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Abstract: Rapid and accurate estimation of maize biomass is critical for predicting crop productivity.
The launched Sentinel-1 (S-1) synthetic aperture radar (SAR) and Sentinel-2 (S-2) missions offer a new
opportunity to map biomass. The selection of appropriate response variables is crucial for improving
the accuracy of biomass estimation. We developed models from SAR polarization indices, vegetation
indices (VIs), and biophysical variables (BPVs) based on gaussian process regression (GPR) and
random forest (RF) with feature optimization to retrieve maize biomass in Changchun, Jilin province,
Northeastern China. Three new predictors from each type of remote sensing data were proposed
based on the correlations to biomass measured in June, July, and August 2018. The results showed
that a predictor combined by vertical-horizontal polarization (VV), vertical-horizontal polarization
(VH), and the difference of VH and VV (VH-VV) derived from S-1 images of June, July, and August,
respectively, with GPR and RF, provided a more accurate estimation of biomass (R2 = 0.81–0.83, RMSE
= 0.40–0.41 kg/m2) than the models based on single SAR polarization indices or their combinations,
or optimized features (R2 = 0.04–0.39, RMSE = 0.84–1.08 kg/m2). Among the S-2 VIs, the GPR model
using a combination of ratio vegetation index (RVI) of June, normalized different infrared index
(NDII) of July, and normalized difference vegetation index (NDVI) of August achieved a result with
R2 = 0.83 and RMSE = 0.39 kg/m2, much better than single VIs or their combination, or optimized
features (R2 of 0.31–0.77, RMSE of 0.47–0.87 kg/m2). A BPV predictor, combined with leaf chlorophyll
content (CAB) in June, canopy water content (CWC) in July, and fractional vegetation cover (FCOVER)
in August, with RF, also yielded the highest accuracy (R2 = 0.85, RMSE = 0.38 kg/m2) compared to
that of single BPVs or their combinations, or optimized subset. Overall, the three combined predictors
were found to be significant contributors to improving the estimation accuracy of biomass with GPR
and RF methods. This study clearly sheds new insights on the application of S-1 and S-2 data on
maize biomass modeling.

Keywords: maize biomass; Sentinel-1; Sentinel-2; polarization indices; vegetation indices; biophysical
variables; gaussian processes regression; random forest; feature optimization

1. Introduction

Maize is an important, globally cultivated food and energy crop. The availability of
information about maize development and health during the growing season is essential
in optimizing crop production. Above-ground biomass is a key biophysical metric for
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monitoring crop growth status and health conditions, as well as predicting crop yield.
Spatially continuous crop biomass information plays a prominent role in the strategies
for managing fertilizer application [1,2], disease control [3], yield forecasting [4], and
greenhouse gas emissions [5].

Traditionally, crop biomass is commonly collected using destructive sampling in
field measurements, which is the most accurate approach for estimating maize biomass.
However, direct monitoring of maize biomass is time-consuming, labor-intensive, and
difficult to conduct across large regions. It has become a cost-effective method for estimating
biomass in large regions based on the correlations between field-measured biomass and
remote sensing data [2,6]. The selection of appropriate response variables and algorithms
is critical to obtaining accurate biomass estimation [7,8].

Optical (i.e., Sentinel-2, S-2) and Synthetic Aperture Radar (i.e., Sentinel-1, S-1) remote
sensing data from the European Commission’s Copernicus program have been frequently
used for biomass estimation [9–11]. Spectral information from optical data can efficiently
reflect the development of plants. The amount of chlorophyll and the canopy structure of
the maize crop are significantly correlated with the reflectance responses of vegetation in the
red and near-infrared regions of the spectrum, respectively. Data acquired from these two
regions has been widely used to create spectral transformations known as vegetation indices
(VIs) [12]. Multiple types of VIs derived have been demonstrated to have a substantial
relationship with biomass [13,14]. The normalized difference vegetation index (NDVI),
the most extensively used index, is highly sensitive to low biomass [15]. Ratio vegetation
index (RVI) and enhanced vegetation index (EVI) have been shown to be more correlated
to high biomass [16]. VIs that incorporate red-edge bands also have a greater potential for
accurately estimating biomass [17]. In addition to VIs, biophysical variables (BPVs) such as
leaf area index (LAI) provide new capabilities for monitoring biomass. Castillo et al. [9]
compared S-2 VIs and BPVs to estimate mangrove forest biomass and discovered that both
LAI and fractional vegetation cover (FCOVER) outperformed NDVI.

SAR data shows an overwhelming potential for crop monitoring due to its capacity
to obtain high-quality images in all weather conditions and penetrate the crop canopy to
capture leaf and stem information [18]. The ability of the S-1 backscatter coefficient to
estimate biomass has been demonstrated in recent investigations [19]. Wang et al. [11]
employed vertical-horizontal polarization (VV) and vertical-horizontal polarization (VH) to
estimate pasture biomass. Ndikumana et al. [20] showed that the correlation of S-1 signals
to the forest biomass was high in VH polarization. In comparison with forest and grassland
ecosystems, only limited attempts have been made to retrieve maize biomass using S-1 and
S-2 datasets.

Machine learning (ML) algorithms such as gaussian process regression (GPR), support
vector machine (SVM), random forest (RF), and artificial neural network (ANN), have been
increasingly utilized to estimate biomass [21]. Among a variety of ML algorithms, GPR and
RF algorithms have been regarded as one of the best methods for classification and regres-
sion because of their ability to capture complex non-linear relationships quickly, accurately,
and automatically [22–24]. Alebele et al. [2] demonstrated the potential of integrating S-1
and S-2 data based on the GPR algorithm to retrieve rice biomass. Jachowski et al. [23] re-
ported that the GPR model with VIs provided a more accurate result than linear regression
in estimating the above-ground biomass of mangroves. Pandit et al. [25] applied S-2 VIs
combined with an RF algorithm to estimate forest biomass. Forkuor et al. [10] made use
of the integrated derivatives from S-1 and S-2 data with an RF algorithm to map biomass
in West African dryland forests. Chen et al. [26] compared four models to estimate forest
biomass in combination with S-1 and S-2 data and concluded that RF was superior to
other models.

