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ABSTRACT
Healthcare representation learning on the ElectronicHealth Records
(EHRs) is crucial for downstream medical prediction tasks in health
informatics. Many natural language processing techniques, such
as word2vec, RNN and self-attention, have been adapted to learn
medical representations from hierarchical and time-stamped EHRs
data, but fail when they lack either general or task-specific data.
Hence, some recent works train healthcare representations by in-
corporating medical ontology (a.k.a. knowledge graph), by self-
supervised tasks like diagnosis prediction, but (1) the small-scale,
monotonous ontology is insufficient for robust learning, and (2)
critical contexts or dependencies underlying patient journeys are
barely exploited to enhance ontology learning. To address the
challenges, we propose a Transformer-based representation learn-
ing approach:Mutual Integration of Patient journey and medical
Ontology (MIPO), which is a robust end-to-end framework. Specifi-
cally, the proposed method focuses on task-specific representation
learning by a sequential diagnoses predictive task, which is also
beneficial to the ontology-based disease typing task. To integrate
information in the patient’s visiting records, we further introduce
a graph-embedding module, which can mitigate the challenge of
data insufficiency in healthcare. In this way, MIPO creates a mutual
integration to benefit both healthcare representation learning and
medical ontology embedding. Such an effective integration is guar-
anteed by joint training over fused embeddings of the two modules,
targeting both task-specific prediction and ontology-based disease
typing tasks simultaneously. Extensive experiments conducted on
two real-world benchmark datasets have shown MIPO consistently
achieve better performance than state-of-the-art methods no matter
whether the training data is sufficient or not. Also, MIPO derives
more interpretable diagnose embedding results compared to its
counterparts.
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1 INTRODUCTION
Over the past few decades, healthcare information systems have
accumulated a considerable amount of electronic health records
(EHRs). The patient EHRs data typically consists of a sequence of
visit records, and each visit consists of a set of clinical events, such
as diagnoses, procedures, medications, laboratory tests, etc [34, 36].
Exploiting knowledge from voluminous EHRs, which could benefit
many patients and caregivers, has attracted tremendous attention
from both academia [5, 6, 20, 23, 28] and industry [12, 32]. Many
recent works [5–7, 21, 23, 39] inspired by the success of representa-
tion learning in natural language processing (NLP) make an effort
to distinctively represent the sequence-formatted EHRs for the
downstream tasks, e.g. mortality prediction. Word embedding tech-
niques, e.g. word2vec [25], have been adopted in [5] to learn a vector
representation (namely Med2Vec) for each medical concept (e.g. a
diagnosis code) from the co-occurrence information without con-
sidering the temporal sequential nature of EHR data. Furthermore,
considering both long-term dependency and sequential informa-
tion, recurrent neural networks [6, 7, 21, 23], including LSTM [10]
and GRU [4], are used to learn the contextualized representation
of EHR data. These attempts to learn medical representations are
still under-performed for prediction tasks and cannot be practically
used for individual patients.

The reason can be two-fold. The first one is that the squeezing
representation capability of EHRs will be bottle-necked for some
specific prediction tasks. For example, bringing nomore attention to
the model when encountering the appearance of terminal disease in
a patient’s visiting sequences can be detrimental to the performance
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accuracy in the mortality prediction task. Domain knowledge re-
lated to the specific task, with no doubt, can be borrowed to improve
performance when modelling. Some NLP learning schemes [8, 26]
have shed a light on the extraction of task-wise information for a
specific NLP task. Most commonly, they pre-train a general neural
module (e.g., word embeddings [26] and contextual encoder [8])
on a large-scale unlabeled corpus with self-supervised tasks, and
then leverage the pre-trained module to initialize the task-specific
models for further fine-tuning. The corpus, such as Wikipedia and
BookCorpus, consists of words, usually on a scale of billions, so the
pre-trained module can produce enough generic representations
for efficient fine-tuning convergence and superior performance. Un-
fortunately, compared to the sheer volume of textual data available
to NLP tasks, the scale of unlabeled healthcare data is consider-
ably smaller for pre-training to exploit sufficient task-wise medical
domain knowledge.

The second hurdle in the applications of the above models can
be blamed on the lack of interpretability, which is considered in
priority when making a decision by caregivers. Graph embedding
has been integrated into deep sequence models to improve the per-
formance and provide interpretability. [6, 23] train medical code
embeddings upon medical ontology by using a graph-based atten-
tion mechanism, which delivers a competitive performance with
interpretations aligning with medical knowledge. Note that a strict
prerequisite of these works is that each medical code appears as a
leaf node in the medical ontology which can be readily satisfied by
healthcare data. To be clear, medical ontology here refers to a med-
ical knowledge graph, e.g., Clinical Classifications Software (CCS)1.
Despite their success in several healthcare tasks, these methods
still labor under two main limitations: (1) Unlike factoid knowledge
graphs (e.g., Freebase and WikiData), which store hundreds of mil-
lions of relational items, the medical ontology contains thousands of
diagnosis nodes and merely “parent-child” hierarchy. Hence, it is in-
sufficient to train expressively powerful code embeddings over the
ontology; (2) Rich context or dependency information underlying
each visit and the patient journey is rarely exploited during medical
ontology learning which, however, contains essential information,
e.g., complicated diseases.

