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Abstract—The resource-constrained project scheduling
problem (RCPSP) has a broad range of practical appli-
cations, e.g., in manufacturing, mining, and supply chain,
among others. Over the last 50 years, many researchers have
tried to solve this challenging NP-hard problem. This paper
presents an efficient and easy-to-implement relax-and-solve
matheuristic to solve RCPSP. The proposed method employs
constraint programming in a heuristic framework and uses
CPLEX as an optimization solver. This algorithm is tested on
more than 1500 instances from the standard library PSPLIB.
Our experimental results show that the proposed heuristic
framework outperforms the CPLEX and provides competitive
results compared with the state-of-the-art techniques.
Keywords: Relax-and-Solve, Resource-Constrained Project
Scheduling Problem, Matheuristic

I. INTRODUCTION

Scheduling a large-scale project characterized by various
activities, complicated precedence constraints and enor-
mous resource demands is critical and challenging for
managers. One of the primary sources of delays in projects
is the lack of proper project scheduling [1]. Since the late
1950s, the critical path method (CPM) has been one of
the widely used planning methods that consider precedence
constraints and time parameters of the activities. However,
CPM assumes that unlimited resource is always available,
which is not practical in most of the industrial projects [2].

In 1969, Pritsker et al. introduced the Resource-
Constrained Project Scheduling Problem (RCPSP) [3],
which considers both precedence constraints among the
activities and resource demands of the scheduled activities
over time. The RCPSP and its variants have since been
applied to numerous realistic applications in almost all
industries, including job-shop scheduling problems [4],
mining [5], and supply chain [6]. The wide applications
of the RCPSP and also its computational complexity as
an NP-Hard problem has attracted the attention of many
researchers [7, 8] to solve these problems.

Generally, solution methods for the RCPSP can be
categorized as exact algorithms and heuristics-based ap-
proaches [9]. Exact algorithms can obtain and guarantee
optimal solutions [10], but the solution time becomes
unacceptable as the problem scale increases [11]. Heuristic-
based methods are widely used to overcome the compu-
tational limitations of the exact algorithms but have no
guarantee for solution optimality [12].

Constraint programming (CP) is an exact method and has
been very successful over the last two decades for solving

scheduling problems [13, 14], and especially the RCPSP
[15, 16, 17, 18]. General CP solvers are also available in
both open-source [19] and commercial [20] software.

The performance of CP deteriorates when the problem
size increases (e.g., projects with more than 100 asks). This
motivates us to design a matheuristic within the recently
proposed relax-and-solve (R&S) framework to exploit the
efficient search capability of CP for small and medium size
RCPSP.

The R&S is a matheuristic algorithm that recently de-
veloped for scheduling problems [21, 22, 23, 24]. This
method improves an existing feasible solution by iteratively
relaxing the order constraints (the execution order of tasks)
in the current solution and rescheduling the relaxed prob-
lem with an MIP solver. Although the size of the relaxed
problem is still large since all jobs are included, the solution
time is significantly reduced in practice. Compared with
scheduling problems, the big challenge to the application
of the R&S on RCPSP is that there is no clear definition
for task orders or task sequences in a feasible solution. In
this paper, we use time windows, instead of the sequence
window, to select the tasks that will be fully rescheduled,
while for the tasks outside of the window, CP constraints
such as start-at-end are used to maintain the relative se-
quence of tasks.

Because the CP outperforms MIP in solving large-scale
problems and can quickly obtain high quality solutions [25,
26], we expect the hybridization of CP and R&S, i.e., using
CP in R&S framework be helpful for solving RCPSP.

Related approaches in the literature for solving mixed-
integer programming models include relax-and-fix and
fix-and-optimize. In the relax-and-fix method, the binary
variables in the rolling time window are divided into
two groups, i.e., those are fixed, and those are optimized
variables. The integrality constraint for variables out of
the rolling window is relaxed [27]. The fix-and-optimize
method operates on two groups of variables, namely fixed
variables and optimized variables. A great asset of fix-and-
optimize is that the obtained solutions are always feasible
because it does not relax integrality constraints [28, 29].