Feature selection plays a critical role in ML algorithms, which helps in removing
irrelevant, redundant, and noisy features, avoiding significant loss of information, reducing
computation requirements, and therefore improving the performance of ML [27–30]. Some
ML algorithms include built-in feature selection methods [31]. Karlson et al. [32] used a
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recursive feature elimination (RFE) method embedded in RF to assess its effect on the pre-
dictive performance of RF, and they found that variable selection improved the prediction
of above-ground biomass. The kernel function of GPR σ is a dedicated parameter that
controls the spread of the relationships for each predictor variable [33]. Verrelst et al. [34]
determined the optimal number of predictor variables by iteratively removing the predictor
variable with the lowest σ until only one variable remained for estimating LAI.

During different growth stages, VIs have different connections with crop biomass due
to dynamic changes in canopy reflectance [35]. The dynamic changes may be affected by
canopy biophysical properties such as the number of leaves per area, canopy biochemical
features (chlorophylls and carotenoids), crop healthy conditions, and other factors [36].
Gnyp et al. [37] discovered that RVI had the strongest and weakest relationships with
rice biomass at the early growth stage (tillering) and the later growth stage (booting),
respectively, whereas it was less sensitive to biomass at the middle stage (elongation).
Besides, some studies indicated that the growth stage of the crop also had an impact on
the performance of radar backscatter coefficients and BPVs in estimating biomass [38,39].
Li et al. [40] indicated that the ratio of VV and VH had a strong correlation with rice biomass
at the transplanting stage, while VH and horizontal transmit-horizontal (HH) showed the
highest sensitivities to biomass at the tillering stage and the heading stage, respectively.
Li et al. [41] found that LAI was highly related to maize biomass during the entire growing
season, while leaf chlorophyll content (CAB) and FCOVER had the strongest correlations
with maize biomass at the seedling stage, but they were not sensitive to biomass at the
filling and tasseling stages, respectively. The responses of remote sensing derivatives to
biomass vary in different growth stages. Thus, it is worth further exploration to improve
the retrieval of biomass according to the sensitivity of each variable to biomass in different
growth stages.

In this study, we evaluate the ability of multi-temporal S-1 and S-2 data to estimate
maize biomass and explore improving the accuracy of biomass estimation. The specific
objectives are the followings: (1) compare the accuracies of S-1 and S-2 derivatives, individ-
ually, to estimate maize biomass; (2) determine the optimal features optimized by GPR and
RF for biomass modeling; (3) propose three combined features based on the correlations
of S-1 and S-2 derivatives to biomass in different growth stages for improving biomass
retrieval, respectively.

2. Materials and Methods
2.1. Study Area and Field Data

The study area (43◦5′N–45◦15′N, 124◦18′E–127◦2′E) was situated in Changchun, Jilin
province, Northeastern China (Figure 1). The region is situated in a temperate continental
climate zone with four seasons, characterized by a hot and rainy summer and a cold and
dry winter. The average annual mean air temperature and precipitation of the study area
are 4.6 ◦C and 520 mm, respectively. The proportion of farmland in this area is over 90%.
Maize is the main crop in this area, which is harvested once a year.

During the maize growing season, three field campaigns were conducted on 23 June,
20 and 22 July, and 9 and 10 August 2018 to collect maize above-ground dry biomass. Each
sample point was selected in the center of a quadrat of 10 × 10 m based on the remote
sensing image, and the location of each sample point was measured by GPS. According to
the GPS recorded coordinates, the remote sensing data for each sample point was extracted
using the “Extract Multi Values to Points” in the ArcGIS software. The unit area of single
maize plant was calculated by maize column and row spacings. At each sample location,
maize row spacings were measured three times and averaged, and column spacings were
averaged by the distance of ten consecutive maize plants. In this study, the unit area maize
varied from 0.07 m2 to 0.32 m2.
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Figure 1. Study area (a) and the location of sampling points (b). The image in display is false color
composite of Sentinel-2 image acquired on 23 June 2018.

Within each sample point, three randomly selected plants were horizontally cut to
the root. Each of three maize biomass samples was partitioned into stems, leaves, and
fruits with each component processed separately and put into the bags. The fresh samples
were dried in an oven at 70 ◦C for 72 h and weighed in dry conditions to obtain the dry
weight of maize biomass samples. The total above-ground biomass of each sample point
was calculated by dry weight and the unit area per maize plant. The biomass of the three
maize plants was averaged and considered as the representative value of the dry biomass
in this plot. In this study, the range of the measured dry biomass was between 0.02 and
4.24 kg/m2. Details on the number and location of 85 samples used in this study are given
in Table 1 and Figure 1.

Table 1. Details of Sentinel-1, Sentinel-2 images, and field samples acquired for the study.

Sentinenl-1
Acquisition

Date

Product
Type

Sentinenl-2
Acquisition

Date

Product
Type

Field
Acquisition

Date

Sample
Points

23 June 2018 GRD 23 June 2018 Level-1C 23 June 2018 30

22 July 2018 GRD 23 July 2018 Level-1C 20 July 2018,
22 July 2018 34

10 August 2018 GRD 2 August 2018 Level-1C 9 August 2018,
10 August 2018 21

2.2. Satellite Data Pre-Processing and Derived Variables

This study used data from S-1 and S-2 imagery of the European Space Agency ac-
quired from ESA’s Copernicus Open Access (https://scihub.copernicus.eu/dhus/#/home,
accessed on 15 June 2021). The data acquisition time consistently matched with the dates
of field campaigns. The information on Sentinel images used for the study is presented
in Table 1.

The acquired S-1 C-band (5.405 GHz) data were collected in the interferometric wide
swath (IW) mode with VV and VH dual polarizations, and in high-resolution Level-1
ground range detected (GRD) processing level with a pixel size of 10 m. The acquired
SAR data was preprocessed by sentinel application platform (SNAP) software. The data
processing steps consisted of orbit calibration, thermal noise removal, noise removal, image
calibration, speckle filtering, and terrain correction [42]. The digital number (DN) of SAR
images was transformed to radar intensity backscatter coefficient (σ0) using log scaling.

