
Mining Bursting Core in Large Temporal Graphs
Hongchao Qin⇤, Rong-Hua Li⇤, Ye Yuan⇤, Guoren Wang⇤, Lu Qin#, Zhiwei Zhang⇤

⇤Beijing Institute of Technology, China; #University of Technology Sydney, Australia
{hcqin; rhli; yuan-ye; wanggr}@bit.edu.cn; Lu.Qin@uts.edu.au; cszwzhang@outlook.com

ABSTRACT
Temporal graphs are ubiquitous. Mining communities that are
bursting in a period of time is essential for seeking real emergency
events in temporal graphs. Unfortunately, most previous studies
on community mining in temporal networks ignore the bursting
patterns of communities. In this paper, we study the problem of
seeking bursting communities in a temporal graph. We propose a
novel model, called the (;, X)-maximal bursting core, to represent
a bursting community in a temporal graph. Speci�cally, an (;, X)-
maximal bursting core is a temporal subgraph in which each node
has an average degree no less than X in a time segment with length
no less than ; . To compute the (;, X)-maximal bursting core, we �rst
develop a novel dynamic programming algorithm that can reduce
time complexity of calculating the segment density from $ (|T |)

2

to$ (|T |). Then, we propose an e�cient updating algorithm which
can update the segment density in$ (;) time. In addition, we develop
an e�cient algorithm to enumerate all (;, X)-maximal bursting cores
that are not dominated by the others in terms of ; and X . The results
of extensive experiments on 9 real-life datasets demonstrate the
e�ectiveness, e�ciency and scalability of our algorithms.

PVLDB Reference Format:
Hongchao Qin⇤, Rong-Hua Li⇤, Ye Yuan⇤, Guoren Wang⇤, Lu Qin#, Zhiwei
Zhang⇤. Mining Bursting Core in Large Temporal Graphs. PVLDB, 14(1):
XXX-XXX, 2022.

1 INTRODUCTION
In temporal graphs, each edge can be represented as a triple
(D, E, C), where D, E are two end nodes of the edge and C denotes the
interaction time between D and E [3, 19]. The interaction patterns
in a temporal graph are often known to be bursty, e.g., human
communication events last for a short time [3, 19]. Here, the bursty
patterns denote a number of events occurring in and lasting for
a short time. In this paper, we study a particular bursty pattern
on temporal networks, called the bursting core, which is a dense
subgraph pattern that occurs in a short time. In other words, we aim
to identify densely-connected subgraphs from a temporal graph in
which each node rapidly accumulates its adjacent edges. Speci�cally,
a bursting core is a temporal subgraph in which each node has an
average degree no less than a given constant in a lasting time
segment.

There are evidences that the timing of many human activities,
ranging from communication to entertainment and work patterns,
follow non-Poisson statistics, characterized by bursts of rapidly

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

occurring events separated by long periods of inactivity [3].
Therefore, the popular topics in temporal networks are changing
over time, but every popular topic will last for a period of time. By
mining the bursting communities in such temporal social networks,
we can identify a group of users that densely interact with each
other in a lasting and bursting time. The common topics discussed
among the users in a bursting community may represent an activity
that recently spreads over the networks. Our case studies are
presented in Section 5 (see Figs. 9 and 13), which gives two examples
of such bursting communities in a communication network Enron
and a collaboration network DBLP, revealing real activities and
communities in the temporal networks. Therefore, identifying
bursting communities is useful for �nding such emerging activities
in a temporal network.

In the literature, there exist a few studies on mining cohesive
subgraphs in temporal graphs. For example, Wu et al. [38] proposed
a temporal core model to �nd cohesive subgraphs in a temporal
graph; Ma et al. [27] identi�ed the densest subgraphs in a weighted
temporal graph; Qin et al. [29] devised an e�cient algorithm to
seek periodic cliques in a temporal graph. The above studies did
not consider the bursting patterns of the community; thus, their
techniques cannot be applied to solve our problem. Recently, Chu
et al. [11] studied the problem of mining the densest and bursting
subgraphs in temporal graphs. However, to search the bursting
communities, the model of the densest and bursting subgraph has
three limitations: (i) The original global densest subgraphs may
contain outliers that are not dense regions of the graph, so they
cannot be directly treated as communities [30, 34]. (ii) Mining the
densest and bursting subgraph is NP-hard [11]; thus, it is di�cult
to handle large temporal graphs. (iii) The densest and bursting
subgraph model can only return the subgraph with the highest
density; therefore, it is di�cult to �nd other dense and bursting
subgraphs in the temporal graph [11].

To the best of our knowledge, we are the �rst to study the
bursting core mining problem, i.e., the problem of �nding a cohesive
temporal subgraph in which each node bursts out in a short time.
Contributions. In this paper, we formulate and provide e�cient
solutions for �nding bursting cores in a temporal graph. In
particular, we make the following main contributions.
(i) Novel Model. We propose a novel concept, called the (;, X)-
maximal bursting core, to characterize the bursting community in
temporal graphs. Each node in the (;, X)-maximal bursting core has
an average degree no less than X in a time segment with length
no less than ; . We also de�ne a new concept called the pareto-
optimal (;, X)-maximal bursting core, which denotes the set of (;, X)-
maximal bursting cores that are not dominated by other (;, X)-
maximal bursting cores in terms of the parameters ; and X . The
pareto-optimal (;, X)-maximal bursting cores can provide a good
summary of all the bursting communities in a temporal graph over
the entire parameter space.

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

(ii) New Algorithms. We have proved that the (;, X)-maximal
bursting core satis�es the properties of uniqueness, containment
and reduction, thus we can apply the peeling-based core decompo-
sition framework to seek the (;, X)-maximal bursting core. However,
when invoking the peeling algorithm, the bursty status of the node
must be checked once an edge is deleted. Therefore, the main
technical challenge is to determine whether a nodeD has an average
degree no less than X in a time segment with length no less than ; ,
i.e. to compute the maximum average sequential numbers of the
degree sequence. We show that the naive algorithm for solving this
issue requires$ (|T |

2
) time, where |T | is the number of timestamps

in the temporal network. To improve the e�ciency, we �rst propose
a dynamic programming algorithm which takes $ (|T |) to solve
this issue. Then, we develop a more e�cient updating algorithm
which can update the maximum average sequential numbers in
$ (;) time. In addition, we also propose an e�cient algorithm to
�nd the pareto-optimal (;, X)-maximal bursting cores.
(iii) Extensive Experiments. We conduct comprehensive experi-
ments using 9 real-life temporal graphs to evaluate the proposed
algorithm under di�erent parameter settings. The results indicate
that our algorithms signi�cantly outperform the baselines in terms
of community quality. We also perform a case study on the Enron
dataset. The results demonstrate that our approach can identify
manymeaningful and interesting bursting communities that cannot
be found by the other methods. In addition, we also evaluate the
e�ciency of the proposed algorithms, and the results demonstrate
the high e�ciency of our algorithms. For example, on a large-scale
temporal graph with more than 1M nodes and 10M edges, our
algorithm can �nd a bursting community in 26.95 seconds.
Organization. Section 2 introduces the model and formulates our
problem. The algorithms to e�cientlymining bursting communities
are proposed in Section 3 and 4. Experimental studies are presented
in Section 5, and the related work is discussed in Section 6. Section
7 draws the conclusion of this paper.

2 PRELIMINARIES
Let G = (V, E,T) be an undirected temporal graph, where V

and E denote the set of nodes and temporal edges, an arithmetic
time sequence T = {C1, C2 ...C |T | } denotes the set of all timestamps
in which C8 � C8�1 is a constant for each integer 8 . Each temporal
edge 4 2 E is a triplet (D, E, C), where D, E are nodes in V , and
C 2 T is the interaction time between D and E . The de-temporal
graph of G denoted by ⌧ = (+ , ⇢) is a simple graph that ignores
all the timestamps associated with the temporal edges. More
formally, for the de-temporal graph ⌧ of G, we have + = V and
⇢ = {(D, E) | (D, E, C) 2 E}.

By sorting the temporal edges in a chronological order, the
temporal graph can be represented as a link stream [22]. The widely-
used approach to extract interesting patterns from a temporal graph
relies on series of snapshots [2, 22]. The 8-th snapshot of G is a
de-temporal graph ⌧8 = (+8 , ⇢8) where +8 = {D | (D, E, 8) 2 E} and
⇢8 = {(D, E) | (D, E, 8) 2 E}. Each timestamp is an integer, because
the UNIX timestamps are integers in practice. For convenience, we
use T = {1, 2, ...|T |} to represent timestamps {C1, C2 ...C |T | } in the
rest of this paper. Fig.1 (a) illustrates a temporal graph G with 42
temporal edges and T = [1 : 6]. Fig.1 (b) illustrates the de-temporal

TABLE I
TEMPORAL EDGES OF TEMPORAL GRAPH G

t (u, v)
1 (v1, v2)(v1, v3)(v1, v4)(v1, v5)(v2, v3)

(v2, v4)(v2, v5)(v3, v4)(v3, v5)(v4, v5)
2 (v5, v6)(v5, v7)(v6, v7)
3 (v1, v2)(v1, v4)(v1, v5)

(v2, v4)(v2, v5)(v4, v5)
4 (v1, v2)(v1, v3)(v1, v4)(v1, v5)(v2, v3)

(v2, v4)(v2, v5)(v3, v4)(v3, v5)(v4, v5)
5 (v1, v2)(v1, v3)(v1, v4)(v1, v5)(v2, v3)

(v2, v4)(v2, v5)(v3, v4)(v3, v5)(v4, v5)
6 (v5, v6)(v5, v7)(v6, v7)

(a) The de-temporal graph G (b) The five snapshots of G
Fig. 1. Basic concepts of the temporal graph

pseudo code. We assume that each timestamp is an integer,
because the unix timestamp is an integer in practice.

