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A B S T R A C T   

When providing pollen forecasts to the community, there is a need to verify the accuracy of curated forecasts, but 
evaluation is not routinely reported. This study of the AusPollen Partnership compared multi-category grass 
pollen forecasts for up to six days ahead with daily airborne grass pollen concentrations measured in Brisbane, 
Canberra, Melbourne, and Sydney, Australia during four pollen seasons from 2016 to 2020. The accuracy of 
categorical grass pollen forecasts predicting grass pollen concentrations in the high and greater, or moderate and 
greater categories, were assessed as often applied in meteorology using Gerrity scores, equitable threat scores, 
false alarm ratios, success ratios, and probability of detection of correct category. The skill of grass pollen 
forecasts curated by aerobiologists were compared with two retrospectively calculated naïve reference forecast 
methods; climatology and persistence. For Brisbane and Melbourne, high or greater grass pollen levels occurred 
on average 32% and 22% of days, whereas for Canberra and Sydney, there were few high days, but moderate or 
greater pollen levels occurred on average 26% and 19% of days, respectively. Average annual Gerrity scores for 
curated forecasts of high or greater improved with experience from 0.20 to 0.66 in Brisbane, and from 0.39 to 
0.55 in Melbourne between 2016 and 2019. Average Gerrity Scores for moderate or greater categories in Sydney 
were 0.45 and 0.43 in 2016 and 2018 respectively, and in Canberra were 0.34 and 0.41, in the same years. The 
skill of curated forecasts was usually better than persistence forecasts, but the accuracy of the curated forecasts 
decreased with longer lead times. Although persistence grass pollen forecasts consistently performed better than 
climatologies, persistence depends on previous day pollen concentrations being available. Short-term curated 
daily grass pollen forecasts of the AusPollen Partnership offer useful information for people with allergic rhinitis 
and asthma, to help facilitate behavioural change and reduce the health burden. There is a need in Australia to 
extend local pollen records through sustained pollen monitoring to track climate-related changes as well as 
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improve reliability of daily pollen forecasts. Globally, continued evaluation will enable reporting of accurate 
pollen forecasts to community, clinicians and government stakeholders.   

1. Introduction 

Grass pollen has been identified as a major outdoor allergen for 
human populations. In Australia, seasonal allergic rhinoconjunctivitis 
(AR) and asthma affect as many as 19% and 11% of the population, 
respectively (Australian Institute of Health and Welfare, 2019). Under 
circumstances of high to extreme grass pollen exposure in temperate 
biogeographical regions during spring-time thunderstorms with severe 
gust fronts, individuals with AR are at risk of asthma exacerbations 
which can be abrupt and severe requiring hospital admission and even 
for some intensive care (Davies et al., 2017). Grass pollen was identified 
as a key component cause of an epidemic of thunderstorm asthma 
affecting thousands of patients who presented to emergency de
partments and other health services with severe breathing difficulties 
after an event on November 21, 2016 in Melbourne, Australia (Thien 
et al., 2018). Ten patients died as a result of this thunderstorm asthma 
event (Victorian Coroner, 2018), and ryegrass pollen was indicated as 
the major allergen causing inflammation to airways (Lee et al., 2017; 
Sutherland et al., 2017). There have been other high incidences of 
asthma epidemics in temperate regions of Australia, where grass pollen 
has also been implicated (Davies et al., 2017; Girgis et al., 2000). As a 
vast island continent with diverse climatic zones, Australian grass pollen 
aerobiology shows marked spatial and temporal variation between 
states (Beggs et al., 2015; Haberle et al., 2014; Medek et al., 2016; 
Davies et al., 2021). Developing a capability for forecasting grass pollen 
exposure levels is therefore an important public environmental health 
priority. Early warnings for high pollen exposure would enable better 
preparedness for individuals with AR and result in a less likely burden on 
the hospital systems if asthma is to occur. Members of the public report 
validation of symptoms experienced to be one of the reasons why they 
seek local pollen information (Medek et al., 2019), therefore it is 
important to achieve accurate forecasts and give surety to the 
community. 

Successful daily pollen forecasting must start with a network of 
standardised pollen monitoring observations. The US National Allergy 
Bureau maintains a network of 84 pollen counting stations managed by 
certified pollen counters across many, but not all states (National Allergy 
Bureau, 2021). Analysis of Australian airborne pollen records provide a 
historical lens to create pollen taxa calendars (Haberle et al., 2014; Ong 
et al., 1995), estimate the pollen season length and variability (Medek 
et al., 2016) and to provide the basis for forecast generation and eval
uation. Whilst linear regression forecast models of grass pollen aero
biology in London have been developed based on pre-peak, peak and 
post-peak periods (Smith and Emberlin, 2005), in practice the UK 
Meteorology Office uses a combined persistence/expert judgement 
method to produce daily forecasts of tree, grass and nettle pollen and 
fungal spores (UK Seasonal Pollen Forecast Service, ). The persistence 
method assumes today’s pollen count will be the same as yesterday’s 
pollen count. Expert judgement employs information on local vegetation 
types and flowering times together with knowledge of the preseason 
climate conditions. For example, more rainfall during the initial growing 
season increases biomass production and may lead to a higher than usual 
pollen production in the current season. 