To overcome these limitations, we propose a novel and robust
healthcare representation learningmodel, calledMutual Integration
of Patient Journey and MedicalOntology (MIPO). It consists of two
interactive neural modules: (1) task-specific representation learning
module and (2) graph-embedding module. It aims to infuse medical
knowledge into a sequential patient journey by jointly learning
the task-specific and the ontology-based objectives. To clarify, a
task-specific representation learning module is composed of two
stacked Transformer encoders in a hierarchical scheme. It aims to
measure local dependencies among medical codes in each patient
visit and further capture long-term dependencies among multiple
visits in a patient’s journey. Concurrently, the graph-embedding
module learns code embeddings in medical ontology based on both
structured knowledges in the graph and contextual information
in the patient journey. Lastly, we jointly train the model to meet
two objectives: one for task-specific predictive task based on the
representation learning module, and another for ontology-based

1https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp

disease typing task based on the graph embedding module. Con-
sequently, with such mutual integration and joint learning, MIPO
can improve the prediction quality of future diagnoses, guarantee
robustness regardless of sufficient or insufficient data, and make
the learned patient journeys and diagnoses interpretable. Our main
contributions are summarized as follows:

• We propose MIPO, an end-to-end, novel and robust model
to accurately predict patients’ future visit information with
mutual integration of patient journey and medical ontology.
• We design an ontology-based disease typing task in conjunc-
tion with the task-specific predictive task, to learn effective
and robust healthcare representations.
• Wequalitatively demonstrate the interpretability of the learned
representations of medical codes and quantitatively validate
the effectiveness of the proposed MIPO.

2 RELATEDWORK
2.1 Deep Learning for EHRs Data
In recent years, researchers have proposed various deep learning
models to garner knowledge from massive EHRs and shown their
superior ability in medical event predictions [1, 9, 15, 16, 20, 21,
28, 32, 35, 38]. Previous studies recommend using recurrent neural
networks (RNNs) for patient subtyping [2, 9], modelling disease pro-
gression [29], and time-series healthcare-data analysis [33]. Convo-
lutional neural networks (CNNs) are exploited to predict unplanned
readmission [27] and risk[22] with EHRs. Stacked autoencoders
are employed to generate sequential EHRs data [13]. The emerging
transformer-based BERT model is used for acquiring knowledge
from clinical notes [15] and future visit prediction [16].

Diagnosis prediction is an important application in healthcare
analytics [6, 23], which leverages a patient’s sequential visit records
to predict future visit information. RETAIN [7] and Dipole [21] are
two representative RNN-based diagnoses predictive models. RE-
TAIN employs RNNs to model reverse, time-ordered-EHRs sequen-
tial visits with an attention mechanism for the binary prediction
tasks. Dipole applies Bi-LSTM and attention mechanisms to pre-
dict patient visit information, which enhances the temporal data
modelling ability of predictive models. However, those approaches
could suffer from a data insufficiency [6]. To alleviate this problem;
GRAM [6] and KAME [23] exploit the information from external
medical knowledge graph to learn robust representations and an
RNN to model patient visits. Although this achieves state-of-the-art
performance, both models lack effective aggregation of multiple
medical codes in a visit and, heterogeneous information integration
of patient journey and knowledge graph, which should be taken as
an advantage for improving performance.

2.2 Transformer-based Model with Knowledge
Graph

Devlin et al. [8] propose a deep bi-directional model with multiple-
layer Transformers (BERT), which achieves the state-of-the-art
results for various NLP tasks (eg, question answering, named entity
recognition, and relation extraction). The latest, transformer-based
BEHRT [16] makes direct use of the original BERT [8] to model



the patient’s sequential EHRs data by taking each visit as a sen-
tence and each medical concept as a word to predict future visit
information. BioBERT [14], ClinicalBERT [11] and Med-BERT [31]
achieve new state-of-the-art results on various biomedical NLP
tasks through simple fine-tuning techniques with medical corpus.
Furthermore, ERNIE [40] and K-BERT [18] infuse a knowledge
graph into pre-trained BERT to further enhance language repre-
sentation. As EHRs data have different characteristics to natural
language, (e.g., medical code can provide a one-to-one map node of
knowledge graph), medical codes are time-ordered in a visit. Thus,
enhanced language models, such as ERNIE and K-BERT, cannot
apply directly to tackling healthcare problems. However, the ideas
from pairing the NLP language models with knowledge graphs
motivate us to propose MIPO to mutually integrate patient journey
and medical knowledge for healthcare representation learning.
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Figure 1: The model architecture of MIPO. The graph is for-
matted as a hierarchical tree, in which, the root node is vir-
tual. To construct the tree, the leaf nodes (solid circles) de-
note fine-grained diagnoses, and the non-leaf nodes (dotted
circles) denote coarse-grained disease concepts.