The acquired cloudless S-2 data was an orthorectified, top-of-atmosphere reflectance
(Level-1C), with 13 spectral bands in the visible, near-infrared, and short-wave infrared
regions. As the Level-1C product had been processed for radiometric and geometric
corrections, S-2 images were only atmospherically corrected and converted to Level-2A

https://scihub.copernicus.eu/dhus/#/home
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products using the Sen2cor atmospheric correction toolbox of SNAP software. In order
to keep the spatial resolution consistent, the pre-processed S-2 images with 20 and 60 m
resolution were resampled to 10 m spatial resolution by using the nearest neighbor method
of SNAP software.

Three groups of predictors presented in Table 2 were extracted from Sentinel images.
In total, we selected 23 predictors to test their performance in estimating biomass. The first
group of predictors consisted of VH and VV polarization indices. In addition, the difference
(VH − VV) and sum (VH + VV) of VH and VV were computed, which were considered
as quotient products and used to estimate biomass [43]. We also calculated four different
combinations of VH and VV, such as VH × VV and VH/(VH × VV). A total of eight SAR
polarization indices were applied to estimate maize biomass.

The second group involved ten VIs computed from S-2 10 m multispectral bands,
including six traditional VIs calculated from red and near-infrared (NIR) bands (e.g., NDVI
and RVI) and four red-edge indices, which were normalized difference red-edge index
(NDRE), red-edge simple ratio vegetation index (RERVI), red-edge chlorophyll index (CIre)
and red-edge re-normalized difference vegetation index (RERDVI). These VIs are widely
used to estimate vegetation parameters [44].

The last group included LAI, FCOVER, FAPAR, CAB, and canopy water content
(CWC), which were calculated using the “Biophysical Processor” in the SNAP software.
Previous studies have confirmed the performance of SNAP-derived biophysical variables
is applicable for crop parameter retrieval [44–46]. Kamenova et al. [47] reported that the
measured values and the SNAP-derived estimates for three BPVs (LAI, FCOVER, and
FAPAR) were highly associated (R2 > 0.89). The principle of “Biophysical Processor” is to
retrieve these parameters from Sentinel-2 instantaneous observations using neural network
approach. This process consists mainly of the following three steps: (1) generating training
database should be constituted of a representative set of Sentinel-2 top of canopy reflectance
and observation geometry data obtained by the PROSPECT + SAIL radiative transfer
model; (2) training the neural network architecture, the steps consisting of normalization of
the input, network architecture, denormalization of the output; (3) generation of quality
indicator [48].

Table 2. List of Sentinel-1 and Sentinel-2 predictors used for maize biomass modeling.

Indices Variables Definition Reference

S-1
polarization

indices

Vertical transmit-vertical channel VV ——
Vertical transmit-horizontal channel VH

SAR simple additive index VH + VV
[43]SAR simple difference index VH − VV

SAR multiplication index VH × VV This paper
SAR ratio index VH/(VH × VV) This paper
SAR ratio index (VH + VV)/(VH × VV) This paper

SAR square difference index VH × VH − VV × VV This paper

S-2 VIs

Normalized difference vegetation
index (NDVI) (B8a − B4)/(B8a + B4) [49]

Enhanced vegetation index (EVI) 2.5 × (B8a − B4)/(B8a + 6 ×
B4 − 7.5 × B2 + 1) [50]

Ratio vegetation index (RVI) B8a/B4 [51]
Normalized difference infrared

Index (NDII) (B11 − B4)/(B11 + B4) [52]

Modified simple ratio (MSR) ((B8a/B4)− 1)/
√
(B8a/B4) + 1) [53]

Soil adjusted vegetation index
(SAVI)

(1 + 0.5) × (B8a − B4)/(B8a +
B4 + 0.5) [54]
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Table 2. Cont.

Indices Variables Definition Reference

Normalized difference red-edge
Index (NDRE) (B8a − B5)/(B8a + B5) [55]

Red-edge simple ratio vegetation
Index (RERVI) B8a/B5 [56]

Red-edge chlorophyll index (CIre) B8a/B5 − 1 [57]
Red-edge re-normalized difference

vegetation index (RERDVI) (B8a− B5)/
√

B8a/B5 [58]

S-2 BPVs

Leaf area index LAI

——

Fractional vegetation cover FCOVER
Fraction of absorbed
photo-synthetically

active radiation
FAPAR

Leaf chlorophyll content CAB
Canopy water content CWC

Note: S-2 multispectral bands setting: B2 (blue, 490 nm), B4 (red, 665 nm), B5 (red-edge, 705 nm), B8a (near
infrared, 865 nm), and B11 (shortwave infrared, 1610 nm).

2.3. Maize Biomass Modeling and Feature Selection
2.3.1. Gaussian Process Regression and Feature Selection

Gaussian process regression (GPR) is a kernel-based machine learning algorithm. A
Gaussian process assigns probability distribution over a set of possible functions that fit the
input data and converts them into posterior probabilistic estimates [59]. A non-parametric
Gaussian process model is specified as follows:

p( f (x)|θ) ∼ gp
(
0, k
(

x, x′
))

+ Iσ2
y (1)

where x is the input predictors, k(x, x′) is a kernel matrix to approximate covariance
function, which can be implemented with a variety of functions and σ2

y is Gaussian noise.
The model hyperparameters were automatically optimized using a “fitgrp” function

in Matlab R2019b. A general introduction to optimizing the hyperparameters of GPR
algorithms can be found [60]. In this study, we used a squared exponential kernel. One of
the advantages of GPR is that the predictive power of each predictor can be evaluated for
the parameter of interest. The importance of input predictors can be interpreted by σ, which

is a parameter of the covariance function of GPR as follows: k(x, x′) = exp
(
− ‖x,x′‖2

2σ2

)
.

