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Abstract

Head and neck squamous cell carcinoma (HNSCC) represents a
heterogeneous group of tumors. While significant progress has been
made using multimodal treatment, the 5-year survival remains at
50%. Developing effective therapies, such as immunotherapy, will
likely lead to better treatment of primary and metastatic disease.
However, not all HNSCC tumors respond to immune checkpoint
blockade therapy. Understanding the complex cellular composition
and interactions of the tumor microenvironment is likely to lead to
new knowledge for effective therapies and treatment resistance. In
this review, we discuss HNSCC characteristics, predictive biomarkers,
factors influencing immunotherapy response, with a focus on the
tumor microenvironment.
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INTRODUCTION

Head and neck cancer squamous cell
carcinoma

Head and neck squamous cell carcinoma (HNSCC)
is the 7th most common cancer in the world, and
it accounts for more than 1.5% of cancer deaths
in the United States.1,2 HNSCC tumors are found
in the oral/nasal cavity, paranasal sinuses,
nasopharynx, larynx and oropharynx. Tobacco,
alcohol consumption, both independently and

synergistically, and human papillomavirus (HPV)
are known risk factors.3–6 HPV-positive
oropharyngeal SCC (OPSCC) is often susceptible to
therapy, leading to a better prognosis, whereas
HPV-negative HNSCC tends to have unfavorable
prognosis.7 Surgery and chemoradiotherapy are
the standard treatment modalities for HNSCC.
However, with locoregional or distant metastatic
disease, the prognosis is often poor.
Immunotherapies have shown promise for
recurrent and metastatic HNSCC. However,
determining which patients are likely to respond
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to immune checkpoint blockade therapy remains
a challenge.

In a study evaluating the efficacy of standard
fractionated radiotherapy with cisplatin for locally
advanced HNSCC patients, patients with HPV-
positive OPSCC had smaller primary tumors and
better survival than patients with HPV-negative
tumors.8 Phase III clinical trials comparing an
epidermal growth factor receptor (EGFR)
inhibitor, cetuximab/radiotherapy and cisplatin/
radiotherapy, revealed that in HPV-positive
tumors, cisplatin/radiotherapy had better
treatment outcomes and improved patient
survival than cetuximab/radiotherapy. Transoral
surgery has also achieved good outcomes and is
standard of care for appropriate HPV-positive
tumors.9 In the tumor microenvironment (TME),
HPV-positive tumors demonstrate an increased
number of infiltrated natural killer (NK) cells10

and HPV-positive OPSCC have shown a higher
degree of infiltrating CD3+ and CD8+ T cells than
HPV-negative tumors.11

TUMOR MICROENVIRONMENT (TME)

The TME is a heterogeneous milieu of cell types,
including immune and non-immune cells, that
surrounds the tumor12 (Figure 1). There are
broadly three types of tumor phenotypes,
characterised by the TME, and defined by the cell
type, density and location: inflamed, immune-
excluded and immune-desert tumors13 (Figure 2).
Inflamed tumors are defined when immune cells
infiltrate the tumor and the stroma.14 Immune-
excluded is a phenotype that occurs when
immune cells are restricted to the stroma and are
unable to infiltrate the tumor. The immune-
desert phenotype arises when immune cells,
specifically CD8+ T cells, are incapable of
infiltrating neither the tumor nor the stroma.15 In
non-inflamed tumors, tumor immune escape
originates from the exclusion of T cells by various
oncogenic pathways such as p53 inactivation,
NOTCH1 inactivation and epigenetic regulations16

(Table 1). In patients with HPV-positive tumors,
those with high levels of tumor-infiltrating
lymphocytes (TILs) have better outcomes.17 Higher
infiltration rate of TILs correlates with greater
production of interleukin (IL)-10, C-C motif
chemokine 21 (CCL21), IL-17, CCL17, tumor
necrosis factor alpha (TNF-a), IL-21 and interferon
gamma (IFN-c), hence revealing an HPV-specific T-
cell response that enables better overall survival

(OS) in HPV-positive HNSCCs.18 The balance of
antitumor cells versus immunosuppressive cells
within the TME is key for treatment outcomes
and survival. A TME with high infiltration of
cytotoxic T cells and NK cells results in better
therapy outcomes, whereas TME with regulatory
T cells (Tregs), M2 macrophages and myeloid-
derived suppressor cells (MDSCs) results in poorer
therapy outcomes.19 Studies have shown that the
composition and abundance of immune cells
differ between HPV-positive and HPV-negative
tumors.20,21

