
����������
�������

Citation: Leng, S.; Huete, A.;

Cleverly, J.; Gao, S.; Yu, Q.; Meng, X.;

Qi, J.; Zhang, R.; Wang, Q. Assessing

the Impact of Extreme Droughts on

Dryland Vegetation by Multi-Satellite

Solar-Induced Chlorophyll

Fluorescence. Remote Sens. 2022, 14,

1581. https://doi.org/10.3390/

rs14071581

Academic Editors: Jingzhe Wang,

Zhongwen Hu, Yangyi Wu and

Jie Zhang

Received: 5 March 2022

Accepted: 22 March 2022

Published: 25 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Assessing the Impact of Extreme Droughts on Dryland
Vegetation by Multi-Satellite Solar-Induced
Chlorophyll Fluorescence
Song Leng 1,2 , Alfredo Huete 2 , Jamie Cleverly 3, Sicong Gao 4 , Qiang Yu 2,5, Xianyong Meng 6, Junyu Qi 7,
Rongrong Zhang 1 and Qianfeng Wang 1,8,*

1 Fujian Provincial Key Laboratory of Remote Sensing of Soil Erosion, College of Environment & Safety
Engineering, Fuzhou University, Fuzhou 350116, China; song.leng@student.uts.edu.au (S.L.);
n190620018@fzu.edu.cn (R.Z.)

2 School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia;
alfredo.huete@uts.edu.au (A.H.); qiang.yu@uts.edu.au (Q.Y.)

3 College of Science and Engineering, James Cook University, Cairns, QLD 4878, Australia;
dr.jr.cleverly@gmail.com

4 Land and Water, Commonwealth Scientific and Industrial Research Organization,
Adelaide, SA 5064, Australia; steve.gao@csiro.au

5 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University,
Xianyang 712100, China

6 School of Atmospheric Physics, Nanjing University of Information Science & Technology,
Nanjing 210044, China; xymeng@nuist.edu.cn

7 Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA;
junyuqi@umd.edu

8 Key Lab of Spatial Data Mining & Information Sharing, Ministry of Education of China, Fuzhou 350116, China
* Correspondence: wangqianfeng@fzu.edu.cn

Abstract: Satellite-estimated solar-induced chlorophyll fluorescence (SIF) is proven to be an effective
indicator for dynamic drought monitoring, while the capability of SIF to assess the variability of
dryland vegetation under water and heat stress remains challenging. This study presents an analysis
of the responses of dryland vegetation to the worst extreme drought over the past two decades in
Australia, using multi-source spaceborne SIF derived from the Global Ozone Monitoring Experiment-
2 (GOME-2) and TROPOspheric Monitoring Instrument (TROPOMI). Vegetation functioning was
substantially constrained by this extreme event, especially in the interior of Australia, in which
there was hardly seasonal growth detected by neither satellite-based observations nor tower-based
flux measurements. At a 16-day interval, both SIF and enhanced vegetation index (EVI) can timely
capture the reduction at the onset of drought over dryland ecosystems. The results demonstrate
that satellite-observed SIF has the potential for characterizing and monitoring the spatiotemporal
dynamics of drought over water-limited ecosystems, despite coarse spatial resolution coupled with
high-retrieval noise as compared with EVI. Furthermore, our study highlights that SIF retrieved from
TROPOMI featuring substantially enhanced spatiotemporal resolution has the promising capability
for accurately tracking the drought-induced variation of heterogeneous dryland vegetation.

Keywords: dryland; SIF; EVI; TROPOMI; extreme drought

1. Introduction

Large-scale drought, as one of most costly and pressing natural hazards, has profound
impacts on terrestrial ecosystems, water resource, agriculture, and social economics [1]. In
addition, global warming increases the exposure frequency to extreme heatwaves, which
raises the risk of water deficit and leads to substantial losses of vegetation production [2,3].
As a consequence of highly variable climate, Australia is particularly vulnerable to extreme
drought, as evidenced by Millennium Drought (2001–2009) in the Murray–Darling basin

Remote Sens. 2022, 14, 1581. https://doi.org/10.3390/rs14071581 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14071581
https://doi.org/10.3390/rs14071581
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6724-9597
https://orcid.org/0000-0003-2809-2376
https://orcid.org/0000-0001-6429-1917
https://orcid.org/0000-0002-1089-1869
https://orcid.org/0000-0002-8460-6821
https://doi.org/10.3390/rs14071581
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14071581?type=check_update&version=1


Remote Sens. 2022, 14, 1581 2 of 18

as well as the 2012–2013 drought over arid inland [4,5]. Australia tends to be a global hot
spot for variability, with semiarid vegetation in that country exhibiting increased carbon
uptake [6]. By persisting through the ‘big dry’ and responding favorably in a following
‘big wet’ [7], Australia’s ecosystems play a significant role in regulating the global water
and carbon cycles [4]. Enhancing our understanding with respect to dryland ecosystem in
response to climate extreme is paramount for effectively managing the environment and
global change research [8–11].

