 
adenocarcinoma patients [39] and clinical responses in 
Phase I trials in SqCC patients [40] attests to the poten-
tial for a co-targeting approach in the treatment of the 
lung cancer more generally. A more extensive examina-
tion of the ECM, and the role it plays in SqCC would be 
fundamental to the effective implementation of matrix 
co-targeting approaches specifically in this NSCLC 
subtype.

Here we present an unbiased examination of bulk 
and single-cell transcriptomic and proteomic analysis 
to examine the ECM landscape in SqCC, and to define 
matrix-associated signatures of risk and prognosis. Over-
lapping ECM remodeling with aging and chronic lung 
diseases suggests that early-stage changes in the lung 
ECM may promote tumor initiation and contribute to the 
increased incidence of lung tumors with age. Prognostic 
ECM subtypes (matreotypes [41]) identified in this study 
suggest that a subset of poor-prognosis SqCC patients 



Page 3 of 29Parker et al. Genome Medicine          (2022) 14:126  

may benefit from the repurposing of existing stromal 
therapies as part of a co-targeting approach.

Methods
Clinical samples
Publicly available data was obtained as described 
(Table  1) and analyzed in accordance with the respec-
tive guidelines of each platform. TCGA data (RNA 
sequencing, whole exome sequencing, copy number 
variation, and reverse phase protein array data) from 
223 SqCC patients (including 17 patients with matched 
non-involved non-tumor tissue) and 162 adenocar-
cinoma patients (including 37 patients with matched 
non-involved non-tumor lung tissue) were obtained as 
described in Table 1 for assessment of ECM gene expres-
sion, associated tumor biology, and patient outcome. 
SqCC lung tumor and non-tumor biospecimens from 
the NCI-MD cohort (30 patients from the greater Bal-
timore area with stage I-III tumors) were collected and 
processed for RNA sequencing and analyzed for associa-
tions with patient outcome according to approved proce-
dures as described previously [52, 53] (National Cancer 
Institute, USA, IRB OH98-C-N027). SqCC tissue micro-
arrays were generated from primary lung SqCC sam-
ples obtained from 94 patients with stage I–III tumors 
resected at Royal Prince Alfred Hospital, Sydney, NSW, 
Australia, between 1996 and 2002 as described previously 
[54]. Briefly, each core was 1mm in diameter and con-
sisted of 3–6 tumor core replicates. These tissue micro-
arrays were stained with picrosirius red, imaged using 
polarized microscopy and analyzed for associations with 

patient survival according to approved protocols (Royal 
Prince Alfred Hospital and Garvan Institute of Medical 
Research, HREC10/RPAH/491, X14-0359, Garvan GHRP 
1423). SqCC scRNAseq data was obtained from Lam-
brechts et  al. (see Table 1) derived from 3 patients who 
had undergone lobe resection as previously described 
[46]. The clinicodemographic features of these cohorts 
are outlined in Supplementary Tables 4, 5 and 6. Written 
informed consent was received prior to participation in 
these studies.

RNA sequencing
Lung tumor and adjacent non-tumor tissue samples 
were collected as part of the NCI- University of Mar-
yland Study according to protocols approved by the 
institutional review board (OH98-C-N027, National 
Cancer Institute, USA) and processed as described pre-
viously [53, 55] and outlined in detail in Supplementary 
Methods. Gene expression levels were quantified using 
RSEM [56] and batch corrected (Combat algorithm, 
SVA package [57]). Additional details are provided in 
Supplementary Methods.

Bulk RNAseq analysis of squamous cell carcinomas
RSEM-quantified RNAseq abundances and relevant 
clinical information from publicly available datasets were 
accessed according to Table 1. Gene level counts were fil-
tered and TMM normalized (EdgeR package [58]) before 
being  log2 transformed.

Matrisomal genes were defined as core matrisome 
or matrisome-associated according to Naba et  al. [29]. 

Table 1 Datasets accessed in this study

Datasets
Cohort Data type Source Reference
TCGA LUSC RNAseq, WES, CNV, RPPA 

(Level 4 data)
GDAC Firehose, TCPA Portal [42, 43]

TCGA LUAD RNAseq GDAC Firehose [44]

NCI-MD Cohort SqCC RNAseq This study; Gene Expression Omnibus, GSE201221

UHN Cohort Microarray Gene Expression Omnibus, GSE50081 [20]

TCGA Pan-Cancer Cohort RNAseq https:// gdc. cancer. gov/ about‑ data/ publi catio ns/ panca 
natlas with survival data from [45]

[45]

SqCC cell types from scRNAseq scRNAseq Loom files and Signature Matrix [46]

Premalignant lesions RNAseq Gene Expression Omnibus GSE108124 [7]

Aging lung RNAseq Gene Expression Omnibus GSE165192 [47]

Data and signatures
Data type Data format Source Reference
IPF fibrosis score Expression Data Manuscript [48]

IPF fibroblast phenotypes from scRNAseq scRNAseq Gene Expression Omnibus [49]

IPF cell types from scRNAseq Signature matrix Manuscript [50]

Lung cancer-specific immunological cell types Gene Signatures Manuscript [51]

https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
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Principal component analysis of tumor compared with 
non-tumor tissue was performed using the prcomp algo-
rithm and default settings in base R. Differential gene 
expression analysis between tumor and non-tumor tissue 
was performed using the Limma package [59]. Heatmaps 
of gene expression matrices were generated using the 
ComplexHeatmap package [60] for visualization. Addi-
tional details are provided in Supplementary Methods.

Proteomic analysis of squamous cell carcinomas
The proteome of TCGA SqCC samples were analyzed 
using the Level 4 Reverse Phase Proteomic Array (RPPA) 
data downloaded from the TCPA portal (https:// tcpap 
ortal. org/ tcpa/ downl oad. html) [42]. Differential enrich-
ment of proteomic data between ECM-High and ECM-
Low Matreotypes was performed using Mann-Whitney 
U tests with Benjamini-Hochberg correction for multiple 
comparisons.

Tumor purity analysis
To assess the tumor purity and relative stromal and 
immune composition of bulk RNAseq data from the 
TCGA LUSC dataset, ESTIMATE scores of tumor purity, 
including stromal and immune admixture scores [61] for 
each sample were accessed from the MD Anderson Bio-
informatics server (https:// bioin forma tics. mdand erson. 
org/ estim ate/ disea se. html) as the LUSC samples for 
RNAseqv2 data.

Squamous cell carcinomas canonical molecular subtypes
Canonical SqCC molecular subtypes (Basal, Classical, 
Primitive, Secretory) defined by Wilkerson et  al. [24] 
were assigned to TCGA LUSC bulk RNAseq samples 
as the canonical molecular subtype with the highest 
Pearson correlation coefficient using the published cen-
troids [24]. Samples were classified as primitive (9.4%), 
classical (42.1%), secretory (21.5%), and basal (26.9%), 
a distribution that is consistent with previous reports 
[24, 43]. Enrichment of canonical molecular subtypes 
within ECM-High and ECM-Low matreotypes was 
assessed by Fisher’s exact test.

Matrix risk signature generation
Risk signature feature selection was performed on differ-
entially expressed core matrisomal genes between tumor 
and non-tumor tissue in the TCGA LUSC dataset. Genes 
were selected based on their association with tumor 
compared with non-tumor tissue using Elastic Net 
penalized logistic regression (glmfit algorithm, glmnet 
package with alpha =0.5 [62]), to account for the high 
degree of correlation of some matrix genes. Z-scaled 
RNAseq expression data was initially partitioned 80% 
to 20% into training and test datasets, respectively 

(createDataPartition algorithm, caret package) and the 
model was developed using training data only. The coef-
ficient of shrinkage (lambda) was chosen as the value 
within one standard error of the lambda that minimized 
the cross-validation prediction error rate (cv.glmnet 
algorithm, glmnet package). To generate a matrix risk 
score and for visualization purposes, odds ratios were 
calculated using Firth’s correction (logistf algorithm, 
logistf package). The matrix risk score for each sample 
was summed as the product of the log(odds ratio) (Sup-
plementary Table  1) and the expression value for each 
z-scaled gene expression (Equation 1). Additional details 
are provided in Supplementary Methods.

where i = gene in the matrix risk signature of length n
zi = z-scaled gene expression of gene i
βi = log (odds ratio) of gene i

Matreotype identification
Identification of matreotypes was performed using 
Monte-Carlo reference-based consensus clustering (M3C 
command using the K-means clustering algorithm with 
default settings, M3C package [63]) applied to the TCGA 
expression matrix of significantly differentially expressed 
core matrisomal genes from tumor and non-tumor tis-
sue. Cluster number was determined to give a maximal 
Relative Cluster Stability Index (RCSI), a Monte-Carlo 
p-value less than 0.05 and a minimal Proportional of 
Ambiguous Clustering (PAC) Score [63].

Centroids for each matreotype were calculated on 
the TCGA LUSC dataset as the mean z-scaled expres-
sion level for significantly differentially expressed core 
matrisomal genes between tumor and non-tumor tissue. 
Matreotypes were assigned as the minimum Euclidean 
distance between each sample and the matreotype cen-
troids. The association of matreotypes with categorical 
clinicodemographic information (Fisher’s exact test) and 
survival (survival and survminer packages) was assessed. 
Hazard ratios were calculated (coxph function, survminer 
package) with corrections for age and stage, which were 
clinical covariates significantly associated with outcome 
in univariate analyses. Gender, smoking status, and pack 
years were not statistically significantly associated with 
outcome in univariate analyses.

Matreotype associations with driver mutations were 
assessed using maftools. FGFR copy number varia-
tion analysis was performed on TCGA CNV data using 
probes mapped to the segment containing the FGFR 
cluster at chromosome 8p11.23 (Hg18; 38 387 813-38 445 
509) with segment means < −0.7 and > 0.7 defining copy 
number losses and gains, respectively. The association 

(1)Matrix Risk Score =
n

i=1
ziβi

https://tcpaportal.org/tcpa/download.html
https://tcpaportal.org/tcpa/download.html
https://bioinformatics.mdanderson.org/estimate/disease.html
https://bioinformatics.mdanderson.org/estimate/disease.html
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of FGFR amplifications with ECM-High and ECM-Low 
matreotypes was assessed by Fisher’s exact test. Addi-
tional details are provided in Supplementary Methods.

Pathway analyses
Pathway analysis was performed on the 50 hallmark path-
ways and C2 oncogenic pathways described in the molec-
ular signatures database (mSigDb package (https:// davis 
labor atory. github. io/ msigdb)). Pathway activity estimates 
were applied to each sample (gsva algorithm with default 
settings, GSVA package [64]) and differential pathway 
enrichment was assessed using Limma [59] as described 
in detail in the Supplementary Methods.