For a temporal graph G, the de-temporal graph of G

denoted by G = (V,E) is a graph that ignores all the
timestamps associated with the temporal edges. More formally,
for the de-temporal graph G of G, we have V = V and
E = {(u, v)|(u, v, t) 2 E}. Let Nu(G) = {v|(u, v) 2 E}

be the set of neighbor nodes of u, and degG[u] = |Nu(G)|
be the degree of u in G. A graph G

0 = (V 0
, E

0) is called a
subgraph of G = (V,E) if V 0

✓ V and E
0
✓ E. For a given

set of nodes S ✓ V , a subgraph G(S) = (V (S), E(S)) is
referred to as an induced subgraph of G from S if V (S) = S

and E(S) = {(u, v)|u, v 2 V (S), (u, v) 2 E}.
Given a temporal graph G, we can extract a series of

snapshots based on the timestamps. For each ti 2 T , we can
obtain a snapshot Gi = (Vi, Ei) where Vi = {u|(u, v, ti) 2 E}

and Ei = {(u, v)|(u, v, ti) 2 E}. Table. I illustrates a temporal
graph G with 42 temporal edges. Figs.1(a) and (b) illustrates
the de-temporal graph of G and all the six snapshots of G

respectively.
[t!]

TABLE II
TEMPORAL EDGES

t (u, v)
1 (v1, v2)(v1, v3)(v1, v4)(v1, v5)(v2, v3)

(v2, v4)(v2, v5)(v3, v4)(v3, v5)(v4, v5)
2 (v5, v6)(v5, v7)(v6, v7)
3 (v1, v2)(v1, v4)(v1, v5)

(v2, v4)(v2, v5)(v4, v5)
4 (v1, v2)(v1, v3)(v1, v4)(v1, v5)(v2, v3)

(v2, v4)(v2, v5)(v3, v4)(v3, v5)(v4, v5)
5 (v1, v2)(v1, v3)(v1, v4)(v1, v5)(v2, v3)

(v2, v4)(v2, v5)(v3, v4)(v3, v5)(v4, v5)
6 (v5, v6)(v5, v7)(v6, v7)

The nodes in bursting communities have a feature in com-
mon that they have high degrees in the induced subgraphs of
some continuous time periods. We introduce some definitions
below to describe the properties.

Definition 1 (temporal subgraph): Given a temporal graph
G = (V, E), a continuous time interval T = [ts, te] ✓ [1:|T |]
and a given set of nodes S ✓ V , a temporal subgraph
can be denoted by G(S)[T] = (S, E(S)[T]), and it is an
induced temporal graph of G from temporal edges E(S)[T] =

{(u, v, t)|u, v 2 S; (u, v, t) 2 E , t 2 T}.
Based on Definition 1, a temporal subgraph G(S)[T] is a

induced graph from nodes set S in time interval T , it can
also be treated as a temporal graph and extracts a series
of snapshots. For convenience, we use the notion Gi(S)[T]
to present the snapshot generated from G(S)[T] in ti. The
snapshot of temporal subgraph G(S)[T] in timestamp ti is the
induced subgraph of Gi from S so Gi(S)[T] = Gi(S).

Definition 2 (degree sequence): Given a temporal graph
G(S)[T], for any node v 2 V , the degree sequence of v in
G, abbreviated as DS(v,G(S)[T]), is a sequence of v’s degree
in each snapshot of G(S)[T]. Each item in the degree sequence
can be denoted by DS(v,G(S)[T])[i].

Based on Definition 1 and 2, any node v in a subtemporal
graph G(S)[T] will have a degree sequence of length |T |.
Each item in this degree sequence is DS(v,G(S)[T])[i] =
dv(Gi(S)[T]) = dv(Gi(S)).

Definition 3 (l-segment density): Given v’s degree sequence
DS(v,G(S)[T = [ts, te]]) in a temporal subgraph and an
integer l, the l-segment density of v in the degree sequence
is the average degree of v in DS(v,G(S)[T]) while the length
of the segment is not less than l, which can be denoted by
SD (v,G(S)[T]) =

Pte
i=ts

dv(Gi(S))

(te�ts+1) in which te � ts +1 � l

Based on Definition 3, the maximum l-segment density of
v in G (abbreviated as MSD(v,G)), is the maximum segment
density SD (v,G(S)[T]) such that there does not exist S0

2

V, T
0
2 T satisfying SD (v,G(S0)[T 0]) >SD (v,G(S)[T]).

Below, we give a definition to describe the node which has
average degree of not less than � in one continuous timestamps
with length not less than l in a given temporal subgraph.

Definition 4 ((l, �)-dense node): Given a temporal graph G,
an integer l and a real value �, one node u is a (l, �)-dense
node in G if MSD(v,G) � �.

Below, we introduce a structure which can cluster the (l, �)-
dense nodes.

Definition 5 ((l, �)-maximal dense core): Given a temporal
graph G, an integer l and a real value �, a (l, �)-maximal dense
core (abbreviated as (l, �)-MDC) is a temporal subgraph G(C)
in which C ✓ V , satisfying
(i) Densely : each node is a (l, �)-dense node in G(C), which
means that 8v 2 C, there holds MSD(v,G(C)) � �.
(ii) Maximally : there does not exist a subset of nodes S in
G that satisfies (i), (ii) and C ⇢ S.

Example 1: content...

Problem 1 (Bursting Community). Given a temporal graph
G, an integer l � 2 and a real value � > 0, the goal of mining
one bursting community is to finding the (l, �)-MDC in G.

Based on Definition 5, (l, �)-MDC is one bursting com-
munity which can identify important events in the temporal
graph, but it is annoying to find proper parameter settings
of l and �. Intuitively, a more accurate bursting community
will have higher l and �. But the large parameter settings will
results in losing answers. However, based on the theory of

(a) Temporal edges in G

v1v2

v3 v4
v5

v6

v7

(b) The de-temporal graph⌧

v1v2

v3 v4
v5 v5

v6

v7 v1v2

v4
v5

v1v2

v3 v4
v5

v1v2

v3 v4
v5 v5

v6

v7

G1 G2 G3 G4 G5 G6

(c) The six snapshots of G

Figure 1: Basic concepts of the temporal graph

graph ⌧ of G in Fig.1 (a). Fig.1 (c) illustrates all the six snapshots
of G in Fig.1 (a).

Here, we introduce some necessary concepts. Let = = |V| and
< = |E | be the number of nodes and temporal edges, #D (⌧) =
{E | (D, E) 2 ⇢} be the set of neighbor nodes of D, and 346⌧ [D] =
|#D (⌧) | be the degree of D in ⌧ . For a given set of nodes (✓ + , a
subgraph ⌧(= (+(, ⇢() is referred to as an induced subgraph of⌧
from (if +(= (and ⇢(= {(D, E) |D, E 2 +(, (D, E) 2 ⇢}.

The nodes in bursting cores have a feature in common that they
have high degrees in the induced subgraphs of some continuous
time periods. We introduce some de�nitions below to describe the
properties.

D��������� 1 (�������� ��������). Given a temporal graph
G = (V, E,T), a continuous time interval) = [CB : C4] ✓ [1 : |T |]

and a given set of nodes (✓ V , a temporal subgraph can be denoted
by G(()) = ((, E(()),)), and it is an induced temporal graph of G
from temporal edges E(()) = {(D, E, C) |D, E 2 (, C 2) , (D, E, C) 2 E}.

Based on De�nition 1, a temporal subgraph G(()) is an induced
graph from nodes set (in time interval) , and it can also extract a
series of snapshots. The snapshot of temporal subgraph in time 8
is the induced subgraph of +8 \ (, thus it can be denoted by ⌧+8\(.
For each node D 2 (, 346⌧+8\(

[D] = |#D (⌧+8\() | = |#D (⌧8) \ (|.

D��������� 2 (������ �������). Given a temporal subgraph
G(()), for nodeD 2 (, the degree sequence ofD in G(()), abbreviated
as DS(D,G(())), is a sequence of D’s degree in each snapshot
of G(()). Each item in the degree sequence can be denoted by
DS(D,G(())) [8] = |#D (⌧8) \ (|.