The main contribution of this study is to propose a novel
matheuristic for decomposing and solving the RCPSP using
a constraint programming solver. In particular, we
• propose an R&S approach for the RCPSP,
• propose a novel technique to create the relaxed prob-

lems,



• develop a hybrid algorithm combining heuristics and
CP, and

• produce superior results to the state-of-the-art by
solving 1560 problem instances from PSPLIB (project
scheduling problem library) for 30, 60, and 120 ac-
tivities [30].

The remainder of this paper is organized as follows.
We define the RCPSP in Section II, and provide our R&S
method in Section III. In Section IV, we report the results
of our computational experiments, and Section V provides
some conclusions and future research directions.

II. PROBLEM DEFINITION AND FORMULATION

The RCPSP consists of a set of n tasks. Each task i has
a known non-negative duration represented by di. There
are also precedence relationships between tasks, which is
commonly modeled as an activity-on-node network G =
(V,A). Each task corresponds to a node in the vertex set
V = {1, 2, . . . , n+1}, and the precedence relationship that
task i must complete before task j can start is represented
as an arc (i, j) in the arc set A. Two dummy nodes (tasks)
0 and n + 1 are added to represent the start and finish of
the project, respectively. The duration of dummy tasks i.e.,
d0 and dn+1 are 0. Graph G is acyclic since time cannot
reverse.

A fixed set RR of renewable resources is available. Each
resource k ∈ RR has a constant non-negative capacity Rk
at any time during planning horizon T . Each task requires
a non-negative amount of rik of each resource k ∈ RR.
The tasks are non-preemptive, which means the task cannot
be interrupted once started.

Let Si represent the starting time of the task i, S0 = 0.
The makespan (the completion time of the last activity) of
the project is then Sn+1. The mathematical model of the
RCPSP can be expressed as follows:

minSn+1 (1)

subject to

Sj ≥ Si + di, ∀(i, j) ∈ A, (2)∑
i∈τ(t)

rik ≤ Rk,∀k ∈ RR, ∀t ∈ {0, . . . , T − 1}, (3)

τ(t) = {i ∈ V |Si ≤ t < Si + di}, (4)

Si ∈ {0, 1, . . . , T − di}, ∀i ∈ V, (5)

where T is the available upper bound to the project
duration.

III. THE PROPOSED RELAX-AND-SOLVE METHOD

In this section, an efficient R&S matheuristic algorithm
is proposed for the RCPSP. In this method, a rolling
time window is defined, and during the “relax” phase, all
tasks outside the window are fixed with each other with
respect to the order in the original solution, and only tasks
inside the time window can be reordered. In the “solve”
phase, a feasible solution is obtained by solving the relaxed

problem. As we do not remove the precedence and resource
constraints, the obtained solution is always feasible for the
original problem. The general R&S algorithm is summa-
rized in Algorithm 1.

Algorithm 1: The R&S algorithm.
Input: A feasible solution for the problem.
while the stopping condition is not met do

Generate a relaxed problem;
Solve the relaxed problem by using an optimization

solver;
end
return the best obtained schedule (the solution);

In what follows, we discuss the generation of an initial
solution for the problem, the generation of relaxed problem
in each iteration, and also the stopping criterion for this
algorithm.

A. Initial solution

The CP is an effective method for generating feasible
solutions even for highly constrained problems [31]. The
successful use of CP to generate an initial solution is
presented in [32]. We used CPLEX CP solver and set a
short time limit to solve the original problem and generate
a feasible initial solution.

B. Generating the relaxed problem

We use an example to illustrate the generation of relaxed
problems. Figure 1 shows a general picture of a feasible
solution while solving a problem by R&S. The time
window in the figure is used to divide the tasks into two
groups which are treated differently. In the following, the
generation of relaxed problems are explained.

Fig. 1. An RCPSP example.