3 METHODOLOGY
3.1 Notations
Wedenote the set ofmedical codes from the EHRs data as 𝑐1, 𝑐2, . . . , 𝑐 |C | ∈
C and |C| is the number of unique medical codes. Patients’ clinical
records can be represented by a sequence of visits 𝑷 = ⟨𝑉1, . . . ,𝑉𝑡 , . . . ,𝑉𝑇 ⟩,
which is referred to as the patient journey in the paper, where 𝑇 is
the visit number in the patient journey. And each visit 𝑉𝑡 consists
of a subset of medical codes (𝑉𝑡 ⊆ C). For clear demonstration, all
algorithms will be presented with a single patient’s journey. On the
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Figure 2: The integrator for the mutual integration of the
input of medical codes and graph nodes.

other hand, a medical ontology G contains the hierarchy of various
medical concepts with the parent-child semantic relationship, which
is a well-organized ontology in healthcare (referred to Appendix
A). In particular, the medical ontology G is a directed acyclic graph
(DAG) and the nodes of G consist of leaves and their ancestors. Each
leaf node refers to a medical code in C, which is associated with
a sequence of ancestors from the leaf to the root of G. And each
ancestor node belongs to the set N = 𝑛 |C |+1, 𝑛 |C |+2, . . . , 𝑛 |C |+ |N | ,
where |N| is the number of ancestor codes in G. A parent in the
knowledge graph G represents a related but more general concept
over its children.

3.2 Model Architecture
As shown in Figure 1, the whole model architecture of MIPO con-
sists of an embedded knowledge graph and two stacked modules
and an attention pooling layer. Using given knowledge graph G, we
can obtain the embedding matrix 𝑮 of medical codes with graph-
based attention mechanism [6]. Given the t-th visit information of a
patient𝑉𝑡 , eachmedical code corresponding to a leaf node in 𝑮 in𝑉𝑡
is embedded into a vector representation with the learned 𝑮 , which
imposes medical knowledge on the network architecture. The two
stacked modules are: (1) the underlying knowledgeable encoder
(V-Encoder) responsible for integrating extra medical knowledge
information into visit information from basic embedding, so that we
can represent the heterogeneous information of medical codes and
graph nodes into a united feature space, and (2) the upper patient
encoder (P-Encoder) is responsible of capturing contextual and
sequential information from the underlying layer. Attention Pool-
ing [17, 19] explores the importance of each code within an entire
visit. It works by compressing a set of medical code embeddings
from a visit into a single context-aware vector representation for
the upper P-Encoder. We also denote the number of V-Encoder
layers as N, and the number P-Encoder layers as M. The output of
P-Encoder is used to predict the information of next visit.

To be specific, given a patient’s visit 𝑉𝑡 = {𝑐1, 𝑐2, . . . , 𝑐𝑛}, where
n is the number of medical codes in the visit, we can first obtain its



corresponding basic code embedding {𝒘1,𝒘2, . . . ,𝒘𝑛} via code em-
bedding layer and its node embedding {𝒈1,𝒈2, . . . ,𝒈𝑛} via learned
knowledge graph embedding matrix G. More details of the knowl-
edge graph embedding are introduced in Section 3.3. Then, MIPO
adopts a knowledgeable encoder V-Encoder to inject the medi-
cal knowledge information into healthcare representation, where
both {𝒘1,𝒘2, . . . ,𝒘𝑛} and {𝒈1,𝒈2, . . . ,𝒈𝑛} are fed into V-Encoder
for fusing heterogeneous information and computing final output
embeddings,

{𝒘𝑜1 ,𝒘
𝑜
2 , . . . ,𝒘

𝑜
𝑛}, {𝒈𝑜1 ,𝒈

𝑜
2 , . . . ,𝒈

𝑜
𝑛} = V-Encoder(

{𝒘1,𝒘2, . . . ,𝒘𝑛}, {𝒈1,𝒈2, . . . ,𝒈𝑛}),
(1)

where {𝒈𝑜1 , . . . ,𝒈
𝑜
𝑛} will be used as features for ontology-based dis-

ease typing task and {𝒘𝑜1 ,𝒘2, . . . ,𝒘𝑜𝑛} will fed into upper attention
pooling layer (detailed in Section 3.5) to compress then to a vector
𝒗𝑡 representing the visit. More details of the knowledgeable encoder
V-Encoder will be introduced in Section 3.4.

After computing 𝒗𝑡 , MIPO employs a P-Encoder to capture the
contextual and sequential information, 𝒗𝑜𝑡 = P-Encoder(𝒗𝑡 ), where
P-Encoder(·) is a multi-layer bidirectional Transformer encoder.
Since P-Encoder is identical to its implementation in BERT, we ex-
clude a comprehensive description of this module and refer readers
to [8] and [37].

For simplicity, we take only one patient’s visit 𝑉𝑡 as an example.
However, since most patients have multiple visits to hospital, inputs
and outputs of V-Encoder and P-Encoder are multiple visits, e.g.,

{𝒗𝑜1 , 𝒗
𝑜
2 , . . . , 𝒗

𝑜
𝑇−1} = P-Encoder({𝒗1, 𝒗2, . . . , 𝒗𝑇−1}), (2)

where {𝒗𝑜1 , 𝒗
𝑜
2 , . . . , 𝒗

𝑜
𝑇−1} will be used as features for the task of

sequential diseases prediction.