Ligand‑receptor interaction analysis
Genes within the RNAseq datasets were annotated as 
ligands and receptors based on the curated database of 
human ligand-receptor pairs previously published by 
Ramilowski et  al. [65] based on supporting literature. 
Only ligands corresponding to core matrisome genes as 
defined by Naba et al. [29] were retained for further anal-
ysis. The strength of the interaction between core matri-
somal genes and their receptors were calculated as the 
product of expression values from the ligand (i.e., core 
matrisomal gene) and its cognate receptor in each sample 
(Equation 2), as described previously [66].

where Ri = z-scaled gene expression of receptor i
Li = z-scaled gene expression of ligand i
Receptors were then grouped into receptor classes, 

and interaction scores for each receptor class were calcu-
lated as the maximum interaction score for that receptor 
class. Receptors were also mapped to their corresponding 
mSigDb Hallmark pathways.

Differential enrichment of ligand-receptor interaction 
scores or ligand-pathway interaction scores in the differ-
ent matreotypes were tested using Limma (limma pack-
age) [59] and visualized as a circos plot (circos algorithm, 
circlize package [67]). Additional detail is provided in 
Supplementary Methods.

Cellular composition analysis
Two main approaches were implemented to identify 
enriched cell types in SqCC matreotypes using data-
sets described in Table 1. Deconvolution of bulk TCGA 
LUSC RNAseq data into NSCLC epithelial, fibroblast, 
and endothelial cell types was performed using the 
signature matrix derived from scRNAseq analysis of 
NSCLC tumors published by Lambrechts et  al. [46] 
and CibersortX (absolute mode, batch correction, 100 

(2)Interaction Score = RiLi

permutations). Differential enrichment of cell types was 
tested using the limma package [59].

The relative enrichment of immune cells within the 
tumor microenvironment was assigned to each sample by 
applying NSCLC-specific immune cell signatures devel-
oped by Faruki et al. [51] using Gene Set Variation Anal-
ysis (gsva algorithm, GSVA package, default settings). 
Differential enrichment of immune cell type scores in the 
ECM-High vs ECM-Low matreotypes were assessed by 
Kruskal-Wallis test with Benjamini-Hochberg multiple 
comparisons correction. Additional detail is provided in 
Supplementary Methods.

Single‑cell RNAseq analysis of squamous cell carcinoma
Raw gene expression matrices and cellular metadata 
including cell type assignments from scRNAseq data 
of NSCLC samples were obtained and processed as 
described [46, 68] (Seurat v4.0.1; see Supplementary 
Methods for details). Cell type scores for ECM genes 
were assigned using the AddModuleScore function (Seu-
rat package, default settings). Matrix risk scores were cal-
culated on the z-scaled gene expression matrix for each 
cell type using Equation  1 as described above (Matrix 
Risk Signature section).

Fibrosis score
A fibrosis score was calculated based on the idiopathic 
pulmonary fibrosis signature described by McDonough 
et al. [48] (see Supplementary Methods). Briefly, normal-
ized gene expression was weighted in the positive and 
negative direction for genes up- and downregulated in 
IPF lungs, respectively (Equation 3).

where wi = 1 for gene upregulated in IPF lungs and −1 
for genes downregulated in IPF lungs for gene i in the n 
gene signature
zi = scaled gene expression for gene i in the n gene 

signature

Transcription factor enrichment analysis
Transcription factor analysis on core matrisomal correla-
tion clusters was performed on gene lists corresponding 
to each correlation cluster using the chEA transcription 
factor targets database and chEA3 web interface [69] 
(see Supplementary Methods for details). The integrated 
mean rank for each transcription factor was calculated 
for each correlation cluster.

(3)IPF Fibrosis Score =

∑n

i
wizi

https://davislaboratory.github.io/msigdb
https://davislaboratory.github.io/msigdb
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Picrosirius red staining and quantitation in tissue 
microarray
Picrosirius red staining of SqCC TMAs was performed as 
described previously [70]. Stained sections were imaged 
on a Leica DMI 6000 fitted with posterior and anterior 
polarizing filters and picrosirius red signal relative to 
tissue area was quantified using an in-house script pub-
lished previously [70]. The maximum picrosirius red sig-
nal over three to five cores was calculated per patient. 
The association of picrosirius red signal with survival 
was performed using Cox proportional hazards models 
(coxph algorithm and survival package). See Supplemen-
tary Methods for additional detail.

Statistics
All statistical analysis was performed in R (v3.6.3) and 
GraphPad Prism (v8). P-values were adjusted for multi-
ple comparisons using the Benjamini-Hochberg method. 
Statistical testing of two groups was performed by the 
non-parametric Mann-Whitney U test and of more than 
two groups by the Kruskal-Wallis test. P-values less than 
0.05 were considered significant.

Data and code availability
Publicly available data used in this study are accessible as 
listed in Table 1. The NCI-MD cohort RNAseq data ana-
lyzed in this study are accessible at the NCBI GEO website 
under the accession number GSE201221 (https:// www. 
ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE20 1221) 
[71]. Publicly available TCGA LUSC and LUAD RNAseq, 
WES, and CNV data are available from Broad GDAC Fire-
hose (https:// gdac. broad insti tute. org). Publicly available 
Pan-Cancer RNAseq and survival data is available from 
Genomic Data Commons repository (https:// gdc. cancer. 
gov/ about- data/ publi catio ns/ panca natlas).

Publicly available TCGA RPPA data is available from 
the TCPA Portal (https:// tcpap ortal. org/ tcpa/ downl oad. 
html). Publicly available data from the UHN cohort is 
available in the Gene Expression Omnibus repository, 
GSE50081 (https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. 
cgi? acc= GSE50 081). Publicly available RNAseq of squa-
mous carcinoma in situ is available in the Gene Expression 

Omnibus repository, GSE108124 (https:// www. ncbi. nlm. 
nih. gov/ geo/ query/ acc. cgi? acc= GSE10 8124). scRNAseq 
data are available from https:// lambr echts lab. sites. vib. ve/ 
en/ data- access. RNAseq data of the aging lung is available 
in the Gene Expression Omnibus repository, GSE165192 
(https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= 
GSE16 5192). Code used in this analysis is available via 
GitHub (https:// github. com/ APark erLab). All other rel-
evant data supporting the conclusions of this article are 
included within the article and its supplementary informa-
tion files. Additional information may be obtained from 
the corresponding authors upon reasonable request.

Results
Cellular heterogeneity contributes to tumor‑specific ECM 
remodeling in squamous carcinoma
In order to comprehensively profile the ECM landscape 
in SqCC, we began by examining changes in the expres-
sion of ECM genes in tumor compared with non-tumor 
tissue using RNA sequencing data from The Cancer 
Genome Atlas [43] for which clinicodemographic and 
whole exome sequencing data was also available. Whole 
transcriptome RNA sequencing data from SqCC tumor 
(n=223) and matched, adjacent, non-involved non-
tumor (n=17) tissues was filtered to include only matri-
somal genes, as defined by Naba et  al. [29] (Fig.  1A). 
These genes included 274 core matrisomal genes, which 
have clear structural roles in the ECM, as well as 753 
matrisome-associated genes, which include enzymes 
involved in ECM remodeling and soluble factors that 
directly interact with the matrix [29].

Principal component analysis of core matrisomal gene 
expression indicated that the first two principal compo-
nents of these genes were able to distinguish tumor from 
adjacent, non-involved lung tissue (Fig.  1B), suggesting 
that the expression of the core, structural components of 
the ECM in SqCC tumors substantially differs from that 
of normal lung.

Differential gene expression analysis of the global 
RNAseq data identified that 5.34% of all differentially 
expressed genes comparing tumor and non-tumor tis-
sue were matrisomal genes (Fig.  1C). The majority of 

(See figure on next page.)
Fig. 1 The ECM is significantly dysregulated in tumor compared with non‑tumor tissue in SqCC. A Workflow describing the approach to 
characterizing the ECM landscape in SqCC. B Principal component analysis of core matrisomal gene expression in tumor (T) compared with 
non‑tumor (NT) tissue. C Distribution of differentially expressed genes between tumor and non‑tumor. 59.5% of matrisome‑associated (488 genes) 
and 62.0% of core matrisomal (170) genes are differentially expressed in SqCC tumors. This represents 59.1% (26 genes), 57.1% (20 genes), and 
63.6% (124 genes) of collagens, proteoglycans, and glycoproteins, respectively. It also represents 63.7% (109 genes), 64.3% (153 genes), and 54.1% 
(186 genes) of all ECM‑affiliated proteins, ECM regulators, and secreted factors, respectively. Number of genes indicated in brackets. D Correlation 
analysis of differentially expressed core matrisomal genes identifies four major clusters of genes in SqCC tumors. r =Spearman correlation 
coefficient. Non‑significant correlations are colored white; positively correlated genes are red and negatively correlated genes are blue. E Expression 
score of core matrisomal genes corresponding to the four correlational clusters shown in D, in specific lung cell types separated by tumor (T) and 
non‑tumor (N) tissue. EC: endothelial cell

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE201221
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE201221
https://gdac.broadinstitute.org
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://tcpaportal.org/tcpa/download.html
https://tcpaportal.org/tcpa/download.html
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50081
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50081
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108124
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108124
https://lambrechtslab.sites.vib.ve/en/data-access
https://lambrechtslab.sites.vib.ve/en/data-access
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE165192
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE165192
https://github.com/AParkerLab
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Fig. 1 (See legend on previous page.)
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matrisomal genes were differentially expressed, with the 
expression of 62.0% of core and 59.5% of matrisome-
associated genes differing between tumor and non-tumor 
tissue (Fig. 1C).

Comparative analysis with RNA sequencing data 
of 162 lung adenocarcinoma tissues (125 tumor, 37 
non-tumor tissues) [44] revealed that 48.9% of all 
core matrisomal genes are differentially expressed 
between tumor and non-tumor tissues in both histo-
logical subtypes of NSCLC (Additional file 1: Fig. S1A). 
The majority of these genes were similarly regulated 
in adenocarcinoma tumors compared with matched 
non-tumor tissue suggesting that the dysregulation 
of many core matrisomal genes may be important in 
lung tumorigenesis in a subtype-independent man-
ner (Additional file  1: Fig. S1B). However, the oppo-
site expression of the basement membrane collagen 
COL4A6, basement membrane netrin NTN5, VWA5B2, 
and collagen fibrillogenesis regulator AEBP1 in SqCC 
compared with adenocarcinoma (Additional file 1: Fig. 
S1B) points to histological-subtype-specific changes 
in the core matrisome that may be important in tumor 
development. Further examination of collagen alpha-6 
type IV (COL4A6) expression in tumor tissue for the 
two subtypes indicated that COL4A6 expression did 
not significantly correlate with the expression of the 
adenocarcinoma marker TT1 in adenocarcinoma 
(Additional file  1: Fig. S1C) but was significantly cor-
related with the SqCC marker TP63 (Additional file 1: 
Fig. S1D), suggesting it is upregulated during squamous 
differentiation associated with tumor development in a 
cell-type-specific manner [72].