1) The rolling time window: A rolling time window
is utilized to generate a relaxed problem. The larger the
time window, the more tasks are relaxed in each iteration.
In the first iteration the time window starts at t = 0
(second). After solving each relaxed problem, the time
window should be gradually moved forward, and when the
whole time horizon is covered, the time window restarts
from t = 0. For moving forward the time window, a certain
overlap with the current time window should be considered
to let the tasks move in the time horizon. The length of
each time window and the overlap (parameter overlap)



of time windows should be a function of the makespan.
This means both of those parameters should be reduced in
proportion to the makespan’s reduction after each iteration.
We defined the length of the time window as follows:
(makespanN )× (1 + overlap). The positive real value of N
to decompose the planning time, and the value of overlap
which is between 0 and 1, should be set for each problem
as explained in section IV.

2) Tasks group 1 (G1): The tasks of the group 1 are
those that are completely outside the time window, which
means their finish time is less than the minimum of the time
window, or their start time is greater than the maximum of
the time window. In Figure 1, the tasks of group 1 are
G1 = {3, 6, 4, 9, 8, 13}.

To generate a relaxed problem, when the finish time
(start time) of a task in group 1 is equal to the start
time (finish time) of another task, then two tasks are fixed
with each other by adding the “start-at-end” constraints.
In Figure 1, the following set of start-at-end constraints
is added to the problem and generate three super tasks:
{(3, 11), (7, 4), (7, 9), (9, 13), (12, 8)}. The first super task
is generated by tasks 3 − 11, the second one by tasks
7−4−9−13 and the third one by tasks 12−8. As is clear
in Figure 1, task 6 in group 1 is not fixed, this just may
happen for the tasks that start at t = 0 because otherwise
tasks start as soon as the resource constraint and precedence
constraints satisfy, which means it happens right after finish
of a task. We let task 6 be relaxed, thus the algorithm can
efficiently optimize the schedule and fill the gap (between
t = 1 and t = 2 if the precedence and resource constraints
are not violated.

3) Tasks group 2: The tasks in group 2 include the
remaining tasks, i.e., the tasks that all or some of them are
inside the time window. In the proposed example in Figure
1, the tasks of group are G2 = {5, 11, 2, 1, 7, 12, 10}.

Tasks group 2 are relaxed to be reordered. It should be
noted that the original precedence and resource constraints
are always maintained.

C. Solving the relaxed problem

The solve operation uses the CPLEX CP optimization
solver to solve the relaxed problem. Since the relaxed
problem becomes smaller, it includes just a few tasks to
schedule and can be solved much easier than the original
problem. Moreover, the solution of the relaxed problem is
always feasible. It should be noted that the tasks of group
1 can not be reordered, and because their starting times are
not fixed after each iteration the starting time of all tasks
(including tasks of group 1) is updated, and the makespan
of the original problem is updated to the makespan of the
relaxed problem.

D. Stopping criterion

The stopping criterion for this R&S is the total number
of relaxed problem that generated. Also, the optimization
solver has a time limit in each iteration, and as soon
as the solver finds the optimum solution of the relaxed

problem (local optimum for the original problem) or the
computation time exceeds the time limit, the algorithm goes
to the next iteration.

IV. COMPUTATIONAL EXPERIMENTS

In order to evaluate the performance of the proposed
R&S algorithm for solving the RCPSP, we present the
computational results obtained by R&S on 1560 instances
from the PSPLIB benchmark [30] with J30, J60 and
J120 datasets. The datasets J30 and J60 each contains
480 instances, and J120 contains 600 instances. The R&S
algorithm is implemented in Python version 3.6.5 and
solved by the CPLEX CP version 12.10.0.0 [20]. Except for
the stopping criterion (time limit) for solving each relaxed
problem, all other solver parameters are set to their default
values. The numerical experiments were conducted on an
Intel(R) Core™ i7, 2 GHz CPU, and 6GB of RAM under
the Windows 10 operating system.