High values of σ indicate that relations mostly extend along that predictor, hence, the lower
the σ, the more relevant the predictor [33]. As such, the optimal number of input predictors
was assessed by excluding the least important predictors according to the relevance of
each variable to biomass. We used a stepwise elimination method to identify the optimal
input combination in such a way to reduce the number of input variables, beginning at the
variable with the highest σ and ending up with the combination that provided the lowest
root mean squared error (RMSE).

2.3.2. Random Forest and Feature Selection

The RF is an ensemble-learning algorithm that combines a large number of decision
trees to improve prediction accuracy [61]. In random forest regression, each tree is built
using a deterministic algorithm by selecting a random set of variables and a random sample
from the training dataset [62]. In order to implement RF, the number of regression trees
(ntree) and different predictors selected at each leaf node (mtry) need to be optimized [63].
In this study, the ntree values were tested from 50 to 200 at a step of 50, as well as mtry
values were tested from 5 to 100. Two parameters were optimized using the grid search
method in the “caret” package in R 4.1.2 software.
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Feature selection with RF is achieved by the recursive feature elimination (RFE),
which is a well-known wrapper-based feature-ranking method that searches within the
space for the optimal subset provided by the caret package in R software [64,65]. The
process iteratively calculates the importance of all variables added to the RF model and
removes the least important variables until only one variable remained in the model. The
importance of input predictors can be interpreted by mean decrease gini (IncNodePurity)
and the root mean square error of (RMSE). IncNodePurity evaluates the quality of a split
for every variable (node) of a tree by means of the gini index, a higher IncNodePurity value
represents higher variable importance. RMSE is constructed by permuting the values of
each variable of the test set, recording the prediction and comparing it with the unpermuted
test set prediction of the variable [66]. In this study, the model was optimized by selecting
best mtry and ntree, the smallest subset of variables with lowest RMSE was selected to
predict biomass.

2.3.3. Three New Predictors Proposed for Biomass Retrieval

Pearson’s correlation coefficient (R) was calculated to assess the sensitivity of each
variable in Table 2 to biomass measured in June, July, and August, respectively. The higher
value represented stronger correlation between the variable and biomass. As for each
type of remote sensing data, the new variables were proposed by combining the first
three variables, which were the most correlated to biomass collected in the three months,
respectively, and used to estimate biomass with GRP and RF.

GPR and RF methods were employed for biomass modeling. Firstly, the univariate
models were developed based on single S-1 SAR polarization indices, S-2 VIs and BPVs
to estimate biomass, and we evaluated the ability of single S-1 and S-2 data to estimate
maize biomass. Then, we developed the models from SAR indices, VIs, and BPVs based
on GPR and RF with feature optimization to improve the accuracy of biomass estimation.
Finally, three integrated predictors were proposed to estimate biomass by combining the
derivatives of S-1 and S-2, which were the most sensitive to biomass measured in June,
July, and August of 2018, respectively. Three integrated predictors were combined with
GPR and RF to explore the possibility of further improving biomass estimation. The overall
methodological flowchart for estimating biomass from S-1 to S-2 images is presented
in Figure 2.

2.3.4. Model Calibration and Validation

To explore the potential of different datasets to monitor maize biomass, eight SAR
polarization indices, ten VIs, and five BPVs were used individually and integrally with GRP
and RF. The performances of the above biomass estimation models were evaluated using
the coefficient of determination (R2), RMSE, and the ratio of percent deviation (RPD), three
statistical criteria for each algorithm were the average of 5-fold cross-validation repeated
50 times, which were calculated as follows:

R2 = 1− ∑n
i=1(Oi − Pi)

2

∑n
i=1(Oi −M)2 (2)

RMSE =

√
1
n

n

∑
i=1

(Oi − Pi)
2 (3)

RPD = SD/RMSE (4)

where “P” is the predicted value, “O” is the observed value, “M” is the mean of observed
values. SD is the standard deviation of observed values. The quality of estimation is
assessed based on RPD as follows: very poor (<1.0), poor (1.0–1.4), acceptable (1.4–1.8),
good (1.8–2.0), very good (2.0–2.5), and excellent (>2.5) [67,68].

In order to avoid reliance on a single random split of the datasets, as well as to
guarantee that all samples were used for both training and validation, we used a repeated
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5-fold cross-validation procedure. All samples were randomly split into 5 equal-sized
sub-datasets, and they were trained and tested 10 times. For each time, 4 sub-datasets were
used iteratively for calibration and the remaining sub-dataset were used for validation. By
repeating the training procedure 5 times, all observations were used for both calibration
and validation, with each observation being used for validation only once.
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Figure 2. Flowchart for maize biomass estimation from S-1 and S-2 data.

3. Results
3.1. Performance of Each S-1 SAR Polarization Indices, S-2 VIs, and BPVs on Estimating Maize
Biomass with GPR and RF

The performance of SAR polarization indices on estimating biomass with GPR and
RF is presented in Table 3. In terms of the GPR approach, among the eight indices, the
highest accuracy was obtained by VH + VV (R2 = 0.36, RMSE = 0.82 kg/m2, RPD = 1.30).
Testing of three derived indices of VH × VV, VH/(VH × VV), and (VH + VV)/(VH × VV)
in this study provided new information on the use of S-1 data for biomass modelling,
which had a marginal advantage over VH and VV. VH − VV and VH × VH − VV × VV
presented unreliable results with extremely low R2. A slight improvement was achieved by
using all eight polarization indices as input predictors (R2 = 0.39, RMSE = 0.84 kg/m2). In
the case of RF, VH + VV was also the best predictor, which yielded the highest accuracy
(R2 = 0.41 and RMSE = 0.85 kg/m2). However, the scatterplot of measured biomass and
estimated biomass by all SAR polarization indices demonstrated that samples with biomass
below 1.2 kg/m2 were significantly overestimated and those higher than 1.2 kg/m2 were
underestimated (Figure 3a). Other polarization indices with RF performed similarly to
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GPR. SAR polarization indices and their combinations with GPR and RF produced poor
predictions of maize biomass (PRD < 1.4).

Table 3. Performance of S-1 SAR polarization indices on estimating maize biomass based on GPR
and RF.