D��������� 3 (;�������� �������). Given an integer ; , a time
interval) = [CB : C4] and DS(D,G(())), the ;-segment density of D
in this degree sequence, abbreviated as SD(D,G(())), is the average
degree of D in DS(D,G(())) while the length of the segment is no
less than ; , which can be denoted by

SD(D,G(())) =
ÕC4

8=CB
|#D (⌧8)\(|
C4�CB+1 , in which C4 � CB + 1 � ;

Based on De�nition 3, the maximum ;-segment density of
D in G((abbreviated as MSD(D,G()), is the ;-segment density
SD(D,G(())) such that there are no (0 ✓ V ,) 0 ✓ [1 : |T |]

satisfying SD(D,G(0 () 0)) > SD(D,G(())).
Below, we give a de�nition to describe the node which has

average degree no less than X in a time segment of length no less
than ; in a given temporal subgraph.

2

Table 1: Main symbols
Symbols De�nitions

G = (V, E, T) the undirected temporal graph
⌧ = (+ ,⇢) and⌧8 = (+8 ,⇢8) the de-temporal graph and the 8-th snapshot of G
#D (⌧) = {E | (D, E) 2 ⇢ } the set of neighbor nodes ofD in⌧
G(()) = ((, E(()),)) the temporal subgraph induced by nodes’ set (, time interval)
DS(D, G(())) (DS[D]) the degree sequence ofD in G(())

SD(D, G(())) the ; -segment density ofD in G(())
MSD(D, G() (MSD[D]) the maximum ; -segment density ofD in G(

(;,X)-MBC the (;,X)-maximal bursting core
CSC ofD the cumulative sum curve of DS(D, G⇠)

MTS[D] [C] D’s maximum slope ended at time C with segment length � ;
MTS2; [D] [C] D’s maximum slope ended at C with ; segment length 2;

POMBC the Pareto Optimal (;,X)-MBC in terms of ; and X

D��������� 4 ((;, X)��������� ����). Given a temporal graph
G, an integer ; and a real value X , node D is an (;, X)-bursting node
in G ifMSD(D,G) � X .

Note that, we set a constraint that the length of the considering
segment is no less than ; . This is because that we want to �nd the
node which has high degree in a continuous time. If we loosen
the constraint, some nodes may be highly connected in just one
timestamp and we may obtain outliers that are not located in the
dense regions of the graph (as shown in Figure 7(c) of Section 5).

According to De�nition 4, we introduce a structure which can
cluster the (;, X)-bursting nodes.

D��������� 5 ((;, X)�������� �������� ����). Given a temporal
graph G = (V, E,T), an integer ; � 2 and a real value X > 0,
an (;, X)-maximal bursting core (abbreviated as (;, X)-MBC) is an
induced temporal graph G⇠ in which ⇠ ✓ V , satisfying
(8) each node in⇠ is an (;, X)-bursting node in G⇠ , which means that
8D 2 ⇠ ,MSD(D,G⇠) � X holds.
(88) there is no subset of nodes ⇠ 0 ◆ ⇠ that satis�es each node in ⇠ 0
is an (;, X)-bursting node in G⇠0 .

The main symbols in Section 2 and 3 can be seen in Table 1.
Below, we use an example to illustrate the above de�nitions.

E������ 1. Consider the temporal graph in Fig. 1. Given ; = 3, X =
3. As shown in Fig. 1(c), we can get that DS(E5,G) = [4, 2, 3, 4, 4, 2].
As ; = 3, the maximum ;-segment density MSD(E5,G) = (3 +

4 + 4)/3 = 3.66. Given (= {E1, E2, E3, E4, E5}, we can get that
DS(E5,G() = [4, 0, 3, 4, 4, 0], MSD(E5,G() = (3 + 4 + 4)/3 = 3.66.
Thus, E5 is a (3, 3)-bursting node in G(. Considering E3 in (, we can
get thatDS(E3,G() = [4, 0, 0, 4, 4, 0],MSD(E3,G() = (0+4+4)/3 =
2.66. So, E3 is a not (3, 3)-bursting node in G(. Therefore, G(is not a
(3, 3)-MBC. However, given ⇠ = {E1, E2, E4, E5}, we can �nd that all
the nodes in ⇠ are (3, 3)-bursting nodes, because all the nodes have
the maximum ;-segment density of 3 considering) = [3 : 5]. So, G⇠
is a (3, 3)-MBC with ⇠ = {E1, E2, E4, E5}. ⇤

Problem 1 (Bursting Core).Given a temporal graph G, an integer
; � 2 and a real value X > 0, the goal of mining one bursting core
is to compute the (;, X)-MBC in G.

Based onDe�nition 5, (;, X)-MBC is a bursting communitywhich
can identify important events in the temporal graph, but it may
be not easy to �nd proper parameters of ; and X for practical
applications. Intuitively, a good bursting community will have large
; and X values. But large ; and X values may result in losing answers.
However, based on the theory of Pareto Optimality, we are able to
compute the bursting cores that are not dominated by the other
cores in terms of parameters ; and X . Below, we introduce a new
concept, POMBC, to de�ne those bursting cores.

D��������� 6 (P����� O������ (;, X)�MBC). Given a temporal
graph G, an (;, X)-MBC in G is a Pareto Optimal (;, X)-MBC
(abbreviated as POMBC), if there does not exist an (; 0, X 0)-MBC
in G such that ; 0 > ;, X 0 � X or ; 0 � ;, X 0 > X .

Based on De�nition 6, each (;, X)-MBC will be contained in one
of the POMBCs since they are maximal. Finding all the POMBCs
in a temporal graph helps to set the value of parameters (;, X) for
the (;, X)-MBC model. The parameter ; in our model is indeed as
small as possible since the proposed model aims to �nd a subgraph
in which each node has a high average degree of length ; . However,
in real-world applications, we do not know how to set the proper
parameters (;, X) Because if (;, X) are largewemay get empty results,
and if (;, X) are small we will get too many unnecessary nodes
in (; 0, X 0)-MBC. Thus, we introduce the second studied problem
below.
Problem 2 (Pareto-Optimal Bursting Core). Given a temporal
graph G, the goal of mining Pareto-optimal bursting cores is to
enumerate all the POMBCs in G.
Challenges. The problem of mining one bursting core is similar to
mining traditional :-core. However, it is not su�cient by adopting
the traditional core decomposition method directly, since we need
to �nd the maximum average sequential numbers when peeling
the (;, X)-MBCs. The peeling method iteratively removes the nodes
which are not (;, X)-bursting nodes, and then determines whether
the remaining nodes are (;, X)-bursting nodes until no nodes can
be deleted. Therefore, many nodes will be checked whether are
(;, X)-bursting nodes again and again. The time complexity of the
naive method to check whether the node is (;, X)-bursting node
for one time is $ (|T |

2
) since we need to check all segments with

length no less than ; . Thus, the status of the node must be checked
while one edge is deleted, the times of the checking steps are$ (<).
So, the whole time complexity is $ (< |T |

2
). Clearly, this approach

may involve numerous redundant computations for checking some
nodes which are de�nitely not contained in an (;, X)-MBC.

To list all the POMBCs, the naive method is to enumerate
parameter pairs (;, X) and outputs the one which cannot be
dominated. This way is di�cult since it is hard to set the proper X
which is a real value. However, another possible way is to consider
one dimension, such as ; �rst, and then �nd the maximal X . Next,
we keep X unchanged and �nd the maximal ; . So, the challenge is
how to acquire the answers with less redundant computations.

3 ALGORITHMS FOR MINING MBC
In this section, we �rst introduce a basic decomposition framework
to mine the (;, X)-MBC. Next, we develop a dynamic programming
algorithm which can compute the segment density e�ciently,
and then propose an improved algorithm with several novel
pruning techniques. Due to the limit of space, all the proofs of
the lemmas, corollaries and complexity analysis are described in
the supplementary materials.

3.1 The MBC Algorithm
We can observe that (;, X)-MBC has the following three properties.

P������� 1 (U��������). Given parameters ; > 1 and X > 0,
the (;, X)-MBC of the temporal graph G is unique.

3

P����. We prove this lemma by a contradiction. Suppose that
there exist two di�erent (;, X)-maximal bursting cores in G, denoted
by ⇠1 and ⇠2 (⇠1 < ⇠2). Let us consider the node set ⇠ 0 = ⇠1 [⇠2.
Following De�nition 5, every node in ⇠ 0 is a (;, X)-bursting node
in G(⇠ 0), because it is a (;, X)-bursting node in G⇠1 [G⇠2 . Since
⇠1 < ⇠2, we have ⇠1 ⇢ ⇠ 0 and ⇠2 ⇢ ⇠ 0 which contradicts to the
fact that ⇠1 (or ⇠2) satis�es the maximal property. ⇤

P������� 2 (C����������). Given an (;, X)-MBC of the tem-
poral graph G, the (; 0, X 0)-MBC with X 0 � X , ; 0 � ; is a temporal
subgraph of (;, X)-MBC.

P����. According to De�nition 5, an (;, X)-MBC⇠ is a maximal
temporal subgraph, and any node in⇠ has segment density at least
X with length no less than ; . For X 0 � X , ; 0 � ; , each node in (; 0, X 0)-
maximal bursting core will also have segment density at least X with
length no less than ; . Since the ⇠ is a maximal temporal subgraph,
(; 0, X 0)-maximal bursting core must be contained in ⇠ . ⇤

We �rst give the de�nition of :-core, and then show the third
property. The :-core of the de-temporal graph of G can be
denoted by ⌧2 = (+2 , ⇢2), which is a maximal subgraph such that
8D 2 ⌧2 : 346⌧2 [D] � : .