In recent years, it has become clear that single matrix 
molecules rarely function in isolation and instead func-
tion as part of a dynamic 3D supramolecular network of 
structurally and functionally integrated matrix compo-
nents [31]. To understand whether core matrisomal genes 
were coordinately regulated in SqCC tumors, we per-
formed correlation analysis on all differentially expressed 
core matrisomal genes in tumor tissues (Fig. 1D). Unsu-
pervised hierarchical clustering of this analysis identified 
4 major correlated core matrisomal clusters (Fig.  1D), 
broadly corresponding to a fibrotic ECM remodeling 
cluster (correlation cluster 1; including fibrillar collagens 
COL1A1, COL3A1, COL5A1, and pro-fibrotic glyco-
proteins THBS1 and THBS2); a basement membrane-
enriched cluster (correlation cluster 2; including collagen 
type 4 (COL4A1, COL4A2, COL4A3, COL4A4, and base-
ment membrane proteoglycan HSPG2); a glycoprotein-
enriched cluster (correlation cluster 3; including BGLAP, 
ZP3, FNDC8, and EMILIN3); and with the fourth clus-
ter consisting of genes which were not significantly cor-
related with one another (correlation cluster 4, including 

COL4A6, and CRELD1 and CRELD2 glycoproteins) 
(Fig. 1D). Correlated matrisomal gene expression profiles 
in bulk RNAseq may reflect coordinated regulation of 
gene expression within cells, differences in cell type com-
position among samples or combinations of both these 
scenarios. To understand in more detail how these cor-
related matrisomal genes may reflect the contributions 
of individual cells within the tumor microenvironment, 
we assessed the expression of these correlation clusters 
in individual cell types in tumor and non-tumor tissue 
from scRNAseq data of SqCC patients (3 patients with 
tumor and adjacent non-involved non-tumor tissue [46]). 
This analysis identified that the fibrotic correlation clus-
ter genes (correlation cluster 1) were expressed largely 
by fibroblasts, while the basement membrane-enriched 
cluster genes (correlation cluster 2) also had additional 
contributions from endothelial cells (Fig.  1E, Additional 
file  1: Fig. S1E-H). The small group of glycoprotein-
enriched genes (correlation cluster 3) were significantly 
expressed by epithelial cells in non-tumor tissue, and by 
cancer cells in tumor tissue (Fig.  1E, Additional file  1: 
Fig. S1I), indicating epithelial origin. Finally, the fourth 
cluster of genes (correlation cluster 4) was contributed to 
by multiple cell types within both the normal lung and 
tumor microenvironment (Fig. 1E, Additional file 1: Fig. 
S1J). Significant differences between tumor and non-
tumor scores for fibroblasts, endothelial and epithelial 
cells in correlation clusters 1 to 3 (Fig.  1E) suggest that 
the presence of tumor cells likely induces altered matri-
somal gene expression within stromal cells within the 
tumor microenvironment. Together, these analyses 
indicate that not only do cancer cells as well as resident 
stromal and immune cells within the SqCC tumor micro-
environment contribute to significant ECM remodeling 
compared with normal lung tissue, but also that cellular 
heterogeneity within the tumor microenvironment con-
tributes to, and likely underlies, the matrisomal profiles 
of SqCC tumors.

Co-regulation of gene transcription can also result in 
highly correlated gene expression networks. To exam-
ine this in more detail, we performed transcription fac-
tor enrichment analysis on the correlated gene clusters 
using chEA3 [69]. Because the transcriptional regula-
tion of many ECM genes has not yet been comprehen-
sively defined, integrating multiple CHIP databases 
with expression analysis in this approach expands the 
scope for identifying upstream regulators of matrix gene 
expression. This analysis identified enrichment of over-
lapping as well as distinct transcription factors for each 
cluster that have been implemented in lung development 
and cancer (Additional file 1: Fig. S1K). Consistent with 
the high correlation between genes in these clusters, 
correlation clusters 1 and 2 were both enriched with 
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targets of AEBP1 and OSR1, which are expressed dur-
ing fetal lung development [73] (Additional file  1: Fig. 
S1K). Conversely, correlation cluster 1 was selectively 
enriched for the EMT transcription factor TWIST2 
while correlation cluster 2 was specifically enriched for 
FOXC2, which has been associated with mesenchymal 
development, and is known to be associated with plati-
num resistance and poor prognosis [74, 75]. Cluster 3 
was enriched for LHX8 and FEV as well as DBX2, which 
is differentially expressed in hepatocellular carcinoma 
[76]. Finally, cluster 4 showed enrichment for SP7 and 
OLIG1, which has been previously shown to have prog-
nostic value in NSCLC [77], as well as TP63, the master 
regulator of squamous differentiation [43] that correlates 
with COL4A6 expression in this cluster (Additional file 1: 
Fig. S1D). While further experimental validation of these 
findings is required, these data highlight that common 
regulatory networks have the potential to co-regulate 
the expression of several matrix components within the 
tumor microenvironment. This, together with cell-type-
specific matrix deposition from cancer cells, as well as 
normal and co-opted stromal and immune cells from the 
tumor microenvironment, is likely to contribute to dys-
regulated matrisomal gene expression in SqCC.

ECM remodeling predicts squamous lung cancer risk
To more precisely define those ECM components that 
distinguish between tumor and non-tumor tissue in 
an unbiased manner, we further refined our list of dif-
ferentially expressed matrisomal genes between tumor 
and non-tumor SqCC tissue using Elastic Net penalized 
logistic regression. This ensures that only the most signif-
icant genes were retained in the model while accommo-
dating the high degree of correlation observed for some 
of the ECM genes (Fig. 1D). The final matrix risk model 
was then corrected for clinical covariates including age, 
sex, tumor stage, smoking status, and pack years [78] to 
minimize cohort bias.

This analysis resulted in a 28-gene signature, with 
the microfibril protein microfibril-associated protein 
4 (MFAP4) and the squamous-associated anchoring 
fibril collagen alpha1 type VII (COL7A1) having the 
lowest and highest odds ratios, respectively (Fig.  2A, 
Additional file 1: Fig. S2A and Table S1). In support of 

the feature selection approach, our signature includes 
ECM components identified as differentially regulated 
in non-small cell lung cancer, including osteopontin 
(SPP1), which has been associated with lung adeno-
carcinoma prognosis [79–83], but not yet specifically 
SqCC. Similarly, COL11A1 has also been associated 
with patient survival in NSCLC [84] and other can-
cers [85, 86]. Conversely, COL7A1 is known to play an 
important role in squamous tumorigenesis in the skin 
and esophagus [87, 88], suggesting that our signature 
captures SqCC-specific ECM remodeling programs.

Collapsing our matrix risk signature into a gene-
weighted matrix risk score confirmed that this specific 
matrix risk score is significantly higher in tumor com-
pared with non-tumor tissue in a test dataset partitioned 
from the TCGA LUSC dataset (Fig.  2B) as well as an 
independent SqCC dataset from the NCI-MD cohort 
(Fig. 2C) and distinguished tumor from non-tumor tissue 
by ROC analysis in these cohorts (Fig. 2D, E, Additional 
file 1: Fig. S2B). Analysis of each gene identified substan-
tial predictive power for each individual gene within this 
risk signature, and further model refinement highlighted 
that a minimal signature of TNXB, COL7A1, and SPP1 
achieved comparable predictive power in the NCI-MD 
cohort as measured by ROC curve analysis (Additional 
file 1: Fig. S2C), suggesting the key importance of these 
matrix components in tumor microenvironment ECM 
remodeling.

Comparatively, an adenocarcinoma-specific matrix 
signature developed on TCGA samples in parallel [44] 
shared 15 genes in common with the squamous matrix 
risk signature (Additional file 1: Table S1). This indicates 
that our matrix risk signature captures squamous-spe-
cific ECM components (e.g., COL7A1), as well as ECM 
components that associate with lung tumor development 
independently of histological subtype (e.g., EMILIN2, 
SPP1, COL10A1, COL11A1, and CTHRC1). To examine 
if our SqCC matrix risk signature reflected ECM changes 
in the lung specifically, or was more broadly applicable 
to other cancer types, we also examined its performance 
in distinguishing tumor from non-tumor tissue among 
solid tumor types in the TCGA Pan-Cancer cohort [45]. 
Our matrix risk score was significantly elevated in tumor 
compared with non-tumor tissue in all cancer types 

Fig. 2 ECM changes associated with increased lung cancer risk and premalignant progression. A Odds ratios for genes in the matrix risk signature. 
See Additional File 1: Table S1. B,C Matrix risk scores are significantly higher in tumor compared with non‑tumor tissue in the TCGA (B, p=6.7E−12, 
Mann‑Whitney U test) and NCI‑MD cohorts (C, p=4.6E−10, Mann‑Whitney U test). D,E ROC analysis of the matrix risk score in distinguishing 
between tumor and non‑tumor tissue on the bootstrapped test data from the TCGA cohort (D, area under the curve (AUC)=1) and the NCI‑MD 
cohort (E, area under the curve (AUC) = 0.89). F,G Expression scores for matrix risk signature genes with positive odds ratios (F) and negative odds 
ratios (G) in specific lung cell types from tumor and non‑tumor tissue. H Matrix risk score in regressive (Reg.) and progressive (Prog.) pre‑invasive 
squamous carcinoma in situ lesions. p=0.023, Mann‑Whitney U test. I Matrix Risk Score in young and old lungs in the absence of tumors, p=0.0020, 
two‑sided Student’s t test

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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tested including lung adenocarcinoma (LUAD), except 
for pancreatic adenocarcinoma (PAAD) and sarcoma 
(SARC) (Additional file  1: Fig. S2D), and demonstrated 
predictive power (ROC analysis AUC>0.75) in multiple 
cancer types (Additional file  1: Fig. S2E and Table  S2). 
Interestingly, the predictive value of our matrix risk sig-
nature was highest in the cervical SqCC and endocervical 
adenocarcinoma cohort, which has a large proportion of 
tumors with squamous characteristics [89]. This suggests 
that the matrisomal gene expression changes identified 
by our matrix risk signature may be more widely appli-
cable to other cancer types, in particular those of squa-
mous type, and warrants further investigation in these 
contexts.

To investigate which cell types express these key ECM 
genes, we calculated the enrichment of matrix risk genes 
with positive odds ratios (positive score) and negative 
odds ratios (negative score) in specific cell types identi-
fied by scRNAseq analysis of SqCC tumor and matched 
non-tumor tissue [46]. This analysis identified that core 
matrisomal genes that are positively associated with 
SqCC tumors (Additional file  1: Table  S1; OR >1) are 
principally expressed by cancer-associated fibroblasts 
(CAFs) as well as cancer and myeloid cells (Fig. 2F, Addi-
tional file 1: Fig. S3A, B). In contrast, matrisomal genes 
that are negatively associated with SqCC tumors (Addi-
tional file  1: Table  S1; OR <1) are expressed by alveolar 
and endothelial cells as well as a non-tumor-associated 
fibroblast population (Fig.  2G, Additional file  1: Fig. 
S3C). The contribution of these distinct fibroblast popu-
lations (cancer vs non-tumor-associated fibroblasts) to 
the ECM profile of SqCC tumors further supports the 
association of these matrix components with SqCC risk 
and may reflect phenotypic transdifferentiation of resi-
dent fibroblasts into CAFs during tumorigenesis [46]. 
Overall, these data suggest that changes in stromal cell 
gene expression within the tumor microenvironment, as 
well as matrisomal expression derived from cancer cells 
themselves, contribute to this risk score.