CELLULAR FACTORS IN THE TME

Cancer-associated fibroblasts (CAFs)

Cancer-associated fibroblasts (CAFs) are activated
fibroblasts within the TME.22 Fibroblast activation
protein-alpha (FAP-a) and alpha-smooth muscle
chain (a-SMA) are specific markers to purify CAFs.23

CAFs play a critical role in tumor evolution by
producing collagen fibrils in the extracellular matrix
(ECM), eventually increasing invasiveness of HNSCC
tumor cells.24 Within the TME, CAFs are stimulated
by angiotensin II (Ang-II) via their receptor,
angiotensin II receptor type I (ATR1), to proliferate
and secrete immunosuppressive factors.25 In
addition, CAFs have the ability to suppress CD8+ T-
cell function by increasing the expression levels of
tumor growth factor b (TGF b).26

Myeloid-derived suppressor cells (MDSCs)

Myeloid-derived suppressor cells (MDSCs) are
activated and expanded immature myeloid cells
detected in pathologic conditions like cancer,
autoimmune diseases, chronic inflammation and
trauma.27 MDSCs are categorised into two groups
including polymorphonuclear MDSCs, and
monocytic MDSCs which morphologically bear
striking resemblance to neutrophils and
monocytes.27 MDSCs could promote the formation
of CAFs, tumor-associated macrophages (TAMs)
and Tregs within the TME. Having been formed,
Tregs produce transforming growth factor beta
(TGF-b), IL-10 and adenosine, thereby suppressing
T cells (helper and cytotoxic).22 MDSCs can also
suppress CD8+ T cells by secreting prostaglandin
E2 (PGE2) and arginase (ARG). MDSCs were found
to be related to a tolerogenic tumor immune
landscape. In this regard, IL-1, IL-6 and
granulocyte/monocyte colony-stimulating factor
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Figure 1. Immune cells in the tumor microenvironment and their interactions. Cell populations within the TME promote or suppress tumor

growth by secreting various cytokines and chemokines. CD4+ T cells differentiate into Th cells, which act as tumor suppressors, and Tregs, which

act as tumor promoters. TANs promote tumor growth by secreting ECM remodelling enzymes and angiogenic factors. CAFs play an

immunosuppressive role by limiting CD8+ T-cell function via TGF secretion. NK cells have tumor suppressing functions by producing perforin and

granzymes. TAMs promote tumor growth via increasing the levels of MMPs. By secreting ARG1, MDSCs suppress tumor specific CD8+ T-cell

response. Adapted from Barriga et al.130 and Balkwill et al.131
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(GM-CSF) expression by M2 TAMs, TANs and
tumor cells resulted in the recruitment of MDSCs
into the TME in HNSCC.28

Tumor-associated macrophages (TAMs)

Macrophages play a part in both innate and
adaptive immunity, dividing into two groups

Figure 2. The characteristics of different types of tumor microenvironments. There are three types of the TMEs, including immune-desert,

immune-excluded and immune-inflamed. In the immune-desert TME, T cells are not able to infiltrate neither the tumor nor the stroma, and are

inactivated by binding their inhibitory cell surface receptors PD-1 and CTLA-4 to ligands CD80 and CD86 on the tumor cells, this environment is

referred to as a ‘cold tumor’. Immune-excluded TME occurs when immune cells, specifically T cells, can be found in the stroma but are unable to

infiltrate the tumor. In immune-inflamed TME, various types of immune cells, particularly activated T cells, can infiltrate the tumor, creating a so-

called ‘hot tumor’ environment. Immune checkpoint inhibitors (ICIs), such as anti-PD-1/PD-L1/CTLA-4, block the connection between T and tumor

cells, causing T cells to reactivate.