P������� 3 (R��������). Given an (;, X)-MBC of the temporal
graph G, the nodes in (;, X)-MBC must be contained in the :-core
(: = X) of the de-temporal graph ⌧ .

P����. According to De�nition 5, any node D in an (;, X)-MBC
G⇠ has segment density at least X with length no less than ; (; � 2).
So, D must have degree at least X in at least one snapshot ⌧⇤. As
each⌧⇤ ✓ ⌧ , eachD in⇠ must have degree no less than X . Since the
:-core (: = X) of the de-temporal graph⌧ is the maximal subgraph
such that each node has degree no less than X ,⇠ must be contained
in the :-core (: = X) of ⌧ . ⇤

Core Decomposition Framework. Following Property 3, we �rst
compute the :-core (: = X) of the de-temporal graph of G, denoted
by ⌧2 . Given the properties of Uniqueness and Containment, we
can apply the core decomposition framework to compute the (;, X)-
MBC. Next, we check whether node D is an (;, X)-bursting node, as
de�ned in De�nition 4. Speci�cally, we compute the :-core ⌧2 in
⌧ �rst, and then check whether node D is an (;, X)-bursting node
for all D 2 ⌧2 . If D is not an (;, X)-bursting node, we delete D from
the results. Since the deletion of D may result in D’s neighbors no
longer being the (;, X)-bursting node, we need to iteratively process
D’s neighbors. The process terminates if no node can be deleted.
The details are provided in Algorithm 1.

Algorithm 1 �rst computes the :-core (: = X) of the de-temporal
graph ⌧ (lines 1-2), denoted by ⌧2 = (+2 , ⇢2). Then, it initializes a
queue Q to store the nodes to be deleted, a set⇡ to store the deleted
node, a collection MSD to store maximum ;-segment density for
each node (line 3) and 346 to store the degree of nodes in ⌧2 (line
5). Next, for eachD in+2 , it invokes Algorithm 2 to check whetherD
is an (;, X)-bursting node or not (line 6). If D’s maximum ;-segment
density MSD[D] is less than X , D is not an (;, X)-bursting node
and it will be pushed into a queue Q (lines 6-7). Subsequently, the
algorithm iteratively processes the nodes in Q. In each iteration,
the algorithm pops a node E from Q and uses ⇡ to maintain all the
deleted nodes (line 9). For each neighbor nodeF of E , the algorithm
updates346[F] (line 11). If the revised346[F] is smaller than X ,F is

Algorithm 1:MBC(G, ;, X)
Input: Temporal graph G = (V, E, T) , parameters ; and X
Output: (;,X)-MBC in G

1 Let⌧ = (+ ,⇢) be the de-temporal graph of G;
2 Let⌧2 = (+2 ,⇢2) be the :-core (: = X) of⌧ ;
3 Q [;];⇡ [;];MSD [;];
4 forD 2 +2 do
5 346 [D] |#D (⌧2) |; /* compute the degree of all nodes in⌧2 */
6 MSD[D] ComputeMSD(G, ;,D,+2) ;
7 ifMSD[D] < X then Q.?DB⌘ (D) ;

8 while Q < [;] do
9 E Q.?>? () ; ⇡ ⇡ [{E };

10 for F 2 #E (⌧2) , s.t. 346 [F] � X andMSD(F) � X do
11 346 [F] 346 [F] � 1;
12 if 346 [F] < X then Q.?DB⌘ (F) ;
13 else
14 MSD[F] ComputeMSD(G, ;,F,+2 \⇡) ;
15 ifMSD[F] < X then Q.?DB⌘ (F) ;

16 return G+2 \⇡ ;

clearly not an (;, X)-bursting node. As a consequence, the algorithm
pushesF into Q which will be deleted in the next iterations (line
12). Otherwise, the algorithm invokes Algorithm 2 to determine
whether F is an (;, X)-bursting node (lines 14-15). The algorithm
terminates when Q is ;. At this moment, the remaining nodes+2 \⇡
is the (;, X)-bursting nodes of G, and the algorithm returns temporal
subgraph G+2\⇡ (line 16).

E������ 2. Recall the temporal graph in Fig. 1. Given ; = 3,
X = 3. Algorithm 1 �rst computes the :-core (: = X) of de-temporal
graph ⌧ . So, +2 = {E1, E2, E3, E4, E5}. Then, for each node D in +2 , it
checks whether D is an (;, X)-bursting node. Consider E3, we can get
DS(E3,G+2) = [4, 0, 0, 4, 4, 0], and cannot �nd a segment of at least
3 length in which the density is no less than 3. Next, E3 will be pushed
into Q. In line 9, E3 is added into set ⇡ and all of its neighbors will be
checked in line 10. Now the remained nodes are {E1, E2, E4, E5}, and we
can �nd that the 346 and MSD of them are no less than 3. Therefore,
Algorithm 1 returns G+2\⇡ with +2 \ ⇡ = {E1, E2, E4, E5}. ⇤

Complexity of Algorithm 1. The time and space complexity of
Algorithm 1 by invoking Algorithm 2 to computeMSD is$ (< |T |)

and $ (<) respectively.
Di�erent from the traditional core decomposition algorithm,

Algorithm 1 needs to check whether the node is an (;, X)-bursting
node in each iteration. Below, the implementation details of
ComputeMSD are described.

3.2 Dynamic Programming of Computing MSD
Recall that by De�nition 4 and 5, if MSD(D,G⇠) � X , then
D is an (;, X)-bursting node. To compute MSD, we �rst get D’s
degree sequence DS(D,G⇠) inside the candidate (;, X)-MBC for
8 2 [1 : |T |]. For convenience, we denote DS(D,G⇠) by DS[D] =
{|#D (⌧8) \ ⇠ |, 8 2 [1 : |T |]}, MSD(D,G⇠) by MSD[D]. To get
MSD[D], the naive method is to consider all the segments of
longer than ; , but the time complexity of such a naive method is
$ (|T |

2
). Below, we propose a dynamic programming algorithm

that transforms the problem into �nding the maximum slope in
a cumulative sum curve, which can reduce the computational
overhead to linear complexity.

D��������� 7 (���������� ��� �����). Given node D’s degree
sequence DS(D,G⇠) (abbreviated as DS[D]), the 8-th item in the

4

cumulative sum curve ofD (abbreviated as CSC[8]) is the sum of front
8-th position of DS[D], i.e. CSC[8] =

Õ8
1 DS[D] [8], 8 2 [1 : |T |].

Without loss of generality, we set CSC[0] = 0. Then, the
points {(0, CSC[0]), (1, CSC[1])... (|T |, CSC[|T |])} can be
drawn as a curve in the Cartesian Coordinate System, and we
denote this curve by CSC. For example in Fig. 2(a), we can
see DS[D] = [4, 2, 3, 4, 4, 2, 2, 6, 1] and the CSC sequence is
[0, 4, 6, 9, 13, 17, 19, 21, 27, 28]. Below, we de�ne the slope in the
curve by considering two points in CSC.

D��������� 8 (�����). Given integers 8, 9 2 [1 : |T |], 8 < 9 , the
slope of curve CSC from 8 to 9 can be denoted by slope(8, 9, CSC) =
CSC[9]�CSC[8�1]

9�8+1 , where 8, 9 are the BC0AC and 4=3 of the slope.

For convenience, we abbreviate slope(8, 9, CSC) as slope(8, 9) in
the following paper while the symbol CSC can not be confused.

L���� 1. For a degree sequence DS[D], a time interval [CB : C4],
the segment density of the subsequence in [CB : C4] equals the slope of

curve CSC from C4 to CB . Formally,
ÕC4

8=CB
DS[D] [8]

C4�CB+1 = slope(CB , C4).

D��������� 9 (������� C���������� ;������). Given a curve
CSC of node D, a truncated time C 2 [; : |T |], the maximum C-
truncated ;-slopeMTS[D] [C] = {max(slope(8, C)) |8 2 [0 : C � ;]}.

According to Lemma 1 and De�nition 9, MTS[D] [C] is the
maximum slope which ended at time C and the length of the
corresponding segment is no less than ; . For convenience, MTS[D]
is the collection of {MTS[D] [C] |C 2 [; : |T |]} .

C�������� 1. The problem of �nding the MSD[D], can be
transformed to computing max(MTS[D]) in CSC of D.

Next, the problem is how to compute all the MTS[D] [C] with
C = [1 : |T |]. One idea is tomaintainMTS[D] [C+1] by the computed
MTS[D] [C] and the changes of the curve from time C to C + 1. Below,
considering the computedMTS[D] [C] and the newly joined point
(C+1, CSC[C + 1]), we canmaintainMTS[D] based on the following
observations.

O���������� 1. We can compute a lower convex hull (abbreviated
as CH) in CSC ofD which ended at time C �; , the slope of the tangent
from point (C, CSC[C]) to the CH is the maximum ;-segment density
of node D ended at time C .