Input Variables
GPR RF

R2 RMSE
(kg/m2) RPD R2 RMSE

(kg/m2) RPD

VH 0.32 0.87 1.23 0.30 0.96 1.17
VV 0.31 0.88 1.23 0.25 1.01 1.10

VH + VV 0.36 0.82 1.30 0.41 0.85 1.35
VH − VV 0.04 1.08 0.98 0.02 1.23 0.89
VH × VV 0.35 0.84 1.27 0.30 0.94 1.20

VH/(VH × VV) 0.31 0.89 1.21 0.28 1.01 1.11
(VH + VV)/(VH × VV) 0.34 0.85 1.25 0.26 1.02 1.09
VH × VH − VV × VV 0.20 0.99 1.06 0.28 0.99 1.13

All SAR 0.39 0.84 1.27 0.31 0.92 1.21
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The models based on published S-2 VIs yielded various retrieval results (Table 4).
Generally, GPR and RF models with S-2 VIs produced better accuracy statistics than S-1 SAR
polarization indices. Among the ten univariate models based on GPR, the highest retrieval
accuracies were achieved by RVI and MSR with the same statistical values (R2 = 0.65,
RMSE = 0.59 kg/m2, RPD = 1.93), followed by NDVI. Other VIs performed poorly, with
low R2 values. Additionally, the retrieval accuracy was highly improved by using all VIs as
input features, with an R2 of 0.77 and a RMSE of 0.47 kg/m2. The scatter plots show that the
estimated versus measured values fall close to the 1:1 line (Figure 3b). However, this model
had difficulty estimating higher biomass quantities (>1.2 kg/m2). This can be explained
by the fact that VIs, particularly those based on red and near-infrared bands, approach
saturation level after a certain biomass density [69]. Compared with the univariate models,
the combination of all VIs enriched the effective information and explained more variability
for biomass estimation. Similar to RF models, RVI, MSR, and NDVI had the most significant
contributions to predicting biomass, with R2 around 0.55 and RMSE at about 0.70 kg/m2,
and the contributions of the other VIs were less significant. The accuracy was further
improved by using all VIs as predictors, resulting in an R2 = 0.73 and RMSE = 0.53 kg/m2.
In comparison, the GPR models performed better than RF models for biomass estimation.
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Table 4. Performance of S-2 VIs on estimating maize biomass based on GPR and RF.

Input
Variables

GPR RF

R2 RMSE
(kg/m2) RPD R2 RMSE

(kg/m2) RPD

NDVI 0.64 0.60 1.86 0.54 0.71 1.66
EVI 0.41 0.81 1.32 0.34 0.93 1.20
RVI 0.65 0.59 1.93 0.55 0.71 1.65

NDII 0.35 0.85 1.26 0.27 0.99 1.13
MSR 0.65 0.59 1.92 0.56 0.70 1.70
SAVI 0.31 0.87 1.22 0.36 0.91 1.22

NDRE 0.40 0.79 1.33 0.37 0.85 1.31
RERVI 0.44 0.77 1.40 0.38 0.86 1.30

CIre 0.44 0.77 1.39 0.39 0.84 1.32
RERDVI 0.31 0.88 1.20 0.26 0.98 1.13
All VIs 0.77 0.47 2.42 0.73 0.53 2.28

Of the five BPVs investigated, FCOVER with GPR led to the most accurate estimates
of biomass (R2 = 0.44, RMSE = 0.78 kg/m2, RPD = 1.36), followed by CWC and FAPAR
with R2 around 0.35 (Table 5). CAB and LAI produced similar estimates of biomass.
Compared to utilizing a single BPV as a predictor, the application of all five BPVs improved
the performance of GPR with an R2 of 0.53 and a RMSE of 0.76 kg/m2. In terms of
RF, the highest retrieval accuracy was also achieved by FCOVER, with R2 of 0.58 and
a RMSE of 0.68 kg/m2, and the scatter plots in Figure 3c were similar to the scatterplot
of measured biomass and estimated biomass by the GPR model of all SAR polarization
indices (Figure 3a). It was noted that samples with biomass values below 1.2 kg/m2 were
overestimated and those higher than 1.2 kg/m2 were underestimated. The other BPVs
presented unstable estimates of biomass with low R2. Compared to the RF model based on
FCOVER, no improvement was achieved by the application of all BPVs with RF.

Table 5. Performance of S-2 vegetation biophysical variables on estimating maize biomass based on
GPR and RF.

Input
Variables

GPR RF

R2 RMSE
(kg/m2) RPD R2 RMSE

(kg/m2) RPD

LAI 0.34 0.86 1.24 0.23 1.02 1.09
FCOVER 0.44 0.78 1.36 0.58 0.68 1.70
FAPAR 0.36 0.86 1.23 0.29 0.96 1.16
CWC 0.38 0.82 1.29 0.33 0.91 1.21
CAB 0.32 0.87 1.22 0.17 1.08 1.02

All BPVs 0.53 0.76 1.50 0.46 0.77 1.45

3.2. Performance of GPR and RF on Estimating Maize Biomass with Feature Optimization
3.2.1. Performance of GPR-Optimized by Feature Relevance

As noted earlier, one interesting feature of GPR is its ability to provide insight into the
relevance of input predictors when developing the regression model. The σ in the kernel
function of GPR is interpreted as the relevance of the predictor, which means the lower σ,
the more relevant the predictor [70]. We calculated σ for each group of input predictors
and illustrated it in Figure 4. The plot of σ for the eight SAR polarization indices (Figure 4a)
showed that the most relevant indices were (VH + VV)/(VH × VV), VH + VV, and VH.
GPR models associated with these three indices have been proven powerful in estimating
biomass (Table 3). Calculation of σ values for the ten VIs (Figure 4b) showed that EVI, RVI,
and SAVI were more relevant to biomass than the other VIs. RVI with GPR has been shown
to outperform other univariate models (Table 4). As for the five BPVs, CWC and FCOVER
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yielded high correlations to biomass (Figure 4c). FCOVER as input also provided more
accurate predictions of biomass than other BPVs (Table 5).
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The slash-filled bars in Figure 4 were the final input variables for each group of data
optimized by the stepwise elimination method. The accuracies retrieved by GPR models
with the optimal input variables are listed in Table 6. (VH + VV)/(VH × VV), VH + VV,
and VH were selected as the most important input variables among the S-1 data, this
selection did not yield more accurate estimates than all SAR polarization indices. The
optimal variables among VIs were EVI, RVI, and SAVI. The GPR associated with three
variables outperformed the models based on all VIs, enhancing R2 from 0.77 to 0.80 and
RMSE from 0.47 kg/m2 to 0.43 kg/m2. Compared to the original five BPVs, the RMSE was
improved from 0.76 kg/m2 to 0.69 kg/m2 by using CWC and FCOVER as input variables.
In general, the retrieval accuracy of GPR was improved by the stepwise elimination method
based on the σ.

