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Abstract

When are differential treatment policies—such as preferential treatment, affirma-
tive action, and gender equity policies—justified by efficiency concerns? I propose a
non-parametric assignment model where a policymaker assigns agents to different treat-
ments or positions to maximize total surplus, based on the agents’ characteristics and
on noisy information about their types. I provide necessary and sufficient conditions on
the agents’ signal structures which characterize whether surplus maximization requires
differential treatment or not, and study how the bias and informativeness of signal
structures determine the efficiency implications of differential treatment. I examine
implications of this model for inequality, decentralization and empirical work.

Keywords: optimal assignment, signaling, efficiency, differential treatment, affirmative ac-
tion, gender equity, education, labor markets. JEL codes: D47, D61, D8, J7, I24.

∗University of Technology Sydney, Department of Economics. emil.temnyalov@uts.edu.au.
This paper was previously titled “An economic theory of differential treatment.” This research was funded partially by the

Australian Government through the Australian Research Council’s Discovery Early Career Researcher Award: DE200100590. I

thank the Coeditor, Leslie Marx, and 3 anonymous referees for their detailed and constructive comments. For helpful comments

I also thank Dan Bernhard, Juan Carlos Carbajal, Vessela Daskalova, Federico Echenique, Jeffrey Ely, Isa Hafalir, Young-

Chul Kim, Bettina Klaus, Hao Li, George Mailath, Thomas Mariotti, Shiko Maruyama, Alessandro Pavan, Bruno Strulovici,

Kentaro Tomoeda, Steven Williams, and seminar participants at Caltech, Collegio Carlo Alberto, Simon Fraser, Toulouse School

of Economics, UBC, UC Dublin, UIUC, UNSW, as well as conference participants at AETW 2019, ES NASM 2019, PET 2019,

OEW 2019, APIOC 2019, AEA 2020, EEA 2020, CMID 2020, MD4SG 2020, ES World Congress 2020, EAAMO 2021, and the

GTS World Congress 2020/21.

1



1 Introduction

Discriminatory policies are often controversial in debates about public policy, education, hir-
ing and promotion within organizations, and in other contexts with differential treatment,
whereby economic agents are treated differently depending on some observable characteris-
tics. In an education context, for example, whether a student is admitted to a university or
not may depend on their socio-economic status, race, or some other characteristic of them
or their environment.1 Similarly, in a labor market context, an organization’s promotion or
hiring decisions may depend not just on the performance of a candidate, but also on the
opportunities that the person has had, their gender, or some other characteristic of them or
their environment.2

Debates about differential treatment policies are often based on concerns about fairness, and
one can make arguments both in favor of and against differential treatment. While recog-
nizing that fairness is an important ethical criterion for evaluating such policies, this paper
takes a different but complementary approach, and considers differential treatment from the
perspective of efficiency rather than fairness. Recent work has shown that diversity may
improve efficiency in many settings, including in organizations (Herring, 2009), in market-
places (Levine et al., 2014), in innovation and entrepreneurship (Nathan and Lee, 2013), in
teamwork (Hoogendoorn et al., 2013), in education (Hansen et al., 2015), and at the coun-
try level (Alesina et al., 2016). I propose that efficiency may inherently require differential
treatment because of information frictions. I show this in a general and parsimonious model
with heterogeneous signaling technologies, which does not feature any intrinsic benefits from
differential treatment, such as benefits from diversity or from targeting agents with special
characteristics.

I study an assignment problem where a policy-maker must assign agents to different treat-
ments or positions, based on some observable signals and characteristics of the agents. The
policy-maker’s objective is to design an assignment policy which maximizes total expected
surplus, subject to an ex post feasibility constraint—i.e. the number of agents assigned to
each position cannot exceed the capacity of that position. I highlight two leading exam-

1For instance, the recent “Students for Fair Admissions v. Harvard” lawsuit alleged that Harvard “sys-
tematically and unconstitutionally discriminates against Asian-American applicants by penalizing their high
achievements as a group, while giving preferences to other racial and ethnic minorities” (Hartocollis, 2018).

2Blau and Kahn (2017); Matysiak and Cukrowska-Torzewska (2021) review recent trends and explanations
of the gender gap in employment and policies in this context.
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ples from education and labor contexts: a university’s admissions office must decide which
students to admit or not; and an organization must decide which job candidates to hire,
or how to promote employees to different ranks within the organizational hierarchy. Each
agent generates some surplus or value (e.g. student achievement or employee output), which
depends on their unobservable type (e.g. a student’s ability or an employee’s productivity)
and on the treatment or position to which they are assigned. The policy-maker observes a
noisy signal of the agent’s type (e.g. a student’s standardized test score or an employee’s
past performance), and also some characteristics or categories of the agent (e.g. a student’s
socio-economic status, race, gender, or an employee’s demographics, gender, etc.)

This paper characterizes the surplus-maximizing policy in a general setting, under mild non-
parametric assumptions on values and signal distributions. First, I show that the optimal
assignment policy will generically feature differential treatment across the observable char-
acteristics of the agents, even if these characteristics are not directly payoff relevant, as long
as the distributions of signals vary across these observable characteristics. More precisely,
the optimal assignment policy is assortative with respect to a benefit index, which measures
the expected incremental benefit from being assigned to a higher position or treatment.
But the optimal policy need not be monotonic with respect to signals, because signals do
not necessarily translate monotonically into expected incremental benefits, if the conditional
distributions of types, given signals, differ across characteristics. The optimal policy is deter-
ministic (except for tie-breaking among payoff-equivalent agents) and can be implemented
with category-specific thresholds, i.e. signal cutoffs which vary across agents’ characteristics.
In fact, I show that the optimal policy is only assortative with respect to signals, for any
capacities, if and only if the conditional signal distributions are identical across observable
characteristics in a particular sense. This is a very strong condition, and it suggests that
in many realistic settings the surplus-maximizing policy will feature some differential treat-
ment which favors agents whose signal distributions are “worse”—i.e. a form of positive
discrimination.

Second, I show that the optimal policy may feature differential treatment even in cases where
signals are unbiased predictors of agents’ types, i.e. an agent’s expected type, conditional on
a signal, does not vary across other observable characteristics. This is because the policy-
maker’s objective function may induce a preference for or against dispersion in types, and the
conditional type distributions can be more noisy or less noisy across different characteristics,
even if expected types are equal across characteristics. That is, some categories of agents
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may have more or less informative signals, defined in terms of mean-preserving spreads in
conditional type distributions, and as a result may optimally be treated differently, depending
on the shape of the surplus function. Hence the optimal policy is monotonic with respect
to the benefit index, but need not be monotonic with respect to the agents’ expected types,
and may favor agents whose type distributions are either more dispersed or less dispersed.

To derive the main results, outlined above, I provide a definition of comparability across
categories, which requires that the expected incremental benefits from any two positions,
as a function of an agent’s signal, can be translated across characteristics. This notion
allows signals to be compared across different characteristics, in an environment with any
signal distributions. Comparability implies an ordering over type distributions, which is
more general than the usual stochastic orderings found in the literature, since it imposes
restrictions only on the expected values of the conditional type distributions, rather than on
the shape of the distributions. Moreover, comparability is an easy property to verify in many
applications, and is satisfied in virtually every parametric environment previously studied
in the literature. In particular, I provide 3 different sufficient conditions for the notion of
comparability to hold: either (i) treatments are binary; or (ii) the surplus is multiplicatively
separable in type and position; or (iii) the signal distributions are similar in a particular
sense.

My main results can be interpreted, for example, in the context of university admissions
policies. One might think that the distribution of students’ university exam scores, condi-
tional on their true abilities, varies across socio-economic status or some other observable
characteristic (e.g. because parents invest different amounts of time and resources in their
children’s education, depending on their status). A university admissions office, seeking to
maximize surplus, would therefore use socio-economic status information in forming beliefs
about students’ true abilities. My first result shows that the optimal admissions policy may
admit students non-monotonically with respect to their exam scores. A lower-score student
from a socio-economic group whose score distributions are worse may be preferred over a
higher-score student from a socio-economic group with higher score distributions. This high-
lights a bias motive for differential treatment. Surplus is a function of agents’ types, rather
than signals, so the optimal policy must interpret signals differently if their distributions
are biased across categories. Furthermore, the optimal policy may favor some group even
if signals are not biased (i.e. expected abilities conditional on scores are the same across
groups), for example if the variance of abilities is different across characteristics. Whether
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more or less noisy signals result in more or less favorable treatments across groups depends
on whether there are increasing or decreasing marginal values from higher types (e.g. if
the value of “superstar” students is disproportionally high). This highlights an informa-
tiveness motive for differential treatment: the informational content of signal distributions
can vary across characteristics and thus affect the dispersion of types across characteristics.
It is important to note that these results apply not only to affirmative action in university
admissions, but also to differential treatment in school choice, such as in the current debate
about how to improve access for lower socio-economic status (SES) students to elite selective
public schools in New York’s and Chicago’s school districts. These bias and informativeness
motives can also arise in hiring and promotion decisions within organizations, for example
in differential treatment based on gender.

In addition to my main results I also discuss several more specific applications of the model.
First, I consider an environment with biased signals, where the distributions of types con-
ditional on any signal can be ordered across characteristics in terms of first-order stochastic
dominance. In this application signals over-estimate types for higher categories and under-
estimate them for lower ones. Such a model may accurately describe the relationship between
student abilities, standardized test scores, and socio-economic status. The optimal policy
here favors agents from categories with worse signals, and the optimal cutoffs for each posi-
tion increase across categories; i.e. lower-SES students have lower signal cutoffs.

Second, I consider an environment with unbiased but noisier signals, where type distributions
conditional on signals are mean-preserving spreads across categories, and the value function
features a preference either for or against dispersion. The optimal policy implies that the
aggregate treatments vary across categories, although the unconditional type distributions
are the same a priori. Hence this environment creates endogenous aggregate inequality. For
example, if the policy-maker has a preference for dispersion, then agents from categories with
noisier conditional type distributions will be favored for each position, creating aggregate
inequality.

Third, I compare centralized and decentralized assignment policies and study the effect of
decentralization on efficiency. This analysis is relevant to a range of settings where decision-
makers’ objectives may be to maximize the surplus they generate within their unit, rather
than the overall value of the assignment. I find that the notion of comparability plays a
crucial role in this analysis: decentralized assignment is efficient if and only if categories
satisfy a strong version of comparability.
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2 Related literature

To my knowledge this is the first paper to study under what conditions efficient assignments
require differential treatment. At a fundamental level, the idea that an optimal policy may
condition not just on what is directly surplus-relevant, but also on non-surplus-relevant
characteristics, is not new to economics.3 The first contribution of this paper is to formalize
this idea in a general and tractable non-parametric model of optimal assignment, which
has the scope to be extended to many new differential treatment environments, including
mechanism design, organizational design, and information design. The paper also identifies
a particular concept of comparability as a useful property for tractability.