Satellite-based observation offers a method for monitoring and characterizing the
spatiotemporal dynamics of vegetation under changing climates [12], which is especially
valuable for remote areas such as most Australia’s interior with very sparse monitoring sites.
Traditional reflectance-based vegetation indices are widely applied to assess the effects
of extreme drought on ecosystem functioning and vegetation productivity at a regional,
continental, or global scale [8,13–17]. Dramatic impacts of climate extremes on vegetation
dynamics (as measured by EVI) with abrupt changes in phenology and productivity over
southeast Australia demonstrates that semiarid ecosystems exhibit the largest sensitivity to
hydro-climatic variations [18,19]. Although vegetation-index-based approaches are essen-
tial for evaluating vegetation variation under large-scale drought events, the observations
they provide are not directly associated with vegetation functioning [20].

During recent years, satellite retrievals of SIF based on energy reemitted directly from
the core of photosynthetic machinery present a fresh manner to observe vegetation growth
and response [21–23]. On account of energy conservation, variations in SIF signal include
information regarding vegetation physiological, biochemical, and metabolic functions in
addition to the amount of absorbed photosynthetically active radiation [20]. Numerous
studies have examined the relationship between GPP and SIF for each biome at various
scales retrieved from different satellite sensors [24–27], implying that SIF can be unbiased
in monitoring of vegetation productivity and further contribute to the understanding of
the global terrestrial carbon cycle [28,29]. Both SIF and Moderate Resolution Imaging
Spectroradiometer (MODIS) GPP respond to water availability in much the same direc-
tion beyond their previously determined correlations, although biome-specific distinction
remains evident [30].

Relative to traditional vegetation indices (e.g., normalized difference vegetation index,
enhanced vegetation index, leaf area index, etc.), spaceborne SIF or fluorescence yield
was found to show an earlier and more significant response to rainfall deficits and heat
stress over tropical vegetated region, forest, and cropland at monthly scale [31,32]. It
highlights that SIF is susceptible to both the structural and physiological variations of
vegetation and can be beneficial to timely monitor and characterize the development
of drought and heatwave [33–35]. During the extreme drought of 2015–2016 driven by
a strong El Nino event, large-scale decoupling of greenness and photosynthesis over
Amazon forests was observed by satellite, of which SIF showed a pronounced reduction
as opposed to a slight increase of canopy greenness [36]. The magnitude of divergence
in greenness and photosynthesis that are related to times of fluctuant soil moisture differ
in sign along a tree cover gradient, and those of forested ecosystems display contrasting
average responses [37]. Conversely, both greenness and photosynthesis of non-woody
semiarid ecosystems exhibiting a strong response to the availability of soil moisture usually
alter contemporaneously [37]. To assess the effect of drought-related stress, there is a need
for remotely sensed indicators that measure not only how green the plants are, but also to
what extent photosynthetic activity is.

By investigating the response of vegetation growth to the 2019 extreme heatwave in
Australia, Qiu et al. [38] concluded that SIF observed by both GOME-2 and Orbiting Carbon
Observatory-2 (OCO-2) are more sensitive to water and heat stress than the greenness-based
vegetation index (EVI). In addition, OCO-2 SIF exhibits a more pronounced decrease and
one-month earlier than GOME-2 SIF, primarily owing to the diverse timing of observations
(overpass timing: GOME-2 at near 09:30 a.m. and OCO-2 at 1:36 p.m. local solar time).
Nonetheless, this study was conducted with limited baseline years (2015–2019), and it
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remains uncertain at a relatively coarse scale (1◦ spatial resolution and monthly interval) for
heterogeneous Australia’s dryland vegetation under highly dynamic climate. The newly
launched TROPOMI facilitates a considerable enhancement in SIF observation as a result
of unprecedented spatial resolution (up to 7 km × 3.5 km at nadir) and near-daily global
coverage as contrasted with GOME-2 and OCO-2 [26,39], which enables the assessment of
the relationship of SIF-GPP at an ecologically meaningful scale.

Characteristic drought time-scale can play a critical role in determining the sensitivity
of biome-specific vegetation to drought [40]. Arid and humid biomes mostly respond to
short time-scales, while semiarid and subhumid biomes respond to long time scales [40].
The response of the annual crop yield in five main dryland cultivations in the United
States to different time-scales of drought is highly spatial variable, of which some crops
(e.g., winter wheat) responded to drought at medium to long SPEI time-scales, while other
crops (e.g., soybean and corn) responded to short or long drought time-scales [41]. It
remains unclear how major biome types of natural dryland vegetation respond to drought
at different intensities and time scales.

Here, we utilize the large-scale 2018–2019 drought across Australia as a natural experi-
ment to investigate and characterize the spatiotemporal response of dryland vegetation to
this extreme event, using multiple-source satellite observations of solar-induced chlorophyll
fluorescence and vegetation greenness. Specifically, our objectives are: (1) to investigate the
spatiotemporal variability of photosynthesis and greenness of Australia’s dryland vegeta-
tion under 2018–2019 extreme drought; (2) to examine whether SIF could earlier capture
drought stress than EVI at monthly/semi-monthly scale; (3) to assess the capability of SIF
retrieved from TROPOMI for dynamic drought monitoring over water-limited ecosystems.