O���������� 2. If the point (0, CSC[0]) and (1, CSC[1]) are
on the maintained lower convex hull, suppose that 0 < 1 < 2 , CH will
add node (2, CSC[2]) and remove node (1, CSC[1]) if (CSC[2] �
CSC[1])/(2 � 1) (CSC[1] � CSC[0])/(1 � 0).

O���������� 3. For one ended time C , if CSC[C]�CSC[1]
C�1 �

CSC[1]�CSC[0]
1�0 , then the slope of CSC[C] to CSC[0] will not be

maximum, and node (0, CSC[0]) should be removed from CH .

Following the observations above, we devise an algorithm to
maintain the lower convex hull CH ended at time C � ; , and the
MTS[D] [C] can be computed in a recursive way as the following
algorithm shows.
Algorithm of ComputingMSD. Algorithm 2 �rst initializes
CSC[C] of D for all timestamps (lines 1-5). As the nodes set ⇠ may
be changed in Algorithm 1, the degree of D can be computed in
line 4. Next, it maintains an array CH to record the indexes of

(a) C = 4 (b) C = 5 (c) C = 6

(d) C = 7 (e) C = 8 (f) C = 9
Figure 2: Running example of computing maximum ;-
segment density for a degree sequence of [4, 2, 3, 4, 4, 2, 2, 6, 1]
with ; = 4. The data on x-axis and y-axis represent the time
C and the cumulative sum.

Algorithm 2: ComputeMSD(G, ;,D,⇠)
1 CSC [;]; CSC[0] 0;DS[D] [;] ;
2 for C 1 : |T | do
3 Let⌧C be the snapshot of G at timestamp C ;
4 DS[D] [C] |#D (⌧C) \⇠ |;
5 CSC[C] = CSC[C � 1] + DS[D] [C];

6 CH [;], 8B 0, 84 �1,MTS[D] [;];
7 for C ; : |T | do
8 while 8B < 84 and slope(CH[84], C � ;, CSC)

slope(CH[84 � 1],CH[84], CSC) do
9 84 84 � 1;

10 84 84 + 1; CH[84] C � ; ;
11 while 8B < 84 and slope(CH[8B], C , CSC) �

slope(CH[8B],CH[8B + 1], CSC) do
12 8B 8B + 1;
13 MTS[D] MTS[D] [{slope(CH[8B], C , CSC) };

14 returnmax(MTS[D]) ;

15 Procedure slope(8, 9, CSC)

16 return (CSC[9] � CSC[8])/(9 � 8)

each points in the lower convex hull, 8B to record the BC0AC index
of CH, 84 to record the 4=3 index of CH and MTS[D] to record
MTS (line 6). For time C from ; to |T |, it dynamically computes
MTS[D] [C] of D (lines 7-13). In lines 8-9, 84 reduces by 1 if the
slope(CH[84], C � ;) is no larger than slope(CH[84 � 1],CH[84]),
because the rear node point will be above the convex hull CH by
the end of C � ; following Observation 2. If there is no such point in
the end, the 4=3 index 84 increases by 1 and CH[84] is assigned by
C � ; . In lines 11-12, the head index adds up by 1 if slope(CH[8B], C)
is no larger than slope(CH[8B],CH[8B + 1]), because it will have
an upper convex hull in the curve of CH at the start of CH[8B]
according to Observation 3. We will get a arrayMTS ofMTS[D] [C]
with C ranges from ; to |T |. Finally, it returns max(MTS[D]) after
all the iterations (line 14).

E������ 3. Fig. 2 shows the toy example of computing maximum
;-segment density for D’s degree sequence of [4, 2, 3, 4, 4, 2, 2, 6, 1] with
; = 4. Clearly, T = [1 : 9], CSC = [0, 4, 6, 9, 13, 17, 19, 21, 27, 28].
According to Corollary 1, the procedure starts at C = 4 because we need
satisfy that the length of the segment is no less than ; . At this time,

5

there is only one item in CH. When C = 5, the 84 index of CH adds
up by 1 (line 10), but the 8B index is remained 0 because slope(0, 5) =
(17�0)/(5�0) = 3.4 is no larger than slope(0, 1) = (4�0)/(1�0) =
4.0 (lines 12). And max(MTS[D] [C]) is currently MTS[D] [5] = 3.4.
Next, C = 6, according to Observation 2, the 84 index of CH reduces by
1 because slope(1, 2) = 2.0 is no larger than slope(0, 1) = 4.0 (lines
8-9). Then, the newly 84 is 1 and CH[84] is assigned by C � ; = 2 (line
10). Now CH is [0, 2], 8B = 0, 84 = 1. In the next step, the 8B index adds
up by 1 because slope(0, 6) = 19/6 > slope(0, 2) = 6/2 (line 12).
So, the �nal CH and MTS[D] [6] can be shown at Fig. 2(c). Likewise,
when C = 7 C> 9, the CH will be maintained by the similar processes.
It should be noted that when C = 7, slope(3, 8) = 3.6, which is larger
thanMTS[D] [5]. Finally,MSD[D] = max(MTS[D] [C]) = 3.6, which
is the density of the 4C⌘ to 8C⌘ items [4, 4, 2, 2, 6]. ⇤

Complexity of Algorithm 2. For a temporal graph G with |T |

timestamps, the time and space complexity of Algorithm 2 are
$ (|T |) and $ (|T |) respectively.

3.3 An improvedMBC+ algorithm
Although Algorithm 1 is e�cient in practice, it still has two
limitations. (i) It still needs to call ComputeMSD procedure for
all nodes in +2 (line 6 in Algorithm 1). In the worst case, the time
complexity of this process can be near to |T |<. We can observe that
if we delete a certain nodeD, the346[E] ofD’s neighbor E will reduce,
and we can monitor it at once to check whether 346[E] < X . Once
346[E] < X , we do not need to call the procedure ComputeMSD for
E any more. (ii) It still needs to compute all the maximum ;-segment
density dynamically for each deletion of the edges. We can observe
that in each call of ComputeMSD, the degree of D reduces only
one andMSD[D] may not change. So, the ComputeMSD algorithm
clearly results in signi�cant amounts of redundant computations
for the iterations for all C from ; to |T |.

To overcome this limitation, we propose an improved algorithm
called MBC+. The striking features of MBC+ are twofold. On
one hand, it needs not to call procedure ComputeMSD for each
node in advance. Instead, it calculates SD of the candidate node
on-demand. On the other hand, when deleting a node D, MBC+
does not re-compute MSD for a neighbor node F of D. Instead,
MBC+ dynamically updates the computedMSD for each nodeF ,
thus substantially avoiding redundant computations. The detailed
description ofMBC+ is shown in Algorithm 3.
To Overcome Limitation (i). Algorithm 3 �rst computes the :-
core (: = X) ⌧2 in the de-temporal graph (line 2). Next, it explores
the nodes in +2 based on an increasing order by the degrees in
⌧2 (line 5). When processing a node D, the algorithm �rst checks
whether D has been deleted or not (line 6). If D has not been
removed, MBC+ invokes Algorithm 2 to compute MSD[D] (lines
7-8). It should be noted that ComputeMSD⇤ is all the same to
ComputeMSD except that it returns (MTS[F],DS[D]) (replace
line 14 of Algorithm 2). Next, if MSD[D] is no larger than X , D is
not an (;, X)-bursting node. Thus, the algorithm pushes D into the
queue Q (line 9). Subsequently, the algorithm iteratively deletes
the nodes in Q (lines 10-19). When removing a node E , MBC+
explores all E ’s neighbors (line 12). For a neighbor nodeF , MBC+
�rst updates the degree ofF (line 13), i.e., 346[F]. If the updated
degree is less than X , F is not an (;, X)-bursting node (line 14). In
this case, the algorithm pushes it into Q and continues to process

Algorithm 3:MBC+(G, ;, X)
Input: Temporal graph G = (V, E, T) , parameters ; and :
Output: (;,X)-MBC in G

1 Let⌧ = (+ ,⇢) be the de-temporal graph of G;
2 Let⌧2 = (+2 ,⇢2) be the :-core (: = X) of⌧ ;
3 Let 346 [D] be the degree ofD in⌧2 ;
4 Q [;];⇡ [;];MSD [;];MTS [;];DS [;];
5 forD 2 +2 in an increasing order by 346 [D] do
6 ifD 2 ⇡ then continue;
7 (MTS[D], DS[D]) ComputeMSD⇤ (G, ;,D,+2 \⇡) ; /*

all the same to Alg. 2 except that it returns (MTS[D], DS[D]) */
8 MSD[D] max(MTS[D]) ;
9 ifMSD[D] < X then {Q.?DB⌘ (D) ;346 [D] 0;}

10 while Q < ; do
11 E Q.?>? () ;⇡ ⇡ [{E };
12 for F 2 #E (⌧2) \⇡ , s.t. 346 [F] � X do
13 346 [F] 346 [F] � 1;
14 if 346 [F] < X then {Q.?DB⌘ (F) ; continue;}
15 ifMSD[F] is not existed then continue;
16 for C , s.t.(E,F, C) 2 E do
17 DS[F] [C] DS[F] [C] � 1;
18 MSD[F] UpdateMSD(F, C, ;, DS,MTS) ;