This paper relates to a growing literature on the effect and implementation of diversity and
distributional objectives in matching and assignment models. Several papers study controlled
school choice, in the form of quotas or reserves, and the effects of affirmative action, a
form of differential treatment. This literature includes Abdulkadiroğlu and Sŏnmez (2003);
Abdulkadiroğlu (2005); Kojima (2012); Hafalir et al. (2013); Ehlers et al. (2014). Hafalir
et al. (2019) study inter-district school choice designed to balance diversity. Fu (2007)
models college admissions as an asymmetric all-pay auction with complete information, where
maximizing student efforts requires a handicap that resembles affirmative action. Olszewski
and Siegel (2019) study college admissions with centralized tests and costly effort, and discuss
how coarse grading policies can lead to Pareto improvements. Bodoh-Creed and Hickman
(2018) study college admissions with vertically differentiated colleges and endogenous human
capital, and establish the equivalence of quota and admission preference systems. Che and
Koh (2016) model decentralized college admissions, characterize equilibria and compare them
to centralized admissions. Unlike the latter papers, I develop a model with a finite number
of agents, which can be applied to settings that don’t suit the large-market framework.
Moreover, this model explicitly distinguishes between agents’ payoff-relevant types and their
signals, whereas the matching literature typically interprets signals as types. The latter
distinction is critical for studying the efficiency implications of differential treatment.

3For example, a large public finance literature on “tagging,” beginning with Akerlof (1978), studies
whether conditioning payments on agents’ characteristics can improve the effectiveness of public finance
programs. This idea has also been applied in development contexts, e.g. in the targeting of anti-poverty
measures (Besley and Kanbur, 1988; Coady et al., 2004). I consider similar differential treatment policies in
an assignment model that can be applied to school choice, university admissions, or hiring and promotion,
where assignments are a function of signals whose informational content can vary across characteristics.
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More broadly, a large economics literature studies statistical discrimination, beginning with
papers by Phelps (1972) and Arrow (1973), which offered an alternative to the model of taste-
based discrimination by Becker (1957), summarized in a comprehensive survey by Fang and
Moro (2011). These seminal papers have created two strands of literature: one where there
are exogenous differences between different groups of agents, giving rise to discrimination,
and another where differences between groups of agents arise endogenously in equilibrium,
even though groups are ex ante identical. In the first strand, Chambers and Echenique (2021)
study the connection between statistical discrimination and the statistical identification of
workers’ signals from skills. Aigner and Cain (1977) and Lundberg and Startz (1983) study
human capital investment in a model where different groups have more or less noisy signals of
productivity. Moro and Norman (2003) study human capital in a model with heterogeneous
investment costs across groups. Cornell and Welch (1996) study labor tournaments where
groups have access to more or fewer signals of their productivity, and the scarcity of jobs
leads to differential treatment across groups. In the second strand, Coate and Loury (1993)
study noisily observed skill investments by workers, whereby some groups may endogenously
be favored by employers. Moro and Norman (2004) study discrimination which arises with
interactions between groups. Mailath et al. (2000) study discrimination that arises due to
search frictions, even with perfect information about agents’ types. In contrast, this paper
focuses on designing assignment policies which maximize efficiency, rather than on explaining
discrimination per se. The paper also contributes to the statistical discrimination literature
by developing a more general and completely non-parametric framework. Importantly, I show
that some of the findings of this literature on the effect of differential noisiness of signals
can be reversed. While the literature generally finds that groups with less noisy signals are
treated favorably, I show that the opposite can also happen. I find precise conditions on
the primitive surplus function which determine whether higher signal noise leads to more or
less favorable treatment. Finally, I show that aggregate inequality across groups can arise
even in the absence of human capital investment, search frictions, coordination failure, or
interactions across groups.

A subset of the discrimination literature considers affirmative action as a possible policy
remedy to discrimination. This literature generally finds that affirmative action may exacer-
bate differences across groups, e.g. in terms of human capital, and may lead to lower welfare
(Coate and Loury, 1993; Moro and Norman, 2003, 2004; Norman, 2003; Fang and Norman,
2006). It is important to note, however, that affirmative action is distinct from merely ban-
ning statistical discrimination, on which much of the literature focuses. I consider a richer
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model of differential treatment which applies to more general policies beyond affirmative
action or banning or allowing statistical discrimination.

Other models of the effect of affirmative action include Chung (2000), who provides a theory
of role models. Chan and Eyster (2003) study color-blind affirmative action in a university
admissions model, where signals are directly payoff-relevant and the university has an explicit
preference for diversity. Epple et al. (2008) study a related model of competing colleges with
a preference for diversity. Fryer and Loury (2007) consider a similar model with an added
ex ante investment stage, where groups have exogenous differences in skill investment costs,
and analyze the optimal timing of interventions. Garg et al. (2021) study a Gaussian model
of admissions where the policy-maker explicitly values diversity and consider the effect of
dropping standardized tests. In contrast to this literature, the policy-maker in my model
has no preference for diversity and only seeks to maximize expected total surplus. Moreover,
signals are distinct from types and only the latter are directly payoff-relevant. Finally, I do
not assume any a priori differences in the distributions of types across groups, and differences
arise only due to signaling.

3 Model

A policy-maker wants to assign agents to treatments or positions. There is a set of agents N
with cardinality n, and an ordered set of vertically differentiated positions P = {p1, ..., pm}
with corresponding capacities {k1, ..., km} > 0, where ∑

j kj ≥ n. The latter is without loss
of generality, as p1 can be a “null” or “unassigned” position with unlimited capacity.

Each agent has an unknown type ti ∈ T , drawn from a distribution F , and a publicly ob-
served category or characteristic xi ∈ X. The policy-maker observes a noisy signal of each
agent’s type, si ∈ S, drawn from a distribution Fti,xi

. I assume S is an ordered convex
set, T is an ordered set with discrete or continuous values, and X is any set of (possibly
vector-valued) characteristics with discrete or continuous values. The set of characteristics
need not be ordered, e.g. when considering gender or ethnicity. The orders imposed on types
and signals are natural in many applications: higher or lower types represent ability or pro-
ductivity, while higher or lower signals represent test scores of students or past productivity
of employees.
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A policy is a stochastic assignment of agents mapping observables to positions, denoted by a
function P : (X×S)n → ∆(P n). I denote by P(p|xi, si) the distribution of agent i’s position,
and by p(xi, si) the realized position. Every possible assignment generates some individual
ex post surplus, given by v : T × P → R, where v is increasing in both arguments.4

The policy-maker’s objective is to design a policy that maximizes the expected total surplus
from the assignment, subject to ex post feasibility:

max
P

∑
i

E[v(ti, p(xi, si))] =
∑
i

∑
j

∫
T
v(ti, pj)dF (ti|xi, si) · P(pj|xi, si) (1)

s.t. |{i : p(xi, si) = pj}| ≤ kj

I make three standard assumptions to analyze this problem.

Assumption 1 (Supermodularity). The surplus v is supermodular (equivalently, has increas-
ing differences) in (t, p): v(t′′, p′′) + v(t′, p′) > v(t′′, p′) + v(t′, p′′) for all t′′ > t′ and p′′ > p′.

Assumption 1 represents complementarity between the agent’s type and their position. Su-
permodularity of the surplus function is sufficient to guarantee that the first-best assignment
features positive assortative matching; i.e. it is optimal to assign higher positions to higher
types. Such assortative matching is common in all the motivating examples for this paper,
and supermodularity is commonly used to motivate this observation in many applications.

Assumption 2 (Continuity). The expected surplus E[v(t, p)|x, s] is continuous in s.

Assumption 2 is a mild technical assumption for practical applications, as it requires only
that the expected surplus of an agent varies continuously in s, holding the position p and the
category x constant. This assumption is satisfied whenever the density f(t|s) is uniformly
continuous is s, which by the monotone convergence theorem implies that E[v(t, p)|x, s]
is continuous in s. Moreover, the main intuitions of this paper do not crucially rely on
continuity, and one can state analogous results in the absence of this assumption.

4Note that this surplus depends on types, whereas signals are not directly payoff-relevant. Alternatively,
one can incorporate endogenous human capital investment in an extension of the model where V : S×T×P →
R. In such a setting signals are themselves productive and the surplus is a function not only of the agent’s
type, but also of an investment choice that generates the signal S. As will be clear from the subsequent
analysis, my main results on differential treatment would continue to hold qualitatively in such an extension,
but the degree of differential treatment will be moderated to some extent. The optimal assignment will
generally feature a smaller differential compared to the case where signals are not productive. This setting
offers a fruitful avenue for future research.
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Assumption 3 (MLRP). The family of signal distributions {Ft,x} satisfies the strict monotone
likelihood ratio property in t: for s′′ > s′, the ratio of the densities ft,x(s′′)

ft,x(s′) is increasing in t,
conditional on x, whenever it is well-defined.

Assumption 3 is a standard assumption in the information economics literature. It ensures
that there is an intuitive way to interpret signals and update beliefs regarding an agent’s
type, conditional on observing some signal, as in the following proposition.

Proposition 1 (Milgrom 1981). Under Assumption 3, F (·|xi, si = s′′) �FOSD F (·|xi, si = s′)
for any s′′ > s′.

Proposition 1, due to Milgrom (1981), shows that observing a higher signal s is good news
regarding the agent’s type (conditional on any category x); i.e. a higher signal improves the
distribution of t in the sense of first-order stochastic dominance. This proposition implies that
E[v(t, p)|x, s] =

∫
T v(t, p)dF (t|x, s) is increasing in s, for any x, p, since v(t, p) is increasing

in t and F (t|x, s) is increasing in s in the first order. Furthermore, the proposition also
implies that E[v(t, p′′)|x, s] − E[v(t, p′)|x, s] =

∫
T v(t, p′′) − v(t, p′)dF (t|x, s) is increasing in

s, for any x and p′′ > p′, because F (t|x, s) is increasing in s in the first order and v(t, p) is
supermodular, hence v(t, p′′)− v(t, p′) is an increasing function of t.

Comparability

The assumptions above hold within categories, so they do not impose any restrictions on
how agents from different categories compare to each other. In principle, the distributions of
types and signals may differ in arbitrary ways across categories. For example, as functions
of x, these distributions may be shifting or spreading, or may not be comparable using any
of the standard stochastic orders at all. I define two notions of comparability across different
categories, which impose conditions only on the expected values of the distributions, rather
than on the whole distribution functions. They allow for comparisons of distributions that
need not be comparable according to FOSD, SOSD, etc., and they may also be easier to
test empirically, as they only require comparing conditional expectations, rather than more
complex distributional properties. I first define strong comparability, which requires that
agents with different signals can be compared across categories in terms of their absolute
levels of expected surplus. Then I define comparability, a weaker notion which requires that
agents with different signals can be compared across categories in terms of their relative
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gains in expected surplus. The former notion is not necessary for my main results, but it
relates to several of the propositions in section 3.3 and is easier to state.

Definition 1. Categories x, x′ are strongly comparable if ∀s ∈ S one of the following holds:

(i) ∃s′ ∈ S s.t. E[v(t, p)|x, s] = E[v(t, p)|x′, s′] ∀p;
(ii) ∀s′ ∈ S, E[v(t, p)|x, s] ≥ E[v(t, p)|x′, s′] ∀p;
(iii) ∀s′ ∈ S, E[v(t, p)|x, s] ≤ E[v(t, p)|x′, s′] ∀p.