3.3 Knowledge Graph Embedding
To mitigate the problem of data insufficiency in healthcare and to
learn knowledgeable and generalized representations of medical
codes, we employ the attention-based graph embedding approach
GRAM [6]. In the medical ontology G, each leaf node 𝑐𝑖 has a basic
learnable embedding vector 𝑬𝑖,: ∈ R𝑑 , where 1 ≤ 𝑖 ≤ |C|, and d
represent the dimensionality. And each ancestor code 𝑛𝑖 also has
an embedding vector 𝑬𝑖,: ∈ R𝑑 , where |C| + 1 ≤ 𝑖 ≤ |C| + |N|. The
attention-based graph embedding uses an attention mechanism
to learn the d-dimensional final embedding 𝑮 of each leaf node i
(medical code) via:

𝑮𝑖,: =
∑︁

𝑗 ∈ 𝑃𝑎G (𝑖)
𝛼𝑖 𝑗𝑬 𝑗,: (3)

where 𝑃𝑎G (𝑖) denotes the set comprised of leaf node i and all its an-
cestors, 𝑬 𝑗,: is the d-dimensional basic embedding of the node j and
𝛼𝑖 𝑗 is the attention weight on the embedding 𝑬 𝑗,: when calculating
𝑮𝑖,:, which is formulated by following the Softmax function,

𝛼𝑖 𝑗 =
exp(𝑓 (𝑬𝑖,:, 𝑬 𝑗,:))∑

𝑘∈ 𝑃𝑎G (𝑖) exp(𝑓 (𝑬𝑖,:, 𝑬𝑘,:))
. (4)

𝑓 (𝑬𝑖,:, 𝑬 𝑗,:) = 𝒘𝑇𝛼 tanh
(
𝑾𝛼 [𝑬𝑖,:; 𝑬 𝑗,:] + 𝒃𝛼

)
, (5)

where [𝑬𝑖,:; 𝑬 𝑗,:] is to concatenate 𝑬𝑖,: and 𝑬 𝑗,: in the child-ancestor
order,𝒘𝛼 ,𝑾𝛼 and 𝒃𝛼 are learnable parameters. Details about the
implement are referred to Appendix B.

3.4 Knowledgeable Encoder
The Figure 2 shows the details of the knowledgeable encoder, in the
form of a stacked integrator. The design of the integrator is inspired
by NLP language modelling ERNIE [40]. However, our proposed
model is distinct from ERNIE in three aspects: 1) node embeddings
of a knowledge graph is part of our end-to-end MIPO model, while
ERNIE uses pre-trained entity embedding from a knowledge graph
by TransE [3]; 2) MIPO has a hierarchical structure, where the
underlying knowledgeable encoder is for medical code level and the
upper patient encoder is for visit level, while ERNIE is a derivative
of BERT, which has not such structure; 3) MIPO aims to improve
the predictive performance with the given knowledge graph as
supplementary information.

In the i-th integrator, the input code embeddings {𝒘1,𝒘2, . . . ,𝒘𝑛}
and node embedding {𝒈1,𝒈2, . . . ,𝒈𝑛} are fed into two different
multi-head self-attentions (MultiAttn) [37], referred to Appendix C
in Supplementary Material.

{𝒘̃ (𝑖 )1 , 𝒘̃ (𝑖 )2 , . . . , 𝒘̃ (𝑖 )𝑛 } = MultiAttn( {𝒘 (𝑖−1)1 ,𝒘 (𝑖−1)2 , . . . ,𝒘 (𝑖−1)𝑛 }),

{𝒈̃ (𝑖 )1 , 𝒈̃ (𝑖 )2 , . . . , 𝒈̃ (𝑖 )𝑛 } = MultiAttn( {𝒈 (𝑖−1)1 ,𝒈 (𝑖−1)2 , . . . ,𝒈 (𝑖−1)𝑛 }) .
(6)

Then, the i-th integrator adopts an information integration layer
for the mutual integration of the code and node embedding in a visit,
and computes the output embedding for each code and node. For a
code𝒘 𝑗 and its corresponding node 𝒈𝑗 , the information integration
process is as follows,

𝒉 𝑗 = 𝜎 (𝑾̃ (𝑖)𝑐 𝒘̃ (𝑖)
𝑗
+ 𝑾̃ (𝑖)𝑔 𝒈̃ (𝑖)

𝑗
+ 𝒃̃ (𝑖) ),

𝒘 (𝑖)
𝑗

= 𝜎 (𝑾 (𝑖)𝑐 𝒉 𝑗 + 𝒃 (𝑖)𝑡 ),

𝒈 (𝑖)
𝑗

= 𝜎 (𝑾 (𝑖)𝑔 𝒉 𝑗 + 𝒃 (𝑖)𝑒 ).

(7)

where 𝒉 𝑗 is the inner hidden state integrating the information
of both the code and the node. 𝜎 (·) is the non-linear activation
function, which is usually the ReLU function.

For simplicity, the 𝑖-th integrator operation is denoted as follows,

{𝒘 (𝑖)1 , . . . ,𝒘 (𝑖)𝑛 }, {𝒈
(𝑖)
1 , . . . ,𝒈 (𝑖)𝑛 } = Integrator(

{𝒘 (𝑖−1)1 , . . . ,𝒘 (𝑖−1)𝑛 }, {𝒈 (𝑖−1)1 , . . . ,𝒈 (𝑖−1)𝑛 }).
(8)

The output embeddings of codes will be used by following atten-
tion pooling to compress a set of codes in a visit to a vector, with the
output embeddings of nodes used to guarantee the proposed model
can learn the reasonable knowledge from given medical ontology.

Note that we exclude position embedding in V-Encoder, as med-
ical codes in a visit are not time-ordered.