The early detection of pre-invasive SqCC in situ (CIS) 
lesions presents an opportunity to prevent the onset of 
lung cancer yet remains clinically challenging. While 
standard pathological assessment is able to distinguish 
between tumor and non-tumor tissue, there is currently 
no way of predicting which CIS lesions will progress to 
cancer, and which are likely to regress. This presents sig-
nificant clinical challenges in deciding on the appropriate 
interventions while avoiding overtreatment [7]. Applying 
our matrix risk score to a recent dataset of pre-invasive 
CIS lesions [7] revealed that our matrix risk score was 
significantly higher in CIS lesions that progress to cancer 
compared to those that spontaneously regress (Fig. 2H). 
Further refinement of this matrix risk signature to 

specifically predict which lesions will progress to cancer 
identified a minimum 6-gene risk signature of RSPO1, 
CTHRC1, SPP1, MMRN1, COL10A1, and PRG4 as the 
most significant matrisomal predictors of premalignant 
progression with a ROC AUC of 0.99 (Additional file 1: 
Table S3, Fig. S3D). This suggests that not only are matrix 
changes occurring and detectable at the earliest pre-inva-
sive stage of tumor development, but also that the ECM 
profile of CIS lesions has the potential to predict a high 
risk of tumor development.

Like many solid tumors, lung cancer incidence 
increases with age [78, 90, 91] and ECM of the lung con-
tinues to remodel with age [47, 92]. Age-related ECM 
remodeling is emerging as a significant contributor to the 
increased age-related cancer risk in other tumor types 
[93–95]. The matrix risk score was modestly although 
significantly correlated with age at diagnosis in lung can-
cer patients (Additional file  1: Fig. S3E). Further analy-
sis of bulk RNAseq data from young and old lungs [47] 
revealed that older lungs have a higher SqCC matrix 
risk score than younger lungs (Fig. 2I). Therefore, matrix 
expression changes that occur during lung aging appear 
to overlap to some extent with matrix remodeling seen 
in lung tumors. In this way, age-associated ECM changes 
may prime aged lungs for SqCC initiation and progres-
sion, as was recently reported in melanoma [93–95], and 
thereby partially underpin the increased clinical inci-
dence of these tumors with age.

Together, these data indicate that ECM remodeling 
occurs early in disease and is associated with malignant 
progression. Profiling these changes at the time of diag-
nosis may assist in identifying patients with high risk of 
developing aggressive lung cancer.

SqCC matreotypes are prognostic
SqCC has a high rate of recurrence, even among early-
stage patients following curative surgery. The ability 
to predict which patients are at a higher risk of recur-
rence would represent a significant milestone and has 
the potential to dramatically improve patient outcome. 
Expression-based molecular subtyping on the bulk 
tumor, encompassing cancer cells and other non-malig-
nant cells within the tumor microenvironment, has 
revealed that SqCC tumors can be clustered into distinct 
tumor subtypes, with differences in biology and progno-
sis [24]. While these molecular subtypes broadly differ 
in cell adhesion and ECM pathways [24], recent studies 
indicate that they do not fully capture SqCC heterogene-
ity [27] and a detailed appraisal of the ECM landscape in 
SqCC may provide additional clinically actionable insight 
into SqCC biology. By focusing on the core matrisomal 
expression of SqCC tumors, we sought to define whether 
the matrix of the SqCC tumor microenvironment can be 



Page 12 of 29Parker et al. Genome Medicine          (2022) 14:126 

grouped into distinct matrix molecular subtypes (matre-
otypes), and to determine whether these matreotypes 
have prognostic value.

Consensus clustering of matrisomal genes was per-
formed to identify tumor and non-tumor tissue with 
similar ECM gene expression profiles. This approach 
robustly revealed three clusters, with one cluster cor-
responding exclusively to non-tumor tissue (Fig.  3A, 
Additional file 1: Fig. S4A, B and C).

Broad inspection of the two tumor matreotypes iden-
tified one as enriched in matrisomal gene expression 
(designated ECM-High, Additional file  1: Table  S4) and 
one depleted of matrisomal gene expression (designated 
ECM-Low, Additional file 1: Table S4), as reflected in the 
significant enrichment and depletion of both the KEGG 
ECM (Fig.  3B) and Reactome ECM degradation path-
ways (Fig. 3C) in the ECM-High and ECM-Low groups, 
respectively. Differential gene expression analysis iden-
tified that pro-fibrotic ECM genes are the most highly 
upregulated marker genes for the ECM-High matreotype 
(including COL5A1, COL1A2, THBS2, Additional file 1: 
Fig. S4D), while the ECM-Low matreotype is enriched 
in a small number of glycoproteins (including FNDC6 
and BGLAP, Additional file  1: Fig. S4D). Importantly, 
upregulation of some matrix risk signature genes, includ-
ing COL11A1, CTHRC1, COL10A1, and CILP2, in the 
ECM-High matreotype suggests some overlap between 
ECM remodeling profiles associated with risk and pro-
gression in SqCC.

Analysis of patient outcome for these two tumor 
matreotypes also identified distinct prognostic asso-
ciations, with the ECM-high matreotype having signifi-
cantly worse disease-specific survival than the ECM-low 
matreotype (Fig.  3D). These matreotypes were not sig-
nificantly associated with tumor stage (Supplemen-
tary Table  4), with the poor survival of the ECM-High 
matreotype retained in the early-stage setting (Supple-
mentary Figure  4E and F) suggesting that differentially 
prognostic matreotypes are independent of stage. Simi-
larly, matreotypes were not significantly associated with 
clinical covariates gender, race, or smoking packyears 
(Additional file  1: Table  S4). However, while there was 
a statistically significant difference in smoking behav-
ior between patients with ECM-High and ECM-Low 
tumors, the predominance of smokers in SqCC cohorts 
(Additional file  1: Table  S4) precludes robust assess-
ment of matreotype associations with smoking behav-
ior. Matreotype associations with smoking behavior will 
require future validation in larger cohorts with a greater 
diversity of smoking behavior, particularly a higher pro-
portion of never smokers.

The prognostic association of SqCC matreotypes 
were independently validated in the NCI-MD cohort 

of largely early-stage SqCC (Fig.  3E, Additional file  1: 
Table S5) and a similar trend was also seen in the UHN 
cohort of early-stage tumors [20] (Additional file  1: 
Fig. 4G). This prognostic association was validated at the 
protein level in picrosirius-red-stained tissue microar-
rays of SqCC tumors imaged by polarized microscopy 
(Supplementary Figure  4H). When bound to fibrillar 
collagens (collagen types I, II, III and V), picrosirius red 
enhances collagen’s birefringent properties, enabling 
specific imaging of fibrillar collagens [96]. This enables 
selective imaging of fibrillar collagens, which include five 
of the top ten upregulated core matrisomal genes in the 
ECM-High compared with the ECM-Low matreotype 
(Additional File 1: Fig. 4H). Importantly, across all stages 
and in the early-stage setting of stage I and IIA tumors, 
multivariate Cox proportional hazards modeling indi-
cates that a high picrosirius red birefringence signal is 
significantly associated with survival independently of 
stage (Additional file 1: Fig. S4I and J, Tables S6 and S7). 
Together, these data indicate that the ECM-high matreo-
type is significantly associated with poor overall survival 
in SqCC. Of note, analysis of the mutational landscape of 
these tumors did not identify any significant association 
of either matreotype with oncogenic driver mutations or 
FGFR amplifications (Additional file  1: Fig. S5A and B, 
Table  S4). Thus, the matreotypes and their prognostic 
associations appear to be independent of the mutational 
landscape of the tumor.

Analysis of canonical SqCC subtypes defined by Wilk-
erson et  al. [24], namely primitive, classical, secretory, 
and basal subtypes, indicated that the ECM-Low matre-
otype is composed primarily of classical and primitive 
molecular subtypes, while the ECM-High matreotype 
was significantly enriched for secretory and basal sub-
types (Table  2), consistent with cell adhesion and ECM 
receptor interactions as known features of basal SqCC 
[24]. These data suggest that SqCC matreotypes repre-
sent unique features of SqCC tumors, related to, but not 
entirely captured by, whole genome molecular subtyping.

As pro-fibrotic ECM remodeling identified in the 
ECM-High matreotype has been associated with worse 
prognosis in a number of different cancer types, includ-
ing pancreatic and breast cancer [97], we sought to exam-
ine the prognostic value of these matreotypes in other 
solid tumor types, including lung adenocarcinoma. This 
pan-cancer analysis revealed that our matreotypes are 
not prognostic in lung adenocarcinoma (Additional 
file 1: Figure S5C), attesting to the subtype specificity of 
these matreotypes in NSCLC. However, the ECM-High 
matreotype was significantly associated with disease-
specific and progression-free survival in a number of 
other solid tumor types, including pancreatic ductal 
adenocarcinoma (PAAD) (Additional file 1: Fig. S5D and 
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Fig. 3 The ECM‑High matreotype is associated with poor prognosis. A Gene expression heatmap of core matrisomal genes differentially expressed 
between tumor and non‑tumor tissue illustrating the three major matreotypes (ECM‑Low, Non‑Tumor, and ECM‑High) identified by consensus 
clustering. B,C ECM‑specific signatures assigned to the three matreotypes reveal ECM‑High and ECM‑Low matreotypes compared with non‑tumor 
(NT) matreotype for the KEGG ECM (B, ECM‑Low vs ECM‑High p <2.2E−16, NT‑Like vs ECM‑High p=0.27, ECM‑Low vs NT‑Like p=1.3E−10, 
Mann‑Whitney U test) and Reactome ECM degradation pathways (C, ECM‑Low vs ECM‑High p<2.2E−16, NT‑Like vs ECM‑High p=0.011, ECM‑Low 
vs NT‑Like p=1.3E−7, Mann‑Whitney U test). D,E Disease‑specific survival of tumors corresponding to the ECM‑High (blue) and ECM‑Low (green) 
matreotypes in the TCGA (D, ECM‑Low n=73; ECM‑High n=107; Log‑rank p=0.0055, Cox proportional hazards model HR (95% confidence 
interval)= 1.97 (1.21–3.22) of ECM‑High compared with reference ECM‑Low; multivariate model with age and stage covariates HR = 1.92 (1.17–3.17) 
p=0.010) and NCI‑MD cohorts (E, ECM‑Low n=14, ECM‑High n=16; Log‑rank p=0.050, Cox proportional hazards model HR (95% confidence 
interval)= 3.43 (0.99–12.72); multivariate model with stage covariate HR = 1.47 (1.01–18.55) p=0.048)
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E, Table S8). This suggests that ECM remodeling associ-
ated with these matreotypes may play an important role 
in the progression of a specific but diverse subset of solid 
tumors.