This definition establishes an equivalence across categories, defined in terms of expected
surplus as a function of signals. Strong comparability requires that an agent with character-
istics x and a signal s generates the same expected surplus in any position p as an agent with
characteristics x′ and some (possibly different) signal s′. Hence agents with (x, s) and (x′, s′)
are strongly comparable because they have the same expected surplus across all positions.
In this sense one can “translate” or map signals s and s′ across the two categories x and x′,
and this translation is invariant across positions. The second and third cases of the definition
also allow for the possibility that the (x, s) agent generates an expected surplus that is either
uniformly higher or uniformly lower across all positions than that of agents of category x′

with any signal. Therefore (x, s) can either be mapped to a particular (x′, s′), or has higher
expected surplus than all (x′, s′) or lower surplus than all (x′, s′).

The next definition provides a less demanding notion of comparability, which is implied by
strong comparability and which makes the main results of the paper applicable to a wider
set of environments.

Definition 2. Categories x, x′ are comparable if ∀s ∈ S one of the following holds:

(i) ∃s′ ∈ S s.t. E[v(t, p)|x, s]− E[v(t, p′)|x, s] = E[v(t, p)|x′, s′]− E[v(t, p′)|x′, s′] ∀p, p′;
(ii) ∀s′ ∈ S, ∀p and p′ < p, E[v(t, p)|x, s]−E[v(t, p′)|x, s] ≥ E[v(t, p)|x′, s′]−E[v(t, p′)|x′, s′];
(iii) ∀s′ ∈ S, ∀p and p′ < p, E[v(t, p)|x, s]−E[v(t, p′)|x, s] ≤ E[v(t, p)|x′, s′]−E[v(t, p′)|x′, s′].

This weaker notion requires that only the relative gains in expected surplus across different
positions be comparable, rather than the absolute levels of expected surplus. That is, for
two categories to be comparable, agents need to have the same expected gain from being
assigned to a position p instead of p′, for any p > p′. Analogously to strong comparability,
the second and third cases of the definition allow for the possibility that the (x, s) agent
has relative gains that are either uniformly higher or uniformly lower across all positions
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than those of agents of category x′ with any signal. Under comparability (x, s) can either
be mapped to a particular (x′, s′), or has larger relative gains in expected surplus than all
(x′, s′) or smaller gains than all (x′, s′).

To build some intuition, one can interpret these definitions in the context of school choice.
Consider a district with a selective and a non-selective school. Strong comparability means
that a student with characteristics x and signal s has the same expected returns to education
from both the selective and the non-selective school as a student with characteristics x′ and
some (possibly different) signal s′. On the other hand, comparability requires only that the
relative gain from being assigned to the selective instead of the non-selective school be the
same for (x, s) and for some (x′, s′).

Figure 1 illustrates the difference between strong comparability and comparability in a simple
example. It depicts a setting with 4 categories, x1, x2, x3, x4, and 2 positions, p1, p2, and plots
expected surplus as a function of agents’ signals. While this example is very stylized, the
definitions of comparability allow for much more general and non-linear settings, where the
mapping between signals for different categories is significantly less regular.

s2 s1 s̄2 s̄1

E[v(t, p1)|x1, s]

E[v(t, p2)|x1, s]
E[v(t, p1)|x2, s]

E[v(t, p2)|x2, s]

s

E[v(t, p)|x, s]

s3 s4s′ s̄3 s̄4

E[v(t, p1)|x4, s]

E[v(t, p2)|x4, s]
E[v(t, p1)|x3, s]

E[v(t, p2)|x3, s]

s

E[v(t, p)|x, s]

Figure 1: Strongly comparable and comparable categories. Left panel: x1 and x2 are strongly
comparable. Right panel: x3 and x4 are comparable, but not strongly comparable.

In the left panel, categories x1 (in solid lines) and x2 (in dotted lines) are strongly comparable.
To see this, note that for category x1 and any signal s ∈ [s1, s̄1] ⊂ S there exists some signal
s′ ∈ [s2, s̄2] ⊂ S for category x2 such that E[v(t, p)|x1, s] = E[v(t, p)|x2, s

′] for both p ∈
{p1, p2}. The expected surpluses associated with these signals are highlighted in gray in the
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figure.5 Strong comparability ensures that some signals are associated with the same absolute
levels of expected surplus, regardless of which position p is used to make the comparison.

In the right panel, categories x4 (in solid lines) and x3 (in dash-dotted lines) are not strongly
comparable, but are comparable. To see the former, note that there exist no signals s, s′

such that the absolute levels of expected surplus are equal for both p1 and p2. That is,
there are no s, s′ such that the two solid lines have the same absolute levels as the two dash-
dotted lines, when evaluated at s, s′ respectively.6 To see that comparability holds, consider
the relative differences in expected surplus from p1 and p2; i.e. the difference between the
two solid lines and the difference between the two dash-dotted lines. For category x4 and
any signal s ∈ [s4, s̄4] ⊂ S there exists some signal s′ ∈ [s3, s̄3] ⊂ S for category x3 such
that E[v(t, p2)|x4, s] − E[v(t, p1)|x4, s] = E[v(t, p2)|x3, s

′] − E[v(t, p1)|x3, s
′]. The differences

in expected surpluses associated with these signals are highlighted in gray in the figure.7

A key feature of both comparability definitions above is that agents of different categories can
be compared uniformly across all positions. With strong comparability, comparisons of (x, s)
and (x′, s′) in terms of expected surplus must agree for all positions p. With comparability,
comparisons of (x, s) and (x′, s′) in terms of relative gains in expected surplus must agree for
all pairs of positions p, p′, with p > p′. The next numerical example illustrates the difference
between comparability and strong comparability in a different format, and also shows how
comparability can fail to hold in a setting with more than 2 positions.

Example 1. Consider 4 categories, x1, x2, x3, x4, and 3 positions, p1, p2, p3. Each table below
shows the expected surplus from the 3 positions (in columns) for one of the categories, for 3
possible signals (in rows), s1, s2, s3.

5Furthermore, for category x1 and signals s < s1, case (iii) of the definition is satisfied. For category
x2 and signals s > s̄2, case (ii) of the definition is satisfied. Hence the definition of strong comparability is
satisfied for all (x1, s) and all (x2, s).

6Take e.g. the signal s3: when considering position p1, the signal s3 translates to some s′ that yields
the same expected surplus, but s3 and s′ do not yield the same expected surplus when considering p2.
Specifically, we have E[v(t, p1)|x3, s3] = E[v(t, p1)|x4, s′] for some s′, but E[v(t, p2)|x3, s3] 6= E[v(t, p2)|x4, s′].
Note also that the expected surplus E[v(t, p1)|x3, s3] is strictly inside the range of E[v(t, p1)|x4, s], so the
second and third cases of the definition of strong comparability also fail.

7Furthermore, for category x4 and signals s < s4, case (iii) of the definition is satisfied. For category x3

and signals s > s̄3, case (ii) of the definition is satisfied. Hence the definition of comparability is satisfied for
all (x1, s) and all (x3, s).
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Category x1 p1 p2 p3

E[v(t, p)|x1, s1] 1 3 6
E[v(t, p)|x1, s2] 2 5 10
E[v(t, p)|x1, s3] 3 7 13

Category x2 p1 p2 p3

E[v(t, p)|x2, s1] 1 4 9
E[v(t, p)|x2, s2] 4 8 14
E[v(t, p)|x2, s3] 5 10 17

Category x3 p1 p2 p3

E[v(t, p)|x3, s1] 2 5 10
E[v(t, p)|x3, s2] 3 7 13
E[v(t, p)|x3, s3] 4 9 16

Category x4 p1 p2 p3

E[v(t, p)|x4, s1] 1 2 4
E[v(t, p)|x4, s2] 2 3.9 10
E[v(t, p)|x4, s3] 3 7 14

Based on the signals and associated expected surplus depicted in the tables, categories x1 and
x2 are comparable, x1 and x3 are strongly comparable, and x1 and x4 are not comparable.

First, categories x1 and x2 are comparable because

E[v(t, p′)|x1, s2]− E[v(t, p)|x1, s2] = E[v(t, p′)|x2, s1]− E[v(t, p)|x2, s1]∀p, p′,

E[v(t, p′)|x1, s3]− E[v(t, p)|x1, s3] = E[v(t, p′)|x2, s2]− E[v(t, p)|x2, s2]∀p, p′.

I.e. (x1, s2) and (x2, s1) have the same relative gains from all pairs of positions, and (x1, s3)
and (x2, s2) have the same relative gains. Moreover, (x1, s1) and (x2, s3) satisfy the conditions
for comparability in cases (iii) and (ii) of the definition, respectively.

Second, categories x1 and x3 are strongly comparable because

E[v(t, p)|x1, s2] = E[v(t, p)|x3, s1]∀p,

E[v(t, p)|x1, s3] = E[v(t, p)|x3, s2]∀p.

I.e. (x1, s2) and (x3, s1) have the same expected surplus from all positions, and (x1, s3) and
(x2, s2) have the same expected surplus. Moreover, (x1, s1) and (x3, s3) satisfy the conditions
for strong comparability in cases (iii) and (ii) of the definition, respectively.

Finally, categories x1 and x4 are not comparable. To see this, note that

E[v(t, p2)|x4, s2]− E[v(t, p1)|x4, s2] < E[v(t, p2)|x1, s]− E[v(t, p1)|x1, s] ∀s,

E[v(t, p3)|x4, s2]− E[v(t, p2)|x4, s2] > E[v(t, p3)|x1, s]− E[v(t, p2)|x1, s] ∀s.

That is, using positions p1 and p2 to compare the relative gains in expected surplus, an agent
with (x4, s2) has smaller relative gains than any (x1, s). On the other hand, using positions
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p2 and p3 to make the same comparison, that agent with (x4, s2) has larger relative gains
than any (x1, s). Hence the comparison in terms of relative gains from different positions
is not uniform across positions. Therefore the signal s2 for category x4 cannot be compared
to any signal for category x1. This counter-example for comparability requires that there be
at least 3 positions or treatments. With binary assignments comparability always holds, as
shown in section 3.3, although strong comparability need not hold.

For the remainder of the analysis I will assume that all categories are comparable. I further
study the two notions of comparability later in the paper. After presenting my main results
in section 3.1 and several extensions and applications in section 3.2, in section 3.3 I provide
three propositions which characterize different settings where comparability holds.

3.1 Optimal policy

Here I present the main results of the paper. Theorem 1 provides a general characterization
of the optimal policy which maximizes expected total surplus. Theorem 2 shows when the
optimal policy features differential treatment. Theorem 3 shows that differential treatment
can be optimal because of differences in the informativeness or noisiness of signal structures
across characteristics, not just because of biases in these signals.

Theorem 1. Suppose Assumptions 1-3 hold and categories are comparable. The optimal policy
P ∗ assigns agents to positions assortatively with respect to an index defined by r(x, s) =
E[v(t, pm)|x, s]− E[v(t, pm−1)|x, s].

In this theorem I first define an index function, given by E[v(t, p)|x, s] − E[v(t, p′)|x, s], for
some p > p′, and show that this index induces a total preorder over {(xi, si)}. I then show
that comparability impies this preorder is invariant with respect to p and p′. Hence without
loss of generality I let p = pm and p′ = pm−1. I then show that among policies that are
deterministic (up to tie-breaking among index-equivalent agents), optimality implies that
agents are assigned assortatively according to this index. Finally, I extend the result to
stochastic policies, to show that there is no gain from randomization among non-payoff-
equivalent agents; hence the optimal policy is essentially deterministic, and assigns agents to
positions assortatively with respect to the index function, i.e. the optimal policy is weakly
increasing in r(x, s).
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More generally, one can also find the optimal assignment in a setting without comparability,
using the Hungarian assignment algorithm and recent developments from the engineering
and computer science literatures that build on it. While such algorithms can solve for
the optimal assignment in a less structured setting, they are less interpretable in terms of
economic intuition and do not provide comparative statics, because they do not have an
index implementation, unlike the result in Theorem 1. That is, the predictions of these
algorithms are more of a black box.