Table 1. The most common genes involved in HNSCC

Gene Cytogenetic location Mutation type Function in Role

TP53 17p13.1 MissenseAllelic loss DNA damage TSG

NOTCH1 9q34.3 Inactivating mutation Signal transduction pathways TSG

PIK3CA 3q26.32 AmplificationActivating mutation Signal transduction pathways Oncogene

FAT1 4q35.2 Inactivating mutationDeletion Cell-cell connectionActin dynamics TSG

HRAS 11p15.5 Activating mutation Signal transduction pathways Oncogene

CDKN2A 9p21.3 Loss of function Cell cycle TSG

NSD1 5q35.3 Inactivating mutation Epigenetic regulation TSG

KMT2D 12q13.12 Inactivating mutation Epigenetic regulation TSG

CDKN2A, cyclin-dependent kinase inhibitor 2A; FAT1, FAT atypical cadherin 1; HRAS, HRas proto-oncogene, GTPase; KMT2D, lysine

methyltransferase 2D; NOTCH1, notch receptor 1; NSD1, nuclear receptor binding SET domain protein 1; PIK3CA, phosphatidylinositol-4,5-

bisphosphate 3-kinase catalytic subunit alpha; TP53, tumor protein p53; TSG, tumor suppressor gene.

Data from Cancer Genome Atlas Network,122 India Project Team of the International Cancer Genome Consortium,123 Leemans et al.124 and

Chai et al.125
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including M1-like and M2-like macrophages.29,30

TNF-a and lipopolysaccharides (LPS) induce
forming M1 macrophages, showing antitumoral
effects by producing IL-1b, IL-6 and C-X-C motif
chemokine 10 (CXCL10).29,31 The M2 phenotype,
however, could induce inflammation and also
promote tumor growth and angiogenesis through
producing TGFb, matrix metalloproteinases
(MMPs), vascular endothelial growth factors
(VEGFs) and interleukins such as IL-4 and IL-10.29,32

Both TAMs M1 and M2 can be detected using
CD68 immunostaining. Despite this, Singhal et al.
found no exclusive M1 or M2 macrophage
markers in lung cancer. Instead, the study found
that the tumors expressed both M1 and M2
macrophage markers, implying that macrophage
differentiation is a continuum rather than two
distinct states.33 Chen et al. discovered two types
of TME in HNSCC: one with the presence of B cells
and M1 macrophages, which was linked to better
immunotherapy outcomes, and the other with
WNT/TGF-signalling activation and the presence of
M2 TAMs, which was linked to tumor
development.34,35

CD8+ T cells

CD8+ T cells, a key player in the acquired immune
system, express T-cell receptors (TCRs), allowing
them to recognise peptides presented by major
histocompatibility complex 1 (MHC-I).36 After
being exposed to an antigenic peptide, na€ıve T
cells undergo massive clonal expansion and
differentiation to become potent effector cells,
also known as cytotoxic T cells (CTLs).37 CTLs kill
tumor cells either through the release of cytotoxic
mediators or stimulation of first apoptosis signal
receptor ligand (FasL)-mediated apoptosis.38 Three
different functional states including na€ıve,
cytotoxic and dysfunctional of tumor-infiltrating
lymphocytes (TILs) have been revealed using high
dimensional profiling technologies.39–41 These
cells may show various degrees of exhaustion;
however, TILs with decreased effector function
may play a key role in providing long-lasting
immune responses to ICIs.42 Higher CD8+ T-cell
infiltration was found to be associated with a
better response to anti-PD-1/PD-L1 antibodies in
patients with cutaneous head and neck cancer.43

It was found that OS and relapse-free survival
(RFS) have a positive correlation with higher
numbers of CD4+ and CD8+ TILs.44 Studies showed
the effect of TILs on patient survival.

Vassilakopoulou et al. reported that stromal TILs
were associated with OS, whereas Badr et al.
found that intraepithelial TILs were correlated
with clinical outcomes.45,46

Tissue-resident memory T cells

The tumor infiltration of tissue-resident memory T
cells (Trm), as detected by CD103+CD8+ T cells, has a
positive correlation with a favorable prognosis in
patients with various types of cancer.20,47 Patients
with Trms infiltration into TME had better
responses to immunotherapy.47 Ida et al.
investigated the biological and clinical significance
of Trm in head and neck cancer using RNA-seq data
from The Cancer Genome Atlas (TCGA) and blood
samples taken from patients. The team found that
Trm-enriched tumors overexpressed immune
checkpoint molecules and had a correlation with
HPV-positive status. Also, patients with Trm-
enriched tumors had a better prognosis.47

Regulatory T cells (Tregs)