European countries, including Finland, France (Réseau National de 
Surveillance Aérobiologique, 2020) and Switzerland (MeteoSwiss), have 
employed three dimensional air dispersion models such as the System of 
Integrated modelling of atmospheric composition (SILAM, Sofiev et al. 
(2015)) and the Consortium for Small-scale Modeling (COSMO, Zink 
et al. (2013)). SILAM produces a 96 h ahead forecast Europewide for 
alder, birch, grass, olive, ragweed and mugwort pollen (System of in
tegrated modelling of atmospheric composition), whilst COSMO 

predicts for alder, birch, grass and ragweed pollen (Consortium for 
Small-scale Modeling, ). Some commercial outlets rely on weather pa
rameters alone to issue pollen forecasts. 

The AusPollen Partnership (Davies et al., 2016, 2022) was set up to 
establish the first coordinated initiative across four states to monitor 
pollen exposure, standardise pollen measurement processes (Beggs 
et al., 2018), evaluate how access to pollen information enables 
self-management of allergic disease (Medek et al., 2019), and to eval
uate the components needed to build an innovative validated grass 
pollen forecast system. Forecasting methods require large sources of 
linked and standardized data, but prior to 2016 pollen monitoring in 
Australia was only undertaken by two groups. However, the 2016 
Melbourne thunderstorm asthma event, and subsequent public health 
awareness, escalated the implementation of daily grass pollen fore
casting, despite a lack of (standardized) historical pollen observations 
required for robust predictions outside of Melbourne and Canberra. 
Since the inception of the AusPollen Partnership in September 2016, 
four cities in the eastern states (from north to south: Brisbane, Sydney, 
Canberra and Melbourne) have monitored local daily grass pollen con
centration and provided these data along with short-term categorical 
daily grass pollen forecasts to the community during their relevant grass 
pollen season (https://auspollen.edu.au/). Evaluation of the grass pol
len forecasts provides assurance of the quality of aerobiological infor
mation disseminated to the community (Bastl et al., 2017). Statistical 
evaluation of pollen predicted by three dimensional atmospheric 
transport models has used common weather forecast evaluation tech
niques to determine accuracy over a particular time period (Siljamo 
et al., 2013; Emmerson et al., 2019). However, these techniques are not 
routinely applied to pollen forecasts disseminated to the community, 
and the quality of the AusPollen Partnership grass pollen forecasts has 
not previously been assessed. 

Forecast ‘accuracy’ measures the level of agreement with the ob
servations, whereas the forecast ‘skill’ is the relative gain in accuracy 
compared to retrospectively calculated naïve forecast method like 
climatology or persistence. Therefore, the aims of this paper were 1) to 
determine the accuracy of aerobiologist curated pollen forecasting at 
four AusPollen sites during four pollen seasons spanning 2016 to 2020, 
and 2) to compare the curated forecast skill with grass pollen clima
tology and persistence forecast methods generated for the same time 
periods. 

We anticipated that curated grass pollen forecasts would improve 
with experience and that some locations would be easier than others to 
forecast grass pollen levels, due to factors that influence forecasting 
accuracy (e.g., local seasonal weather patterns, local biogeography and 
the seasonal pollen index, length of historic pollen records and forecasts, 
and availability of models to support forecasting). 

2. Materials and methods 

We analysed daily airborne grass pollen concentration observations 
and forecasts from four cities in eastern Australia: Brisbane, Sydney, 
Canberra and Melbourne, over four consecutive pollen seasons of the 
AusPollen Partnership Project commencing in years 2016–2019. 

2.1. Aerobiological data 

Airborne pollen concentrations were monitored and daily grass 
pollen forecasts were disseminated for Brisbane, Sydney, Canberra and 
Melbourne (see Fig. 1 and Table S1 Supplementary for sampling details). 
These sites are part of the broader AusPollen Aerobiology Collaboration 
Network, now encompassing all Australian pollen monitoring sites and 
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projects (https://auspollen.edu.au/auspollensitesmap). The pollen 
monitoring processes; collection and counting, were standardised across 
the network (Beggs et al., 2018), but some characteristics of the moni
toring sites (e.g. height of pollen trap, and sample collection time) and 
the pollen forecast techniques differed. Whilst the height of the pollen 
traps differed between sites, environmental pollen samples were 
collected daily on slides or Melinex tapes using Hirst-type volumetric 
pollen traps (Burkard Manufacturing, United Kingdom) and counted 
manually by light microscopy after staining with fuchsin dye as previ
ously described (Davies et al., 2022). 

The timing and length of the grass pollen season differs at each of the 
sites (Medek et al., 2016) due to the different dominant grass types 
present in local environments, e.g. prevalence of temperate C3 grasses in 
the south (Fig. 1), and different climates. See supplementary section 1 
for details on grass types. As the grass pollen forecasts are per AusPollen 
site and not for the entire region, these geographical differences do not 
impact the forecasting capability. To facilitate comparison of daily grass 
pollen forecast accuracy between years and locations, we included ob
servations for the periods for which forecasts were disseminated from 
October 1 to December 31 for Sydney, Canberra and Melbourne, and 
November 1 to March 31 for Brisbane which approximately span the 
expected grass pollen seasons in those locations. While the Brisbane 
grass pollen season spans two calendar years, these seasons will be 
identified hereafter by their starting year (e.g., the 2016–2017 season 
will be identified as the 2016 season). 