Table 6. Performance of the optimized GPR models on estimating maize biomass.

Optimized Input Predictors
GPR

R2 RMSE (kg/m2) RPD

(VH + VV)/(VH × VV), VH + VV, VH 0.40 0.84 1.29
EVI, RVI, SAVI 0.80 0.43 2.68
CWC, FCOVER 0.57 0.69 1.62

3.2.2. Performance of RF-Optimized by RFE

The RF by combining an RFE based on predictor importance ranking was opti-
mized. The importance of S-1 SAR polarization indices, S-2 VIs, and BPVs for maize
biomass modeling is shown in Figure 5a–c. The effect of the number of variables on the
RMSE for the biomass models is illustrated in Figure 5d–e. For S-1 SAR polarization
indices, the top five important variables for biomass modeling were VH + VV, VH × VV,
(VH + VV)/(VH × VV), VH, and VH × VH-VV × VV (Figure 5a) with the lowest RMSE
(Figure 5d). As for S-2 VIs, a set of five variables including NDII, MSR, NDVI, RVI, and
EVI showed the lowest RMSE for biomass prediction (Figure 5b,e). In terms of S-2 BPVs,
the minimum RMSE was obtained by only using FCOVER (Figure 5c,f).
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The performance of three groups of the optimized predictors for biomass estimation
is listed in Table 7. The five RFE-optimized indices yielded similar accuracy (R2 = 0.32,
RMSE = 0.91 kg/m2) to the predictions by the RF model of SAR predictors individually and
integrally (Table 3), failing to enhance the accuracy. Compared to the RF model based on
all VIs, no improvement was achieved by using NDII, MSR, NDVI, RVI, and EVI. Among
the five BPVs, the most important variable for biomass prediction was FCOVER, which
resulted in R2 = 0.58 and RMSE = 0.68 kg/m2. Although RF with RFE did not enhance
biomass prediction accuracy, it did minimize the number of input variables.

Table 7. Performance of the optimized RF models on estimating maize biomass.

Optimized Input Predictors
RF

R2 RMSE (kg/m2) RPD

VH + VV, VH × VV,
(VH + VV)/(VH × VV),

VH, VH × VH − VV × VV
0.32 0.91 1.24

NDII, MSR, NDVI, RVI, EVI 0.74 0.52 2.29
FCOVER 0.58 0.68 1.70

3.2.3. Performance of GPR and RF with New Features

The Pearson’s correlation coefficients between derivatives of S-1 and S-2 and biomass
measured in June, July, and August are presented in Figure 6. SAR polarization in-
dices showed different degrees of correlation with biomass collected in different periods
(Figure 6a). The VH + VV polarization yielded the highest correlation with biomass col-
lected in June (R = 0.25). The VH channel was more sensitive to biomass measured in
July than the other indicators (R = 0.40). The difference between VH and VV yielded the
strongest correlation with August biomass (R = 0.27). Therefore, the combination of the
June VV + VH (Jun_(VV + VH), derived from the S-1 image acquired on 23 June 2018), the
July VH (Jul_VH, derived from the S-1 image acquired on 22 July 2018), and the August
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VH − VV (Aug_(VH − VV)), derived from S-1 image acquired on 10 August 2018) can
be a potential predictor to estimate maize biomass. Thus, Jun_(VV + VH), Jul_VH, and
Aug_(VH − VV) were used to build the retrieval model for biomass.
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In terms of Sentinel-2 VIs, all VIs were significantly correlated to biomass measured
in June (R > 0.60), of which the highest was RVI (R = 0.71) (Figure 6b). NDII was better
correlated to July biomass (R = 0.35) than the other VIs. NDVI yielded the strongest
correlation with August biomass (R = 0.42). RVI had the highest correlation (R = 0.78) with
all biomasses, followed by MSR (R = 0.74). Further analysis was executed by using the June
RVI, the July NDII, and the August NDVI as predictors to estimate maize biomass.

As for S-2 BPVs, all BPVs yielded high correlations to June biomass (R > 0.65), of
which the highest was CAB (R = 0.72) (Figure 6c). CWC was more sensitive to July
biomass (R = 0.33). FCOVER had a stronger correlation with biomass collected in August
(R = 0.35). All variables were sensitive to biomass measured in the three periods except
CWC. The combination of June CAB, July CWC, and August FCOVER was used for
estimating biomass. Generally, S-2 VIs were more correlated to biomass than BPVs, which
had marginal advantages over S-1 SAR derivatives.

The validation results of the above three types of combined features with GPR and
RF for biomass estimation are presented in Table 8. In terms of GPR, the predictor of
Jun_(VV + VH), Jul_VH, and Aug_(VH − VV) significantly improved the retrieval accu-
racy of biomass and outperformed the GPR models with all SAR polarization indices
and the optimized subset as input predictors, enhancing R2 from 0.40 to 0.81 and RMSE
from 0.84 kg/m2 to 0.43 kg/m2. The biomass was very good in estimation (RPD > 2.0).
Compared to the estimation results by all SAR polarization indices with GPR (Figure 3a),
the phenomenon of underestimation and overestimation was obviously improved by using
Jun_(VH + VV), Jul_VH, and Aug_(VH − VV) (Figure 7a). It was suggested that the
best prediction could be obtained by combining SAR polarization indices based on their
sensitivities to biomass in different growing periods.