CD4+ T cells are key players in the adaptive
immune response through secreting various
chemokines.48,49 MHC-II on the surface of antigen-
presenting cells (APCs) mediates antigen
presentation and CD4+ T-cell activation, leading to
a role in allergy, autoimmunity and cancer, as
well as an immunosuppressive environment in the
TME.49,50 CD4+ T cells can turn into Tregs,
expressing the forkhead box P3 (FOXP3) protein,
which is required for development and
immunosuppressive function of Tregs. Tregs
contribute to tumor growth thanks to their
inhibitory role.50,51 It was reported that tumor-
infiltrating Tregs can express surface molecules
such as PD-L1 and PD-L2 in order to bind their
receptors on the surface of CD8+ T cells, inhibiting
CD8+ T-cell activation.52 In addition, Tregs could
also suppress tumor specific T-cell infiltration and
function by secreting IL-10 and TGF-b, leading to
inhibition of antitumor immune responses.53 A
higher amount of TGF-b was reported during the
latter phase of HNSCC progression, indicating a
disruption in the T-helper (Th)-17 vs Treg ratio.54

The disruption enhances Treg differentiation as
well as IL-10 production in HNSCCs.55,56 However,
increased FoxP3+ Treg infiltration in HNSCC was
related to improved RFS and OS, implying an
antitumor immune response that could result in
tumor progression suppression.57,58
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Tumor-associated neutrophils (TANs)

Neutrophils make up the majority of white blood
cells and are recruited to the TME by a variety of
cytokines and chemokines.59 These cells are
categorised into two phenotypes: antitumor (N1)
and pro-tumor (N2).59 N1 TANs are characterised
by the upregulation of TNF-a, CD54 and CCL3,
whereas N2 TANs show increased levels of CCL2,
3, 4, 8, 12 and 17 as well as CXCL2, 8 and 16.59

Functionally, N1 TANs have antitumor functions
through direct cytotoxicity or stimulating innate
and adaptive immune cells such as B and T cells,
NK cells and dendritic cells (DCs), thereby
inhibiting tumor growth.59 Furthermore, by
increasing NADPH oxidase, these cells produce
reactive oxygen species (ROS), which are
potentially toxic to tumor cells.59 N2 TANs
produce ECM remodelling enzymes and
angiogenic factors, promoting tumor growth.59

Natural killer (NK) cells

NK cells are characterised as CD3-/CD56+ cells.60,61

NK cells function as an antitumor immune system
by either producing perforin/granzyme B (GZMB)
or inducing FasL/TNF-related apoptosis-inducing
ligand (TRAIL)-mediated apoptosis.60,61 These cells
regulate immune responses, including T-cell
expansion and Th1 polarisation, via targeting
activated T cells and secreting IFN-c.60,61

Additionally, NK cells play a variety of roles in both
innate and adaptive immune responses through
the activation of DCs, macrophages, neutrophils
and T cells by secreting a wide range of cytokines
and chemokines, such as IFN-c, TNF-a and GM-
CSF.60,62 HNSCC-infiltrating NK cells were found to
express significantly less killer cell immunoglobulin-
like receptor 3DL1 (KIR3DL1) and KIR2DL1/2/3 than
circulating NK cells.63 Furthermore, it was shown
that, while mature CD56 dim NK cells constitute the
majority of NK cells in patients with head and neck
cancer, an immature CD56 bright, CD16dim/
negative subset lacking CD57 expression is also
found in HNSCC tumors.63–65 However, NK cell
infiltration, in particular CD56dim, was reported to
improve disease-free survival (DFS) and OS
regardless of HPV status.21,66

Dendritic cells (DCs)

DCs are antigen-presenting cells that regulate T-cell
functions by sending four distinct signals: primary

signals to initiate T-cell activation, secondary
signals to complete T-cell activation, T-cell
differentiation signals and activating signals for
T-cell homing to specific tissues.67,68 Conventional
DCs (cDCs) activate antitumor immune responses as
either a tumor antigen-presenting cell or a
cytokine secretor.69 There are two types of cDCs,
cDC1s and cDC2s.67 In the TME, cDC1s recruit and
stimulate CD8+ T cells to fight tumor cells. cDC1
also secrete IL-12 to support T-cell function.70

Several studies have found that the cDC1 signature
in the TME is associated with a higher tumor-
infiltrating lymphocyte quantitation score and
improved patient survival.71–73 Bottcher et al.
reported that a cDC1 signature composed of four
genes, including C-type lectin domain containing
9A (CLEC9A), X-C motif chemokine receptor 1
(XCR1), cytokine-dependent hematopoietic cell
linker (CLNK) and basic leucine zipper ATF-like
transcription factor 3 (BATF3), was linked to
improved survival in patients with head and neck,
breast, lung and metastatic melanoma.73