Theorem 1 and the definition of comparability suggest an interesting avenue for further work:
one can decentralize this assignment model so that a different principal is in charge of each
position and decides who is admitted to it or not, in order to maximize the surplus generated
in that position. Such a model is useful for studying decentralized college admissions, relative
to the efficient assignment that is characterized in this paper. I discuss a decentralized version
of the model in section 3.2.3. This extension considers a stylized setting that abstracts away
from other possible frictions and issues that may arise with decentralization, but it provides
a useful first step in this direction.

Prior work (e.g. Chan and Eyster, 2003) has shown that the optimal policy may in general
be non-deterministic, including for reasons that are not driven by aggregate uncertainty.
However the proof of Theorem 1 implies the following observation in the current setting.

Corollary 1. The optimal policy is deterministic, except for tie-breaking among payoff-equivalent
agents.

Moreover, the optimal assignment described in Theorem 1 can be implemented with category-
specific signal thresholds for each position. The proof of the result directly shows how to set
these thresholds optimally.

Corollary 2. For a set of agents with observables {(xi, si)}, the optimal deterministic policy
can be implemented with category-specific signal cutoffs for each position: s̄p(x) ≡ min{si :
P∗(p|x, si) > 0}.

Theorem 1 and Corollary 2 show that differential treatment arises endogenously in this
environment, as the solution to the policy-maker’s surplus maximization problem. In general,
the category-specific cutoffs that implement P ∗ need not be the same across categories, and
hence some categories of agents will be favored, relative to their signal realizations. In an
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education context, it may be efficient to admit students to schools or universities according
to exam score cutoffs that are different across categories (e.g. across socio-economic status,
race, or some other covariate). Similarly, in a labor market context, it may be efficient to
hire or promote candidates according to performance thresholds that are different across
categories (e.g. across gender or some other covariate).

Similar cutoff implementations are developed in other recent work on the design of educa-
tion markets (e.g. Azevedo and Leshno, 2016; Agarwal and Somaini, 2018; Leshno and Lo,
2020; Leshno, 2021). However, the most important feature of this implementation is that
cutoffs generally need to be able to vary within positions in order to implement an efficient
assignment. Such variations explicitly account for differences in the informational content
of signals for agents of different categories. For example, if two agents have characteristics
and signals (x′, s′) and (x′′, s′′) such that r(x′, s′) > r(x′′, s′′), then (x′, s′) will be assigned to
a weakly higher position, regardless of whether s′ > s′′ or s′ < s′′.

Moreover, suppose that for categories x′, x′′ it is the case that r(x′, s) > r(x′′, s) for all s ∈ S.
The optimal assignment from Theorem 1 implies that an agent of category x′ would always be
assigned to a weakly higher position than an agent of category x′′ who has the same signal,
with strictly higher assignments for some sets of capacities (k1, ..., km). In other words,
p(x′, s) ≥ p(x′′, s) when the optimal p(x, s) is a singleton, or more generally supp[P∗(x′, s)] ≥
supp[P∗(x′′, s)] in the strong set order, and these supports overlap by at most one treatment.
Such a pattern, where the benefit indices can be ordered across categories, emerges in some
more structured environments where the conditional type distributions can be ordered across
categories. As an application, in section 3.2.1 I consider a setting where the conditional type
distributions can be ordered across categories in terms of first-order stochastic dominance,
and show that categories with worse distributions are optimally assigned according to lower
signal cutoffs for each position.

Theorem 1 and Corollary 2 imply that the optimal policy is assortative with respect to the
agent’s index, r(x, s), but in general need not be assortative with respect to signals. The
optimal assignment is monotonic in signals within categories, but not across categories. Note
that assortativity with respect to signals would be equivalent to the optimal signal threshold
for each position being category-invariant, i.e. s̄p(x) would be constant in x for each p.
Example 2 illustrates the non-monotonicity with respect to signals in a very simple setting.

Example 2. Suppose there are 2 positions, p1, p2, with capacities k1 = 2 and k2 = 1, and 3
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agents with observables (x1, s1), (x1, s2), (x2, s1), for some categories x1, x2 and some signals,
s1 < s2, with corresponding expected values for the positions given by the following table:

p1 p2

E[v(t, p)|x1, s1] 1 2
E[v(t, p)|x1, s2] 2 4
E[v(t, p)|x2, s1] 0 3

The optimal assignment here is p(x2, s1) = p2, p(x1, s2) = p(x1, s1) = p1. So p(x2, s1) >
p(x1, s2) even though s1 < s2, and despite the fact that E[v(t, p2)|x2, s1] < E[v(t, p2)|x1, s2].
Therefore the optimal policy is not increasing with respect to either the agents’ signals or the
agents’ expected values.

At this point it is natural to ask whether there are settings where the optimal assignment
does not require differential treatment and can therefore be implemented with category-
invariant cutoffs. Before presenting the answer to this question, I first provide a useful
definition of when signal structures are equivalent or identical.8 To state the definition, first
let ṽp,x(s) ≡ E[v(t, p)|x, s] denote the expected value of v(·) with respect to F (t|x, s), for
any p and x. Then let w̃p,x(v) ≡ ṽ−1

p,x(s) denote the inverse, for any p and x. This inverse is
well-defined, because v(t, p) is increasing in t and the expectation is taken with distributions
F (t|x, s) which are FOSD-increasing in s.

Definition 3. Two signal structures Ft,x and Ft,x′ are equivalent with respect to v(·) if ∃δ s.t.

w̃p,x(v) = w̃p,x′(v) + δ

for any p, for all v ∈ Im[ṽp,x(s)] ∩ Im[ṽp,x′(s)].
The signals Ft,x and Ft,x′ are identical with respect to v(·) if this holds for δ = 0.

In words, two signal structures are equivalent if the expected values as a function of signals
are horizontal translations of each other, over their common image. That is, the expected
value ṽp,x(s) corresponding to a signal distribution Ft,x is a shift to the left or right of the
expected value ṽp,x′(s) corresponding to a signal distribution Ft,x′ . These expected value
functions only need to agree with each other over the range where their images intersect.
Analogously, two signal structures are identical with respect to v(·) if their expected values

8In Proposition 7 I also show that this definition of equivalence is sufficient for strong comparability.
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as a function of signals are exactly equal. This is the case if F (t|x, s) is constant in x; i.e. t
conditional on s is independent of x.

The next result answers the question of whether there are settings that do not require
differential treatment.

Theorem 2. Suppose Assumptions 1-3 hold and categories are comparable. The optimal policy
P ∗ can be implemented with category-invariant cutoffs for any (k1, ..., km) if and only if the
signals {Ft,x} are identical with respect to v(·). In particular, if {Ft,x} are equivalent but not
identical, ∃ x, x′, (k1, ..., km) and s > s′ such that P∗(x, s) < P∗(x′, s′).

I show that the optimal policy is assortative with respect to signals only in a very special
case, when the signal structures are identical with respect to v(·). This is a very demanding
assumption: it means that other characteristics represented by X have effectively no impact
on the expected surplus that an agent generates as a function of their signal. In an education
context this would mean, for example, that students with different socio-economic status or
parental investment in schooling have the same expected returns to education. In a labor
market context it would mean, for example, that factors such as parental leave, which are
empirically known to affect men’s and women’s careers differently, have no impact on the
expected surplus that an employee generates as a function of their past output or some
other signal of productivity. More generally, one might only expect the optimal policy to be
“quasi-assortative,” in the sense that it assigns agents to positions according to their benefit
indices, which correspond only loosely to their signals.

The result above illustrates a bias motive for differential treatment: to maximize surplus
the policy-maker must translate possibly biased signals across categories. Since surplus is a
function of types, not of signals per se, the policy-maker maps signals into beliefs about types,
and this mapping may be different across categories.9 The signal structures across different
categories may be inherently biased in favor of some categories, unless these signal structures
are identical, which is unlikely to be the case in practice. If the distributions that generate
these signals are not identical, then the translation of signals into types will compensate
agents from categories whose signals are inherently worse, giving rise to differential treatment,
such as affirmative action.

9The definition of comparability ensures that such a mapping is possible—if categories are not comparable,
then the optimal policy may assign agents to positions in a way that is not assortative with respect to any
index across categories.
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Example 3 below is an especially simple illustration of Definition 3, where the distributions
of signals are horizontal translations of one another. But the equivalence can hold more
generally—it would be sufficient, for example, that for every s there exists some s′ = s + δ

such that the Bayesian posteriors F (t|x, s) and F (t|x′, s′) are equal.

Example 3. Suppose t ∈ {tL, tH} and S = [0, 1]. Consider 3 categories, x1, x2, x3 with signal
distributions given by:

F (s|t, x1) =


min{3s, 1} for t = tL

min{(3s)3, 1} for t = tH

F (s|t, x2) =


max{0,min{3(s− 1

2), 1}} for t = tL

max{0,min{[3(s− 1
2)]3, 1}} for t = tH .

F (s|t, x3) =


max{0, 3(s− 2

3)} for t = tL

max{0, [3(s− 2
3)]3} for t = tH .

0.2 0.4 0.6 0.8 1
0

0.5

1

s

F (s|t, x)

Figure 2: Signal distributions for x1 (solid), x2 (dashed) and x3 (dash-dotted).

Note that Ft,x1, Ft,x2 and Ft,x3 are pairwise equivalent, because a signal s for category x1

corresponds to s′ = s+ 1
2 for category x2 and to s′′ = s+ 2

3 for category x3.

Consider a setting with 2 positions (p1, p2). Suppose first that agents belong to categories x1

and x3. A bias of size 2
3 in the signal distributions means that the supports of agents’ signals

are disjoint here: [0, 1
3 ] for category x1 and [2

3 , 1] for category x3. Any agent of category
x3 would always have a higher signal than any agent of category x1, although the same is
generally not true of the benefit indices r(x3, s) and r(x1, s). In this case an optimal assign-
ment would typically feature differential treatment for most capacities k1 and k2, because the
signal bias is large by construction. I.e. an agent with (x1, s) has the same conditional type
distribution and the same expected surplus as an agent with (x3, s+ 2

3).
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On the other hand, suppose that agents belong to categories x2 and x3 and have observ-
ables {(x2, 0.6), (x2, 0.8), (x3, 0.7), (x3, 0.8)}. Note that r(x2, 0.8) > r(x3, 0.8) > r(x2, 0.6) >
r(x3, 0.7). Here one can construct some examples that do not require differential treatment.
For instance, if the capacity of p2 is k2 = 2, then it is optimal to assign (x2, 0.8) and (x3, 0.8)
to p2 and the rest of the agents to p1. So the optimal assignment would be implemented with
category-invariant signal cutoffs for position p2: s̄p2(x2) = s̄p2(x3) = 0.8. Nonetheless, be-
cause there is a bias of size 1

6 in the signal distributions for categories x2 and x3, there will
be some capacities (k1, k2) such that the optimal assignment requires differential treatment.
For example, if k2 = 3, then it is optimal to assign (x2, 0.8), (x3, 0.8) and (x2, 0.6) to p2,
leaving (x3, 0.7) for position 1. That is, an agent with a signal of 0.7 is assigned to a lower
position, while another agent with signal 0.6 is assigned to a higher one. The signal cutoffs
for position p2 obviously vary across categories: s̄p2(x2) = 0.6, while s̄p2(x3) = 0.8.