Grass pollen exposure levels in Australia are categorised ‘low’ if the 
airborne grass pollen concentration is less than 20 grains m− 3, ‘moder
ate’ from 20 to less than 50 grains m− 3, ‘high’ from 50 to less than 100 
grains m− 3 and ‘extreme’ at 100 grains m− 3 and above (de Morton et al., 
2011). These categories were used in the pollen forecasts made daily at 
each AusPollen site, for each of four consecutive pollen seasons. Each 
daily forecast consisted of six separate forecasts; one for the current day 
and one each for the five following days. Where possible, the previous 
day’s pollen was counted before forecasting. To analyse the performance 
of the forecasts we used weather forecast verification measures and 

techniques, using Wilks (2019) as the basis. 

2.2. The AusPollen grass pollen forecast methods 

At the beginning of the AusPollen project in September 2016, stan
dardized methods for monitoring pollen were established, and therefore 
robust grass pollen forecast methods had not been designed. 

Forecasting daily pollen categories was introduced for the first time 
at all AusPollen sites in 2016, with only Melbourne having previously 
undertaken pollen forecasting. Methods for forecasting differed between 
the AusPollen locations, and are described below. The curated forecasts 
were based on expert local aerobiology knowledge, founded upon 
different levels of experience; all included the previous day pollen 
concentrations and current as well as predicted meteorological variables 
(maximum temperature, wind speed and precipitation). 

The production of the curated forecasts by a human forecaster used 
expert judgement to decide on the category to forecast; low, moderate, 
high or extreme, given all the available data on the previous day pollen 
data, and weather forecasts; chance of rainfall, minimum and maximum 
temperature, wind speed and direction 

Curated forecasts of daily grass pollen categories; low to extreme, 
were made for the current day and five following days, starting after the 
pollen was counted that morning. We refer to that morning forecast as 
the “day 0′′ forecast, with the following 24h period as “day 1′′, and so on. 
Additional details about pollen forecasting at each site given below. 

2.2.1. Brisbane curated forecasts 
The forecasting system in Brisbane predicted a pollen category using 

expert informed judgement in the 2016 and 2017 seasons. Starting in 
2018, pollen forecast decision support was produced by unpublished 
regression and neural network models based on recent pollen concen
trations, field observations, and predicted weather conditions. On Sun
days in 2018, on Saturdays and Sundays in 2019, and public holidays, 
the curated pollen forecasts were made without the previous day’s 
pollen concentration data, since those pollen samples were not collected 
or counted until after the weekend. 

2.2.2. Sydney curated forecasts 
The Sydney pollen forecasts used expert assessment informed by 

previous day pollen concentration (persistence) and adjusted to predict 
subsequent days pollen categories according to the forecasted weather 
variables; e.g. a very high temperature, high humidity or rain, will cause 
a downward adjustment in the forecasted pollen category. 

2.2.3. Canberra curated forecasts 
The Canberra pollen forecast used expert assessment that considered 

a combination of the previous day pollen concentration and forecasted 
weather conditions, particularly wind strength and direction, and hu
midity to predict a pollen category. A number of factors affected the 
daily pollen concentration, including daily fluctuations in temperature, 
wind conditions, humidity and precipitation, and the biology of the 
grasses themselves. Most grasses flower in late spring and early summer 
in the Canberra region. 

2.2.4. Melbourne curated forecasts 
Daily grass pollen concentrations in 2016 were forecast using the 

meteorological typing method of Schäppi et al. (1998) and in 
2017–2019 were produced using an automated statistical model that 
included gridded weather and environmental data, such as the seasonal 
record in pollen concentrations since 1991 as inputs (Emmerson et al., 
2019; Bannister et al., 2021). Forecasters used the model output and 
their experience to produce a curated forecast category. 

2.3. Forecast evaluation approach 

The accuracy of the categorical pollen forecasts were evaluated 

Fig. 1. Map of south eastern Australia to show locations of the four AusPollen 
sites and distribution of C3 (temperate) and C4 (subtropical) grasses (0.1◦

longitude x 0.1◦ latitude grid) within the states of Victoria (Melbourne), the 
Australian Capital Territory (Canberra), New South Wales (Sydney) and 
Queensland (Brisbane). Source: Atlas of Living Australia (http://www.ala. 
org.au). 
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against the observations using methods commonly used in the field of 
weather forecasting that answer specific questions about important as
pects of forecast performance (Wilks, 2019). 

The starting point was the categorical contingency table, sometimes 
called a confusion matrix, which counted the number of times forecasts 
and observations occurred together in each category (Table 1). Exami
nation of the joint distribution showed the nature of the errors. For 
perfect forecasts only, the upper left to lower right diagonal elements of 
the table will be populated. A weighting of elements above or below the 
diagonal suggests high or low bias in the forecast and the worst errors 
were measured furthest from the diagonal. A variety of metrics were 
computed from the elements in the table describing how well the fore
cast predicted the correct category or, alternatively, a threshold of ex
ceedance (for example, high and extreme together). 

Most of the metrics used in this study were based on pollen category 
thresholds being met or exceeded, corresponding to a binary or 
dichotomous forecast. In this case Table 1 was collapsed into a 2 × 2 
contingency table with well-known elements of hits, misses, false alarms 
and correct rejections as shown in Table 2. In pollen terms the event of 
interest (‘Yes’) is a day of significant pollen levels, so for instance a hit is 
the correct positive prediction of a relatively high pollen level and a 
correct negative the correct prediction of a relatively low level. Whilst a 
great number of metrics can be computed from the elements in Table 2 
(see, for example, Wilks, 2019); below we describe the metrics used in 
this study. 