3.5 Attention Pooling
Attention Pooling [17, 19] explores the importance of each individ-
ual code within a patient visit. It works by compressing a set of
medical code embeddings from a patient visit into a single context-
aware vector representation. Formally, it is written as,

𝑓 (𝒘𝑜𝑖 ) = 𝑤𝑇𝜎 (𝑊 (1)𝒘𝑜𝑖 + 𝑏
(1) ) + 𝑏, (9)

where𝒘𝑜
𝑖
(1 ≤ 𝑖 ≤ 𝑛 ) is one output of V-Encoder. The probability

distribution is formalized as

𝜶 = softmax( [𝑓 (𝒘𝒐
𝑖 )]

𝑛
𝑖=1) . (10)



The final output 𝒗 of the attention pooling is the weighted aver-
age of sampling a code according to its importance, i.e.,

𝒗 =

𝑛∑︁
𝑖=1

𝜶 ⊙ [𝒘𝒐
𝑖 ]
𝑛
𝑖=1 . (11)

3.6 Learning Healthcare Representation with
Predictive Tasks

We jointly train the MIPO model with a task-specific predictive task
and an ontology-based disease typing task, such that the mutual
integration of knowledge graph and patient journey improves the
performance of the healthcare representation learning.

3.6.1 Task-specific Predictive Task. Given a patient’s visit records
𝑷 = {𝑉1,𝑉2, . . . ,𝑉𝑇−1}, to capture the EHRs sequential visit be-
haviour information, we perform the sequential diagnoses predic-
tive task with the objective of predicting the disease codes of the
next visit 𝑉𝑡 , which can be expressed as follows,

𝒚̂𝑃𝑡−1 = 𝒗𝑡 = Softmax(𝑾𝑃𝒗
𝑜
𝑡−1 + 𝒃𝑃 ), (12)

L𝑃 (𝑉1, . . . ,𝑉𝑇 ) =
1

𝑇 − 1

𝑇−1∑︁
𝑡=1

(
𝒚𝑃
𝑡

T log 𝒚̂𝑃
𝑡 + (1 − 𝒚𝑃

𝑡 )T log (1 − 𝒚̂𝑃
𝑡 )

)
.

(13)
where 𝒗𝑜

𝑡−1 ∈ R
𝑑 is the output of P-Encoder to denote the repre-

sentation of the (𝑡 − 1)-th visit,𝑾𝑃 ∈ R |C |×𝑑 and 𝒃𝑃 ∈ R |C | are the
learnable parameters.

3.6.2 Ontology-based Disease Typing Task. To Enable MIPO to
inject knowledge into healthcare representation by informative
graph, we design the task using the output node embeddings of
the knowledgeable encoder V-Encoder. This task is a multi-label
prediction task. In particular, the non-leaf nodes located from the
second layer in medical ontology G are also known as the disease
categories (or types), and each fine-grained diagnosis corresponds
to the only disease category by finding its ancestor in the second
layer.

As mentioned in Section 3.1, knowledge graph G contains the
hierarchy of various medical concepts with the parent-child seman-
tic relationship, and the medical codes C come form its leaf nodes.
Ideally, the disease categories in G will acquire knowledge from
the leaf nodes and represent more general medical concepts. Thus,
we use the disease categories as targets of the task and the output
embeddings of nodes of V-Encoder as input. To be specific, given
the codes 𝑉𝑡 = {𝑐1, 𝑐2, . . . , 𝑐𝑛} in a visit 𝑉𝑡 , and its corresponding
disease categories {𝑛1, 𝑛2, . . . , 𝑛𝑚} (shown in Figure 1) in multi-
level hierarchy G, where𝑚 = 18 for CCS Multi-level ontology, we
define the disease categories distribution for the medical code 𝑐𝑖 in
𝑉𝑡 as follows,

𝒚̂𝑉𝑡,𝑖 = Softmax(𝑾𝑉 𝒈𝑜𝑡,𝑖 + 𝒃𝑉 ), (14)

where 𝒈𝑜
𝑡,𝑖
∈ R𝑑 is the output of V-Encoder, and 𝑡 the 𝑡-th visit,

𝑖 is the 𝑖-th code in 𝑡-th visit, 𝑾𝑉 ∈ R𝑚×𝑑 and 𝒃𝑉 ∈ R𝑚 are the
learnable parameters.

Based on Equation 14, we use the cross-entropy between the
ground truth visit 𝒚𝑉

𝑡,𝑖
and the predicted visit 𝒚̂𝑉

𝑡,𝑖
to calculate the

loss for each medical code from all the timestamps as follows:

L𝑉 (𝑉1, . . . ,𝑉𝑇−1) =

1
𝑛(𝑇 − 1)

𝑇−1∑︁
𝑡=1

𝑛∑︁
𝑖=1

(
𝒚𝑉𝑡,𝑖

T log 𝒚̂𝑉𝑡,𝑖 + (1 −𝒚
𝑉
𝑡,𝑖 )

T log (1 − 𝒚̂𝑉𝑡,𝑖 )
)
.

(15)

where𝑇 −1 is the number of the patient’s visits, and 𝑛 is the number
of medical codes in a visit.