2. Materials and Methods
2.1. Study Area

This study was conducted at a sub-continental scale between 10◦S to 26◦S and 113◦E to
138◦E, which encompassed northern and central Australia by a relatively constant decrease
in rainfall with distance inland (Figure 1). This region, particularly for northern Australia,
has a classic monsoon climate pattern, which receives more than 80% of annual precip-
itation during November to April [42]. From northern mesic tropics to the xeric central
Australia, mean annual rainfall ranges from 1700 mm to approximately 300 mm (Bureau of
Meteorology, Available online: https://www.bom.gov.au (accessed on 20 January 2020)), in
line with the aridity index (AI) decreasing from 0.8 to 0.1 (Figure 1b). Correspondingly, the
vegetation follows a wet–dry gradient that shifts from Eucalyptus dominated forests, open
forests, and woodlands in the coastal northern areas to Acacia-dominated open woodlands,
scattered shrubs, and hummock grassland into the vast inland [42] (Figure 1a).

To assess satellite observation with ground-based evidence, we selected five represen-
tative flux tower sites across the extensive study area: Howard Springs (AU-How), Dry
River (AU-Dry), Sturt Plains (AU-Stp), Alice Spring Mulga (AU-ASM), and Ti Tree East
(AU-TTE) [43]. The detailed description of five sites is shown in Table 1 (Available online:
www.ozflux.org.au (accessed on 15 July 2019)). Apart from two northern sites (AU-How
and AU-Dry), the remaining sites in the interior of Australia experienced extreme drought
in 2018–2019.

Table 1. Summary of five eddy covariance flux tower sites.

Site Abbreviation Longitude (◦E) Latitude (◦S) Vegetation Type Data Coverage

Howard Springs AU-How 131.15 12.495 Eucalypt woodlands 2001–2019
Dry River AU-Dry 132.371 15.259 Open forest savanna 2008–2019

Sturt Plains AU-Stp 133.3502 17.1507 Tussock grasslands 2008–2018
Alice Spring Mulga AU-ASM 133.2493 22.2828 Acacia woodlands 2010–2019

Ti Tree East AU-TTE 133.64 22.287 Corymbia savanna 2012–2019

https://www.bom.gov.au
www.ozflux.org.au
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Figure 1. (a) Land cover map based on national Dynamic Land Cover Dataset. (b) Spatial pattern of
aridity index. (c) The locations of study area over Australian continent (image source: Google Earth).
Black triangles refer to five flux tower sites.

2.2. Satellite Data

A summary of satellite-based datasets used in this study is shown in Table 2. We
utilized two set of satellite-based SIF records. (1) The first dataset was obtained from Global
Ozone Monitoring Experiment-2 onboard EUMETSAT’s MetOp-A as well as MetOp-B
platform (indicated as GOME-2A and GOME-2B, respectively, in this study). SIF is the
retrieval of the far-red chlorophyll fluorescence peaking at 740 nm, based on a simplified
radiative transfer model in the company of a principal component analysis [44]. Monthly
global coverage of SIF data based on GOME-2A at 0.5◦ spatial resolution (Level 3, Ver-
sion 28) from February 2007 to March 2019 was obtained from NASA Goddard Space
Flight Centre (Available online: https://avdc.gsfc.nasa.gov/ (accessed on 10 May 2020)).
Given the degradation of the GOME-2A instrument during its lifetime, SIF observed from
GOME-2B was also downloaded, which spans from March 2013 to March 2019. The daily
orbital data (Level 2, Version 28) was also used to aggregate 16-day interval records for
higher temporal-resolution analysis. (2) We used a newly released SIF dataset based on
TROPOMI onboard the Sentinel-5 Precursor satellite. A data-driven method was employed
to retrieve the SIF signal using spectral measurements ranging from 743 nm to 758 nm [26].
Daily corrected ungirded TROPOMI SIF data at a 0.05◦ spatial resolution (2018–2019) was

https://avdc.gsfc.nasa.gov/
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available at (Available online: ftp://fluo.gps.caltech.edu/data/tropomi/ (accessed on
1 December 2020)). The daily orbital TROPOMI SIF were likewise aggregated to monthly
and 16-day series by mean value, consistent with temporal resolution of GOME-2
SIF records.

Table 2. Summary of satellite-based datasets.