NON-CELLULAR FACTORS IN THE TME

Interferon-gamma (IFN-c)

In the TME, a variety of immune cells such as
activated lymphocytes, CD4 T helper type (TH1),
CD8 and NK cells secrete IFN-c. It was found that
all nucleated cells respond to IFN-c because they
express IFN-c receptor (IFNGR1).74 However, IFN-c
can act as a double-edged sword in the TME
because of its anti- and pro-tumorigenic effects,
depending on the balance of antitumor and pro-
tumor IFN signalling.74 The KEYNOTE-012 HNSCC
trial examined a six-gene IFN-c signature
(including CXCL9, CXCL10, signal transducer and
activator of transcription 1 (STAT1), human
leukocyte antigens, DR alpha (HLA-DRA), IFN-c
and indoleamine 2,3-dioxygenase 1 (IDO1) gene
expression) in pretreatment biopsies to assess the
relationship between interferons and response to
ICIs.75 A significant association was identified
between IFN-c gene signature and best overall
response (BOR) and progression-free survival
(PFS).75

The antitumorigenic effects of IFN-c contribute
to the recruitment of various immune cells in the
TME via transcriptional regulation of CXCL 9,
CXCL10 and CXCL11, and their receptor CXCR3.76

Immunotherapy was indicated to induce IFN-c
expression and thus promote the expansion of
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effector and memory CD8+ T cells.77,78 IFN-c drives
CTL chemotaxis and motility within the TME,
increasing CTL cytotoxicity and limiting tumor
growth.79 IFN-c promotes tumorigenesis by
inducing the expression of IDO1, inducible nitric
oxide synthases (iNOS), PD-L1 and the FasL.74 IFN-c
triggers IDO1 expression, which contributes to T-
cell apoptosis, as IDO1 has been shown to play an
important role in catalysing the kynurenine
pathway and, as a result, activating caspase 8, as
well as releasing mitochondrial cytochrome C.80 In
terms of iNOS, it was found that tumor-derived
iNOS triggers tumor cell angiogenesis and
vascularisation, resulting in tumor growth.81

Furthermore, tumor cells have been found to
suppress immune response via FASL-mediated
apoptosis of immune effector cells.74

Hypoxia

When tumor cells proliferate, they gradually
deplete oxygen and other nutrients, resulting in
tumor hypoxia.82 By upregulating hypoxia-
inducible factors (HIFs) like VEGF, tumor cells
overcome this challenge.83 Tumor angiogenesis
and neovascularisation differ structurally and
functionally from normal angiogenesis, with tumor
vessels having blunt ends and poor perfusion.12

Tumor endothelial cells have numerous gaps,
which contribute to vascular leakage, blood clots
and tissue oedema when compared to normal
endothelial cells.82 Overexpression of hypoxic
pathway mediators, such as HIF-a and HIF1b, has
been related to the tumor progression because
these mediators bind hypoxia response elements
engaged in tumor angiogenesis.12 Tumor hypoxia
is a common feature of locally advanced HNSCC
that is considered as a negative prognostic factor,
leading to decreasing radiotherapy efficacy.84,85

This means that a hypoxic environment reduces the
production of ROS, which reduces radiation-
induced DNA damage and makes these cells
resistant to radiotherapy.86

Adrenergic neurons

The underlying mechanisms of tumor-neuron
interaction are not clearly comprehended;
however, this may drive tumor innervation and
invasion in the TME of various solid tumors.87

Trp53 knockout mice demonstrated increased
nerve density (neuritogenesis) in mucosal oral
cavity squamous cell carcinoma (OCSCC) tumors

caused by loss of p53 expression and regulated by
tumor-derived microRNA-laden extracellular
vesicles.88 Extracellular vesicle-delivered miR-21
and miR-324 were found to induce
neuritogenesis, whereas extracellular vesicle-
delivered miR-34a suppressed neuritogenesis.88 It
has been found that neurons innervating p53-
deficient OCSCC tumors arises by trans-
differentiation of trigeminal sensory nerve fibres
to adrenergic nerve fibres, which is associated
with higher expression of neuron reprogramming
transcription factors such as achaete-scute
homolog 1 (ASCL1), kruppel-like factor 4 (KLF4)
and POU domain, class 5, transcription factor 1
(POU5F1).88 Markers of adrenergic neuron in
OCSCC samples are heavily linked to poor
outcomes, highlighting the relevance of these
results to cancer. Understanding the adrenergic
nature of neurons that drives tumor growth gives
patients with OCSCCs hope for treatment options.
Available beta-adrenergic blockers have already
been approved to treat patients with migraines,
angina, heart arrhythmias and hypertension.87

According to clinical research data, anti-
adrenergic agents could be considered as
therapeutic options for patients with breast
cancer and hepatocellular carcinoma.89,90 Amit
et al.88 showed that Carvedilol, an a1, b1 and b2
adrenergic receptor blocker, significantly
decreased tumor progression and proliferation.
Therefore, more emphasis might be placed on
anti-adrenergic approaches in the treatment of
OCSCC.