The above example also illustrates Theorem 2. In this setting signals are biased, as the
distributions of signals conditional on types are horizontal shifts of one another. The example
shows that when the bias is small enough, one can construct examples where the optimal
assignment does not require differential treatment for some capacities. However, it can also
be the case that the optimal policy generically features differential treatment for any given
capacities, if the bias is large enough. More generally, the only case where the optimal
assignment does not require differential treatment regardless of capacities is that where the
distributions {Ft,x} are identical across x.

The next result highlights a separate informativeness motive for differential treatment: even
if signals are unbiased across categories (i.e. a signal implies the same expected type for any
category), the surplus-maximizing policy may favor agents whose categories have either more
noisy or less noisy signals. This is because the optimal policy is assortative with respect to
r(x, s), which need not be constant in x even if E[t|x, s] is constant in x. In particular, if v
exhibits some intrinsic preference for or against variability, then agents whose expected types
are equal, conditional on the same signal, will be ranked differently according to r(x, s).

This intuition is quite general and can be formalized in a more specific setting. I consider two
classes of surplus functions which exhibit a preference for and against dispersion in types.

Definition 4. A value function v(t, p) has (strictly) convex differences in t if v(t, p′)− v(t, p)
is a (strictly) convex function of t, for any p′ > p. Alternatively, v(t, p) has (strictly) concave
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differences in t if v(t, p′)− v(t, p) is a (strictly) concave function of t, for any p′ > p.10

Concave and convex differences in t represent the incremental value of assigning an agent
to a higher position, as a function of that agent’s type. Intuitively, convex differences in t
mean the agent generates more surplus from being assigned to a higher position, and the
extent of this is increasing in their type t. Such an assumption could represent settings
where there are disproportionately large gains from “superstar” agents with very high types
in high positions. In an education context, this would be the case if very high ability students
generate larger-than-proportional values from higher positions, for example in the admission
of future superstar scientists to postgraduate programs. In an organizational context, this
would be the case if the ability or productivity of managers in higher-tier management
positions has an increasingly larger effect on the organization’s performance. Conversely,
concave differences in t mean the agent generates more surplus from being assigned to a
higher position, but the extent of this decreases in their type t. Such an assumption would
capture diminishing returns to ability or productivity when comparing the incremental gains
from being assigned to a higher position. This would mean that the policy-maker prefers
consistency in the agents’ types. Concave and convex differences in t are akin to risk-averse
and risk-seeking preferences, and in my model the value function v determines whether the
policy-maker has an intrinsic apreference for or against dispersion.

Next, I use these definitions to illustrate the informativeness motive for differential treatment,
in a setting with unbiased signals with different informational content.

Theorem 3. Suppose Assumptions 1-3 hold, categories are comparable, E[t|x, s] is constant
in x for every s, and for some x′, x′′, F (t|x′′, s) is a mean-preserving spread of F (t|x′, s).
If v(t, p) has [strictly] convex differences in t, then r(x′′, s) ≥ [>]r(x′, s) for all s.
If v(t, p) has [strictly] concave differences in t, then r(x′′, s) ≤ [<]r(x′, s) for all s.

Theorem 3 shows that the informational content of signals affects how agents are ranked
even if they are unbiased. Because the benefit indices differ across categories, there exist
problems where the capacities are such that the optimal policy assigns some agents with
lower signals to higher positions, based on the differences in ranks across categories. That
is, agents from categories with more or less noisy signals may have a higher or lower index,

10One can also define analogous properties of the differences when T is a discrete space, but for ease of
exposition I will focus on the case where T is continuous.
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depending on whether v has convex or concave differences in type. Noisiness is formalized
in terms of mean preserving spreads in the conditional type distributions, which in this case
is equivalent to the convex stochastic order and second-order stochastic dominance.

The literature on statistical discrimination has generally focused on special environments
where groups with less noisy conditional type distributions optimally receive more favorable
treatment. This is the case, for example, in Aigner and Cain (1977), who assume that 2
groups of employees have different variances of their signal distributions and an employer
explicitly dislikes noise in the conditional type distribution; hence the group with the noisier
signal is discriminated against. A similar prediction is made in Cornell and Welch (1996).
Here prospective employees either have the same characteristic as the employer or a differ-
ent one, and the employer is assumed to observe more signals about candidates with the
same characteristic. By assumption, these candidates have a more dispersed distribution
of signals in general, but the conditional distribution of their types given their signals is in
fact more precise. Hence the employer optimally tends to discriminate in favor of the same-
characteristic candidates with less noisy conditional type distributions. Similarly, Bjerk
(2008) studies a model where two groups of job candidates have skill signals with different
precision, and explicitly assumes a discrete form of concave differences. Hence the group
with less noisy conditional type distributions is favored. However, these types of results in
the previous literature can be reversed altogether. Theorem 3 means that differential treat-
ment need not inherently disfavor agents with noisier conditional type distributions. This
result shows that whether it does or does not depends precisely on whether v has concave
or convex differences in t.

The following example illustrates the definition of concave and convex differences and the
intuition from Theorem 3. I discuss further results in this direction in section 3.2.2, where I
also consider aggregate inequality. In that section I also provide another parametric example
with a university admissions interpretation.

Example 4. Consider the problem of an employer who wants to assign two workers among
two positions, p1, p2, each with a capacity of 1. Suppose the employer’s value function is
v(t, pi) = Ai · tα, where Ai is a coefficient associated with position pi and t is a worker’s
type, with t ∈ [0, 1]. Note that categories are comparable because the positions are binary
(as shown in Proposition 5 later). Furthermore, assume A2 > A1 > 0 and α > 0, so that
v is increasing in both arguments and supermodular in (t, p). The incremental gain from
assigning a worker of type t to p2 instead of p1 is v(t, p2)− v(t, p1) = (A2 −A1) · tα. Clearly
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v has convex differences in t if α > 1 and concave differences in t if α < 1.

Suppose the two workers have characteristics x1 and x2 respectively, and assume that F (t|x2, s)
is a mean-preserving spread of F (t|x1, s) for all s. Note that r(x1, s) > r(x2, s) for all s if
α < 1, and conversely r(x1, s) < r(x2, s) for all s if α > 1. Define a cutoff s̄2(s1) such that
r(x1, s1) = r(x2, s̄2(s1)). Ignoring ties, based on Theorem 1 the optimal policy assigns worker
1 to position p2 if s2 < s̄2(s1), or worker 2 to position p2 if s2 > s̄2(s1).

Recall that r is increasing in s, r(x1, s1) = r(x2, s̄2(s1)) by definition, and r(x1, s1) > r(x2, s1)
if α < 1. So s̄2(s1) > s1 if α < 1. In this case the optimal policy favors the category x1 with
less noisy signals, because it holds a worker of category x2 to a higher bar for promotion to
position p2, since s̄2(s1) > s1 for all s1.

Analogously, if α > 1 then r(x1, s1) < r(x2, s1) and therefore s̄2(s1) < s1. In this case the
optimal policy favors the category x2 with noisier signals, because it holds a worker of that
category to a lower bar for promotion to position p2, since s̄2(s1) < s1 for all s1.

3.2 Applications and extensions

My main results are derived in a general and non-parametric setup. In the following subsec-
tions I consider some applications to settings with additional structure, which allow me to
derive more specific results.

3.2.1 Differential treatment in university admissions with biased signals

In some environments signaling technologies may be systematically biased across categories.
That is, for some categories the mapping between types and signals may be consistently
higher in some sense, thus making the informational content of signals biased across cate-
gories. To model such an application, I assume that signal structures can also be ordered
across categories (whereas in my main analysis I only assumed that signals can be com-
pared according to the MLRP within categories). In particular, the distributions of types
conditional on some signal s may be comparable across characteristics x in the FOSD sense.

In the context of university admissions, for example, it may be that the distribution of abili-
ties, conditional on some university entrance score s, is FOSD-decreasing in a socio-economic
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status covariate x, such as household income or parental investment. That is, conditional on
the same exam score, a lower socio-economic status student would have a higher distribution
of ability if socio-economic status tends to raise students’ exam scores in some sense. This
may reflect the fact that, in order to achieve the same exam score, a lower socio-economic
status student may have to overcome larger obstacles, requiring higher ability; or it may
reflect the beneficial effect of parental investments in education on exam performance. The
literature on human capital (see e.g. Todd and Wolpin, 2007; Heckman, 2011; Fiorini and
Keane, 2014) documents that higher socio-economic status parents tend to contribute more
time and money to their children’s education, which would justify such an assumption. The
assumption is also consistent with the idea of “belief flipping” in the theoretical models of
Fryer (2007) and Bohren et al. (2019), and with the latter’s experimental evidence of belief
reversion. This setting can be formalized as follows.

Assumption 4. Suppose X can be ordered in such a way that F (·|x′, s) �FOSD F (·|x′′, s) for
x′ < x′′ and for all s.

Assumption 4 says that characteristics can be ordered so that “higher” characteristics are
more strongly associated with lower types, given the same signal. A sufficient condition for
this assumption to hold would be that the family of distributions {Ft,x} satisfies a version
of the strict monotone likelihood ratio property in x,11 which would imply Assumption 4,
analogously to Proposition 1. This assumption can also easily represent settings where a
student belongs to multiple categories, because the model allows X to be vector-valued. In
this case x and x′ are sets of characteristics, rather than a single-dimensional covariate.12

Assumption 4 could apply not just to characteristics such as ethnicity or gender, but more
broadly to socio-economic characteristics such as family composition, household income, or
geographic location. Some standardized tests, such as the SAT, attempt to be neutral with
respect to race, but it is difficult to imagine that such tests are neutral with respect to other,

11Specifically: the family of signal distributions {Ft,x} satisfies the strict inverse monotone likelihood ratio
property in x if X can be ordered so that for x′′ > x′, the ratio of the densities ft,x′ (s)

ft,x′′ (s) is increasing in t, for
any s, whenever it is well-defined.

12It is important to note that the decision-maker in my model is sophisticated and aware of the biases
and differential noisiness of signals for different categories, which is also typically the case in the statistical
discrimination literature. This is a reasonable simplification in settings such as university admissions, where
the decision-maker observes agents’ outcomes ex post and can learn over time how the signals differ sys-
tematically across categories. In future work one can also consider the need for the decision-maker to learn
about the heterogeneity of signals across characteristics.
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non-protected socio-economic characteristics, such as household income, location, or family
status. The fact that Harvard University ranks candidates using its own internal composite
scores, which allegedly treat candidates with the same SAT scores differently across SES
characteristics, does not necessarily mean that Harvard’s policy is motivated by concerns
about differential informativeness, but it is at least consistent with my theoretical results.
Harvard’s motivation for using a composite admission score is likely to be more complex and
to include other concerns besides the informational content of standardized tests—such as
diversity in the composition of its student body. Nonetheless, my results here suggest that
the differential informational content of standardized tests across various SES covariates
could be a factor in admissions, in addition to student diversity.

Following a similar logic to that in Theorem 1, Assumption 4 implies that the optimal policy
features a form of differential treatment that favors lower categories.