Prognostic SqCC Matreotypes have divergent cellular 
ecosystems
Canonical molecular subtypes are thought to reflect dif-
ferent cellular compositions [24, 25] and since these 
matreotypes were identified in bulk RNAseq data, gene 
expression values reflect the expression of multiple cell 
types within the tumor microenvironment. To deter-
mine how different cell types within the tumor micro-
environment may be contributing to the different ECM 
compositions of these matreotypes, we utilized cellular 
deconvolution approaches to infer the cellular composi-
tion of these tumors.

In silico estimation of tumor purity using ESTIMATE 
[61] revealed significantly lower tumor purity in the 
ECM-High matreotype compared with the ECM-Low 
matreotype (Fig. 4A). This lower tumor purity was due to 
significantly higher stromal (Fig. 4B) and immune scores 
(Fig.  4C) in the ECM-High compared with the ECM-
Low matreotype, suggesting that ECM-High matreotype 
tumors may harbor a more diverse cellular ecosystem. 
Of note, tumor purity itself (p=0.2, HR = 1 [0.99–1], 
Cox proportional hazards model) and immune scores 
(p=0.72, HR = 1 [0.99–1]) were not significantly associ-
ated with survival, and the stromal score (p=0.039, HR 
= 1.0003 [1–1.0006]) was only marginally associated 
with survival. This indicates that broad enrichment of 
stromal cells within the tumor microenvironment does 
not explain the prognostic value of the matreotypes and 
highlights that the specific matrisomal profile of SqCC 
may be a stronger indicator of prognosis than tumor 
purity alone.

To further interrogate these differences in more detail, 
deconvolution approaches were applied using cell type-
specific signatures from NSCLC scRNAseq data [46] using 
CIBERSORTx [98]. While several fibroblast subtypes (sub-
types 2 (COX4I2-high), 4 (PLA2GA-high) and 5 (MMP3-
high) as identified in [46]) were not detected in more than 
10% of samples in this cohort, normal fibroblasts were sig-
nificantly depleted in both tumor matreotypes compared 
with the non-tumor matreotype (Fig.  4D). Furthermore, 
the ECM-High matreotype was significantly enriched with 
tumor-associated myofibroblast cells (Fig.  4F) but not a 
fibroblast subset originally identified in a subset of SqCC 
tumors but currently with no known functional signifi-
cance (Fig.  4E). Additionally, the ECM-High matreotype 
was significantly depleted of type II pneumocytes (AT2, 
Fig. 4G), and secretory club cells (Fig. 4H) relative to the 
ECM-Low matreotype, suggesting the presence of tumor-
associated epithelial dysregulation in these poor-prognosis 
tumors. As expected, the ECM-High matreotype was sig-
nificantly depleted of normal endothelial cells (Fig.  4I), 
consistent with high expression of correlation cluster 2 
genes (Fig. 1D) in this subset of tumors.

Direct comparison of immune cell scores in the ECM-
High and ECM-Low matreotypes using NSCLC-specific 
immune signatures [51] indicated that the ECM-High 
matreotype is relatively enriched in a variety of immune 
cells compared with the ECM-Low matreotype, but lev-
els remain lower than non-tumor tissue (Additional file 1: 
Fig. S6). However, of particular note was that this matre-
otype was significantly enriched with regulatory T cells 
(Fig. 4J), B cells (Fig. 4K), and the follicular B cell subset 
(Fig. 4L) compared with both non-tumor tissue and the 
ECM-Low matreotype. Interestingly, T-follicular helper 
cells (Additional file  1: Fig. S6A) were also significantly 
enriched in the ECM-High matreotype, suggesting the 
potential enrichment of tertiary lymphoid structures in 

Fig. 4 SqCC Matreotypes have distinct cellular ecosystems. A–C Comparison of tumor purity (A, p<2.2E−16, Mann‑Whitney U test), immunological 
enrichment (B, p=8.0E−10, Mann‑Whitney U test), and stromal enrichment (C, p<2.2E−16, Mann‑Whitney U test) in the ECM‑High (green) 
compared with ECM‑Low (blue) matreotypes identifies significant enrichment of both stromal and immune cells in ECM‑High matreotype tumors. 
D–F Fibroblast cell types in the three major SqCC matreotypes ECM‑Low (blue), ECM‑High (green), and non‑tumor (yellow) with fibroblasts from 
non‑tumor tissue (D, ECM‑Low vs ECM‑High p=3.8E−10, ECM‑Low vs Non‑tumor p=7.3E−11, ECM‑High vs Non‑Tumor p=7.8E−11, Mann‑Whitney 
U test), SqCC‑associated fibroblasts (E, ECM‑Low vs ECM‑High p=0.85, ECM‑Low vs Non‑tumor p=0.59, ECM‑High vs Non‑Tumor p=0.66, 
Mann‑Whitney U test) and tumor‑associated myofibroblasts (F, ECM‑Low vs ECM‑High p=2.3E−22, ECM‑Low vs Non‑tumor p=0.036, ECM‑High 
vs Non‑Tumor p=1.8E−5, Mann‑Whitney U test). G,H Epithelial cell types in the three major SqCC matreotypes ECM‑Low (blue), ECM‑High 
(green), and non‑tumor (yellow) corresponding to type II pneumocytes (G, AT2, ECM‑Low vs ECM‑High p=0.0018, ECM‑High vs non‑Tumor 
p=3.1E−7, ECM‑Low vs Non‑tumor p=6.6E−5, Mann‑Whitney U test) and secretory club cells (H, ECM‑Low vs ECM‑High p=0.00042, ECM‑High vs 
non‑Tumor p=1.8E−6, ECM‑Low vs Non‑tumor p=2.5E−8, Mann‑Whitney U test). I The ECM‑High matreotype is significantly depleted of normal 
endothelial cells (ECM‑Low vs ECM‑High p=0.034, ECM‑High vs non‑Tumor p=0.00038, ECM‑Low vs Non‑tumor p=0.013, Mann‑Whitney U test). 
J–L Immunological cell types in the three major SqCC matreotypes ECM‑Low (blue), ECM‑High (green), and non‑tumor (yellow) corresponding to 
regulatory T cells (J, ECM‑Low vs ECM‑High p=9.7E−10, ECM‑High vs non‑Tumor p=1.5E−7, ECM‑Low vs Non‑tumor p=0.0060, Mann‑Whitney 
U test), B cells (K, ECM‑Low vs ECM‑High p=4.9E−6, ECM‑High vs non‑Tumor p=0.069, ECM‑Low vs Non‑tumor p=1, Mann‑Whitney U test), 
and particularly the follicular subset of B cells (L, ECM‑Low vs ECM‑High p=0.0044, ECM‑High vs non‑Tumor p=3.7E−8, ECM‑Low vs Non‑tumor 
p=5.5E−5, Mann‑Whitney U test).

(See figure on next page.)
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this matreotype. Furthermore, a higher MHC Class II 
expression score in the ECM-High matreotype (Addi-
tional file  1: Fig. S6E) suggests the potential for differ-
ences in immunological activation in these matreotypes. 
While regulators of antitumoral immune surveillance are 
emerging, including matrix-mediated T cell exclusion 

[99], these data warrant further functional and clini-
cal investigations into the potential for matreotypes to 
inform the prioritization of patients for immune check-
point therapies.

Together, these data suggest that cellular heterogeneity 
in SqCC may contribute to differences in the ECM profile 

Fig. 4 (See legend on previous page.)
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of the tumors. The differences in these cellular ecosys-
tems have potential implications for the tumor etiology 
and the efficacy of therapeutic interventions, and in par-
ticular immune checkpoint inhibitors.

Matrisomal features are associated with pro‑invasive 
signaling
To further examine the distinct tumor biology associated 
with these matreotypes, we performed pathway enrich-
ment analysis comparing the ECM-Low and ECM-High 
groups using the MSigDb Hallmark pathway database. As 
expected, ECM-related pathways were the most highly 
enriched in the ECM-High matreotype (Additional 
file  2: Table  S1). Examination of non-ECM-associated 
pathways revealed multiple differentially expressed hall-
mark pathways, including enrichment of inflammatory, 
epithelial-to-mesenchymal transition, angiogenesis, and 
cell-cell adhesion pathways in the ECM-High matreotype 
(Fig. 5A). Comparatively, the ECM-Low matreotype was 
enriched in DNA repair pathways, including the G2/M 
checkpoint as well as ROS signaling (Fig. 5A).

DNA damage pathways play a significant role in regu-
lating resistance to conventional chemotherapy agents, 
including platinum-based agents which are a frontline 
therapy for SqCC [100]. Pathway analysis of ECM-High 
and ECM-Low matreotypes using the MSigDb C2 onco-
genic database (Additional file  1: Fig. S7A, Additional 
file  2: Table  S2), which includes signatures specific to 

tumor biology and therapeutic responses, identified sig-
nificant enrichment of multiple cisplatin resistance gene 
signatures in the ECM-High matreotype compared with 
the ECM-Low matreotype (Fig. 5B), suggesting that DNA 
damage checkpoint deficiencies in ECM-High tumors 
may contribute to poor treatment response in these 
patients. Analysis of reverse phase protein array prot-
eomic TCGA data in these same tumors [42] indicated 
significantly reduced expression of the double-stranded 
break response protein CHK2 (Fig.  5C) and increased 
activation of YB1 (pS102, Fig. 5D) in ECM-High matre-
otype tumors compared with ECM-Low matreotype 
tumors at the protein level. CHK2 and YB1 are known 
mediators of platinum resistance [101–103] and may 
contribute to poor platinum response in ECM-High 
tumors.