Dataset Source Resolution Data
Coverage

solar-induced chlorophyll fluorescence (SIF) GOME-2 (MetOp-A) Monthly/daily, 0.5◦ 2007–2019
solar-induced chlorophyll fluorescence (SIF) GOME-2 (MetOp-B) Monthly/daily, 0.5◦ 2013–2019

solar-induced chlorophyll fluorescence (SIF) TROPOMI (Sentinel-5
Precursor) Monthly/daily, 0.05◦ 2018–2019

enhanced vegetation index (EVI) MODIS (Aqua) Monthly/16-day, 0.05◦ 2007–2019

gross primary productivity (GPP) FluxSat (MODIS and
FLUXNET 2015) Monthly, 0.5◦ 2007–2019

photosynthetic active radiation (PAR) CERES (Aqua) Monthly, 1◦ 2007–2019
land surface temperature (LST) MODIS (Aqua) Monthly, 0.05◦ 2007–2019

Precipitation IMERG (GPM) Monthly, 0.1◦ 2007–2019

We used Moderate Resolution Imaging Spectroradiometer (MODIS on board Aqua,
Collection 6) MYD13C1 (0.05◦, 16-day) and MYD13C2 (0.05◦, monthly) Vegetation Indices
products from January 2007 to June 2019 downloaded from NASA Earth Observation data
(Available online: https://search.earthdata.nasa.gov/search (accessed on 1 August 2020)).
EVI is an optimized version of vegetation indices that effectively reduces soil background
influences and is widely used as a proxy of canopy greenness [45–47]. The equation (1) of
EVI is:

EVI = 2.5
ρNIR − ρred

ρNIR + 6ρred − 7.5ρblue + 1
(1)

where ρblue, ρred, ρNIR are reflectance in the blue, red, and near infrared bands, respectively.
To reduce noise and uncertainties, only best quality data remained in this study through
removing pixels of which quality control flag of the first 2 bits neither 00 nor 01, and
pixel-wise EVI time series data was smoothed using the Savitzky–Golay filter.

To contrast with satellite-observed greenness and fluorescence, data-driven gross
primary productivity (FluxSat_GPP, version 1.1, 2007–2019) derived primarily from MODIS
reflectance product was used as the spatial reference of vegetation activity, obtained from
NASA Goddard Space Flight Centre (Available online: https://avdc.gsfc.nasa.gov/ (ac-
cessed on 5 August 2020)). This is a monthly dataset with 0.5◦ spatial resolution, calibrated
by a set of the FLUXNET 2015 eddy covariance data [48].

Monthly photosynthetic active radiation (PAR) at 1◦ resolution grid was downloaded
from the NASA Langley Research Centre, Cloud and Earth’s Radiant Energy System
(CERES, Ed4.1), including adjusted surface PAR both direct and diffuse fluxes under all
sky conditions. The total PAR was computed as the sum of both direct and diffuse PAR,
and then used to remove the effects of PAR on SIF by normalizing after aggregating into
the SIF grid resolution:

SIFPAR =
SIF
PAR

(2)

To assess the relationships between vegetation variables and meteor-environmental
drivers under drought stress, MODIS daytime land surface temperature (LST, MYD11C3,
Collection 6) at monthly scale was included in this study, collected from NASA Earth
Observation data (Available online: https://search.earthdata.nasa.gov (accessed on 12
August 2020)). Similarly, best quality data remained through eliminating pixels with quality
control flag. Global monthly precipitation at 0.1◦ resolution grid was based on Integrated
Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG, Version 6, Final

ftp://fluo.gps.caltech.edu/data/tropomi/
https://search.earthdata.nasa.gov/search
https://avdc.gsfc.nasa.gov/
https://search.earthdata.nasa.gov
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run, 2007–2019) was collected from NASA Precipitation Processing System (Available
online: https://pps.gsfc.nasa.gov/ (accessed on 12 November 2020)).

2.3. Climate DATA and Land Cover Map

In this study, we utilized monthly the Standardized Precipitation Evapotranspiration
Index (SPEI) to characterize the spatial and temporal dynamics of the 2018–2019 extreme
drought event across Australia [49]. This dataset at 1◦ spatial resolution with 1-month,
6-month timescale (indicated as SPEI1-month, SPEI6-month), representing the cumulative wa-
ter status (deficit or surplus) over the preceding 1 or 6 months respectively, was downloaded
from SPEI Global Drought Monitor (Available online: https://spei.csic.es/ (accessed on 20
July 2020)).

Monthly air temperature (at 2-m height) and soil moisture content (surface 0–7 cm
depth, root zone 28–100 cm depth) based on ERA-5 reanalysis data were downloaded from
Copernicus Climate Change Service (Available online: https://cds.climate.copernicus.eu/
(accessed on 28 September 2020)) [50]. Gridded annual potential evapotranspiration (PET)
and monthly mean decadal precipitation were collected from the Bureau of Meteorol-
ogy (Available online: http://www.bom.gov.au/ (accessed on 5 April 2020)). Firstly, we
converted monthly precipitation into annual scale, and then aggregated into 0.1◦ spatial
grid consistent with PET. Secondly, aridity index was computed as annual precipitation
normalized by annual PET. The Equation (3) is:

AI =
P

PET
(3)

Finally, pixels within the entire study area were binned by AI (every 0.1 increment)
into 6 groups from humid to arid region, as shown in Figure 1b.

National Dynamic Land Cover Dataset (DLCD) was used in this research, obtained
from Geoscience Australia and Bureau of Agricultural and Resource Economics and Sci-
ences (Available online: http://www.ga.gov.au/scientific-topics/earth-obs/landcover
(accessed on 10 May 2020)). This dataset validated with abundant field sites was aggre-
gated to 0.5◦ spatial resolution by most frequent values.