Proposition 2. Suppose Assumptions 1-4 hold and categories are comparable. The optimal
policy P ∗ is implemented by category-specific cutoffs s̄p(x) that are increasing in x.

That is, conditional on the same signal s, a lower-category agent is assigned according to a
lower cutoff for each position, compared to a higher-category agent, and hence is favored by
the optimal assignment policy.13 This is because the optimal policy assigns agents according
to the ranking function r(x, s), which is increasing in s and decreasing in x under the assump-
tions in this application of the model. Thus Proposition 2 implies that differential treatment
in admissions maximizes surplus: lower-characteristics agents are admitted according to
lower signal cutoffs for each position. This applies not only to race-based affirmative action,
but also more broadly to differential treatment across other characteristics.

The above application to university admissions considers the optimal assignment policy of a
single decision-maker. In decentralized university admissions, such as the system used in the
United States, this model applies to the choices made by one university’s admissions office
(e.g. to admit or not admit applicants, or to assign scholarships or different levels of financial
aid to applicants). This is the same approach as that used in some of the recent market design
literature on college admissions, which models individual colleges’ choice functions, rather

13This favoritism may not strictly benefit lower-category agents, if the realizations of observables {(xi, si)}
and the capacities of the positions happen to be such that the differences in ranks are irrelevant near the
cutoffs for each position. However, because r(x, s) is strictly decreasing in x, there exist some capacities and
realizations of the observables such that the optimal policy strictly favors lower-category agents.
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than market-wide matching outcomes (see e.g. Echenique and Yenmez, 2015; Abdulkadiroğlu
and Grigoryan, 2021). The model can also be applied to centralized university admissions
systems, like those used in other countries (see e.g. Chen and Kesten, 2017; Hafalir et al.,
2018). In section 3.2.3 I also consider efficient assignments in a decentralized setting, which
can represent decentralized university admissions systems where multiple universities make
their own admissions decisions.

3.2.2 Optimal treatment inequality with unbiased signals

My results so far have considered how a policy-maker should use the signals and characteris-
tics of agents to implement an assignment that maximizes total surplus. In many empirically
relevant settings I find that the optimal policy favors some groups, relative to their signals, in
the sense that it treats signals differently across characteristics. But this need not imply that
different groups receive different treatments relative to their types. For example, if signals
for one group are mechanically shifted downwards, compared to those for another group, as
in Example 3, it may that the mapping from types to positions induced by P ∗ is in fact
the same across X—that is, no group is actually favored when one considers how types are
treated, even though P ∗ treats groups differentially in terms of signals.

However, in some cases P ∗ does induce unequal treatment across groups, with respect to
types, not just signals. Interestingly, this can also be the case when signals are unbiased
across characteristics, i.e. E[t|x, s] is constant in x. In this section I study such a setting as
an application of the model.

Assumption 5. Suppose {Fs,x} is such that E[t|x, s] is constant in x, for every s, and for
some x′, x′′, F (t|x′′, s) is a mean-preserving spread of F (t|x′, s).

Assumption 5 is the same as the setting of Theorem 3, and represents an environment where
signals are unbiased across categories, but their noisiness differs across categories. Signals
are noisier for category x′′, in the sense that the distribution of types conditional on a signal
s is a mean-preserving spread of the distribution of types for category x′, conditional on the
same signal. In an education context, this could be the case if university entrance scores are
more or less noisy measures of ability for some categories than others; that is, conditional
on the same score, one group may have higher or lower dispersion in ability.
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Proposition 3. Suppose Assumptions 1-3 and 5 hold, and categories are comparable. If
v(t, p) has convex [concave] differences in t, then p∗(x′′, s) ≥ [≤]p∗(x′, s) for all s, with strict
inequality for some capacities and observables. Moreover, for all p, {s : P∗(p|x′′, s) > 0} ≤
[≥]{s : P∗(p|x′, s) > 0} in the strong set order.

Proposition 3 shows that aggregate inequality of treatments across groups can be optimal
even when signals are unbiased, with identical prior distributions of types across groups.
This is driven by the fact that the optimal policy assigns agents according to their expected
incremental gains from higher treatments, not according to their expected types. Therefore
the treatments of agents from categories x′ and x′′ differ in aggregate, with x′′ receiving
higher treatments when v(t, p) has convex differences in t, because x′′ has noisier signals
and the policy-maker has a preference for dispersion. As a result, for any given treatment
p, agents from category x′′ who are assigned to p have lower signals, leading to aggregate
inequality, despite the prior distribution of types being the same across categories.

In the context of university admissions this leads to the conclusion that average exam scores
or expected abilities need not be equal across groups for each treatment. Rather, an efficient
admissions policy would equalize the expected incremental surplus from admission. Similarly,
in the context of hiring and promotion policies in organizations, the result implies that past
performance or expected productivity need not be equal across groups.

The optimal treatment inequality characterized in Proposition 3 can be illustrated with a
parametric example.

Example 5. Suppose a university is deciding which one of 2 students to admit, i.e. the
positions are (p1, p2) with capacities k1 = k2 = 1. The students have normally distributed
abilities, ti ∼ N(0, 1), and belong to categories x1 and x2. A category xj student has a uni-
versity admission score si = ti + εji , where ε

j
i ∼ N(0, σj) is zero-mean, normally-distributed

noise, with variance σ2 > σ1, for categories x1, x2. Note that F (t2|x2, s2 = s) is a mean-
preserving spread of F (t1|x1, s1 = s), for any s.

For any v(t, p) that has strictly convex differences in t, conditional on s1 = s2 = s, the
university would strictly prefer to admit student 2, since r(x2, s) > r(x1, s), and for any s2

in some neighborhood below s, the university would prefer to admit student 2. That is, there
exists some threshold s̄2(s1) < s1 such that for a given s1, the university prefers to admit
student 2 if and only if s2 ≥ s̄2(s1).
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Then student 2 is admitted with probability P(s2 ≥ s̄2(s1)) =
∫
P(s2 − s1 ≥ s̄2(s1) −

s1|s1)dF (s1). Note that s2 − s1 is normally distributed, with mean 0, and for any s1,
s̄2(s1) − s1 < 0. Therefore the integrand is strictly larger than 1

2 everywhere, and P(s2 ≥
s̄2(s1)) > 1

2 . That is, the optimal policy is more likely to admit student 2 than student
1. Moreover, given that the type distributions are the same ex ante, the expected ability of
student 2 conditional on 2 being admitted is lower than the corresponding expected ability
of student 1 conditional on 1 being admitted. Therefore aggregate inequality arises both in
terms of admission scores, since s̄2(s1) < s1, and in terms of expected types who are admitted
across different categories.

3.2.3 Decentralized assignment with differential treatment

The model thus far considered the problem of optimal assignment from the perspective of a
single policy-maker, such as a university deciding which applicants to admit, a school district
assigning students across schools, or an organization deciding which candidates to hire or to
promote within its hierarchy. Suppose instead that the assignment of agents to positions is
decentralized, so that a different decision-maker decides which applicants to accept for each
treatment or position.

To represent this case, I assume the following timing of the game: (1) each applicant applies
costlessly to all positions; (2) each decision-maker j ∈ {1, ...,m} decides which subset of
agents, denoted Aj, to accept for position pj, in order to maximize∑

i∈Aj

E[v(ti, pj|xi, si)];

and (3) agents accept the highest position to which they are accepted.

When will this decentralized assignment game yield efficient outcomes, such as the optimal
index assignment characterized in Theorem 1? It turns out that the answer relates closely
to the notion of comparability defined in Definition 1.

Proposition 4. Suppose Assumptions 1-3 hold and categories are comparable. The outcome
of the decentralized assignment model is efficient if and only if categories are strongly com-
parable.

This result illustrates the broader usefulness of the comparability concepts defined in this pa-
per, and also demonstrates that the richer assignment framework of this model of differential
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treatment, with multiple treatments or positions, can be applied to study novel questions not
explored in the existing statistical discrimination literature—such as whether decentralized
assignment yields efficient outcomes, or how centralized and decentralized assignments com-
pare. Such comparisons are useful for example in the context of student assignment within
school districts, where the delegation of admissions decisions to individual schools (which
have reputational concerns) results in inefficient outcomes if and only if student categories
are not strongly comparable. Similarly, in the context of hiring and promotion within an
organization, where different divisions or tiers of the organization may make their own hiring
and promotion decisions, seeking to maximize the division’s output, rather than the over-
all value generated within the organization, decentralized assignment results in inefficient
outcomes if and only if worker categories are not strongly comparable.

Whether decentralized assignments are efficient or not is independent of whether such as-
signments feature differential treatment or not. It is possible that a decentralized assignment
is both efficient and features differential treatment, e.g. if categories are strongly comparable
but signals are not identical according to Definition 3. Or it could be efficient and not feature
differential treatment, e.g. if signals are identical according to Definition 3. It is also possible
that decentralized assignments are not efficient, but still feature differential treatment, e.g.
if categories are not strongly comparable and signals are biased in a particular way. To see
the latter, consider the setting depicted in the right panel of Figure 1. If assignments are
decentralized, so that each position maximizes the expected surplus generated by its own
agents, then any position would prefer an agent with characteristics x3 and a signal s̄3−δ for
a small enough δ over another agent with characteristics x4 and signal s̄4. For example, in a
setting with 2 positions, each with a capacity of 1, and 2 agents with (x3, s̄3−δ) and (x4, s̄4),
position p2 would accept (x3, s̄3 − δ). This outcome is not efficient (because the agent with
(x4, s̄4) has marginally larger gains from p2 relative to p1), but it still features differential
treatment, because s̄3 − δ < s̄4. Exploring differential treatment in a decentralized assign-
ment framework could therefore be a fruitful direction for future research, independent of
its efficiency implications.

3.3 Conditions for comparability

The concept of comparability is a very general one and holds in many environments—for
example, most parametric models of statistical discrimination satisfy it. In this subsection

30



I provide three propositions which characterize multiple natural settings where it holds: (i)
when the set of positions is binary; (ii) when v(·) satisfies an additional condition, which
ensures that categories are comparable for any {Ft,x}; and (iii) when {Ft,x} satisfies Defini-
tion 3, which ensures that categories are comparable for any v(·).

Proposition 5. Suppose Assumptions 1-3 hold and positions are binary, {p1, p2}. Then all
categories are comparable.

With a binary set of positions the assumptions made earlier ensure that categories are
comparable. These assumptions ensure that E[v(t, p)|x, s] is increasing in s for any p, and
moreover E[v(t, p2)|x, s]− E[v(t, p1)|x, s] is also continuous and increasing in s. Therefore a
violation of comparability requires at least 3 positions among which agents must be assigned.

There are several applications where the set of treatments that the policy-maker must assign
can be modeled as binary: the decision to admit or not admit a student in school and
university admissions, as well as hiring decisions in organizations. In such settings, categories
are comparable without any further assumptions on v(t, p) or {Ft,x}.

The next proposition provides another environment where comparability holds.

Proposition 6. Suppose Assumptions 1-3 hold and v(t, p) is multiplicatively separable in t

and p. Then all categories are strongly comparable, for any family of signals {Ft,x}.