The ability of the forecast to correctly predict observed occurrences 
is measured by the Probability of Detection, POD (also known as the 
sensitivity).  

POD = hits / (hits + misses)                                                             (1) 

The fraction of “yes” forecasts that were correct is measured by the 
Success Ratio, SR (also known as the positive predictive value).  

SR = hits / (hits + false alarms)                                                        (2) 

Both SR and POD inform the user on the trust that should be applied 
to the forecast with SR being conditional on a positive forecast and POD 
conditional on a positive observation. Both scores range from 0 to 1 
where the latter reflects perfect performance. 

The Frequency Bias, FB, measures the ratio of predicted to observed 
occurrences, with an ideal value being 1.  

FB = (hits + false alarms) / (hits + misses)                                         (3) 

The Threat Score, TS, evaluates the number of correctly forecasted 
hits and will tend towards 1 for a perfect set of forecasts.  

TS = hits / (hits + misses + false alarms)                                           (4) 

A variant on the TS, the Equitable Threat Score, ETS, measures the 
ability of the forecast to correctly capture predicted and observed oc
currences, adjusted for expected hits due to random chance. This makes 
the ETS appropriate for comparing forecasts for different climatological 
regimes, for example, with different frequencies of high or extreme 
pollen concentrations. The ETS is given by  

ETS = (hits – hitsrandom) /(hits + misses + false alarms – hitsrandom)        (5) 

where hitsrandom = (hits + misses) × (hits + false alarms)/# forecasts. The 
ETS ranges from − 1/3 to 1, with 1 representing perfect forecasts. 

Some forecast users may take different actions dependent on the 
category that is predicted. To measure performance for multi-category 
forecasts, the Gerrity Score, GS, rewards correct forecasts of rare oc
currences and differentiates between small and large category errors. 
The GS is the inner product of the contingency table (i.e. Table 1) and a 
scoring matrix based on the climatological frequencies of observations 
in each category. Details of the GS can be found in Wilks (2019). When 
the scoring matrix uses the sample climatology, GS yields values be
tween − 1 and 1, with a zero score indicating no predictive ability. 

We applied these metrics to measure the accuracy of the pollen 
forecasts for day 0 to day 5 made at each AusPollen site from the start of 
the 2016 grass pollen season through to the end of the 2019 grass pollen 
season. We also presented the confidence intervals for each evaluation 
metric to determine the uncertainty in the results across years and sites. 

2.3.1. Generation of pollen forecasts based climatology and persistence 
methods 

To provide some context for the curated forecast performance we 
also evaluated values calculated retrospectively for two naïve forecast 
methods, namely persistence and a temporally varying seasonal clima
tology. Comparisons between the persistence/climatology forecasts and 
curated forecasts were made after amalgamating to a binary catego
risation for values calculated for these naïve methods (e.g., Table 2). 

For this additional analysis, the study accessed all four seasons of the 
AusPollen project, and previous airborne pollen data for each location. 
To define the pollen climatology for each site, pollen records for seasons 
commencing in the years indicated; Brisbane– 605 observations over 4 
seasons (2016–2019), Sydney 430 observations over 5 seasons 
(2015–2019), Canberra 781 observations over 9 seasons (2008–2010 
and 2014–2019), and Melbourne 1180 observations over 13 seasons 
(2007–2019). In this case, the GS can occasionally yield values outside 
[− 1,1]. 

3. Results 

Contingency tables for each site and year are shown in Fig. 2. To be of 
most protective use to allergy sufferers, we want to avoid incorrectly 
predicting low pollen when it was observed in the extreme pollen 
category (the bottom left box of each table). This occurred more 
frequently in 2016 for Brisbane (4 missed). Equally, avoiding extreme 
false alarms is important (the top right box of each table), where the 
forecast has predicted extreme pollen, but the observation was low. 

For Brisbane and Melbourne, high or extreme pollen (hereafter 
referred to as ‘high+’) occurred on an average of 32% and 27%, 
respectively of days in the 2016–2019 pollen season (Fig. 2). However, 
the success in predicting the extreme category was variable at both these 
two sites, with missed extreme days mostly forecast as moderate or high 
in most years. This could be due to potential biases of human forecasters 
(Roberts and Wernstedt, 2019). The Brisbane forecasters seemed to 
prefer to forecast ‘safely’ and overpredict the categories, reasoning that 
the loss (ill health, lost work, hospitalisation) was weighted heavier than 
the cost of preparedness. Additionally, there were few, if any, re
percussions of a false positive high pollen forecast, but individuals may 

Table 1 
Categorical contingency table for four-category pollen forecasts and observations. nij 
refers to the number (or fraction) of times when a forecast for category j was made 
and category i was observed to occur.    

Forecast 

Low Moderate High Extreme 

Observed Low n11 n12 n13 n14 

Moderate n21 n22 n23 n24 

High n31 n32 n33 n34 

Extreme n41 n42 n43 n44  

Table 2 
Categorical contingency table for binary forecasts. The convention is to present 
the “yes” (meeting or exceeding the threshold) values ahead of the “no” values.    