19 ifMSD[F] < X then {Q.?DB⌘ (F) ;346 [F] 0;}

20 return G+2 \⇡ ;

21 Procedure UpdateMSD(F, C, ;, DS,MTS)
22 CSC [;]; CB max(0, C � 2;) ; C4 min(C + 2;, |T |) ; CSC[0] 0;
23 for 8 0 : C4 � CB do
24 CSC[8 + 1] = CSC[8] + DS[F] [CB + 8];

25 CH [;], 8B 0, 84 �1;
26 for 9 ; : C4 � CB + 1 do
27 while 8B < 84 and slope(CH[84], 9 � ;, CSC)

slope(CH[84 � 1],CH[84], CSC) do
28 84 84 � 1;
29 84 84 + 1; CH[+ + 84] C � ; ;
30 while 8B < 84 and slope(CH[8B], 9, CSC) �

slope(CH[8B],CH[8B + 1], CSC) do
31 8B 8B + 1;
32 if 9 � C � CB then
33 MTS[F] [9 + CB � ;] slope(CH[8B], 9, CSC) ;

34 returnmax(MTS[F]) ;

the next node in Q (the degree pruning rule). Otherwise, ifMSD[F]

has already been computed, the algorithm invokes UpdateMSD to
update MSD[F] (line 19). If the updated MSD[F] is less than X ,F
is not an (;, X)-bursting node and the algorithm pushes F into Q

(line 19). We can see that ifMSD[F] has not been computed yet, the
algorithm does not need to update MSD[F]. In this case, MSD(F)

will be calculated in the next iterations of line 7. It also should be
noted that the DS is always updated, because if the nodes have
been deleted by the degree constraint,DS will be newest in G+2\⇡
(line 7), otherwise if the nodes have been deleted by the (;, X)-dense
constraint, DS will be updated in line 17. Finally,MBC+ outputs
G+2\⇡ as the result.

To Overcome Limitation (ii). In the following, we introduce
the UpdateMSD procedure. Suppose that before updating, the
maximum ;-segment density ofF exists from time CB to C4 . At this
time, if DS[F] [C 0] reduces by 1, then there exist three situations:
(8) C 0 < CB ; (88) CB C 0 C4 ; (888) C 0 > C4 .

E������ 4. Fig. 3 shows the three situations of Fig. 2(f) after
DS[F] [C 0] reduces by 1. We can see that the current maximum
;-segment density of F exists from CB = 3 to C4 = 8. As shown in
Fig. 3(a) in which C 0 < CB and Fig. 3(c) in which C 0 > CB , we can see
that theMSD[F] will not change. We can �nd that the parts of curve
with the maximum slop are all moved down. Also, it can be proved
easily from the de�nition of ;-segment density that MSD[F] will not

6

(a) C 0 = 1 (b) C 0 = 4 (c) C 0 = 9
Figure 3: Updated situations of Fig. 2(f) after DS[F] [C 0]
reduces by 1. The data on x-axis and y-axis represent the
time C and the cumulative sum.

change. Howerver, in Fig. 3(b), DS[F] [4] reduces by 1 and the new
sequence is [3, 2, 3, 3, 4, 2, 2, 6, 1]. The maximum ;-segment density is
3.5, which is the density of the 5C⌘ to 8C⌘ items [4, 2, 2, 6]. So, only
when CB C 0 C4 should we update the MSD. ⇤

Below we will introduce that it only needs to consider DS

from time C � 2; to time C + 2; to update MSD. We �rst de�ne
a concept,MTS2; [D] [9], which is a maximum 9-truncated ;-slope
of considering only 2; length of the curve CSC of node D.

D��������� 10 (������� C���������� (;�2;)������). Given a
curve CSC of node D by De�nition 7, a truncated time C 2 [; :
|T |], the maximum 8-lower C-truncated (;-2;)-slopeMTS2; [D] [C] =
{max(slope(8, C)) |8 = [9 � 2; : 9 � ;]}.

Based on De�nition 10, MTS2; [D] [C] is the maximum slope
which only considersMTS[D] [9] with the slope ends at 9 and starts
in [9 � 2; : 9 � ;]. For convenience, MTS2; [D] is the collection
of {MTS2; [D] [C] |C 2 [; : |T |]}. Furthermore, it holds the property
below.

L���� 2. MSD(D,G⇠) = max(MTS[D]) = max(MTS2; [D])
holds for a given curve CSC of D.

C�������� 2. According to Lemma 2, MSD(D,G⇠) =
max(MTS[D]). If DS[D] reduces by 1 at time C , we only need to
update MTS[D] [C 0] = MSD[D] [C 0] with C 0 2 [C : C + 2;] to get the
updatedMSD(D,G⇠).

C�������� 3. If DS[D] reduces by 1 at time C , we only need to
useDS[D] [C 0] with C 0 2 [max(0, C �2;) : min(C +2;, |T |)] to update
MTS[D], and then get the updatedMSD(D,G⇠).

According to the above corollaries, the UpdateMSD procedure
�rst initializes CB as the left side of the considered time interval, C4
as the right side and CSC based on De�nition 7 (lines 22-24). The
following step is aimed at computing all the MTS2; [F] [9] which
ends at time 9 and starts from time 9 � 2; to 9 � ; . The following
process is much same as that in Algorithm 2 (lines 27-31). Note that,
we useMTS[F] [9] to recordMTS2; [F] [9] of nodeF and it should
be updated only when 9 � C � CB (line 32). After all the MTS[F] [9]
with 9 from C to CB have been maintained, the procedure returns
max(MTS[F]) as the updated MSD[F] (line 34).

L���� 3. For a temporal graph G with |T | timestamps, procedure
UpdateMSD need$ (;) to maintain the maximum ;-segment density.

Complexity of Algorithm 3. The time and space complexity of
Algorithm 3 are$ (U |T | + V;) and$ (U |T | +<) respectively, where
U = |+2 |, V = |⇢2 | are number of nodes and edges in :-core (: = X)
of ⌧ .

4 ALGORITHMS FOR MINING POMBCS
Finding all POMBCs in a temporal network helps us determine
whether there exists an (; 0, X 0)-MBC by arbitrarily given ; 0, X 0. The
parameter ; in our model should be as small as possible, since
a good bursting community is often with a large X and small ; .
However, in real-world applications, we do not know how to set
proper parameters ; 0, X 0 to mine such good bursting communities.
Because if ; 0, X 0 are too large we may get empty results, and if ; 0, X 0
are too small, we then will obtain too many unnecessary nodes in
the (;, X)-MBC. Therefore, it is meaningful to �nding all POMBCs
e�ciently, since they can show whether there exists an (; 0, X 0)-
MBC by arbitrarily given ; 0, X 0.

In this section, we develop an e�cient algorithm to record
all POMBCs. The basic idea of our algorithm is as follows. The
algorithm �rst only considers the ; dimension, and computes the
maximal bX , among all the (;, X)-maximal bursting cores. Then, the
algorithm considers the X dimension with X = bX to compute the
currently maximal ; 0 value. Using the above method, we can �nd
one POMBC which has the maximal (;, X) value of all the skyline
cores. The challenge is how to �nd the other POMBC iteratively.
We can tackle this challenge based on the following results.

L���� 4. Let (; 0,bX)-MBC be a POMBC which has the largest bX
among all the POMBCs, if the node is not a (;, X)-bursting node with
; > ; 0, X > 0, it can not be contained in another POMBC.

L���� 5. Let (; 0, X 0)-MBC be a POMBC. If ;⇤ > ; 0 and (;⇤, X⇤)-
MBC is another POMBC, (;⇤, X⇤)-MBC must be contained in an
induced temporal subgraph from :-core of ⌧ in which : = X0⇥; 0

;⇤ .

Based on Lemma 4 and 5, after computing one POMBC (;, X)-
MBC, as ; is integer, we can initialize ; 0 = ; + 1 to get the next
POMBC. Furthermore, we can reduce the considering graph by the
following corollary.

C�������� 4. Let (;, X)-MBC and (; 0, X 0)-MBC be two POMBCs.
If ; 0 > ; , then nodes in (; 0, X 0)-MBC must be contained in a :-core of
⌧ in which : = X⇥;

;+1 .

The detail of the POMBC algorithm is shown as follows. First,
Algorithm 4 initializes ; = 2, X = 0 to be default, ' to store the
result and ⇠ to be the nodes of the considered bursting nodes (line
2). Then, the algorithm considers the ; dimension and grows ; to
�nd all the POMBCs. Next, it computes MSD[D] and 346[D] in
the induced graph from nodes ⇠ (lines 4-7). By the given ; , the
MaxDelta algorithm �nds the maximal X and the corresponding
core nodes (line 8). Next, given one maximal X , theMaxL algorithm
�nds the maximal ; and the �nal ⇠ (line 9). The induced temporal
subgraph of ⇠ from G is a POMBC and (;, X,G⇠) is recorded as a
result (line 10). Based on Corollary 4, in the iteration of ; ;+1, the
new POMBC must be contained in a induced temporal subgraph
from :-core of ⌧ in which : = X⇥;

;+1 , so ⇠ is updated as +2 for next
loop(lines 10-11). The iterations will terminate when ; is increased
to |T | (line 3).