3.6.3 Objective Function. In order to take advantage of the mutual
integration of informative knowledge graph and sequential patient
journey, we train the two tasks together to improve the performance
of the healthcare representation learning, which can be formulated
as follows,

L(𝑉1, . . . ,𝑉𝑇 ) = L𝑃 (𝑉1, . . . ,𝑉𝑇 ) + L𝑉 (𝑉1, . . . ,𝑉𝑇−1). (16)

Note that in our implementation, we take the average of the
individual cross entropy error for multiple patients. Algorithm 1
describes the overall training procedure of the proposed MIPO with
one individual patient journey.

Algorithm 1: The MIPO model
Input: Medical knowledge graph G, the set of medical

codes C and Patient records 𝑷 = {𝑉1,𝑉2, . . . ,𝑉𝑇−1}
1 Initialize medical code embedding matrix𝑾 ;
2 Knowledge graph embedding matrix 𝑮 via Eq. 3;
3 Initialize v-list 𝒕𝒐 None and 𝒚̂𝐾-list 𝒕𝒐 None ;
4 for 𝑡 ← 1 to (𝑇 − 1) do
5 𝑾𝑡 = {𝒘1,𝒘2, . . . ,𝒘𝑛} # medical code embedding;
6 𝑮𝑡 = {𝒈1,𝒈2, . . . ,𝒈𝑛} # graph node embedding;
7 {𝒘𝑜1 ,𝒘

𝑜
2 , . . . ,𝒘

𝑜
𝑛}, {𝒈𝑜1 ,𝒈

𝑜
2 , . . . ,𝒈

𝑜
𝑛} = V-Encoder(𝑾𝑡 , 𝑮𝑡 )

via Eq. 1;
8 𝒗𝑡 = Att-Pool({𝒘𝑜1 ,𝒘

𝑜
2 , . . . ,𝒘

𝑜
𝑛}) via Eq. 11 # 𝑡-th visit

representation;
9 Add 𝒗𝑡 𝒕𝒐 v-list;

10 Compute predicted first-level category 𝒚̂𝐾𝑡, · via Eq. 14;
Add 𝒚̂𝐾𝑡, · 𝒕𝒐 𝒚̂𝐾-list;

11 {𝒗𝑜1 , 𝒗
𝑜
2 , . . . , 𝒗

𝑜
𝑇−1} = P-Encoder(v-list) via Eq. 2;

12 Compute predicted sequential diagnoses 𝒚̂𝑃 via Eq. 12;
13 Update the model’s parameters by optimizing the loss via

Eq. 16 using 𝒚̂𝑃 and 𝒚̂𝐾-list.

4 EXPERIMENTS
In this section, we conduct experiments on two real-world medical
claim datasets to evaluate the performance of the proposed MIPO.
Compared with the state-of-the-art predictive models, MIPO yields
better performance on different evaluation strategies. The source
code is available (https://github.com/Xueping/MIPO).

4.1 Data Description
We conducted comparative studies on two real-world datasets in
the experiments – the MIMIC-III database and eICU dataset.



Table 1: Statistics of the datasets.

Dataset MIMIC eICU
# of patients 7,499 16,180
# of visits 19,911 39,912
Avg. # of visits per patient 2.66 2.47
# of unique ICD9 codes 4,880 758
Avg. # of ICD9 codes per visit 13.06 5.21
Max # of ICD9 codes per visit 39 57
# of category codes 272 167
Avg. # of category codes per visit 11.23 4.72
Max # of category codes per visit 34 33
# of disease typing code 18 18
Avg. # of disease typing codes per visit 6.57 3.42
Max # of disease typing codes per visit 15 14

4.1.1 MIMIC-III Dataset. The MIMIC-III dataset [12] is an open-
source, large-scale, de-identified dataset of ICU patients and their
EHRs. The diagnosis codes in the dataset follow the ICD9 standard.
The dataset consists of medical records of 7,499 intensive care unit
(ICU) patients over 11 years, where we chose patients who had
made at least two visits. We use MIMIC to represent MIMIC-III in
the experiment.

4.1.2 eICUDataset. The eICU dataset [30] is another publicly avail-
able EHRs dataset, which is a multi-center database comprising
de-identified health data associated with over 200,000 admissions
to ICUs across the United States between 2014-2015. The dataset
consists of medical records of 16,180 ICU patients, where we follow
MIMIC to choose patients who had made at least two visits.

Table 1 shows the statistical details about the two datasets. As
the table shown, those two representative datasets can be used to
extensively evaluate different aspects of the models. The number
of patients and visits in the eICU dataset is big enough to validate
the performance of the proposed MIPO with long visit records. The
MIMIC dataset consists of very short visits, and the number of
patients is smaller. With these two different types of datasets, we
can fully and correctly validate the performance of all the diagnosis
prediction approaches.

4.2 Predictive Tasks
The proposed model consists of two predictive tasks to simultane-
ously learn the integration between knowledge graph and sequen-
tial patient journey.

A task-specific predictive task is to predict the diagnosis informa-
tion of the next visit. In the experiments, true labels𝒚𝑃𝑡 are prepared
by grouping the ICD9 codes into 283 groups using CCS single-level
diagnosis grouper2. This aims to improve the training speed and
predictive performance, while preserving sufficient granularity for
all the diagnoses. The second hierarchy of the ICD9 codes can also
be used as category labels [23]. These two grouping methods obtain
similar predictive performances.