2.4. Eddy Covariance Data

We used five selected flux towers to interpret the satellite-observed dynamic of veg-
etation under extreme drought. The original level 3 (AU-How, AU-Dry, AU-Stp) and
level 6 (AU-ASM, AU-TTE) flux data provided by the OzFlux network (Available online:
http://www.ozflux.org.au/ (accessed on 15 July 2020)) were used to pre-process, includ-
ing quality control assessment, removal of outliers, and gap-filling [51]. The R package,
REddyProc, was implemented for Level 3 data to estimate daily mean GPP with hourly
eddy covariance and meteorological data [52]. This tool used the gap-filling and flux
partitioning algorithms to partition Level 3 data into GPP and field ecosystem respira-
tion [53], conducted in open-source R scientific computation environment (Version 3.5.1).
The estimated daily GPP were aggregated into monthly and 16-day GPP to match with
satellite-based observations.

2.5. Analysis

To investigate the responses of dryland vegetation to different drought intensities, we
defined two categories of dry conditions based on SPEI6-month, extreme dry (SPEI ≤ −2),
and medium dry (−2 < SPEI ≤ −0.5). The R package, GeoRange, was implemented
for monthly SPEI data to estimate the total area under extreme dry during the recent
two decades (2000–2020). The Mann–Kendall trend test was utilized for time series of
the total area and region-wide mean SPEI within the study area. Besides, the statistic
(SPEI1-month ≤ −2) was conducted to generate the map of the pixel-wise extreme-dry
month during November 2018 to April 2019.

https://pps.gsfc.nasa.gov/
https://spei.csic.es/
https://cds.climate.copernicus.eu/
http://www.bom.gov.au/
http://www.ga.gov.au/scientific-topics/earth-obs/landcover
http://www.ozflux.org.au/
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To further examine the response of dryland biomes to extreme drought, we selected
four-pair regions of interest (labelled as ROI-1, ROI-2, ROI-3, and ROI-4) distributed from
mesic northern to xeric southern areas. The selection criteria are: (1) same or highly
similar biome types in each ROI; (2) the sub-regions within ROIs underwent different
drought conditions (extreme dry, medium dry, respectively). ROI-1 are mainly covered
by woodlands and open woodlands. ROI-2 and ROI-3 are covered by scattered shrubs
and grasses. Vegetation in ROI-4 is dominated by Hummock grasses mixed with scattered
shrubs. In addition, ROI-2 and ROI-4 were also under extreme dry conditions in the
monsoon season of 2012–2013 and 2015–2016, respectively (Figure S1).

With the purpose of detecting drought-related signals by eliminating seasonality,
monthly anomalies (∆X) and standardized anomalies (XSA) of all the aforementioned
variables were calculated as a deviation from their corresponding multiyear (2007–2018)
mean of each month. The Equations (4) and (5) are:

∆X = Xm − Xm (4)

XSA =
Xnm − Xm

σm
(5)

where n is the yearly temporal coverage from 2007 to 2018, Xnm is the monthly ranging from
July to June, Xm and σm are the mean and standard deviation of time series X at month m.

To quantify the relationship between satellite-based observation and tower-based
measurement, the coefficient of determination (r2) was calculated across five selected
tower sites at different spatial (0.5◦, 0.05◦) and temporal (monthly, 16-day) resolutions.
All satellite datasets were extracted from a 3 × 3 window centered on each flux tower
site respectively. A t-test was utilized to examine the statistically significant level of the
relationships (p-value).

Data processing, analysis, and visualization were conducted in open-source R scientific
computation environment (Version 3.6.2) and associated packages contributed by the R
user community (Available online: http://cran.r-project.org (accessed on 20 August 2020)).

3. Results
3.1. Spatiotemporal Dynamics of the 2018–2019 Extreme Drought

From the start of the new century, there was a significant increase trend in the total
area influenced by extreme dry condition and an opposite trend in the region-wide mean
SPEI (p-value < 0.0001). The extreme, 4-month drought spanning from December 2018 to
March 2019 was the worst drought event during the last two decades over central and
northwest Australia (Figure 2), of which almost the entire region was influenced by this
event (Figure 3a). During the 2018–2019 monsoon season, a total area of 1.75 million km2

was under extreme dry condition extending from north to xeric central Australia (15◦–26◦S
and 118◦–138◦E), particularly in December 2018 and January 2019. In addition, the xeric
inland experienced a longer extreme dry period (more than 2 months) relative to the mesic
northern coastal regions (Figure 3b).

Temporal variations in satellite-based SIF, SIFPAR, EVI, and GPP averaged within the
extent of extreme and medium dry, respectively, are displayed in Figure 4. Compared
with approximately one standard deviation (SD) decline in all vegetation variables under
medium dry, those exhibited 2–3 times SD decrease relative to climatology under extreme
situation. Correspondingly, both SIFPAR and EVI showed the largest reduction from
January 2019 as a consequence of persistent rainfall deficit as well as increased temperature
since November 2018.