ECM components directly interact with cell surface 
receptors to regulate the activity of numerous signal-
ing pathways, including those involved in epithelial-
to-mesenchymal transition and ECM production [35]. 
Ligand-receptor interaction analysis was performed 
to gain insight into the potential direct effects of these 
matreotypes on outside-in signaling. A database of 
curated ligand-receptor interactions [65] was mined 
for interactions between core matrisomal genes differ-
entially expressed between ECM-High and ECM-Low 
SqCC tumors and their cognate receptors. An inter-
action strength was assigned to each core matrisomal 

Table 2 SqCC matreotype association with canonical SqCC molecular subtypes

Matreotype Primitive Classical Secretory Basal Predominant 
canonical 
subtype

ECM‑Low 12 (57.2%) 61 (64.9%) 7 (14.6%) 14 (23.2%) Classical

ECM‑High 9 (42.8%) 33 (35.1%) 41 (85.4%) 46 (76.7%) Secretory/basal

P-value 0.167 5.18E−9 6.67E−9 6.93E−4

(See figure on next page.)
Fig. 5 ECM components contribute to signaling pathways associated with prognosis. A Top 25 up‑ and downregulated differentially 
enriched MSigDb hallmark pathways in the ECM‑High matreotype compared with the ECM‑Low matreotype. Circle size indicates the inverse 
of the −log10(p‑value), color reflects the log fold change (logFC) of the ECM‑High matreotype compared with the ECM‑Low matreotype. B 
Pathway analysis of cisplatin‑related signatures comparing ECM‑High matreotype with the ECM‑Low matreotype. C Abundance of CHK2 in 
the ECM‑High matreotype (green) compared with the ECM‑Low matreotype (blue). p=1.5E−4, Mann‑Whitney U test. D Comparison of the 
phosphorylated YB1(S102) in the ECM‑High matreotype (green) compared with the ECM‑Low matreotype (blue). p=1.1E−3, Mann‑Whitney U 
test. E Ligand‑receptor interaction results of differentially expressed core matrisomal genes significantly upregulated in ECM‑High compared 
with ECM‑Low matreotypes and the receptor groups that they directly interact with. Sector width is the aggregated log fold change of the 
ligand‑receptor interaction strength comparing the ECM‑High to ECM‑Low matreotype. The scale indicates the width of each link between the 
ECM category and its cognate receptors. The widths of each link are the maximum fold change of the ligand‑receptor interaction scores comparing 
the ECM‑High and ECM‑Low groups for that ligand‑receptor interaction. F Hallmark pathways regulated by ligand‑receptor interactions that are 
significantly enriched in the ECM‑High compared with the ECM‑Low matreotypes. The scale indicates the width of each link between the ECM 
category and the hallmark pathway. The widths of each link are the maximum fold change of the ligand‑receptor interaction scores comparing the 
ECM‑High and ECM‑Low groups for that hallmark pathway
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Fig. 5 (See legend on previous page.)
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ligand-receptor interaction based on their expression 
levels, to infer the potential for core matrisome-driven 
receptor activation. Receptors were then grouped into 
functional classes and mapped to signaling pathways 
by their MSigDb hallmark signatures. The ECM profile 
of the ECM-High matreotype was associated with sig-
nificant enrichment of multiple receptor classes (Fig. 5E, 
Additional file  2: Table  S3) involved in diverse signal-
ing pathways. The most significantly enriched of these 
core matrisome-receptor pairs were fibrillar collagens 
(COL1A2, COL1A1, COL5A1, COL5A2) interacting 
with receptors FLT4/VEGFR3, integrins α1, α11, and β1 
as well as CD93 (Additional file 2: Table S3). Conversely, 
only interactions between the glycoprotein ZP3 and EGF 
and MERTK (TAM family) receptors were identified in 
the ECM-Low matreotype (Additional file  1: Fig. S7B), 
although the strength of these interactions was not sig-
nificantly higher compared with the ECM-High matreo-
type. Importantly, ligand-receptor interactions that were 
significantly enriched in the ECM-High matreotype 
(Fig.  5E) could be mapped to significantly upregulated 
hallmark pathways in this matreotype (Fig.  5F) (includ-
ing epithelial to mesenchymal transition, apical junction, 
and myogenesis (Fig.  5A)) suggesting that core matri-
some components have the potential to contribute to the 
upregulation of these biological pathways within differ-
ent SqCC matreotypes. Together, these data indicate the 
potential for the ECM profile of different SqCC to regu-
late cancer cell biology and the mechanisms that promote 
tumor progression.

The pro‑fibrotic matrisome is associated with pro‑invasive 
signaling in poor‑prognosis SqCC
Integrins represented the largest class of receptors with 
the potential to be activated by the various matrix ele-
ments of the ECM-High matreotype. Integrins have been 
demonstrated to play a role in NSCLC tumorigenicity 
[104, 105] as well as activating epithelial to mesenchymal 
signaling to support cancer cell metastasis and in activat-
ing fibroblasts to a myofibroblast-like state seen in can-
cer-associated fibroblasts.

Collagens, proteoglycans, and glycoproteins that were 
enriched in the ECM-High matreotype were identified 
as ligands for a range of integrin receptors (Fig. 6A), with 
known functional roles in cell survival, migration, and 
invasion required for metastatic relapse and in fibroblast 
activation [106]. Similarly, integrin receptors themselves 
(Fig. 6B), as well as components of the integrin adhesome 
(Additional file  1: Fig. S8A), were also overexpressed in 
the ECM-High matreotype compared with the ECM-
Low matreotype (Fig. 6B, C), suggesting the potential for 
further reinforcement of integrin-mediated signaling in 
these tumors.

In accordance with elevated integrin signaling in this 
matreotype, interrogation of TCGA RPPA proteomic 
data from these tumors identified significant phospho-
rylation of integrin phospho-adhesome component 
PKCdelta [107] (pS664, Additional file 1: Fig. S6B) as well 
as activation of the MEK/ERK signaling pathway through 
increased activation of MEK1 (pS217/221) and ERK1/2 
(p202/204, Fig. 6D–G). Similarly, we observed increased 
expression of MEK/ERK downstream targets p21 (pro-
tein: Fig. 6G; transcript: Fig. 6K)) and master EMT regu-
lators of the ZEB (ZEB1, ZEB2), SNAIL (SNAI1, SNAI2), 
and TWIST (TWIST1, TWIST2, and SLUG (SNAI3)) 
transcription factor families (Fig.  6H–J and Additional 
file 1: Fig. S8C). It should be noted that other receptors, 
such as EGFR, can also activate MEK/ERK signaling 
and may also contribute to these proteomic phenotypes. 
Similarly, since these downstream effectors and tran-
scription factors are also involved in integrin-dependent 
and integrin-independent fibroblast activation, higher 
levels of these factors may also reflect increased acti-
vated fibroblasts within ECM-High tumors. Interest-
ingly, high expression of integrin/MEK/ERK target p21 
has also been implicated in mediating cisplatin resistance 
in NSCLC and other cancers [108, 109] suggesting that 
elevated integrin signaling as a result of an ECM-High 
matreotype could underpin the chemotherapy resistance 
predicted for these tumors (Fig. 5B).

In addition, myosin IIA phosphorylation was sig-
nificantly upregulated in the ECM-High matreotype 
(Fig.  6F). Myosin IIA activation supports cancer cell 
migration to promote metastasis in NSCLC [110, 111] 
and is also associated with cancer-associated fibroblast 
activation [112] warranting further mechanistic valida-
tion of these signaling events in supporting metastatic 
propensity and fibroblast activation in the ECM-High 
matreotype.

The matrisome contributes to fibrogenic signaling in SqCC
In addition to impacting cancer cell behavior, elevated 
integrin activation driven by matrisomal components 
of the ECM-High matreotype (Fig.  6) may also promote 
fibroblast to myofibroblast transdifferentiation [113–115] 
that is thought to contribute to the expression of pro-
fibrotic ECM components in the ECM-High SqCC. In this 
way, integrin signaling amplified by the core matrisome 
may perpetuate increased pro-fibrotic ECM remodeling 
and subsequent pro-metastatic signaling.

The TGFb, PDGF, FGF, and VEGF signaling path-
ways are also well characterized fibrogenic pathways 
that can induce the transdifferentiation of fibroblasts 
towards a myofibroblast-like phenotype observed in 
NSCLC fibroblast subsets [116–118]. In order to under-
stand the potential direct impact of these matreotypes 
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Fig. 6 ECM‑driven integrin signaling is associated with EMT and fibroblast activation in the ECM‑High matreotype. A Ligand‑receptor interaction 
results of differentially expressed core matrisomal genes and their cognate integrin receptors upregulated in ECM‑High compared with ECM‑Low 
matreotypes. Sector width is the aggregated log fold change of the ligand‑receptor interaction strength comparing the ECM‑High to ECM‑Low 
matreotype. B Integrins are upregulated in the ECM‑High compared with the ECM‑Low matreotypes as indicated by the integrin receptor score. 
p=1.3E−23, Mann‑Whitney U test. C Schematic of integrin‑mediated signaling pathways active in the ECM‑High matreotype. D–G Comparison of 
integrin‑dependent signaling in the ECM‑High (green) and ECM‑Low (blue) matreotypes as indicated by the RPPA abundance of MEK1 pS217/S221 
(D, p=1.6E−3), ERK pT202/204 (E, MAPK pT202/204, p=3.4E−4), Myosin IIA pS1943 (F, p=0.00027), and p21 (G, p=8.1E−8), Mann‑Whitney U test. 
H–K Expression of genes SNAI1 (H, p=7.3E−12), ZEB1 (I, p=9.9E−15), ZEB2 (J, p=1.9E−21), and P21/CDKN1A (K, p=0.00014) in RNAseq data in the 
ECM‑High (green) and ECM‑Low (blue) matreotypes; Mann‑Whitney U test. *** p<0.001, ****p<0.0001
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on pro-fibrogenic receptors in the tumor microenviron-
ment, we performed a focused analysis of the interactions 
between core matrisomal genes that are significantly 
enriched in the ECM-High matreotype and the fibrogenic 
PDGF, FGF, and VEGF receptors. This analysis revealed 
that collagen I, fibronectin, and the milk fat globule 
EGF and factor V/VIII domain containing glycopro-
tein MFGE8, which are highly expressed in ECM-High 
tumors, interact with the PDGFRB and FLT4 receptors 
(Fig. 7A, B). High PDGFR pathway activity in the ECM-
High matreotype is also reflected in significant enrich-
ment of signatures for response to PDGFR inhibition 
by imatinib compared with the ECM-Low matreotype 
(Additional file 1: Fig. S9A, Additional file 2: Table S2).

Therefore, in addition to integrin- and biomechanical-
induced fibrogenic signaling, direct interaction of the 
core matrisome with PDGF and VEGF receptors may 
also activate fibrogenic signaling thereby amplifying the 

deposition of pro-fibrotic ECM associated with poor 
prognosis in SqCC patients.

Prognostic matreotype overlap with idiopathic pulmonary 
fibrosis
Fibrogenic signaling through these tyrosine kinase recep-
tors is known to play a role in the progression of idi-
opathic pulmonary fibrosis [119], a chronic, degenerative 
lung condition characterized by extensive ECM remod-
eling that typically presents at older age and is associated 
with increased risk of developing lung cancer [120].