Forecast 

Yes No 

Observed Yes Hits misses 
No false alarms correct rejections  
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lose trust in the information provided. 
Over the 4 years at each site, there was a reduction in numbers of 

forecasts featuring outcomes in two opposite cross-diagonal boxes. On 
most days, it was the low pollen category that is most often observed and 
correctly predicted by the curated forecasts. Brisbane in 2017 is the 
exception with most observations being extreme and most curated 
forecasts being in the high pollen category that year. While Canberra 
and Sydney have had few incorrectly predicted high and extreme pollen 
forecasts since 2016, these sites also experienced very low pollen during 
that time with less than 1.5% of grass pollen observations in the high+
categories. 

Canberra and Sydney rarely observed grass pollen levels in the 
high+ categories for all pollen seasons data (Fig. 3a), and during this 
AusPollen project period (Fig. 3b), due to drought conditions. Origi
nally, we intended to assess the accuracy of forecasts of grass pollen in 
the high+ category, but this would remove Canberra and Sydney from 
the analysis as having too few samples for robust statistical analysis. A 
more useful assessment of annual forecast performance would judge the 
accuracy of Canberra and Sydney forecasts on the ability to correctly 
predict ‘moderate’ or above (hereafter referred to as ‘moderate+’) grass 
pollen. Fig. 3a considers all the grass pollen observations at each site and 
shows the average frequency of each category. The distribution of cat
egories in the 2016–2019 seasons (Fig. 3b) did not differ much from the 
distribution of data from when all seasons were used. The similarities 
between the Canberra and Melbourne category distribution when 
comparing 9–13 seasons to just 2016-19 provides some confidence that 
the distribution of the Brisbane and Sydney data are representative even 
though there are fewer seasons of available data. 

Categorical performance diagrams were used to plot four metrics of 
the day 0 curated forecast accuracy; the probability of detection, the 

success ratio, the frequency bias and threat score (Roebber, 2009). These 
metrics are based on the 2 × 2 contingency table where a category 
threshold is used to delineate ‘hits’, ‘misses’ and ‘false alarms’. The best 
forecasts lie in the top right region of the plots where POD, SR, FB and TS 
approach 1 in the two diagrams in Fig. 4 using two different thresholds 
for comparison: ‘high+’ threshold (Fig. 4a) and ‘moderate+’ thresholds 

Fig. 2. Contingency tables for day 0 curated pollen forecasts. To highlight the relative weighting of each cell in each year, the colours are mapped linearly from 0 to 
the maximum matrix entry (darker). The colours green (Brisbane), pink-purple (Sydney), orange-red (Canberra) and blue (Melbourne) are used throughout the 
manuscript. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. Frequency of each pollen category measured at each location, a) using 
all seasons of available data including earlier data prior to standardization with 
number of available previous seasons indicated in brackets on x labels) and b) 
for the four years of forecast analysis for the AusPollen project. 
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(Fig. 4b). In low pollen years (Canberra and Sydney 2017–2019) there 
were insufficient data to quantify forecast performance using a high 
threshold, and so no points were plotted for these sites/years in Fig. 4a. 

The best curated forecasts of moderate+ pollen in each location 
occurred in 2017 for Brisbane, 2018 in Canberra, 2019 in Melbourne, 
and 2018 in Sydney. Canberra forecasts tended to be biased high 
(Fig. 4b). For the high+ curated forecasts the best performance occurred 
in 2019 for Brisbane and 2017 for Melbourne; Melbourne forecasts 
tended to be biased low (Fig. 4a). Ideally, as forecasting experience 
increased from 2016 to 2019, the curated forecasts would feature more 
prominently towards the upper right-hand corner of the performance 
diagrams. 

The accuracy of the Brisbane high+ curated forecasts had improved 
the most over time, with a nearly perfect score for the 2019–2020 grass 
pollen season. The Brisbane curated forecast ability to correctly predict 
moderate+ observations was also excellent in 2017 and 2019. For all 
locations, forecasts of high+ pollen were less accurate than forecasts of 
moderate+ pollen. Rare extreme events by definition, are more difficult 
to characterize and therefore predict. 

A challenge in analysing all sites using the same mapping of four 
levels to binary categories (i.e. Table 1 to Table 2) is the significantly 
differing distributions of observed pollen levels. Using the high+ cut-off 

was reasonable for Brisbane and Melbourne, but not for Canberra and 
Sydney where high+ observations make up less than 5% of the total. 
Therefore, the rest of this study were assessed on high+ grass pollen for 
Brisbane and Melbourne, and moderate+ grass pollen for Canberra and 
Sydney. For these results then, direct comparisons between the two 
groups could not be made, however, we could still assess at each location 
whether grass pollen forecast performance improved from the 2016 to 
2019 seasons, and whether the performance of the day 1–5 forecasts 
declined with increasing lead time. We considered the results insignifi
cant where there were fewer than 20 observed days counted in the 
chosen evaluation category (Supplementary Table S2), thus discounting 
Sydney and Canberra in 2017 and 2019, and Melbourne in 2018. 

3.1. Accuracy in the curated forecasts: Equitable threat score and Gerrity 
skill score 

We used the ETS to answer the question “do the curated forecasts 
capture the high+ (or moderate+) observed pollen values well, taking 
into account correct forecasts due to random chance?” (We assessed the 
POD of the curated forecast in Supplementary Fig. S1). The ETS for the 
curated forecasts were generally better for the day 0 forecasts than later 
days for each location and generally degraded as the number of days 

Fig. 4. Categorical performance diagram for forecasts meeting or exceeding a) ’high+’ and b) ’moderate+’ thresholds. Dashed lines emanating from 0,0 are lines of 
constant frequency bias. Black curved lines show the threat score. The first letter refers to city, (B= Brisbane, C= Canberra, M = Melbourne and S= Sydney) and is 
followed by a number representing the year (2016, 2017, 2018 and 2019). 