Remote Sens. 2022, 14, 4083 14 of 21

Table 8. Performance of GPR and RF on estimating maize biomass using combined features selected
from correlation analysis.

Input Variables
GPR RF

R2 RMSE
(kg/m2) RPD R2 RMSE

(kg/m2) RPD

Jun_(VH + VV), Jul_VH,
Aug_(VH − VV) 0.81 0.41 2.85 0.83 0.40 2.80

Jun_RVI, Jul_NDII,
Aug_NDVI 0.83 0.39 2.93 0.82 0.43 2.69

Jun_CAB, Jul_CWC,
Aug_FCOVER 0.82 0.40 2.73 0.85 0.38 2.97
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In comparison with the optimized GPR model based on EVI, RVI, and SAVI, the
integrated predictor of Jun_RVI, Jul_NDII, and Aug_NDVI with GPR improved R2 from
0.80 to 0.83 and RMSE from 0.43 to 0.39 kg/m2. Point-by-point analysis showed a good
linear relationship between the modeled biomass and sampled biomass (Figure 7b). The
combined predictor of Jun_CAB, Jul_CWC, and Aug_FCOVER with GPR achieved a result
with R2 = 0.82 and RMSE = 0.40 kg/m2, much better than the GPR model based on CAB
and FCOVER (R2 = 0.57, RMSE = 0.69 kg/m2). The scatter plots show that the estimated
versus measured values fall close to the 1:1 line (Figure 7c). The results indicated that the
biomass estimation models incorporating these three predictors were more robust and
reliable and improved the accuracy of the biomass estimation.

To understand whether these three predictors improved the biomass estimation with
another regression method, we also analyzed the performance of three predictors with
RF for comparison. The RF models associated with the integrated SAR predictor and the
combined VI predictor achieved similar results, with R2 at about 0.82 and RMSE around
0.43 kg/m2. The Jun_CAB, Jul_CWC, and Aug_FCOVER outperformed the other two
predictors, with an R2 of 0.85 and an RMSE of 0.38 kg/m2. The results showed that
these three predictors with RF exceeded the univariate and optimized subset with RF
models (Tables 3 and 7). Similar to the results in Figure 7, the biomass estimated by these
three predictors with RF lies close to the 1:1 line (Figure 8a–c). These findings demon-
strate that the combination of remote sensing derivatives according to their sensitivities
to biomass in different growing periods is promising to provide sufficient information for
biomass estimation.
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4. Discussion
4.1. Proficiency of Single S-1 SAR Polarization Indices, S-2 VIs and BPVs for Maize
Biomass Modelling

In this study, different types of SAR and optical indices were identified and regressed
with ground-sampled biomass. This study demonstrated that compared with the mod-
els based solely on S-1 SAR polarization indices (R2 = 0.04–0.36), VIs and BPVs models
(R2 = 0.31–0.65) showed better performance in predicting maize biomass. The findings
were consistent with the study of Alebele et al., who discovered that SAR polarization
indices did not yield more accurate estimates than VIs and BPVs [2]. Similar findings
were reported in some studies that compared S-1 and S-2 data for biomass modeling [60].
One possible explanation is that the single-date SAR predictors had obvious limitations
in monitoring seasonal variations of crops. The combination of multi-date can enhance
the sensitivity of SAR indices to biomass and improve the accuracy of biomass. Results
of Jun_(VH + VV), Jul_VH, and Aug_(VH − VV) provided more accurate estimates of
biomass than single SAR polarization indices. Castillo et al. [9] also found that multi-date
S-1 images had a better correlation than single-date images in retrieving mangrove forests’
biomass. A second possible reason for the performance of S-1 data is that SAR polarization
indices are influenced by the height of the crop. As maize height continuously increased,
the short wavelength of S-1 (C-band) exhibited limited ability to penetrate deeply into
the maize canopy to capture structural information. In order to analyze the effect of crop
height on S-1 performance, new integration methods were accomplished by combining
the optimal SAR predictor (VH + VV) with height. The performance of VH + VV was
significantly improved by the inclusion of height (Table 9). Results demonstrate that the
effect of crop height on SAR response is real.

Table 9. Performance of GPR and RF on estimating maize biomass using VH + VV and combined
maize height.

Input
Variables

GPR RF

R2 RMSE
(kg/m2) RPD R2 RMSE

(kg/m2) RPD

VH + VV 0.36 0.82 1.30 0.41 0.85 1.35
VH + VV,

height 0.59 0.65 1.68 0.59 0.65 1.74

With respect to S-2 VIs, GPR and RF models involving MSR and RVI, respectively,
obtained better biomass predictions, followed by NDVI. The results supported the find-
ings that VIs calculated by simple combinations of visible and near-infrared bands were
sensitive to maize biomass [71,72]. However, the other selected optical indices obtained
poor estimations (RPD < 1.4). The main reason is that these VIs are highly sensitive to low
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biomass; however, maize biomass in August is no longer low, and the saturation of some
VIs occurs at high biomass. The red-edge indices such as CIre also did not show any signif-
icant improvements in biomass estimation over MSR and RVI, which was consistent with
findings from Jin et al. [73], who indicated that red-edge indices had no significant effect
on biomass estimation. Furthermore, S-2 BPVs provided insights into the importance of
biomass modeling. Baloloy et al. [74] found CAB was more correlated to mangrove biomass
than LAI and FCOVER, while Chen et al. [26] found a stronger relationship between LAI
and forest biomass than CAB, FAPAR, and FCOVER. In this study, FCOVER with an RF
model achieved better accuracy (R2 = 0.58, RMSE = 0.70 kg/m2) than univariate models
based on SAR polarization indices. It was confirmed that BPVs could provide a reliable
prediction of maize biomass.