Although the precise molecular drivers of IPF remain 
unclear, parallels have been drawn between the patho-
genesis of IPF and lung cancer and ECM remodeling has 
been implicated in increased lung cancer risk in these 
patients [121]. We sought to understand to what extent 
the matrisomal profile of the poor-prognosis ECM-
High matreotype overlaps with that of IPF. We applied 

Fig. 7 The poor‑prognosis matreotype overlaps with ECM remodeling in idiopathic pulmonary fibrosis. A,B ECM genes that act as ligands for the 
PDGFRB (A, p=3.7E−15) and FLT4 (B, p=8.3E−31) receptors in the ECM‑High and ECM‑Low matreotypes; Mann‑Whitney U test. C Ligand‑receptor 
interactions between core matrisome genes differentially expressed between ECM‑High and ECM‑Low matreotypes and the fibrogenic receptors 
FLT4 and PDGFRB. D IPF fibrosis score in the ECM‑Low (blue), ECM‑High (green), and non‑tumor (yellow) matreotypes; ECM‑High vs ECM‑Low 
p<2.2E−16, ECM‑High vs Non‑tumor p=3.3E−11, ECM‑Low vs Non‑tumor p=2.8E−9, Mann‑Whitney U test. E Estimated abundance of IPF‑specific 
CTHRC1+ fibroblasts in the ECM‑Low (blue), ECM‑High (green), and non‑tumor (yellow) matreotypes; ECM‑High vs ECM‑Low p=4.1E−20, 
ECM‑High vs Non‑tumor p=0.0011, ECM‑Low vs Non‑tumor p=1.0, Mann‑Whitney U test. F IPF Aberrant basaloid score in the ECM‑Low (blue), 
ECM‑High (green), and non‑tumor (yellow) matreotypes (ECM‑High vs ECM‑Low p=8.9E−19, ECM‑High vs Non‑tumor p=0.0062, ECM‑Low vs 
Non‑tumor p=0.0056), Mann‑Whitney U test
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an IPF-derived fibrosis score developed from human 
IPF lung transcriptomic data [48] to SqCC. Our analysis 
showed that tumor tissue had a higher fibrosis score than 
non-tumor tissue and that this fibrosis score was high-
est in the ECM-High matreotype (Fig. 7D). This indicates 
that the ECM remodeling associated with poor prognosis 
in NSCLC overlaps to some extent with ECM remodeling 
that defines IPF.

Phenotypic reprogramming of fibroblasts towards a 
pro-fibrogenic state, with enhanced proliferative and 
invasive capacity, is believed to drive progressive lung 
fibrosis in IPF [122]. These IPF-specific fibroblasts have 
phenotypes that are distinct from normal lung fibroblasts 
and are characterized by high expression of fibrotic ECM 
genes such as COL1A1 and CTHRC1 [49, 123]. Deconvo-
lution of bulk RNAseq data in tumors identified that the 
ECM-High matreotype was significantly enriched with 
the transcriptomic profile of the CTHRC1+ IPF-specific 
fibroblast population (Fig. 7E) thought to be important in 
IPF pathogenesis [49]. Similarly, the ECM-High matreo-
type was significantly enriched in IPF-specific aberrant 
basaloid cells identified exclusively in IPF lungs (Fig. 7F), 
which are thought to result from epithelial dysregulation 
in IPF and contribute to aberrant fibroblast phenotypes 
in this disease [50]. Together, this suggests that fibroblast 
and epithelial dysregulation featured in IPF pathogenesis 
may also operate in a subset of poor-prognosis SqCC, 
contributing to matrisomal dysregulation and tumor 
progression.

Overall, our analyses have identified ECM profiles 
of CIS lesions and carcinomas that are associated with 
progression and poor prognosis. Overlap in the ECM 
components that are represented in the matrix risk sig-
nature and are upregulated in the ECM-High matreotype 
suggest that early ECM remodeling programs initiated 
prior to the onset of, or very early on, in malignancy may 
establish an ECM profile that supports aggressive tumor 
behavior and that persists throughout tumor progression. 
In silico analysis raises the notion that an amplification 
loop of fibrotic ECM production, integrin activation, and 
pro-fibrogenic processes has the potential to promote 
chemotherapy resistance and metastatic recurrence in 
a subset of poor-prognosis SqCC. An improved under-
standing of the ECM landscape in SqCC may identify 
more effective therapeutic strategies that co-target the 
tumor-supporting components of the ECM.

Discussion
Treatment options and efficacy remain limited in the 
SqCC subtype. The lack of targetable mutations in these 
tumors has hindered progress in the development of 
more effective, personalized treatment approaches that 
have revolutionized patient outcome in subsets of lung 

adenocarcinoma patients [4]. Furthermore, significant 
tumor heterogeneity [9] and the high mutational bur-
den of these tumors [10] make it challenging to achieve 
sustained clinical responses by targeting tumor cells 
alone [11, 12]. Understanding how the tumor microen-
vironment contributes to tumor progression may reveal 
opportunities to target the tumor-supporting elements 
of this microenvironment in order to improve treatment 
efficacy. Furthermore, it is likely to assist in the identifi-
cation of patients at higher risk of developing aggressive 
disease, or of relapsing. Through focused characteriza-
tion of the tumor ECM, our analysis has revealed that 
subtype-specific ECM remodeling is associated with 
tumor initiation and progression in SqCC, uncovering 
potential opportunities to improve the diagnosis and 
treatment of subsets of SqCC patients with the poorest 
prognosis.

Components of the ECM form a highly interconnected 
and dynamic arrangement of macromolecules [35]. It is 
increasingly appreciated that the architecture of these 
components and their association with one another, 
not just their abundance, can induce heterogeneous 
effects on cell behavior [31]. Our matrix risk signature 
has defined key ECM genes that distinguish between 
tumor and non-tumor tissue in SqCC, as well as in lung 
adenocarcinoma and various cancer types. Our analysis 
indicates that these key ECM components are highly cor-
related with many other ECM components, and together 
with their known scaffolding functions with other ECM 
molecules, suggests that tumor- and aging-associated 
changes in the expression of these key matrix compo-
nents likely result in profound changes in the organiza-
tion of the lung ECM. These cumulative changes then 
feed into SqCC progression. We identified significant 
overlap in the SqCC and adenocarcinoma risk signa-
tures for matrix components that regulate collagen 
fibril architecture including COL10A1, COL11A1, and 
CTHRC1 [124] suggesting that our risk signature repre-
sents changes in the organization of fibrillar collagens. 
COL10A1, COL11A1, and CTHRC1 were also identi-
fied in a matrix-specific NSCLC subtype-independent 
prognostic signature [17], supporting the involvement 
of these matrix components in lung tumorigenesis gen-
erally. EMILIN2, which is thought to confer elasticity 
to tissues and modulate receptor signaling, was identi-
fied as downregulated in both SqCC and adenocarcino-
mas. While its function in non-small cell lung tumors 
is not currently known, EMILIN2 has been associated 
with poor prognosis in gastric cancer where it modu-
lates cancer cell apoptosis and tumor angiogenesis [125]. 
The glycoprotein osteopontin SPP1 was also identified 
as differentially expressed in both squamous and adeno-
carcinoma tumors. SPP1 has recently been identified as 
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a marker of macrophage polarization and implicated in 
mediating immune evasion [79] and immunotherapy 
response [126] consistent with immunological mecha-
nisms regulating lung tumorigenesis [8]. However, our 
analysis also identified core matrisome components that 
were associated with SqCC tumors but not adenocar-
cinoma tumors. These squamous-specific components 
include COL7A1, which is known to play an important 
role in squamous tumorigenesis in the skin and esopha-
gus [87, 88], and COL4A6, which we identified as corre-
lating with the expression of squamous master regulator 
TP63. While an integrated picture of how these matrix 
components collectively regulate ECM composition and 
architecture in lung tumors generally, as well as in the 
specific SqCC and adenocarcinoma subtypes, is not yet 
clear, the applicability of this risk signature to non-lung 
primary tumors raises the notion that tumorigenesis may 
involve overlapping ECM remodeling processes across 
diverse tumor types.

The implementation of lung cancer screening has 
improved mortality through the early detection of overt 
tumors, as well as pre-invasive lesions, which are more 
prevalent in screening programs than positive tumor 
diagnoses [127, 128]. Pre-invasive lesions, which are 
dysplastic but are not yet invasive [129], spontaneously 
regress in approximately 30% of patients [7]. They are 
typically periodically monitored for accelerated growth 
and the acquisition of invasive characteristics before 
interventions are recommended. There are currently no 
markers for those premalignant lesions that are likely 
to progress to cancer, and as such the clinical manage-
ment of these patients to avert the initiation of lung can-
cer remains challenging. Our analysis indicates that CIS 
lesions that progress to SqCC, which histologically are 
indistinguishable from those CIS lesions that will spon-
taneously regress, have acquired tumor-like ECM pro-
files. Identification of these features during monitoring 
may enable patients with high-risk premalignant lesions 
to be prioritized for surgical intervention to prevent 
the onset of invasive SqCC. Our analysis of fibrillar col-
lagens by picrosirius red staining of tissue microarrays 
suggests that such an approach, which could integrate 
with existing pathological processing of tumor samples, 
could be used to prognosticate tumors by matreotype. It 
remains to be determined if key ECM markers from the 
matrix signatures could also be assessed at the protein 
level using immunohistochemistry for the prognostica-
tion of premalignant lesions (risk signature), and also at 
SqCC diagnosis (matreotyping as ECM-High or ECM-
Low). Immunohistochemistry staining for specific ECM 
markers identified in our analysis may be more compat-
ible with existing pathological analysis pipelines than 
transcriptomic approaches. This will be integral for rapid 

implementation of ECM profiling for the prioritization of 
high-risk patients for more rigorous intervention or stro-
mal co-targeting therapies.

Growing evidence points to immune surveillance as 
a major regulator of premalignant progression in SqCC 
[8]. With this in mind, the glycoprotein SPP1, which 
we identified as positively associated with SqCC risk, 
is produced by tumor-associated macrophages in vitro 
and induces PD-L1 expression in lung adenocarcinoma 
[79]. This suggests that the immunomodulatory activity 
of ECM components in our matrix risk signature may 
contribute to immune evasion mechanisms that enable 
premalignant progression. As has been demonstrated 
in other tumor types, the arrangement of multiple ECM 
components such as fibrillar collagens and their associ-
ated matrix molecules has the potential to also regulate 
immunological surveillance. For example, fibrillar col-
lagen architecture, which is regulated by several ECM 
components in our risk signature (including COL11A1, 
CTHRC1, and COL10A1), is also associated with 
altered T cell-mediated immune surveillance [95, 130, 
131]. Preliminary data also suggests that a COL11A1-
expressing CAF subset may also promote T cell exclu-
sion from the tumor microenvironment [132]. How 
these ECM components influence anti-tumor immune 
surveillance will be an important consideration in 
understanding and predicting the immune checkpoint 
therapy response.

Changes in collagen architecture also occur during 
lung aging [47, 92]. The enrichment of our matrix risk 
signature in older compared with younger lungs sup-
ports the notion that age-related ECM remodeling may 
prime lung tissue for lung tumor initiation and underpin 
the increased incidence of lung cancer with age. Age-
related changes in dermal collagen architecture induced 
by HAPLN1 has been linked to reduced T cell motility 
and infiltration, and increased melanoma incidence with 
age [93, 95], raising the possibility that ECM remodeling 
represented by our matrix risk signature captures a simi-
lar process in SqCC. Whether ECM components that 
constitute the risk signature reflect or regulate immune 
surveillance to enable unhindered progression of dysplas-
tic lesions warrants further investigation.