Fig. 5. Equitable threat scores for the curated forecast at each location across the 2016 to 2019 grass pollen seasons. The error bars represent the 95% confidence 
intervals. Scores are based on ‘high+’ pollen for Brisbane and Melbourne and ‘moderate+’ pollen for Sydney and Canberra. Years where there were no or few 
‘moderate+’ days have been omitted for Sydney and Canberra. 
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ahead increased (Fig. 5). The 95% confidence intervals, calculated using 
a bootstrap approach (supplementary section 2), showed that there was 
substantial uncertainty in the ETS values related to small sample sizes. 
This implies many of our comparative results are indicative and were not 
statistically significant when the mean result of a particular year was 
within the confidence intervals of other years. 

Brisbane showed improvements in ETS for the 2018 and 2019 
curated forecast, but scored more poorly in 2017 when the total pollen 
count for the season, or seasonal pollen index (SPI), was the highest 
(Supplementary Table S3) as compared to 2016 (Fig. 5). The ETS in 
Melbourne was highest in 2017 when there were more high or extreme 
pollen observations. Sydney’s highest average ETS occurred in 2018, 
with a slightly better forecast accuracy on day 1 in that year. The ac
curacy of the Canberra forecast was also better in 2018 but for day 0. To 
put these values in context, the daily rainfall forecasts from the Bureau 
of Meteorology have ETS values of about 0.3 (Dare and Ebert, 2017). 
Each site had good and bad forecast years during the period of this 
project. Whilst there was a positive relationship between the SPI and 
rainfall over the 100 km radii from each pollen monitoring site (Davies 
et al., 2021), 2017 was not a high pollen year in Melbourne (Supple
mentary Table S3) despite spring rainfall being average or above 
average in Victorian districts that year (Supplementary Table S4). The 
impact of drought years on the SPI, particularly for Canberra and Sydney 
(Davies et al., 2021), consequently affected grass pollen forecasting and 
our study of the forecast accuracy for these sites. 

The GS was assessed using three categories for Melbourne and 
Brisbane (low, moderate and high+), but using only two categories (low 
and moderate+) for Sydney and Canberra because these sites had 
insufficient data for three category analysis, whilst Melbourne and 
Brisbane’s distributions were better represented by three rather than 
two categories. The GS rewards correct prediction of rare events with a 
higher score (Fig. 6) and answered the question, “does the curated 
forecast predict the observed pollen categories well?”. The results were 
similar to the ETS scores in that the accuracy of the curated forecast 
degrades for predictions further from the current day. This may be due 
to higher uncertainty in the meteorological forecasts further forward, or 
that there is more of a tendency for the forecaster to play it safe at longer 
lead times due to the higher uncertainty. Human judgement could also 

introduce bias in the following ways:  

• Tendency to forecast ‘safely’ – i.e. given a close choice between 
categories, the forecaster may tend to choose the higher, preferring a 
false alarm over a false negative on the theory that it is ‘better to be 
safe than sorry’.  

• Tendency to prefer a mid-range forecast (moderate/high) over an 
end-of-range forecast (low/extreme), or ‘hedging your bets’ as 
extreme pollen observations occur rarely. 

There was significant variation in forecast accuracy between years. 
There was strong evidence of improvement in Brisbane with average 
three-way GS improving from 0.20 in 2016 to 0.66 in 2019, and very 
little overlap of the 2019 confidence intervals with those of other years. 
Melbourne’s average three-way GS also increased: 0.39, 0.47, 0.55 for 
2016, 2017, 2019 respectively (noting the overlap in confidence in
tervals). Using the two-way GS at the other sites, an average GS of 0.45 
and 0.43 was recorded for Sydney in 2016 and 2018 respectively, with 
0.34 and 0.41 for Canberra in the same years. Confidence intervals for 
Canberra and Sydney are large due to small samples of moderate+
forecasts and observations. 

What is a good GS? Tam and Wong (2017) calculated scores of 
0.27–0.56 when forecasting cloud cover in Hong Kong. Model hindcast 
prediction of the 2017 ‘high’ pollen category at eight sites within Vic
toria, including the Melbourne AusPollen site included here, generated 
GS with a wide range between − 0.2 and 0.7 (Emmerson et al., 2019). 
The GS achieved in this work were mostly in the upper half of these 
ranges, especially in Melbourne, for Sydney up to day three days ahead, 
and with experience for Brisbane. 