A. Parameter settings

The time limit for CPLEX CP to solve for the initial
solution is set to one second. The computational time for
all experiments is 600 seconds. We set the stopping time
of each iteration to 25 seconds. In this way, we set the
maximum computational time of J30, J60 and J120 to 150,
300 and 600 seconds, respectively.

We set overlap = 0.4. To calculate the length of each
time window, we set N = 0.1 × n, i.e., 3, 6 and 12 for
J30, J60, J120, respectively. The total number of relaxed
problems generated, i.e., the maximum number of iterations
is set to 2×N .

B. Tests on PSPLIB

In this section, we first compare the results from our
R&S method with the results from CPLEX CP and three
other exact methods including, failure directed search
(FDS), lazy clause generation (LCG), and satisfiability
modulo theories (SMT) by [33]. In Table I, for each set of
instances, we report the average deviations from the best-
known lower bound as follows:

∆LB =

∑p=P
p=1

Cmax,R&S,p−Cmax,LB,p

Cmax,LB,p
× 100%

P
(6)

where P is the total number instances in an instance set,
and Cmax,R&S,p and Cmax,LB,p are the makespan obtained
by R&S method and the best known lower bound for each
instance, respectively.

TABLE I
COMPARISON OF LCG, FDS, SMT, CPLEX, AND R&S.

J30 J60 J120
Method ∆LB Ct ∆LB Ct ∆LB Ct
LCG 0 - 2.17 - 9.76 -
FDS 0 0.93s 1.91 67.44s 7.02 322.52s
SMT 0 0.22s 1.88 61.90s 9.55 320.50s
CPLEX 0 4.71s 1.11 52.83s 4.69 350.40s
R&S 0 5.12s 1.06 46.75s 4.63 235.65s



According to Table I, the performance of R&S is supe-
rior to solve J60 and J120 instances because the average
deviation from the best known lower bound is better
than other methods. For J30, all methods can find the
optimum solution. Comparing the result of CPLEX as an
independent method with R&S for J60 and J120 illustrates
the efficiency of our proposed algorithm. For J30, R&S is
slower than CPLEX but still finds optimal solutions for all
instances.

We also compare our results and the decomposition
based genetic algorithm [34], and state-of-the-art meta-
heuristic methods from [8] including, memetic algorithm
(MA), consolidated optimization algorithm (COA) [35],
PSO based hyper-heuristic algorithm (PSO-HH) [36], and
genetic algorithm using forward-backward improvement
(GAFBI) [2]. Because in the literature the number of
schedule generated is used as a stopping criterion which
is not applicable to our method, we use the best results of
those methods for 50,000 schedule generated. The average
deviation from the CPM (∆CPM ) can be calculated by us-
ing Equation (6), where the lower bound of the makespan,
Cmax,LB,p is produced by CPM. The results summarized
in Table II illustrates that our R&S method in comparison
with the state-of-the-art methods can provide competitive
results in a reasonable time.

TABLE II
COMPARISON OF THE STATE-OF-THE-ART METAHEURISTICS AND

R&S.

Algorithm J30 J60 J120
R&S (our proposed method) 0 10.54 31.09
DBGA [34] 0.02 10.68 30.69
MA [8] 0 10.55 31.12
GA-FBI [2] 0.0 10.56 32.76
COA [35] 0.0 10.58 31.22
PSO-SS[36] 0.01 10.68 31.23

V. CONCLUSION

In this paper, we presented a relax-and-solve (R&S)
matheuristic, which is an efficient and very easy to imple-
ment algorithm to solve the resource-constrained project
scheduling problem (RCPSP). In this method, the CPLEX
CP solver is utilized to solve the relaxed problems. The
results of the tests on 1560 instances from the standard
library PSPLIB with 30, 60, and 120 tasks show the
capability of this method to obtain good quality solutions.
Future work includes automating tuning the time window
length in each iteration and employing local searches to
improve the results. It is also interesting to extend this
method to multi-mode and scheduling problems under
uncertainty.
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