Procedure MaxDelta describes the process of �nding the largest
X by parameter ; . It is a loop until all the nodes have been deleted
(line 15). The algorithm maintains Q to be the deleting queue and
⇡ to be the deleted nodes. Speci�cally, X and X are assigned to the
minimal and second minimal value of MSD[D] for D 2 + ⇤ (line
16). Then, the nodes are deleted if 346[F] < X or MSD[F] < X ,

7

Algorithm 4: POMBC(G)
Input: Temporal graph G = (V, E, T)
Output: POMBCs in G

1 Let⌧ = (+ ,⇢) be the de-temporal graph of G;
2 ; 2;X 0;' [;];⇠ + ;
3 while ; |T | do
4 forD 2 ⇠ do
5 (MTS[D], DS[D]) ComputeMSD⇤ (G, ;,D,⇠) ;
6 MSD[D] max(MTS[D]) ;
7 346 [D] |#D (⌧) \⇠ |;

8 (X,⇠) MaxDelta(G, ;,⇠, DS,MTS,MSD,346) ;
9 (;,⇠) MaxL(G, ; + 1,X,⇠,346) ;

10 ' ' [(;,X, G⇠) ;
11 Let⌧2 = (+2 ,⇢2) be the :-core (: = X⇥;

;+1) of⌧ ;
12 ⇠ +2 ; ; ; + 1;
13 return ';

14 ProcedureMaxDelta(G, ;,+ ⇤, DS,MTS,MSD,346)
15 while True do
16 Q [;];⇡ [;]; X min(MSD) ; X 2=3 min(MSD) ;
17 forD 2 + ⇤ do
18 Lines 6-19 in Algorithm 3;

19 if ⇡ < + ⇤ then
20 + ⇤ + ⇤ \⇡ ; forD 2 ⇡ doMSD[D] ; ;

21 else return (X,+ ⇤) ;

22 ProcedureMaxL(G, ;,X,+ ⇤,346)
23 while ; |T | do
24 Q [;];⇡ [;];MSD [;];MTS [;];
25 forD 2 + ⇤ do
26 Lines 6-19 in Algorithm 3.

27 if ⇡ < + ⇤ then
28 + ⇤ + ⇤ \⇡ ;
29 if ; = |T | then return (;,+ ⇤) ;
30 ; ; + 1;
31 else return (;,+ ⇤) ;

which is similar to the process in Algorithm 3 (lines 17-18). Next,
if the deleted nodes set ⇡ is not equal to the remained nodes set
+ ⇤, the remained + ⇤ is updated by + ⇤ \ ⇡ and MSD will pop all
theMSD[D] for D in the deleted nodes’ set ⇡ (lines 19-20). Else, if
⇡ = + ⇤, then the remained nodes+ ⇤ will have maximal X (lines 21).
Furthermore, procedureMaxL can use the remained nodes set of
MaxDelta and the known maximal X to �nd the maximal ; . It grows
; to �nd the largest ; and it will terminate if ; increases to |T | (line
23). The unsatisfying nodes are deleted same as that in Algorithm 3
(lines 25-26). MaxL ends at the �rst time when all the + ⇤ will be
deleted or ; = |T |, it returns the maximal ; and the remained nodes
set + ⇤ (lines 27-31).
Speed-up strategies. Although the core reduction pruning in line
11 of Algorithm 4 reduces the temporal graph into a smaller size, the
algorithm is still not e�cient. It is because when ; is small and X is
large, we need to try to compute themin(MSD) and 2=3 min(MSD)
in line 16 for lots of time. When ; is large but X is small, the pruning
strategy in line 26 is not powerful. To solve these problems, we
propose two speed-up strategies, which are shown below.

(i) We use a binary search to try the X when ; is small. For small
; , the �rst considered X =</2. If such (;, X)-MBC exists, we set X
to be </2+<

2 , otherwise we set X to be <
4 .

(ii) We use an early termination to try X when ; is large. For large
; , we set X 0 = X;�1⇥(;�1)+1

; in which X;�1 is the optimal X of ; � 1.
If the (;, X 0)-MBC does not exist, then the algorithm performs an
early termination and the optimal X; is

X;�1⇥(;�1)
; .

Table 2: Statistics of datasets
Dataset |+ | = = |⇢ | |E | =< 3max |T | Time scale
Chess 7,301 55,899 63,689 233 101 month
Lkml 26,885 159,996 328,092 14,172 96 month
Enron 86,836 296,952 501,510 2,156 87 month
DBLP 1,729,816 8,546,306 12,007,380 5,980 78 year
YTB 3,223,589 9,376,594 12,218,755 129,819 225 day
FLK 2,302,925 22,838,276 24,690,648 28,276 197 day
MO 24,759 187,986 294,293 5,556 2,351 day
AU 157,222 455,691 549,914 7,325 2,614 day
WT 1,094,018 2,787,967 4,010,611 214,518 2,321 day

The above two strategies can handle the situations when ; is very
small or very large. The experimental results in Section 5 show that
the pruning strategies can speed up the computations in practice.
Complexity of Algorithm 4. The worst time and space complex-
ity of Algorithm 4 are $ (< |T |

2
) and $ (= |T | + <) respectively.

However, the pruning rule based on Corollary 4 can reduces the
computation time greatly.Wewill show the running time in practice
at Section 5.

5 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the
proposed algorithms. We implement eight di�erent algorithms for
comparison: (i) KC [38] is a baseline that computes the :-core (: =
X) in the temporal graph. (ii) DS [33] is a baseline algorithm that
searches the Densest Subgraph in the temporal graph. (iii) DBS [11]
is a related algorithm that can �nd the Densest and Bursting
Subgraph in the temporal graph. (iv) MBC-B is a baseline that
computes (;, X)-MBC using the framework shown in Algorithm 1,
but it enumerates all subsequences to compute maximum ;-segment
density. (v) MBC is the implementation of Algorithm 1, which uses
Algorithm 2 to compute MSD. (vi) MBC+ is the implementation
of Algorithm 3 to compute (;, X)-MBC. (vii) POMBC can output
all the POMBCs by De�nition 6, and it is an implementation of
Algorithm 4. (viii) POMBC-B is a basic implementation of POMBC
without integrating the pruning rules developed in Corollary 4.

All algorithms are implemented in Python (available at https:
//github.com/VeryLargeGraph/MBC), and conducted on a Linux
kernel 4.4 server with an Intel Core(TM) i5-8400@3.80GHz proces-
sor and 32 GB memory. When quantity measures are evaluated, the
test was repeated over 5 times and the average is reported here.
Datasets. We use nine di�erent real-world temporal networks
in the experiments. The detailed statistics of our datasets are
summarized in Table 2, where 3max denotes the maximum number
of temporal edges associated with a node, and |T | denotes the
number of snapshots. All snapshots are simple, undirected and
unweighted graphs. Chess1 is a network that represents two chess
players playing games together from 1998 to 2006. Lkml1 is a
communication network of the Linux kernel mailing list from
2001 to 2011. Enron1 is an email communication network between
employees of Enron from 1999 to 2003. DBLP2 is a collaboration
network of authors in DBLP from 1940 to Feb. 2018. Youtube3
(YTB for short) and Flickr1 (FLK) are friendship networks of users
in Youtube and Flickr, respectively. In addition, MathOverflow3

(MO), AskUbuntu3 (AU) are temporal networks of interactions on
1http://www.konect.cc/
2https://dblp.uni-trier.de/xml/
3http://snap.stanford.edu/data/index.html

8

https://github.com/VeryLargeGraph/MBC
https://github.com/VeryLargeGraph/MBC

(a) AD (b) AS

Figure 4: E�ectiveness results of KC, DS andMBC

the stack exchange web site mathover�ow.net and askubuntu.com,
respectively.WikiTalk3 (WT) is a temporal network representing
the interactions among Wikipedia users.
Parameter settings. There are two parameters ; and X in the (;, X)-
MBC model. We vary ; from 3 to 11 with a default value of 3 in
the testing, and vary X from 3.0 to 11.0 with a default value of 3.0.
Unless otherwise speci�ed, the values of other parameters are set
to their default values when varying a parameter.
Goodness metrics. Since most existing metrics (e.g., modularity)
for measuring community quality are tailored for traditional graphs,
we introduce two goodness metrics evaluating communities for
temporal graphs, which are motivated by density and separability
[39]. Let ⇠ be a community computed by di�erent algorithms.

Average Density (AD) builds on the idea that good communities
are well connected. It measures the fraction of the temporal edges
that appear between the nodes in⇠ : AD = [

Õ
E8 2⇠

346G⇠ (E8)
|⇠ |

], where
346G⇠ (E8) denotes the number of temporal edges that are associated
with E8 in the community ⇠ .