Spatial patterns of standardized anomalies of precipitation, surface/root zone soil
moisture, LST, SIF, SIFPAR, EVI, and GPP during the 2018–2019 monsoon season are shown
in Figure 5, along with the corresponding pixel density classified by extreme and medium
dry. Meteorological data show that 87%, 25% of study region appeared rainfall anomalies
below than −1 SD, −2 SD, respectively, and 91%, 60% of the area exhibited air temperature

http://cran.r-project.org
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anomalies larger than 1 SD and 2 SD, revealing it was a large-scale drought event coupled
with an extreme heatwave (Figure 5a,d). The persistently reduced precipitation along with
higher temperature results in depletion of both surface and root zone soil water content
over most areas, of which 70%, 50% showed less than −1 SD, respectively (Figure 5b,c).
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Vegetation growth is largely affected by the extreme drought, and the majority of
the area showed negative anomalies for all vegetation variables relative to the multiyear
mean (Figure 5e–h). SIFPAR and EVI exhibited a similar spatial pattern, where those were
remarkably negative anomalies (<−2 SD) between 17◦–20◦S and 129◦–138◦E (Figure 5f,g).
SIF and SIFPAR showed proportional pixels distribution under extreme dry and medium
dry, while there was an obvious distinction for EVI (Figure 5i–k). This discrepancy between
SIF and EVI was mainly caused by the divergent responses over northern humid northern
Australia (11◦–15◦S), where EVI exhibited evidently positive anomalies in comparison to
slightly depressed SIF, SIFPAR.

3.2. Responses of Dryland Vegetation to Diverse Drought Intensity

To investigate the response of major biome types of dryland vegetation to different
drought intensity, four pairs of ROIs were inter- and intra-compared during 2018–2019
extreme drought as well as associated 2012–2013 and 2015–2016 drought events. Temporal
variation in SIF, EVI averaged within ROIs are presented, along with seasonal anomalies
of SIF, EVI (Figure 6). There were prominent differences among ROI-1 and ROI-3, of
which both SIF and EVI showed larger negative anomalies under extreme dry relative to
medium dry (Figure 6a,b,g,h). Within semi-arid ROI-2, both vegetation variables exhibited
equivalent magnitude of negative anomalies regardless of drought severity under two
contrasting drought events of 2012–2013 and 2018–2019 (Figure 6c–f). Similarly, semi-
arid region partially covered with hummock grass (ROI-4), SIF also showed comparably
negative anomalies under both extreme and medium dry of 2015–2016 (Figure 6l), while
EVI displayed distinct responses (Figure 6k). In addition to the drought intensity, the
response of vegetation was also affected by time scales of extreme drought, as evident by
ROI-4 in 2018–2019 (Figure 6i,j). We found both sub-regions of ROI-4 were under extreme
dry conditions, but with different time scales of extreme-dry period (Figure 3a,b), which
leads to the larger reduction of SIF and EVI under longer periods of extreme dry conditions.

3.3. Comparison of SIF and EVI in Response to Drought

To further explore the difference in response of biome-specific vegetation of SIF and
EVI to extreme drought, anomalies of SIF and EVI among the entire region under extreme
and medium dry are shown in Figure 7. In general, the magnitude of anomalies of SIF
and EVI was proportional to the mean SPEI among each category (Figure 7a,d). Tussock
grasslands under the worst dry situation in 2018–2019 also exhibited the largest reduction
of both SIF and EVI compared with other major biomes (Figure 7b,c). Apart from this, the
largest divergent magnitude of anomalies under extreme and medium dry conditions was
also shown. Relative to arid/semiarid biomes (e.g., hummock grassland, open shrubland,
and scattered shrubs and grasses), mesic ecosystems (e.g., woodland, open woodland)
exhibited larger differences under two drought intensities (Figure 7b,c). There was an
evident trend for EVI, with the amplified difference between extreme and medium dry
from arid to humid climate regimes (Figure 7f), especially for positively anomalous EVI
under medium dry (AI > 0.5), mainly distributed over northern coastal areas (Figure 5).
Conversely, the majority of SIF across different biome types or climate regimes showed
negative anomalies with comparable magnitude, regardless of diverse drought intensity
(Figure 7b,e).