Several of the matrix components identified in the 
matrix risk signature are also significantly overexpressed 
in our prognostic ECM-High matreotype that constitutes 
a subgroup of SqCC patients with the worst progno-
sis. This, together with the stage independence of these 
matreotypes, suggests that ECM remodeling during the 
initiation of lung tumors may establish an ECM remode-
ling program that supports subsequent aggressive tumor 
growth and metastasis that persists throughout tumor 
progression. Our identification of matrisomally driven 
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integrin and fibrogenic signaling in this ECM-High 
matreotype suggests that the initiation of the pro-fibrotic 
ECM remodeling generates a positive feedback loop to 
promote further fibrotic ECM deposition and activation 
of these pro-metastatic signaling pathways.

The association of the ECM-enriched, ECM-High 
matreotype with worse prognosis is consistent with an 
observed association of increased peritumoral stroma (as 
defined by H&E pathology) with worse overall and recur-
rence-free survival, and significantly reduced expression 
of the EMT marker E-cadherin in SqCC [133]. Early 
establishment of these ECM remodeling programs is 
also consistent with observations that pro-fibrotic gene 
expression changes occur early in SqCC progression, 
coinciding with the acquisition of an invasive phenotype 
[134], and therefore may enable early cancer cell dissemi-
nation from the primary site. Furthermore, numerous 
studies support the association of pre-existing fibrotic 
ECM remodeling from chronic lung diseases with 
worse lung cancer survival [135, 136], potentially due to 
increased invasion in these tumors [135]. Our inference 
of matrisome-driven receptor activation suggests that the 
ECM itself has the potential to further amplify integrin 
signaling to support the metastatic spread of cancer cells 
and the activation of fibroblasts and warrants further 
functional studies to dissect the contribution of integrin 
signaling in these cell types to tumor biology.

Advanced stage SqCC and adenocarcinoma that lack 
targetable mutations and are candidates for immune 
checkpoint inhibitors are largely treated in a similar man-
ner. However, our analysis indicates that prognostic ECM 
remodeling programs in SqCC are distinct from those in 
lung adenocarcinoma. While adenocarcinoma has been 
reported to be more fibrotic than SqCC [137], our analy-
sis indicates that it is the upregulation of other specific 
core matrisomal components, not just fibrillar collagens, 
that are prognostic in SqCC. The distinct biology of these 
two NSCLC subtypes is supported by a recent proteog-
enomic study that identified the majority of SqCC clus-
tered distinctly from adenocarcinoma subtypes [27]. That 
these tumors respond differently to the matrix environ-
ment may reflect the fact that SqCC and adenocarcino-
mas typically arise in different regions of the lung (and 
likely different cells of origin [138]), which are char-
acterized by a different ECM composition [139]. Lung 
fibroblasts within these different compartments also dis-
play distinct phenotypes, and fibroblasts derived from 
SqCC tumors accumulate more than adenocarcinoma-
associated fibroblasts via beta-1 integrin-dependent 
mechanisms [114], which may also accelerate matri-
some-mediated pro-fibrogenic signaling in the ECM-
High matreotype. Differential effects of the ECM on lung 
cancer histology have also been noted in the context of 

LKB1-negative tumors, where LOX-dependent collagen 
crosslinking can drive the transdifferentiation of adeno-
carcinomas to SqCC [140], although the precise mecha-
nism by which the ECM potentially modulates lung 
cancer histology remains unclear.

Our poor-prognosis ECM-High matreotype has 
an ECM profile which overlaps with IPF and appears 
enriched for an IPF-specific fibroblast phenotype, sug-
gesting that matrix remodeling in this subset of SqCC 
with the worst prognosis may be driven by similar mech-
anisms as those underlying IPF. Enrichment of the IPF-
specific aberrant basaloid cell signature in the ECM-High 
matreotype may also reflect the known epithelial dys-
regulation associated with SqCC and the transformation 
of basal cells, which are the likely cells of origin in SqCC 
[138]. Interestingly, this epithelial cell type has high 
expression of EMT markers and p21 [50], which were 
identified as downstream of elevated integrin signaling 
in our ECM-High matreotype. The physical proximity of 
aberrant basaloid cells covering myofibroblastic foci in 
IPF lungs [50] raises the possibility that crosstalk between 
neighboring IPF-like fibroblasts and transformed basal 
cells in SqCC contribute to the etiology of ECM-High 
matreotype tumors. A specific association of IPF with 
SqCC has been noted in the emergence of squamous 
metaplasia in fibrotic lung which can then develop into 
SqCC, as well as the higher incidence of SqCC than ade-
nocarcinoma in IPF patients who develop NSCLC [135, 
141–143]. In addition, lung cancer survival is poorer in 
IPF patients compared with the general population [142]. 
Our data indicates that a subset of poor-prognosis SqCC 
patients have hyperactivated fibrogenic signaling mim-
icking that seen in IPF. This also raises the notion that 
ECM remodeling, through aging or IPF mechanisms, 
may contribute to a field of cancerization that primes 
the lung tissue for accelerated tumorigenesis [144, 145]. 
These data also suggests that these patients may benefit 
from anti-stromal therapies targeting these pathways to 
disrupt the cycle of ECM deposition, fibrogenesis, and 
the corollary effects on tumor progression.

Anti-stromal therapies are showing considerable 
promise in the treatment of highly desmoplastic tumors 
such as pancreatic ductal adenocarcinoma [146], a solid 
tumor type in which our ECM-High matreotype is also 
prognostic. The anti-stromal IPF treatment nintedanib, 
which targets FGF, VEGF, and PDGF signaling, has been 
approved as a second-line therapy in lung adenocarci-
noma as it has demonstrated greater clinical benefit in 
adenocarcinoma than in the SqCC histological subtype. 
However, nintedanib has shown some in vitro efficacy in 
SqCC models albeit lower than in adenocarcinoma mod-
els [147] and modest, but significant improvements in 
progression-free survival and disease control in human 
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SqCC [40, 148]. Our data suggests that correct patient 
selection would be critical since, unlike the ECM-Low 
SqCC, the ECM-High subset of SqCC would be the sub-
set most likely to benefit from this treatment. Therefore, 
with further refinement, matrisomal profiling of SqCC 
may be used as a companion biomarker for anti-stromal 
efficacy, and matrisomal subtyping should be considered 
as an inclusion criterion in the design of future trials. 
Furthermore, our data suggests that ongoing clinical tri-
als targeting pro-fibrogenic signaling in FGFR-amplified 
or -mutant SqCC, including those ongoing trials for 
AZD4547 (FGFR1,2,3; NCT01824901, NCT02154490), 
lucitanib (FGFR1,2; VEGFR1,2,3, CSF1; NCT012109016), 
BAY1163877 (NCT01976741), the pan-TKI dovitinib 
(FGFR + VEGFR, NCT01861197), as well as the use of 
the approved agent Nintedanib (VEGFR, FGF, PDGFR) 
[4] should consider using matrisomal subtyping, rather 
than FGF status alone as an inclusion criteria.

Our data predict that the core matrisome elements 
within FGFR-wildtype ECM-High matreotype tumors 
can signal through integrins, FLT4, and PDGFRB on 
fibroblasts to induce pro-fibrogenic signaling that pro-
motes cancer cell growth, migration, and invasion. 
Therefore, FGF-wildtype ECM-High tumors may also 
benefit from these anti-stromal therapies. Furthermore, 
the association of our ECM-High matreotype with cispl-
atin resistance, potentially via integrin-mediated induc-
tion of cisplatin resistance mediator p21 [108, 109], also 
suggests that a co-targeting approach of anti-stromal 
therapies together with standard-of-care platinum dou-
blet therapies may synergize to augment and potentially 
restore cisplatin sensitivity. Together, these findings indi-
cate that matreotyping SqCC tumors may be useful in 
identifying those patients with ECM-High tumors who 
are likely to benefit from stromal co-targeting therapies.

While this study has yielded clinically actionable 
insights from whole-matrisomal profiling of tumors, 
it has limitations. The penalized regression modeling 
approach used to identify the key core matrisomal 
components defining SqCC implemented parameters 
that minimized the model error while incorporating a 
reasonable number of matrisomal genes. However, in 
balancing model complexity and accuracy, additional 
matrisomal genes that were less predictive were not 
included in the final model, yet these may still have 
some biological or clinical importance in SqCC tumo-
rigenesis. This is particularly the case for highly cor-
related core matrisomal components, where one ECM 
component included in the model may capture the 
predictive power of multiple co-linear ECM compo-
nents. In addition, our bioinformatic approaches uti-
lized separate tissue sources for the scRNAseq, where 

SqCC tumor data is particularly limited, and the bulk 
transcriptomic/proteomic data (RNAseq, whole exome 
sequencing and RPPA proteomic), making it difficult to 
discern the precise cell of origin for ECM components. 
Furthermore, from the analysis of multi-omics data, it is 
not possible to discern the mechanistic contributions of 
the ECM component itself, from the exact cell type that 
produces it, when examining associations with patient 
outcome. This is in line with recent studies showing 
that core matrisomal gene expression signatures can 
robustly recapitulate specific cellular phenotypes [41]. 
Key ECM components in SqCC risk and prognosis iden-
tified in this study have been shown to be expressed by 
specific subtypes of stromal cells as well as cancer cells 
and so it is possible that clinical associations identi-
fied for matrisomal genes reflect the effects of these 
cell types more broadly. For example, cancer-associated 
fibroblasts have also been associated with lung cancer 
prognosis in adenocarcinoma [116, 149] and NSCLC 
generally [105, 117, 150], although their significance in 
SqCC prognosis remains unclear. This in silico analysis 
will require experimental interrogation to dissect the 
function of key ECM remodeling features. In particu-
lar, functional studies will be required to validate the 
mechanistic roles of individual matrix components in 
SqCC prognosis as distinct from effects of cellular sub-
types that simply express these matrix components. 
For example, murine models in which cancer cells are 
orthotopically injected together with cancer-associated 
fibroblasts expressing high and low levels of key ECM 
genes will be fundamental first steps to establishing the 
functional importance of these ECM components in 
accelerating tumor progression and metastatic dissemi-
nation. Further in  vitro studies using cell co-cultures 
in organotypic matrices will also be critical to dissect 
signaling mechanisms driving treatment response and 
metastasis.

Conclusions
This comprehensive analysis of the SqCC matrisomal 
landscape has defined key matrisomal components asso-
ciated with an increased risk of developing lung cancer 
and of developing aggressive treatment-refractory disease. 
Through combining multi-omics datasets, we hypothesize 
that enriched elements of the core matrisome amplify 
fibrogenesis and activate intracellular signaling networks 
that support metastatic dissemination. Tumor ECM sub-
typing has revealed a subset of SqCC patients with the 
worst prognosis whose tumors are likely to respond well 
to treatment with existing repurposed anti-stromal thera-
pies in combination with standard-of-care therapy. These 
findings highlight the importance of considering the ECM 



Page 25 of 29Parker et al. Genome Medicine          (2022) 14:126  

profile of SqCC as part of a precision medicine framework 
to improve the outcome of SqCC patients.
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