An ontology-based disease typing task is to predict the disease
category given the medical code (leaf node). The disease categories

2https://www.hcup-us.ahrq.gov/toolssoftware/ccs/AppendixASingleDX.txt

come from “CCS_LVL_1” of CCS multi-level diagnosis grouper3,
which groups the ICD9 codes into 18 categories. In the experiments,
we prepared the 18 categories as true labels 𝒚𝑉

𝑡,𝑖
. This is to guar-

antee parent nodes learn general knowledge from their children,
following the parent-child semantic relationship. The results will
be shown in Section 4.6.

4.3 Experimental Setup
In this subsection, we first introduce the state-of-the-art approaches
for a diagnosis prediction task in healthcare, and then outline the
measures used for predictive performance evaluation. Finally, we
describe the implementation details in Appendix D.

4.3.1 Baseline Approaches. We compare the performance of our
proposed model against the following baseline models:
• Graph-based Models include GRAM [6] and KAME [23].
They incorporate the medical ontology with an attention
mechanism and recurrent neural networks for representation
learning with the application to diagnosis prediction.
• Attention-based Models include Dipole [21] which uses
the bidirectional GRU as the backbone and assigns an atten-
tion weight for each visit and RETAIN [7] which learns the
medical concept embeddings and performs heart failure pre-
diction via the reversed RNN with the attention mechanism.
• Plain RNNs include BRNN which is the basic framework
of most risk prediction models with the bidirectional GRU
as the backbone.

4.3.2 EvaluationMeasures. Wemeasure the predictive performance
by 𝑃𝑟𝑒𝑐@𝑘 and 𝐴𝑐𝑐@𝑘 , which are defined as:

𝑃𝑟𝑒𝑐@𝑘 =
# of true positives in the top k predictions

min(𝑘, # of positives)

𝐴𝑐𝑐@𝑘 =
# of true positives in the top k predictions

# of positives

We report the average values of 𝑃𝑟𝑒𝑐@𝑘 and 𝐴𝑐𝑐@𝑘 and vary k
from 5 to 30 in the experiments, where 𝑃𝑟𝑒𝑐@𝑘 aims to evaluate the
coarse-grained performance, and 𝐴𝑐𝑐@𝑘 is proposed to evaluate
the fine-grained performance [23]. For all the measures, greater
values reflect better performance.

4.4 Results of Diagnosis Prediction
Table 2 shows both the precision and accuracy of the proposed
MIPO and baselines with different k on two real-world datasets for
task-specific predictive task. From Table 2, we can observe that the
performance of the proposed MIPO, in both precision and accuracy,
is better than that of all the baselines on the two datasets.

On the MIMIC dataset, compared with KAME and GRAM, the
precision of MIPO improves 5.94% and 5.76% with accuracy im-
proving 3.11% and 2.78% when 𝑘 = 5, respectively. These results
suggest that it is effective to integrate medical knowledge and se-
quential patient journey when predicting diagnoses. Comparably,
Dipole, RETAIN and BRNN do not use external knowledge in the
diagnosis prediction task. Dipole and RETAIN directly learn the
medical code embeddings from the input data with location-based
3https://hcup-us.ahrq.gov/toolssoftware/ccs/AppendixCMultiDX.txt



Table 2: Performance comparison of sequential diagnoses prediction.

Dataset Model Prec@k Acc@k
5 10 15 20 25 30 5 10 15 20 25 30

BRNN 0.5707 0.5112 0.5270 0.5718 0.6234 0.6690 0.2692 0.4028 0.4933 0.5636 0.6220 0.6690
RETAIN 0.5769 0.5071 0.5280 0.5700 0.6214 0.6721 0.2721 0.3976 0.4936 0.5617 0.6201 0.6721
Dipole 0.5750 0.5104 0.5334 0.5813 0.6303 0.6753 0.2753 0.4028 0.5000 0.5732 0.6290 0.6753

MIMIC GRAM 0.5870 0.5248 0.5498 0.6024 0.6523 0.6956 0.2792 0.4210 0.5211 0.5954 0.6507 0.6955
KAME 0.5852 0.5195 0.5389 0.5873 0.6384 0.6799 0.2759 0.4164 0.5111 0.5808 0.6370 0.6799
MIPO 0.6446 0.5661 0.5813 0.6305 0.6752 0.7189 0.3070 0.4522 0.5502 0.6229 0.6739 0.7188
BRNN 0.6221 0.7011 0.7756 0.8229 0.8620 0.8845 0.5480 0.6892 0.7733 0.8226 0.8619 0.8845
RETAIN 0.6332 0.7124 0.7796 0.8277 0.8655 0.8907 0.5571 0.7000 0.7772 0.8274 0.8654 0.8907
Dipole 0.6264 0.7018 0.7696 0.8255 0.8610 0.8898 0.5514 0.6895 0.7673 0.8252 0.8609 0.8898

eICU GRAM 0.6048 0.6846 0.7571 0.8101 0.8485 0.8791 0.5277 0.6719 0.7549 0.8098 0.8485 0.8791
KAME 0.6004 0.6795 0.7509 0.8093 0.8466 0.8770 0.5226 0.6668 0.7487 0.8090 0.8465 0.8770
MIPO 0.6848 0.75202 0.8127 0.8532 0.8847 0.9086 0.5986 0.73852 0.8102 0.8527 0.8845 0.9086

attention mechanisms, and BRNN learns the code embeddings from
the input data with bi-directional RNN. Compared with KAME and
GRAM, the performances of Dipole, RETAIN and BRNN are lower,
indicating that employing knowledge graph is effective with data
insufficiency. However, instead of adding attention mechanisms
on the past visits like Dipole and RETAIN, and simply integrating
medical knowledge into visits like KAME and GRAM, the proposed
MIPO aims to integrate the given knowledge graph and sequential
patient journeys to improve predictive performance.