Temporal percentage of drought-related vegetation decline indicated by EVI and SIF
at a monthly and 16-day scale is shown in Figure 8. At the beginning of this drought event
(November 2018), approximately 38%, 20% of the area was affected by moderate (<−0.5σ)
and severe (<−1σ) losses, respectively, indicated by EVI, and increased to over 80%, 50%
with the development of extreme drought (Figure 8a). The percentage of moderate and
severe reduction observed by SIF, SIFPAR in November of 2018 was around 36%, 18%. In
addition, the percentages of affected area revealed by SIF slightly decreased after reaching
the peak in February of 2019, while the impacted region indicated by EVI remained growing
(Figure 8a–c).
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Figure 8. (a,b,c) Monthly and (d,e) 16-day time series of the percentage of drought-induced vegetation
reduction indicated by EVI, SIF, and SIFPAR under moderately (<−0.5σ), severely (<−1σ), and
extremely (<−2σ) negative anomalies. σ indicates the standard deviation of the monthly SIF, EVI
during 2007–2018 as well as 16-day SIF, EVI during 2013–2018. The text of the x-axis in Figure 9d,e
refer to the day of year from November 2018 to March 2019.
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Figure 9. (a–h) Relationship between tower-based GPP and satellite-based SIF, EVI in 2018–
2019 across five flux tower sites at different spatial (0.5◦, 0.05◦ grid) and temporal (monthly,
16-day) resolution. The bottom-right embedded box shows the legend of the five flux tower sites.
(p value < 0.001).

To further contrast the responses of SIF and EVI at a higher temporal scale, 16-day
time series of percentage of moderate/severe/extreme anomalies indicated by EVI and
SIF was presented in Figure 8d,e. There was apparently a larger proportion of vegetation
decline indicated by EVI than SIF at each category of anomalies, especially over 20% of the
area in the middle of March (DOY = 73) which was affected by extreme (<−2σ) reduction
observed by EVI relative to the maximum 7%, indicated by SIF at the end of February
(DOY = 57). Besides, the percent of pixels with no seasonality detected by EVI was also
higher than that observed by SIF.

3.4. Cross-Comparison with In-Situ Measurements

With the purpose of validating satellite-based observation with field measurement,
Figure 9 presents the relationship between tower-based GPP and satellite-based SIF, EVI in
2018–2019 across five selected sites at different spatial and temporal resolutions. Despite
diverse spatiotemporal resolution, both satellite-observed SIF, EVI were overall significantly
(p-value < 0.001) associated with in-situ measurement GPP (r2 ranging from 0.65 to 0.94)
in the extremely dry year of 2018–2019. There was an enhanced correspondence between
GPP and SIF with increasing spatial resolution (from 0.5◦ to 0.05◦ grid) for both monthly
and 16-day temporal scales (Figure 9a,b,e,f). Besides, we found a stronger relationship
between field measurement and satellite-based observation at monthly series (r2 = 0.77,
0.94) relative to 16-day series (r2 = 0.65, 0.88). The close correlation between GPP and EVI
remained across different spatial and temporal resolution (r2 ranging from 0.86 to 0.91,
Figure 9c,d,g,h). For three southern sites (AU-Stp, AU-ASM, AU-TTE) that suffered from
extreme dryness in 2018–2019 there was large reduction, and seasonal amplitude was barely
detected by either in-situ measurement or satellite observation (EVI).

4. Discussion
4.1. Potential of Spaceborne SIF for Drought Monitoring over Water-Limited Ecosystems

Satellite-based SIF observations capture the spatial and temporal variations in dryland
vegetation under 2018–2019 extreme drought in Australia (Figures 4 and 5). Relative



Remote Sens. 2022, 14, 1581 14 of 18

to EVI and GPP, the fluctuated SIF series and notable spatial speckling were probably
due to high retrieval noise in sparsely vegetated regions [54], especially for lower signal
levels under extreme drought. Overall, SIF and EVI exhibited resemblance to spatial and
temporal responses of dryland vegetation to this extreme event, wherein the central study
area (between 17–20◦S and 129–138◦E) showed the most remarkable reduction (Figure 5).
The primary difference in spatial dynamics of two variables occurred over the northern
humid region (between 12–15◦S and 129–138◦E) under medium drought, where SIF showed
marginally negative anomalies in comparison to positive EVI anomalies (Figure 5). This
is consistent with previous studies [32,34,36,55], revealing that there was a considerable
decoupling of photosynthesis and greenness dynamics under moderate dry conditions
over mesic ecosystems (e.g., forests and woodlands).

Nonetheless, there was concurrently substantial loss in both SIF and EVI over arid and
semiarid biome types, and those suffered from extreme rainfall deficit as well as severe heat
wave (Figure 5). In particular, a higher percentage of the area indicated by EVI was affected
by extreme (<−2σ) losses than that by SIF throughout the entire 2018–2019 monsoon season
(Figures 5 and 8). This finding was against a similar study [38], which concludes satellite
SIF observations are more sensitive to water and heat stress than EVI over arid central
Australia in the 2019 heatwave. However, the divergent results were primarily ascribed
to the different methods to define the anomaly, and they utilized the relative anomaly
(a departure from the climatology and divided by the multiyear mean) instead of the
standardized anomaly used in this study. The larger variation in magnitude of SIF than
that of greenness-based VIs gave rise to the sharper reduction in SIF, indicated by relative
anomaly relative to EVI. In addition, insufficient baseline years (2015–2018) in their study
may induce more uncertainties as a consequence of highly dynamic climate regime over
inland Australia.