Proposition 6 shows that comparability is satisfied for any family of distributions {Ft,x},
as long as v(·) is multiplicatively separable. This makes comparability a widely applicable
concept. Such separable value functions are commonly used in auction theory, mechanism
design, and other settings, as they provide easy ways to model complementarities and su-
permodularity. For example, the value function in a quasi-linear environment is v · x, where
v is the agent’s type and x is the allocation; the equivalent here is v(t, p) = t · p.

The notion of signal equivalence in Definition 3 is also useful because it provides another
type of sufficient condition for categories to be comparable, without imposing additional
conditions on v(·).

Proposition 7. Suppose Assumptions 1-3 hold and the signal distributions {Ft,x} are (pair-
wise) equivalent, as in Definition 3. Then all categories are strongly comparable.
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Proposition 7 establishes a close connection between the equivalence of signals and the com-
parability of categories. Intuitively, if a signal s, for given category x, is equivalent to a
signal s′, for given category x′, then the two categories are comparable.

4 Discussion

I study a setting where a policy-maker wants to assign agents with unobservable types and
observable signals and characteristics to different positions or treatments. I characterize the
policy that maximizes expected total surplus: it assigns agents to positions monotonically
with respect to an index function that measures the expected incremental gains from different
treatments. However, the optimal policy is in general not monotonic with respect to the
agents’ signals, or even the agents’ expected types. Therefore the optimal policy will feature
differential treatment in a variety of cases, where the distributions of signals conditional on
types vary across characteristics.

I highlight two main intuitions for these results. First, to maximize surplus the policy-
maker must translate signals into beliefs about types, and this translation need not be the
same across characteristics if some groups of agents have different signal distributions—i.e.
if signals are biased across characteristics. In this case the policy-maker may optimally
favor groups whose signal distributions are worse. Second, differential treatment can be
optimal even if signals are unbiased across characteristics, provided their informativeness
differs across characteristics. That is, different groups may have more or less noisy signal
distributions, and the optimal policy may favor some groups depending on whether the
policy-maker’s objective function has a preference for or against dispersion in types. These
results provide a novel efficiency-based rationale for differential treatment policies.

The paper highlights several observations for public policy debates and empirical research
on affirmative action and gender equity in education and labor market settings. First,
differential treatment may arise out of concern for economic efficiency, not just fairness.
Public discourse on affirmative action and on gender equity policies, for example, often
focuses on fairness.14 Second, comparing signals such as university exam scores or past

14This is not to suggest that there must exist a trade-off between fairness and efficiency; indeed, Persico
(2002) implies that this need not be the case. The literature on “tagging” (Akerlof, 1978) also provides
examples of other settings where differential treatment can improve efficiency.
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employee performance across characteristics may be asking the wrong question, as it focuses
on the wrong metric. In the context of maximizing surplus, it is expected incremental benefits
that matter, not signals per se. Therefore a more relevant empirical question would be to
estimate the returns to education across different characteristics for the marginal admitted
students at a university, or the productivity across different characteristics for the marginal
employees at an organization. If these are consistent across characteristics, this would point
to an efficiency rationale for differential treatment. Third, comparing expected abilities or
productivities across characteristics, conditional on exam scores or past performance, may
also be asking the wrong questions, as the optimal policy can depend on the dispersion of
types across characteristics, not just on means. So a more relevant empirical question would
be to estimate whether there is inherently a disproportional benefit or loss due to dispersion
in the abilities of students or in the productivity of employees. If so, this would also point
to an efficiency rationale for differential treatment.

The paper contributes to the literature on matching and assignment games. The model
explicitly distinguishes between an agent’s signal and their payoff-relevant type, unlike most
prior work in this area, which treats signals as directly payoff-relevant. The theoretical
literature on college admissions, for example, typically models a university’s payoffs over
students’ exam scores, rather than over some more primitive and welfare-relevant type,
such as the returns to education. Similarly, in school choice papers, schools’ priorities are
sometimes defined based on students’ exam scores. Distinguishing between signals and types
is especially important for efficiency considerations, because the mapping between these need
not be independent of other demographic or socio-economic characteristics.

The paper also contributes to the statistical discrimination literature in several ways. First,
I focus on the problem of designing assignment policies which maximize efficiency, rather
than on explaining discrimination per se, which is the main aim of statistical discrimination
theories that focus on profit maximization rather than social surplus. For example, the
literature on labor discrimination seeks to explain why an employer may favor one group
of workers over another, whereas I consider how an employer who understands that some
groups have less favorable signaling technologies may optimally treat workers in a way that
compensates for such differences.

Second, I study a more general assignment model, with arbitrary treatments or positions,
without making any specific parametric assumptions about the distributions of types and sig-
nals or the functional form of payoffs, in contrast to the existing literature on discrimination.
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I provide general results using tools from information economics, monotone comparative stat-
ics, and stochastic ordering theory. This has several advantages relative to previous results.
The analysis does not rely on any parametric or functional form assumptions, which models
typically rely on for tractability, and this framework can also be analyzed without the as-
sumption of comparability, which is implicitly guaranteed in existing models. The general
treatment structure of this assignment model applies to a broader class of settings than the
binary model usually considered in the literature—e.g. the assignment of students to schools
within school districts and the promotion of employees to different tiers of an organizational
hierarchy. My results on the effect of signal informativeness in section 3.2.2 show that both
more and less informative signal structures can lead to certain categories of agents being
favored, whereas the existing literature has focused on particular parametric assumptions
which yield one direction of this relationship.

Finally, I show that this more general assignment framework enables the study of new set-
tings not considered in the existing literature. For instance, I study the differences between
centralized and decentralized assignments and the efficiency implications of decentralization.
This framework also enables future work on differential treatment with endogenous human
capital, on the effect of organizational structure on the extent of differential treatment, and
on wage inequality in organizations.
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A Proofs

Theorem 1

Proof. Consider any positions p, p′ with p > p′ and let

rp,p′(x, s) = E[v(t, p)|x, s]− E[v(t, p′)|x, s]

be the index of an agent with observables (x, s).

Note that rp,p′(·) induces a total preorder on X×S, with totally ordered equivalence classes,
denoted by Cl. Then (xi, si) and (xj, sj) belong to the same equivalence class iff rp,p′(xi, si) =
rp,p′(xj, sj), and (xi, si) ∈ Cl and (xj, sj) ∈ Cl′ with l < l′ iff rp,p′(xi, si) < rp,p′(xj, sj).

Furthermore, for any positions p̂ and p̂′ with p̂ > p̂′, let rp̂,p̂′(x, s) = E[v(t, p̂)|x, s] −
E[v(t, p̂′)|x, s] be an alternative index, which also induces a total preorder on X×S. Because
all categories x and x′ are comparable, by definition we have that rp,p′(xi, si) ≥ rp,p′(xj, sj)
if and only if rp̂,p̂′(xi, si) ≥ rp̂,p̂′(xj, sj). Hence the equivalence classes defined by rp,p′(·)
and rp̂,p̂′(·) are the same, and total preorders induced by E[v(t, p)|x, s] − E[v(t, p′)|x, s] are
invariant with respect to (p, p′). So without loss of generality let the index be defined by

r(x, s) = E[v(t, pm)|x, s]− E[v(t, pm−1)|x, s].

First, I show that in any deterministic policy P , if agents are not assigned to policies in
weakly increasing order of their index, the policy is suboptimal.
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Consider any (xi, si) and (xj, sj) with r(xi, si) < r(xj, sj). Suppose a policy P assigns
P(xj, sj) = p′ and P(xi, si) = p′′ for some p′ < p′′.

Since r(xi, si) < r(xj, sj), we have E[v(t, p′′)|xi, si] − E[v(t, p′)|xi, si] < E[v(t, p′′)|xj, sj] −
E[v(t, p′)|xj, sj]. Switching the assignment of agents i and j, holding all other assignments
fixed, produces another feasible policy, with strictly higher total surplus, since

E[v(t, p′′)|xi, si] + E[v(t, p′)|xj, sj] < E[v(t, p′′)|xj, sj] + E[v(t, p′)|xi, si],

where the left-hand side is the i and j surplus under P , and the right-hand side is the i and
j surplus under the alternative policy.

Second, I show that there is no gain from randomization of non-index-equivalent agents
within each position.

Consider any policy that randomizes among non-equivalent agents. Take the largest position
p′′ such that qi ≡ P[p(xi, si) = p′′] ∈ (0, 1) and qj ≡ P[p(xj, sj) = p′′] ∈ (0, 1), for some agents
(xi, si) and (xj, sj) with r(xi, si) < r(xj, sj). Optimality requires that agents are matched to
a position with probability 1, so ∃ another position p′ < p′′ s.t. q′j ≡ P[p(xj, sj) = p′] ∈ (0, 1).
Let q̂ = min{qi, qj, q′j}, and consider an alternative policy that moves a probability mass q̂
of agent j’s assignment from position p′ to position p′′, and a probability mass q̂ of agent i’s
assignment from position p′′ to position p′. Such a policy is feasible, holding all else constant.
Because r(xi, si) < r(xj, sj), we have E[v(t, p′′)|xi, si]− E[v(t, p′)|xi, si] < E[v(t, p′′)|xj, sj]−
E[v(t, p′)|xj, sj]. Hence the alternative policy yields strictly larger expected total surplus,
since

q̂ E[v(t, p′′)|xi, si] + q̂ E[v(t, p′)|xj, sj] < q̂ E[v(t, p′′)|xj, sj] + q̂ E[v(t, p′)|xi, si],

where the left-hand side is the relevant i and j surplus under P , and the right-hand side
is the relevant i and j surplus under the alternative policy. Therefore the optimal policy
cannot randomize among agents with different indices who are assigned to the same position.

Hence the optimal policy is weakly increasing in r(x, s) and assigns agents assortatively with
respect to r(x, s), up to randomization among r-equivalent agents.
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Theorem 2

Proof. Proving sufficiency is straight-forward: if the signals {Ft,x} are identical with respect
to v(·), then for any (k1, ..., km) the optimal policy P ∗ can be implemented with category-
invariant cutoffs.

To see this, suppose {Ft,x} are identical with respect to v(·). Then w̃p,x(v) = w̃p,x′(v) for any
x, x′, hence ṽp,x(s) = ṽp,x′(s) for any x, x′. Therefore r(x, s) = r(x′, s) for any x, x′. Hence
the optimal policy P ∗ has P∗(x, s) = P∗(x′, s), and hence s̄p(x) = s̄p(x′).

Next, I prove necessity by contrapositive: if the signals {Ft,x} are not identical, then there
exist (k1, ..., km) such that the optimal policy P ∗ is implemented with cutoffs that vary
across categories.

Suppose {Ft,x} are not identical. Then for some x′, x′′ and p, ∃v∗ ∈ Im[ṽp,x′(s)]∩ Im[ṽp,x′′(s)]
such that w̃p,x′(v∗) 6= w̃p,x′′(v∗). Note that ṽp,x(s) is continuous, so there exists a neigh-
borhood around w̃p,x′(v∗) and around w̃p,x′′(v∗) such that w̃p,x′(v) 6= w̃p,x′′(v) in the neigh-
borhood. Consider the largest such neighborhood of signals, denoted (smin, smax), where
ṽp,x′(s) 6= ṽp,x′′(s) for any s ∈ (smin, smax). W.l.o.g. suppose ṽp,x′(s) > ṽp,x′′(s) and
r(x′, s) > r(x′′, s) for all s ∈ (smin, smax).

Let km = 1− Ft,x′(smin) + ∑
x 6=x′ [1− Ft,x(smax)].