3.2. Skill in the curated forecasts: comparison with generated climatology 
and persistence forecasts 

A “climatology” pollen forecast describes a mean value or an ex
pected temporal evolution across the timespan of a year or season, 
ideally summarised from many years of pollen monitoring. In the 
absence of a forecasting system it provides a plausible forecast. 
Smoothing curves (splines and summed Gaussians) were used 

Fig. 6. Gerrity scores for the curated forecasts at each location across the 2016 to 2019 grass pollen seasons. The error bars represent the 95% confidence intervals. 
Scores are based on ‘high+’ pollen for Brisbane and Melbourne and ‘moderate+’ pollen for Sydney and Canberra. Years where there were no or few ‘moderate+’ days 
have been omitted for Sydney and Canberra. 
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retrospectively to construct airborne grass pollen climatologies for each 
site, using all available years of data, including those generated prior to 
the AusPollen project in which counting processes were standardised. 
Curve fitting parameters (spline smoothness and the number of summed 
Gaussians respectively) were adjusted to avoid overfitting the clima
tologies, i.e. to avoid including short-period peaks or troughs. Gaussian 
curves fitted better in most cases (Fig. 7). Melbourne fitted similarly 
with either single or double Gaussian curve, having a short single- 
peaked pollen distribution, whilst the other sites fitted better to two 
summed Gaussian curves, either because of asymmetry in the pollen 
build-up and decline, or because of a tendency to have two pollen peaks 
per season. Supplementary Table S5 provides statistical details on how 
the climatologies are significantly different to the curated and persis
tence forecasts at each site. 

We compared the site average day 0 to day 5 curated forecast GS with 
the calculated persistence and climatology forecasts developed above to 
assess where they showed skill over those naïve forecasts (Fig. 8). For 
most sites, there was a general decline in the curated forecast GS with 
increasing number of days forecast ahead. This may be because curated 
forecasts employed the latest meteorological forecasts, which were 
usually reliable for short lead times of 1–3 days. However, at longer lead 
times the weather forecast, and the “memory” of persistence both 
decline and the advantage of an experienced forecaster is largely lost. 
Thus a useful question we can consider from Fig. 8 is “does the curated 
skill in forecasting support the current six day forecast practice”? Mel
bourne and Canberra, with the longest pollen records, showed better 
performance of curated forecast over persistence, and a tendency to less 
degeneration of curated forecast score with lead time. In general, 
though, poorer accuracy of the curated grass pollen forecasts at the 
longer lead times for most sites indicates a higher risk that false positives 
or ‘missed’ pollen categories might be predicted. With a four day or 
longer lead time the skill of curated forecasts generally remained above 
the persistence forecast, but the advantage narrowed suggesting that 
sites might consider discontinuing the daily forecast service at day 3. 
Other national services do not provide pollen forecasts beyond day four 
(e.g. SILAM, 2020). 

It was also noted, that overall for most sites the accuracy of the 
curated forecasts was better than retrospectively calculated persistent 
forecast (i.e. the curated forecast showed skill). This was not evident in 
the representation of the overall average GS for the four seasons for 
Brisbane. We note however, that Brisbane improved the skill of the 

curated forecast with experience to an annual average GS of 0.66 in 
2019 (Fig. 6). Also, in Brisbane, the level of grass pollen in the atmo
sphere exceeded the definition of a ‘high’ category (50 grains m− 3) early 
in the season and often remained or fluctuated above this threshold for 
some time, giving apparent weight to the persistence method. However, 
persistence does break down if pollen observations are not available for 
any reason, such as on weekends when pollen samples may be collected 
and counted at a later date (as was the case for Brisbane in the two later 
years of the project), or during times of power interruptions, damage to 
the pollen collection equipment, or failure of the Melinex tape or 
staining. By contrast, the persistence method did not work well at 
Melbourne, because the observed levels of grass pollen in the atmo
sphere fluctuated between categories from day to day (see Supplemen
tary Fig. S2 for persistence GS for each site, year and forecast lead time). 

The simple climatology “forecasts”, calculated after completion of 
the project monitoring and forecasting period, performed poorly in 
almost all cases, except Canberra (lower than curated but higher than 
persistence), with large confidence intervals. The Sydney climatology 
forecast performed particularly badly, because 2016 and 2018 had few 
observations above the ‘low’ category and the climatology forecast 
didn’t predict these occasions correctly. There is a heavy negative 
penalty for a ’miss’ (see Table 2) in the GS matrix. 

4. Discussion 

There were marked differences in the curated forecast accuracy 
amongst sites and between years. There are also substantial un
certainties in the values of the verification metrics due to small samples 
and due to variability in counting of pollen (Milic et al., 2021). In the 
first instance, we used categorical performance diagrams to compare the 
forecast accuracy at the high+ and moderate+ pollen thresholds, 
finding too little data at Sydney and Canberra in the high+ pollen 
category. The Brisbane curated forecasts were the most accurate across 
all four forecast years in the high+ and moderate+ pollen categories. All 
sites performed better in the moderate+ pollen category, where the 
threshold for a correct ‘hit’ was 20 grains m-3. The reduction in missed 
high+ predictions and false positives over the four years indicates 
improvement in the curated forecasts with experience. 

We also examined whether the performance of the curated forecast 
degraded with increasing lead time. The AusPollen project provided 
grass pollen forecasts for the current day and up to five days ahead. Our 

Fig. 7. Idealised climatological fits calculated retrospectively for all current standardized and historical available seasonal pollen observations.  
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results have determined that the forecast accuracy at day 5 is poorer 
than days 0–3 at all sites, and the point at which accuracy really starts to 
decrease varies between day 2 and day 4 at different locations. 