Though the number of visits and patients on the eICU is larger
than that on the MIMIC dataset, the number of labels observed
are much less. On this significantly insufficient dataset, MIPO still
outperforms all the baselines. In the five described, Dipole, RE-
TAIN and BRNN achieves a better performance than KAME and
GRAM, which suggests that with enough data, even without exter-
nal knowledge, attention-based models can still learn reasonable
medical code embeddings to make accurate predictions. However,
compared with the proposed MIPO, the precision and accuracy
of these three approaches are lower, which again argues that in-
tegration of medical knowledge and sequential patient journeys
can improve prediction performance. The performance of KAME is
the weakest since this approach explicitly incorporates knowledge
from leaf nodes and parent nodes, which cannot adequately bal-
ance the knowledge and sequential visits. However, the proposed
model learns the healthcare representations by taking advantage of
task-specific predictive task and ontology-based disease typing task
to harmoniously fuse medical knowledge and sequential patient
journey.

4.5 Data Sufficiency Analysis
In order to analyze the influence of data sufficiency on the predic-
tions, we conduct the following experiments on the MIMIC and
eICU datasets, respectively. We randomly split the data into training
set, validation set and test set, and fix the size of the validation set
at 10%. To validate robustness against insufficient data, we vary
the size of the training set to form four groups: 20%, 40%, 60% and
80%, and use the remaining part as the test set. The training set
in the 20% group is the most insufficient for training the proposed
and baseline models, while the data in the 80% group are the most
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Figure 3: Acc@20 of diagnoses prediction on MIMIC and
eICU, size of training data is varied from 20% to 80%.

sufficient for training models. Finally, we calculate the accuracy
of labels in each group. Figures 3 show the Acc@20 on both the
MIMIC and eICU datasets. Note that similar results can be obtained
when 𝑘 = 5, 10, 15, 25 or 30.

From Figure 3, we can observe that the accuracy of the pro-
posed MIPO is higher than that of baselines in all groups on both
MIMIC and eICU datasets. KAME and GRAM achieve better perfor-
mances on MIMIC than other approaches on MIMIC, which shows
that, with insufficient data, KAME and GRAM still learn reasonable
medical code embeddings and improve predictions. The perfor-
mance of BRNN in the groups 20%, 40%, 60% is the worst since this
approach does not use any attention mechanism or external knowl-
edge. When the training data on the eICU dataset is significantly
insufficient, the proposed MIPO still significantly outperforms base-
lines in all groups. We observe that the performance obtained by the
models using medical knowledge remains approximately the same
(GRAM) or even drop (KAME). The underlying reason may be that
KAME and GRAM over-fit the insufficient data using the medical
knowledge. Thus, the models learn larger weighting for knowledge
than with sequential visits. Furthermore, as shown in Figure 3b, the
average accuracy of Dipole, RETAIN and BRNN is better than that
of both KAME and GRAM, indicating that information of sequential
visits plays a more important role under insufficient data. These
observations can also be found in Table 2. It is again to demonstrate
that the proposed MIPO harmoniously balances medical knowledge
and patient journeys when the EHRs data is insufficient.
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Figure 5: t-SNE Scatterplots of Medical Codes Learned by Predictive Models on the MIMIC dataset.

4.6 Interpretable Representation Analysis
To qualitatively demonstrate the interpretability of the learned
medical code representations by all the predictive models on the
MIMIC dataset, we randomly select 2000 medical codes and then
plot on a 2-D space with t-SNE [24] shown in Figures 4 and 5.
Each dot represents a diagnosis code, and their color represents the
disease categories while the text annotations represent the detailed
disease categories in CCS multi-level hierarchy.

From Figure 4, we can observe that MIPO learns interpretable
disease representations that are in accord with the hierarchies of
the given knowledge graph G, and obtains 18 non-overlapping
clusters. As shown in Figure 5, KAME and GRAM learn reasonably
interpretable disease representations for partial categories, as there
is large number of dots over-lapping in the centers of Figures 5b
and 5c. Figures 5d, 5e and 5f confirm that without a knowledge
graph, simply using the co-occurrence or supervised predictions



cannot easily provide for learning interpretable representations. In
addition, the predictive performance of MIPO is much better than
that of KAME and GRAM, as shown in Table 2, which proves that
the proposed model does not affect the interpretability of medical
codes. Moreover, it significantly improves the prediction accuracy.

5 CONCLUSIONS
In this paper, we propose MIPO as a way of integrating medical
knowledge and patient journey to learn healthcare representation.
Accordingly, we introduce the knowledgeable encoder and two pre-
dictive tasks of sequential diagnoses and disease categories typing
for better integration of heterogeneous information from both the
patient journey and knowledge graph. The experimental results
on two real-world medical datasets demonstrate the effectiveness,
robustness, and interpretability of the proposed MIPO. An experi-
ment is conducted which shows that the proposed MIPO outper-
forms baselines in cases of both sufficient and insufficient data. The
representations of medical codes are visualized to illustrate the
interpretability of MIPO.
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