Then by Theorem 1, for s ∈ (smin, smax) the optimal policy P ∗ assigns p∗(x′, s) = pm, while
p∗(x′′, s) < pm. Hence P ∗ is implemented by cutoffs s̄pm(x′) < s̄pm(x′′), i.e. the optimal
cutoffs vary across categories.

Finally, the above implies that in particular if {Ft,x} are equivalent, but not identical, then
there exist capacities such that the optimal cutoffs vary across categories.

Theorem 3

Proof. Suppose {Fs,x} is such that E[t|x, s] is constant in x, for every s, and for some x′, x′′,
F (t|x′′, s) is a mean-preserving spread of F (t|x′, s).
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Suppose v(t, p) has convex [strictly convex] differences in t. Then

r(x′′, s) = E[v(t, pm)|x′′, s]− E[v(t, pm−1)|x′′, s]

=
∫
t
v(t, pm)− v(t, pm−1)dF (t|x′′, s)

≥ [>]
∫
t
v(t, pm)− v(t, pm−1)dF (t|x′, s)

= r(x′, s)

where the [strict] inequality follows from the fact that v(t, pm)−v(t, pm−1) is a convex function
of t and F (t|x′′, s) is a mean-preserving spread of F (t|x′, s).

The proof that r(x′′, s) ≤ [<]r(x′, s) if v(t, p) has concave [strictly concave] differences in t
is analogous.

Proposition 2

Proof. First, by Theorem 1, the optimal policy P ∗ is assortitative with respect to the index
r(x, s) ≡ E[v(t, pm)|x, s]− E[v(t, pm−1)|x, s].

Second, r(x, s) =
∫
T [v(t, pm) − v(t, pm−1)]dF (t|x, s) is increasing in s, because v(t, pm) −

v(t, pm−1) is increasing in t, and under Assumption 3 F (t|x, s) is FOSD-increasing in s.

Third, r(x, s) =
∫
T [v(t, pm) − v(t, pm−1)]dF (t|x, s) is decreasing in x, because v(t, pm) −

v(t, pm−1) is increasing in t, and under Assumption 4 F (t|x, s) is FOSD-decreasing in x.

That is, for any s and x′′ > x′, r(x′′, s) < r(x′, s). Therefore p∗(x′, s) ≥ p∗(x′′, s), for any s
(with strict inequality for some capacities). If P ∗ involves some randomization due to tie-
breaking, this inequality is in terms of FOSD of the distributions P∗(p|x, s), and the support
of P∗(p|x, s), as a function of (x, s), can be compared in the strong set order.

Hence for any position p,

s̄p(x′′) ≡ min{si : P∗(p|x′′, si) > 0} ≥ s̄p(x′) ≡ min{si : P∗(p|x′, si) > 0},

hence s̄p(x) is increasing in x, for any p.
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Proposition 3

Proof. Suppose v(t, p) has convex differences in t (the proof with concave differences is
analogous). By Theorem 3, under Assumption 5, r(x′′, s) ≥ r(x′, s) for all s. Therefore we
have to consider 2 cases.

First, if P ∗ does not involve randomization due to tie-breaking, because P ∗ is monotonic
in r(x, s), we have that p∗(x′′, s) ≥ p∗(x′, s), with a strict inequality for some capacities and
realizations of the observables.

Second, if P ∗ involves randomization due to tie-breaking, since (x′′, s) and (x′, s) are not
payoff-equivalent, it must be the case that | supp[p∗(x′′, s)]∩supp[p∗(x′, s)]| ≤ 1, and moreover
min{supp[p∗(x′′, s)]} ≥ max{supp[p∗(x′, s)]}, and supp[p∗(x′′, s)] ≥ supp[p∗(x′, s)] in the
strong set order. Then p∗(x′′, s) FOSD-dominates p∗(x′, s). Thus in both cases we have that
p∗(x′′, s) ≥ p∗(x′, s), which proves the first part of the proposition.

Finally, consider the sets of agents assigned to any position p from each category. Since
p∗(x′′, s) ≥ p∗(x′, s) for each s, we have that {s : P∗(p|x′′, s) > 0} ≤ {s : P∗(p|x′, s) > 0} in
the strong set order, for any p.

Proposition 4

Proof. For sufficiency, assume categories are strongly comparable and suppose, for the sake
of a contradiction, that in equilibrium the assignment of agents to positions is not monotonic
with respect to the benefit index r(x, s). Then there exists some agent l with benefit index
r(xl, sl) who is assigned to a position k and some agent h with higher benefit index r(xh, sh) >
r(xl, sl) who is assigned to a lower position j < k.

Note that if xl = xk, this implies a contradiction, because in this case sl < sh, since r(x, s) is
increasing in s, following Proposition 1. Therefore, since E[v(t, p)|x, s] is increasing in s, we
have E[v(t, p)|xl, sl] < E[v(t, p)|xh, sh], and thus decision-maker k can accept agent h instead
of agent l and strictly increase ∑

i∈Ak
E[v(ti, pk|xi, si)], implying that the original assignment

cannot be an equilibrium outcome, a contradiction.

On the other hand, if xl 6= xh, then strict comparability implies that either (i) there exists
some signal s′h such that E[v(t, p)|xh, s′h] = E[v(t, p)|xl, sl] and r(xh, s′h) = r(xl, sl), in which
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case E[v(t, p)|xl, sl] = E[v(t, p)|xh, s′h] < E[v(t, p)|xh, sh], analogously to the case above,
because r(x, s) and E[v(t, p)|x, s] are increasing in s, and therefore again decision-maker k can
accept agent h instead of agent l and strictly increase ∑

i∈Aj
E[v(ti, pj|xi, si)], a contradiction;

or (ii) ∀ s′h we have E[v(t, p)|xl, sl] ≤ E[v(t, p)|xh, s′h], in which case again, analogously,
E[v(t, p)|xl, sl] ≤ E[v(t, p)|xh, s′h] < E[v(t, p)|xh, sh] and thus decision-maker k can accept
agent h instead of agent l and strictly increase ∑

i∈Aj
E[v(ti, pj|xi, si)], a contradiction.

For necessity, it is enough to provide a counter-example where categories are not strongly
comparable and some agent h with index r(xh, sh) is in equilibrium assigned to a position
j, while another agent l with lower index r(x,sl) < r(xh, sh) is assigned to a higher position
k > j. Consider the example with 2 positions, {p1, p2}, each with a capacity of kj = 1, 2
distinct categories, x1 and x2, and 2 agents with signals s1 and s2, with values given by:

p1 p2

E[v(t, p)|x1, s1] 4 5
E[v(t, p)|x2, s2] 1 3

Clearly x1 and x2 are comparable (since the positions are binary), but are not strictly
comparable, and moreover r(x2, s2) > r(x1, s1), and yet decision-maker 2 would prefer to
accept agent 1 in any equilibrium, since E[v(t, p2)|x1, s1] > E[v(t, p2)|x2, s2], and agent 1
would accept p2 over p1.

Proposition 5

Proof. From Proposition 1 it follows that E[v(t, p)|x, s] is increasing in s for any p, and
moreover E[v(t, p2)|x, s] − E[v(t, p1)|x, s] is also increasing in s. Consider any category x

and signal s. For any category x′, since E[v(t, p2)|x′, s] − E[v(t, p1)|x′, s] is continuous and
increasing in s, either ∃s′ such that E[v(t, p2)|x′, s′] − E[v(t, p1)|x′, s′] = E[v(t, p2)|x, s] −
E[v(t, p1)|x, s], or E[v(t, p2)|x′, s′]−E[v(t, p1)|x′, s′] > E[v(t, p2)|x, s]−E[v(t, p1)|x, s] for all s′,
or E[v(t, p2)|x′, s′]−E[v(t, p1)|x′, s′] < E[v(t, p2)|x, s]−E[v(t, p1)|x, s] for all s′. In all 3 cases,
the condition for comparability is satisfied for all p, p′, hence x and x′ are comparable.
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Proposition 6

Proof. Let v(t, p) = v1(t) ·v2(p) and consider any family of signal structures {Ft,x}. Consider
two categories, x and x′, and an arbitrary signal s. Then

E[v(t, p)|x, s] = E[v1(t)|x, s] · v2(p).

Consider {E[v1(t)|x′, s] : s ∈ S}, i.e. the range of possible values E[v1(t)|x′, s] over all s.
Because E[v(t, p)|x, s] is continuous in s, this set is an interval. There are two cases.

Case 1: E[v1(t)|x, s] ∈ {E[v1(t)|x′, s] : s ∈ S}. Then ∃s′ ∈ S s.t. E[v1(t)|x, s] = E[v1(t)|x′, s′].
Hence ∃s′ s.t. ∀p:

E[v(t, p)|x, s] = E[v1(t)|x, s] · v2(p) = E[v1(t)|x′, s′] · v2(p) = E[v(t, p)|x′, s′].

Case 2: E[v1(t)|x, s] 6∈ {E[v1(t)|x′, s] : s ∈ S}. If E[v1(t)|x, s] < [resp. >] {E[v1(t)|x′, s] : s ∈
S}, then ∀s′ and ∀p we have

E[v(t, p)|x, s] = E[v1(t)|x, s] · v2(p) < [resp. >]E[v1(t)|x′, s′] · v2(p) = E[v(t, p)|x′, s′]

In both cases we conclude that x and x′ are strongly comparable.

Proposition 7

Proof. Consider two categories, x and x′, and an arbitrary signal s.

{Ft,x} and {Ft,x′} are equivalent, so ∃δ s.t.

w̃p,x(v) = w̃p,x′(v) + δ

for any p, for all v ∈ Im[ṽp,x(s)] ∩ Im[ṽp,x′(s)].

There are 2 cases to consider.

Case 1: Im[ṽp,x(s)] ∩ Im[ṽp,x′(s)] = ∅. Because ṽp,x(s) and ṽp,x′(s) are continuous, the
intermediate value theorem implies that either ṽp,x(s) > ṽp,x′(s′) ∀s, s′, or ṽp,x(s) < ṽp,x′(s′)
∀s′. This holds for any arbitrary p, hence part 2 of the definition of strong comparability is
satisfied.
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Case 2: Im[ṽp,x(s)]∩ Im[ṽp,x′(s)] 6= ∅. Take any v ∈ Im[ṽp,x(s)]∩ Im[ṽp,x′(s)], and take δ s.t.

w̃p,x(v) = w̃p,x′(v) + δ.

Let s′ = s− δ. Then

E[v(t, p)|x, s] = E[v(t, p)|x′, s− δ] = E[v(t, p)|x′, s′]

holds ∀v ∈ Im[ṽp,x(s)] ∩ Im[ṽp,x′(s)]. Hence part 1 of the definition of strong comparability
is satisfied for all such v.

Next, consider v < Im[ṽp,x(s)] ∩ Im[ṽp,x′(s)]. Because ṽp,x(s) is continuous and increasing
in s, this implies that ∀s′ ∈ S we have E[v(t, p)|x′, s′] > E[v(t, p)|x, s] or E[v(t, p)|x′, s′] <
E[v(t, p)|x, s], ∀p. Analogously, the same holds for v > Im[ṽp,x(s)] ∩ Im[ṽp,x′(s)]. Hence part
2 of the definition of strong comparability is satisfied for all such v.

In both cases we conclude that x and x′ are strongly comparable.
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