IMMUNOTHERAPY

Immunotherapy reinvigorates patients’ immune
responses against tumor cells, causing them to
regress12 (Table 2). Immune checkpoint inhibitors
(ICIs) and adoptive cellular therapy (ACT) are the
most common immunotherapy approaches used in
clinical studies. ICI makes use of cell surface
molecules like anti-programmed cell death 1 (PD-
1), while ACT employs host immune cells such as
tumor-infiltrating T cells.91 The development of
immunotherapy has significantly improved the
treatment of HNSCC. For example, anti-PD-1
antibodies (pembrolizumab and nivolumab), have
demonstrated long-term responses. These
immunotherapeutic agents were found to provide
durable responses and improved survival in
recurrent/metastatic (R/M) HNSCC patients who
had previously received platinum-based
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chemotherapy, and were approved by the US
Food and Drug Administration (FDA) in
2016.75,92,93 The long-term follow-up studies
confirmed pembrolizumab’s safety, durability,
efficacy and improvement in survival for R/M
HNSCC.94,95 Biomarkers of response to
immunotherapy, including PD-L1 expression,
tumor mutational burden (TMB) and T-cell
inflammatory gene signature, have been
discovered through the analysis of combined
tissue samples from the KEYNOTE-012 and
KEYNOTE-055 trials.92,96 Each of these biomarkers
independently predicted response to
Pembrolizumab, which led to its approval as
standard first-line treatment. The FDA, also,
approved Nivolumab for HNSCC patients based on
the findings of the CHECKMATE 141 trial.92,97

Nivolumab was found to improve response rate,
OS and 6-month PFS in platinum-pretreated
patients.97 Despite these promising results,
response rates to ICIs in HNSCC patients were
reported to be between 13 and 20%, indicating
the need for novel predictive biomarkers of
response to immunotherapy for these patients.98

PD-L1 expression

PD-1 checkpoint receptor expressed on the surface
of activated T cells was found to have an
immunosuppressive role when interacting with its
ligands (PD-L1 and PD-L2) expressed on the surface
of tumor- and immune-infiltrating cells.99–101 The
expression of PD-L1 on the surface of immune cells
in pretreatment tumor biopsies was found to be
associated with a better antitumor adaptive
immune response and, as a result, better treatment
outcomes.102,103 Anti-PD-1/PD-L1 antibodies are
used to block the interaction of PD-1/PD-L1 and
thus promote the immune response against tumor
growth.104,105 Studies showed that the expression
of PD-L1 on the surface of tumor cells, also known

as tumor proportional score (TPS), was linked to
better clinical outcomes and improved survival in
patients who received an anti-PD-1 antibody.97,106

However, it was found that the assessment of PD-
L1 expression on both tumor and immune cells
(lymphocytes and macrophages) together, known
as the combined positive score (CPS), could be a
better predictor of immunotherapy response than
the TPS.107 A study comparing the efficacy of
first-line pembrolizumab to CPS < 1, 1–19 and ≥ 20
in R/M HNSCC patients discovered a link between
increased efficacy and increased PD-L1
expression.108 However, there are some concerns
about PD-L1 expression as a predictive biomarker
of response, such as inter-/intra-tumor
heterogeneity, differences in ‘cut-offs’, and the
antibody clones used for staining.107 A study on 28
HNSCC patients found that the 1% cut-off had 36%
and 52% concordance with TPS and CPS, while the
50% cut-off had 70% and 55% concordance with
TPS and CPS, respectively.109 In another study
comparing the differences between three different
PD-L1 staining assays (the Ventana SP263 assay
used for Durvalumab (anti-PD-L1) trials, the Dako
28–8 assay used for Nivolumab (Opdivo�) trials,
and the Dako 22C3 assay used for Pembrolizumab
(Keytruda�) trials), it was shown that the overall
per cent agreement was > 90%.110

Tumor mutation burden (TMB)

Neo-epitopes caused by non-synonymous
mutations in tumor cells’ DNA, known as ‘tumor
mutation burden’ (TMB), were found to have a
significant impact on the immune system
recognition and, in particular, T-cell
activation.111,112 Although tumors with a high
frequency of missense mutations are more likely
to respond to immunotherapy because of an
increased number of infiltrating CD8+ T cells, only
a small number of these mutations contribute to

Table 2. Predictive biomarkers of response to immunotherapy

Biomarkers Type Therapy Significance Ref.