There is evidence that the accuracy of the curated forecast at Bris
bane has improved with time. The accuracy of the curated forecast 
tended to improve at Sydney, Canberra and Melbourne after 2016, 
noting the large range in the confidence interval bars. Despite persis
tence often providing reasonable forecast skill, particularly for Brisbane 
based on higher or greater categories, it relies on pollen observations 
being available. If there is a break for any reason, then the persistence 
method breaks down. Moreover inherently, persistence forecasting will 
always fail to predict changes in pollen level, and these points of change 
may be crucial to allergy sufferers. Furthermore, the persistence forecast 
is not mechanistic and so offers no path for forecast improvement 
through better representing pollen production release, transport and 
deposition. 

The curated forecasts always outperformed the climatology fore
casts. In some cases the climatologies produced very poor GS. Daily 
pollen levels can fluctuate significantly, but climatology only represents 
an average season at each site, and will fail to predict short but poten
tially dangerous daily peaks (as well as failing to predict temporary lows 
or respites from high pollen loads). A climatology forecast does not 
consider the large interannual swings between dry and wet seasons 
which produce much less or more pollen, respectively, nor importantly 
the influence of gradual medium-term shifts due to climate change, or 
the effect of medium scale weather patterns such as the Southern 
Oscillation index. Moreover, reliance on historical data or climatology to 
predict current daily pollen levels may fail to identify changes in pollen 
seasonality such as advance in season start (Anderegg et al., 2021) or 
magnitude (Addison-Smith et al., 2021). Nevertheless, more represen
tative climatologies, or seasonal pollen forecasts e.g. Tseng et al. (2020), 
could be developed as longer pollen records become available at these 
sites. There is a need, particularly in Australia and other Southern 
Hemisphere sites where there are relatively few sites (Davies et al., 
2021), to sustain pollen monitoring, track the influence of weather and 
climate-related changes, and to improve the reliability of pollen forecast 
models. 

There are opportunities to improve the curated pollen forecast 
capabilities:  

• accumulating more years of standardized pollen monitoring data 
(models supporting the current Brisbane curated forecasts were 
constructed using only two years of data),  

• better understanding the factors driving grass flowering and pollen 
production e.g. seasonal climate effects (e.g. dry years versus wet 
years), and pollen dispersion,  

• improving the definition of grass pollen sources, and climate or 
species-specific behaviour in pollen production and release,  

• improving the spatial and temporal accuracy of weather forecasts as 
input to pollen forecasts, 

• improved access and availability to new technologies such as auto
mated real-time pollen monitoring, real-time grass phenology, and 
by high resolution near real-time satellite imagery. Grass pollen 
measurements are currently subject to a significant amount of un
certainty both due to quantification methods (Addison-Smith et al., 
2020) and human factors (Milic et al., 2020) and automated pollen 
monitoring may help minimise some of these sources of error,  

• machine learning, statistical prediction, and emission/dispersion 
modelling (e.g. Emmerson et al., 2019, 2021) approaches for fore
casting grass pollen in Australia. Potentially, a well-designed (and 
evaluated) three-dimensional dispersion model could provide 
important pollen forecasts for locations which don’t have pollen 
monitoring, and where there are gaps in the observations. 

5. Conclusions 

This is the first time that curated pollen forecast accuracy has been 
evaluated in Australia, and it was done applying methods used in 
weather forecast evaluation, with pollen concentrations determined 
using standardised pollen counting methods (Beggs et al., 2018). Dif
ferences were noted in forecast accuracy between sites and years, 
possibly relating to forecasting experience, depth of historic pollen data 
records, and complexity of the pollen season. 

Considering forecast accuracy for these sites beyond the immediate 
day, this study suggests that the network should provide daily grass 
pollen forecasts up to three days ahead. Such forecasting has implica
tions for members of the community with pollen allergy who make de
cisions on behaviour; allergen avoidance, medication use, based on 
knowledge of local pollen information (Medek et al., 2019). Thus there 

Fig. 8. Project overall average Gerrity scores from day 0 (d0) to day 5 (d5), comparing the curated forecast to retrospectively calculated persistence and climatology 
based pollen categories, across all sites and years with more than 20 observations in an evaluation category. Note that Brisbane and Melbourne data was analysed 
using a three-way GS while Canberra and Sydney data used a two-way GS. 
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is a responsibility for networks such as the newly established AusPollen 
Aerobiology Collaboration to evaluate the accuracy and reliability of 
pollen forecasts provided to community users. Pollen forecast accuracy 
depends on local pollen aerobiological knowledge and information 
derived from meteorological and other environmental factors that in
fluence grass phenology and pollen production, release, transport and 
deposition. With climate change and more frequent extreme weather 
events, including drought, bushfires or thunderstorms, grass pollen 
aerobiology will become more variable (Katelaris and Beggs, 2018), and 
may be more difficult to forecast. There is a need for further research and 
development of locally applicable pollen forecast methods, and there
fore a real need to keep funding the pollen monitoring network. The 
pollen forecast evaluation method we have described here might be 
applied by other aerobiological monitoring networks to aid model 
development and increase confidence in the value of pollen forecasts 
distributed to the community. 

Data availability 

AURIN data repository: 
https://data.aurin.org.au/dataset/auspollen-rocklea-qld-6168c420 

545c70ad5962f414-na 
https://data.aurin.org.au/dataset/auspollen-campbelltown-ns 

w-6168c4200e772c4de5849e89-na 
https://data.aurin.org.au/dataset/auspollen-parkville-vi 

c-6168c42016eb4e98d9b8cb28-na 
https://data.aurin.org.au/dataset/auspollen-canberra-act-6168c 

4209b7c5111055ffa84-na. 
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