4.2. Efficiency of Feature Selection Methods

The findings of this study revealed that for three types of remote-sensing datasets,
GPR and RF exhibited their own characteristic in estimating maize biomass with feature
optimization. The inputting variables had a direct impact on the performance of GPR and
RF. (VH + VV)/(VH × VV), VH + VV, and VH were identified as important predictors
among the eight SAR polarization indices by utilizing the GPR feature optimization method.
These three predictors were also highly correlated to the whole biomass (Figure 6). The
use of these three indices as inputs to GRP had an equivalent ability to estimate biomass in
comparison with the use of all polarization indices. With respect to S-2, the most valuable
VI was easily identified. RVI was found to be the most important variable, followed by
SAVI and EVI, which were known to reduce soil background disturbance [75,76]. EVI
also keeps sensitivity to dense vegetation [77]. The optimized GPR involving these three
VIs yielded accurate estimates of biomass with an R2 of 0.80 and an RMSE of 0.43 kg/m2,
which was better than the GPR models with all VIs and RVI as inputs, respectively. Among
the five BPVs, CWC and FCOVER had the most significant contributions to estimating
biomass. The GPR model with the two BPVs outperformed the GPR involving all BPVs.
Actually, GPR automatically provides physical insight into the ranking of input variables
based on their relevance, making it more capable of selecting optimal input variables and
establishing estimation relationships.

The RFE method embedded in RF has limited capability to gather useful information
for improving maize biomass estimation in this study. Compared to utilizing all predictors
of each type of dataset as input predictors, the optimal subsets of polarization indices,
VIs, and BPVs selected by RFE were all ineffective in improving the accuracy of biomass
estimation. One possible explanation is that the ability of RFE may be influenced by the
number of predictors. Previous studies on biomass estimation found that RFE was widely
used to find the optimal subset of features from a large number of different types of variable
combinations [32,78]. The prediction from the RF-RFE model is based on the average value
of each tree generated by samples [67]. If the dataset contains limited sample units, they
may be consistently underrepresented in the tree construction and RF-RFE may therefore
result in variance in biomass estimation.

4.3. Optimal Features Based on the Response of Remote Sensing Indicators to Biomass in Different
Growth Periods

Few studies explored the responses of S-1 derivatives to maize biomass dynamics
at different growth periods. During the growth periods, the contribution of the crop to
microwave response is variable due to changes in plant structure, total biomass, canopy
water content, and so on [79]. In the early phase of growth, maize plants are shorter in
height and have a loose canopy. The scattering signal from the maize canopy is relatively
limited and heavily influenced by the soil background [10,80]. Most maize plants reach
their maximum height and canopy density during the middle development stage, and the
scattering mainly comes from the canopy [81]. As maize matures, biomass components
continue to increase due to fruit development. The radar signal is influenced not only by
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the leaves and stems of maize but also by the fruits [12]. As shown by Pearson’s correlation
values in Figure 6, eight SAR derivatives showed different sensitivities to biomass measured
at the three periods. The new S-1 predictor, Jun_(VH + VV), Jul_VH, and Aug_(VH − VV)
was proposed because these three SAR predictors had the strongest correlations with maize
biomass measured in June, July, and August, respectively. This combination with GRP
and RF both improved the retrieval accuracy of biomass, being the best model among the
models associated with SAR information. The combination of multi-month SAR data can
reflect the time-series variation of radar response, which is more conducive to monitoring
crop dynamics.

Seasonal changes in canopy structures, biochemical traits, and soil background can
significantly modify the spectral response of the canopy [82,83]. In different stages of
crop development, the relationships between biomass and VIs are often significantly
different [36,84]. The new S-2 predictor was proposed by RVI, NDII, and NDVI for June,
July, and August, respectively. The results revealed that Jun_RVI, Jul_NDII, and Aug_NDVI
greatly improved the retrieval accuracies of GPR and RF. The GPR model with this inte-
grated predictor achieved a higher accuracy with an R2 of 0.83 and an RMSE of 0.39 kg/m2,
which was better than the GPR optimized by feature relevance. This can be explained by
the fact that the integrated VI predictor can minimize the impact of the spectral response of
the canopy and reduce the problem of saturation under high biomass conditions.

Not only did SAR polarization indices and VIs show different degrees of correlations
to biomass, but five BPVs also responded differently to biomass dynamics. Similar findings
have been reported by Li et al. [41], who reported that the relationships between BPVs
and maize biomass changed at different growth periods. As a result, the same strategy
was applied to S-2 BPVs, and the new predictor combined by Jun_CAB, Jul_CWC, and
Aug_FCOVER was proposed. Although the optimal univariate model based on FCOVER
and the model associated with all BPVs obtained unreliable results, Jun_CAB, Jul_CWC,
and Aug_FCOVER with RF improved R2 to 0.85 and RMSE to 0.38 kg/m2. This predictor
outperformed GPR and RF models with other features. In all, the results suggest that
there is great potential for the retrieval of biomass by combining remote sensing predictors
according to their responses to biomass dynamics.

5. Conclusions

This paper focused on the estimation of maize biomass based on GRP and RF methods
from S-1 SAR polarization indices, S-2 VIs, and BPVs. Three new predictors were proposed
based on the responses of these remote sensing derivatives to biomass measured in different
periods. The results showed that neither GPR nor RF with sole or total SAR polarization in-
dices or the optimized subset achieved reliable estimation of biomass. The best-performing
SAR indicator was Jun_(VV + VH), Jul_VH, and Aug_(VH − VV), obtaining an accuracy of
R2 of 0.83 and RMSE of 0.40 kg/m2 with GPR. The total VIs and the optimized features
with GRP and RF both obtained higher accuracy than SAR polarization information, but
the accuracy was further improved by using Jun_RVI, Jul_NDII, and Aug_NDVI as pre-
dictors (R2 = 0.83, RMSE = 0.39 kg/m2, RPD = 2.93). Moreover, the integrated predictor of
Jun_CAB, Jul_CWC, and Aug_FCOVER delivered excellent accuracies with RF (R2 = 0.85,
RMSE = 0.38 kg/m2, RPD = 2.97), much better than single or total BPVs, or optimized
subsets. Compared to conventional remote sensing derivatives, the three integrated pre-
dictors reduced the overestimation of low biomass and underestimation of high biomass,
significantly improving biomass retrieval accuracy. Overall, this study provided a reference
for using S-1 and S-2 to estimate maize biomass.
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