PD-L1 expression Staining assays Immunotherapy indicator of response to ICIs 126

TMB WES Immunotherapy Plays a role in T-cell activation 43

GEP (IFN-c gene expression profile) WES Immunotherapy Is predictive of response to pembrolizumab 127

MSI DNA (PCR) Immunotherapy It is related to durable complete response to PD-L1 inhibitor 128

Microbiota NGS Immunotherapy It is associated with the efficacy of CTLA-4 blockade 129

ML WES Immunotherapy Is predictive of response to pembrolizumab 127

GFP, gene expression profile; ICIs, immune checkpoint inhibitors; ML, mutation loads; MSI, microsatellite instability; NGS, next-generation

sequencing; PD-L1, programmed cell death ligand 1; WES, whole exome sequencing.
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neo-antigen production, and only a small
proportion of those neo-antigens may result in T-
cell recognition and reactivity.113,114 However,
evidence suggests that only immunogenic
mutations, rather than all mutational load, are
associated with improved survival and increased
immune exhaustion marker expression.115 TMB was
found to be a promising predictive biomarker of
response to immunotherapy. The association of
TMB with improved response to PD-1 blockade and
anti-cytotoxic T lymphocyte antigen 4 (CTLA-4)
antibody, as well as a better clinical outcome, was
reported in patients with non-small cell lung
cancer (NSCLC), and patients with melanoma.116–118

In the case of HNSCC, the KEYNOTE-012 study
found a link between the total mutational load
and response to immunotherapy.75,119 In a study of
126 HNSCC patients treated with anti-PD-1/PD-L1
antibodies, responders had higher TMB and
microsatellite instability (MSI) than non-
responders.43 Rizvi et al. investigated the
relationship between TMB and clinical outcomes in
1662 patients with various tumor types using NGS,
Memorial Sloan Kettering Cancer Center-
Integrated Mutation Profiling of Actionable Cancer
Targets (MSK-IMPACT).120 According to the study,
patients with higher TMB (top 20% within each
histology) had a better OS. The study, also, showed
that different tumor types had different TMB cut-
offs. A high TMB cut-off was defined as 10.3
mutations per megabase (mut/Mb) for HNSCC, 5.9
mut/Mb for breast cancer, 13.8 mut/Mb for NSCLC,
30.7 mut/Mb for melanoma and 52.2 mut/Mb for
colorectal cancer (CRC).120

FUTURE PERSPECTIVES

While immunotherapies has been found to be
effective in a number of solid malignancies, only a
subset of patients may benefit from therapy. It has
been found that the TME, which includes distinct
cell types and originates from different signalling
pathways, plays an important role in tumor
immune cell interactions. The TME is established
when both immune and non-immune cells
congregate around tumor cells to help with tumor
growth, proliferation and development. Although
the presence of tumor-infiltrating lymphocytes may
be a prognostic factor for cancer treatment
outcome, different subgroups of other immune
and non-immune cells perform important
functions. The absence or decreased expression of
CD3, failure to destroy tumor cells, imbalances in

cytokine production, and decreased responses to
mitogens are some key features of the TME resident
immune cells. There are several other factors in the
TME, including PD-L1 expression on tumor and
immune cells, tumor mutation burden and immune
cell infiltration, as well as microbiome and
adrenergic neurons, which play significant roles in
the prediction of response to immunotherapy.
Therefore, gaining a better understanding of
immune-tumor cell interactions, as well as gene
and protein expression within the TME, paves the
way for the development of more effective
immunotherapeutic strategies. Moreover, a deeper
insight into the TME heterogeneity in each tumor
type, as well as tumor-host biological crosstalk, will
lead to more precise personalised medicine.121 A
multi-omic genomic/proteomic readout combined
with spatial phenotyping yield from spatial
profiling technologies may aid in understanding
TME phenotypes associated with therapy response.
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