On the contrary, we contrasted the responses of two sources of SIF data derived from
GOME-2A and GOME-2B with MODIS EVI under two reference climatologies (2007–2018
and 2014–2018), respectively. We found that the percentage of the drought-affected area
captured by EVI was consistently higher than that of SIF regardless of diverse temporal
scales (Figure 8). The reason for the more significantly negative standardized anomalies of
EVI relative to those of SIF was possibly owing to the fact that the dramatically drought-
induced reduction in vegetation leads to barely increased magnitude of seasonal cycles
over the vast inland area (Figure 9). Apart from this, high-retrieval noise provokes the
larger variability of SIF signal over arid/semiarid ecosystems.

Compared with coarse SIF data derived from GOME-2, the state-of-the-art TROPOMI
SIF observation with substantially improved spatiotemporal resolution shows an enhanced
correlation with tower-based GPP in the extremely dry year of 2018–2019 (Figure 9), im-
plying that this advanced dataset has promising potential for drought monitoring over
heterogeneous arid and semiarid ecosystems. As opposed to the fluctuated temporal
series and spatial speckling of GOME-2 SIF signal (Figures 4–6 and 9), SIF retrieved from
remarkable radiometric performance of TROPOMI exhibits more spatial and temporal
consistency, representing a step change in SIF remote sensing capabilities [26,56]. It is worth
noting that an abundance of negative values of TROPOMI SIF was observed over central
Australia in 2018–2019, probably owing to the retrieval noise. Köhler et al. [26] suggested
that negative SIF values mainly occur for single TROPOMI measurements, which should
not be over-interpreted. A comprehensive assessment of the capability of the novel dataset
over dryland ecosystem needs to be conducted in the future.

4.2. Dynamics of Dryland Vegetation under Different Drought Scenarios

Varying responses of major biome types of dryland vegetation to different drought
severity (extreme dry vs medium dry) were observed (Figures 6 and 7). We found en-
hanced magnitude of reduction of both SIF and EVI in conjunction with increasing drought
severity over humid/sub-humid biomes (e.g., forest, woodland, and tussock grasslands).
By contrast, the two vegetation variables of arid/semiarid vegetation (e.g., hummock
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grasslands, open shrublands) showed comparable losses under extreme and medium dry
condition, indicating the largest sensitivity and vulnerability of semiarid ecosystems to the
hydroclimatic variations [18,57]. It is not only evident by the 2018–2019 extreme drought,
but also the 2012–2013, 2015–2016 drought events in central Australia (Figure 6e–l). As
prolonged drought is projected to increase both its frequency and intensity [58,59], drylands
will have a more critical role in regulating the global carbon and water cycle [60,61].

Given that the coarse spatial grid (0.5◦) induced uncertainty of biome-specific analysis
over heterogeneous drylands, re-grouped pixels based on aridity index were used to
investigate the responses to the extreme drought at different time scales (Figure 7). As
opposed to notably depressed SIF over mesic ecosystem (AI > 0.6), EVI remained positive
anomalies even under one-month extreme dryness, in line with reported studies concerning
dry-season greening of forests [62,63]. Despite that, canopy greenness of humid ecosystems
exhibited a significant reduction when the extreme-dry period exceeded one month (≥2).
Likewise, we found larger magnitudes of decline in arid regions (AI < 0.3) resulting
from the increasing extreme-dry months, although both sub-regions of ROI-4 suffered
from extreme dryness in 2018–2019 (Figure 3a,b, Figures 6l–n and 7). In contrast, both
SIF and EVI in semiarid regions (AI: 0.3–0.4) exhibited the largest reduction under short
timescales (extreme-dry month ≤ 1), confirming semiarid biomes are the most susceptible to
extreme drought.

5. Conclusions

In summary, we investigated the spatial and temporal responses of SIF and EVI of
dryland vegetation to the 2018–2019 extreme drought over Australia using multi-source
satellite-based SIF observations. In contrast to the enhanced magnitude of reduction of
both SIF and EVI in conjunction with increasing drought severity over humid/sub-humid
biomes, the two vegetation variables of arid/semiarid vegetation showed comparable
negative anomalies regardless of extreme or medium dry conditions, indicating the largest
sensitivity and vulnerability of semiarid ecosystems to the hydroclimatic variations. At a
16-day interval, both satellite-based indicators (SIF and EVI) can synchronously detect the
impact of extreme drought on dryland vegetation growth. Besides, we find that space-borne
SIF is capable of characterizing the spatiotemporal dynamics of drought over water-limited
ecosystems despite high retrieval noises, as compared with EVI. The unprecedented SIF
derived from TROPOMI shows remarkably enhanced agreement with tower-based GPP
in the dry year of 2018–2019, demonstrating the great potential of the advanced dataset
to track the dynamics of dryland vegetation under future changing climates. In addition,
semiarid ecosystems exhibiting the largest reduction, regardless of drought severity and
time scales, are the most sensitive to climatic extremes.
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//www.mdpi.com/article/10.3390/rs14071581/s1, Figure S1: Spatial pattern of drought intensity
based on SPEI6-month during 2018–2019, 2015–2016, and 2012–2013 monsoon season. Green and blue
rectangles refer to the region of interest (ROI). Black triangles refer to five flux tower sites.
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