Average Separability (AS) captures the intuition that good
communities are well-separated from the rest of the network,
meaning that they have relatively few across edges between ⇠
and the rest of the network: AS = [

| { (D,E,C)2E:D2⇠,E2⇠ } |/ |⇠ |

|(={(D,E,C)2E:D2⇠,E8⇠ } |/ |(|],
which measures the ratio between the internal average density and
external average density.

However, in traditional graphs, the density of a given sub-graph
(is the ratio between the number of static edges and the nodes
inside (, and the separability of (is the ratio between the internal
density and external density of (. Obviously, our proposed AD and
AS can capture the notion of cohesion within a time frame, since we
consider the temporal edges. To the best of our knowledge, we are
the �rst to extend the de�nition of density and separability from
static graphs into temporal graphs.

5.1 E�ectiveness Evaluation
Exp-1. E�ectiveness of KC, DS, DBS and MBC. Fig. 4 shows
the qualities of the communities computed by di�erent algorithms
under the default parameter setting. Similar results can also be
observed using the other parameter settings. As seen in Fig. 4(a),
DBS and DS outperform the others in terms of the AD metric (but
DBS and DS are very time consuming). Considering AD, we can
also observe thatDS is slightly better thanDBS. This is because that
DS obtains the subgraph with the largest density and DBS obtains
the densest subgraph considering the bursting property. MBC is
slightly weaker than DBS, but much better than KC in terms of
AD. Furthermore, the AD values of both DS, DBS and MBC in WT
are much higher than those in the other datasets. The reason is
that the maximum degree inWT is largest among all datasets; thus,

(a) AD (b) AS

Figure 5: Results of burstiness testings on DBLP

(a) MBC on DBLP (b) MBC on Enron (c) Bursty truss on DBLP

Figure 6: Results of the bursty subgraphs

there must exist a community with higher density. In Fig. 4(b), the
MBC community we proposed have a higher AS than DBS and DS
on all datasets. Compared to the other datasets, the AD onMO is
high , but the AS is low. The reason is that AS captures the ratio
between the internal average density and external average density.
Clearly, each node in MBC has a high internal average density.
In conclusion, DBS searches the densest bursting subgraph in the
temporal graph so it has the best AD; MBC has the best AS and
slightly lower AD; KC performs poorly in all the e�ectiveness tests.

Fig. 5 shows the distributions of average density (AD) and
average separability (AS) for the algorithms while varying the ends
of the time intervals. More speci�cally, we show the AD and AS
of the subgraph KC, DS, DBS, MBC in (1945,1950], (1946,1951] ...
(2015,2020] on DBLP by observing segments of each 5 years. In
Fig. 5(a), we can see that the curves of the AD for all algorithms
increase from 1960 to 2000, and then decrease from 2000 to 2020.
These results indicate that there indeed exist bursty subgraphs
which are densely-connected rapidly in the real datasets. Note
that, MBC is slightly weaker than DBS in terms of AD, and better
than KC and DS, which is consistent with the results in Fig. 4(a).
In Fig. 5(b), we can observe that MBC is better than the other
algorithms in terms of AS, because MBC can seek more accurate
communities which has low external average density. Interestingly,
the AD of all the algorithms decrease from 1960 to 2020. This is
because in early years the publications and the collaborations are
limited but in recent years the collaborations of the authors are
active, resulting in that there are more external collaborations in
recent years.
Exp-2. Results of the bursty subgraph. Fig. 6 shows the results
of MBC and the bursty :-truss model on DBLP and Enron. Similar
results can also be observed on the other datasets. In Fig. 6(a),
we can observe that MBC (; = 10, X = 10) on DBLP contains
many connected components, since the subgraphs may be split into
several parts by the de�nition of the :-core model. In Fig. 6(b), we
can seeMBC (; = 5, X = 10) on Enron are connected, but it can also
be grouped by three parts. Fig. 6(c) shows the bursty :-truss which
is obtained by a simple modi�cation of De�nition 5. The bursty
:-truss has almost the same structure as the bursty :-core, except
that the bursty :-truss removes some small connected components

9

mathoverflow.net
askubuntu.com

(a) Lkml (b) Enron

Figure 7: ;, X values of POMBCs on di�erent datasets

(a) Lkml (b) Enron

Figure 8: E�ectiveness results of POMBCs

in :-core. This is because in :-truss, the cross-domain edges will
be removed and then the small components in the subgraph will
also be deleted.
Exp-3. Results of POMBC. Fig. 7 shows the ;, X values for each
POMBC on Lkml and Enron. Again, similar results can also be
observed on the other datasets. From Fig. 7(a), we observe that when
; = 2, an (;, X)-MBC in Lkml achieves the maximum ;-segment
density which is equal to 18.5. The X values drop dramatically
when ; = 20. As desired, the X values in both Fig. 7(a) and Fig. 7(b)
exhibit a staircase shape because of the parato-optimal property.
In Fig. 7(a), we can see that ; increases from ; = 21 to ; = 25 when
X is unchanged, which shows that there is a POMBC which can
dominate others in terms of parameters ;, X . In Fig. 7(b), we can
also observe that the values of ; ⇤ X on Enron grow rapidly from
; = 0 to ; = 40, and then the values tend to be balanced. This is
because when ; > 40, the POMBC in Enron is the same subgraph
with changing the lowest ; constraint. However, the values of ; ⇤ X
on Lkml continue increasing from ; = 0 to ; = 96. This is the reason
that the average degree inside Lkml is much larger than that inside
Enron, so it has di�erent communities with high degrees.

Fig. 8 shows the AS and AD values of POMBCs on Lkml and
Enron. The results on the other datasets are consistent. The AS and
AD values increase as ; increases from 0 to 30. We can also see
that the curves of the AS and AD values match the curves of ; ⇤ X
values in Fig. 7. This is because while ; ⇤X values increase, the inside
degree of the subgraphs increase, which results in the growth of
AS and AD. We can observe that in Fig. 8(b), when ; = 15 to ; = 20,
the AD values increase but the AS values decline. It shows that AS
and AD are two metrics that are not all increasing at the same time.
When ; > 30, AS and AD values change slightly. This is the reason
that when ; > 30 (8) the POMBC in Enron is the same subgraph;
(88) ; ⇤ X values of the POMBC on Lkml increases, but the quantity
of communities may not enlarge.
Exp-4. Communities results on Enron. We present the com-
munities results on Enron. The Enron dataset consists of emails
sent between employees of Enron from 1999 to 2003. Nodes in the
network are individual employees, and edges are individual emails.
As the results of KC and DS contain too many edges and cannot be
applied to �nding the bursting patterns, we compare the results of
DBS and MBC in this section. Fig. 9(a) shows one DBS on Enron

(a) DBS (b) DBS (each edge #C � 5)

518

641

30

505

544

1062

1335

580

890

723

448

1310

508

720

1593

807

804
125

532

452

527

1199

954

1178

746

713

3286

919

628

1066

1079

719

540

604
663

835

1068

545

419

928

1067

1063

538

714

786

733

519

489

498

491

642

143

425
985

1070

905

854

825

1323

1336

1331

616

611

856

851

1548

1246

1300

501
674

726

558

1552

1329
142

(c) DBS (each edge #C � 10)

(d) MBC (e) MBC (each edge #C � 5)

1066

1310

1593

1079

616 851

914

726

854

1300

1067

448

508

498

905

1329

1068

1336

856

538 663

786

1340

1552

1335

928

1063

733

807 625

642

519
641

491

611

1323
1331

610

877

1313

628

825

714

1548

1376

1070

558

489

501

(f) MBC (each edge #C � 10)

Figure 9: Communities results on Enron

with all the temporal edges (D, E, C) inside it. Figs. 9(b-c) show the
DBS on Enron keeping only the temporal edges that exist at no
fewer than 5 and 10 timestamps, respectively. Similarly, Figs. 9(d-
f) show theMBC and theMBC keeping only the temporal edges
which exist at no fewer than 5 and 10 timestamps, respectively. We
can obtain the following observations: (i) The subgraph obtained
by DBS is slightly denser thanMBC. Speci�cally, the AD values
in DBS and MBC are 296.51 and 289.48, respectively. However, the
MBC has higher AS than DBS, as the AS values in 9(a) and 9(d)
are 42.95 and 46.83, respectively. The results indicate the fact that
DBS has higher AD and lower AS thanMBC, which is consistent
with the result of Exp-1. (ii) TheMBC contains more temporal
edges that are frequently connected with each other than
DBS. In DBS, there exist 90 nodes, 2151 edges in Fig. 9(a), 90 nodes,
1027 edges in Fig. 9(b) and 75 nodes, 195 edges in Fig. 9(c) (isolated
nodes are removed). Furthermore, considering the MBC, there are
50 nodes, 1040 edges in Fig. 9(d), 50 nodes, 569 edges in Fig. 9(e) and
49 nodes, 272 edges in Fig. 9(f). We can see that although DBS has
more edges thanMBC (2151 > 1040), after cutting some infrequent
temporal edges whose #C < 10, DBS has fewer edges than MBC
(195 < 272). (iii) In Figs. 9(a-c), we observe a similar result as
ref [30] that DBS obtains outliers which belong to the other
dense regions of the graph. However, our models in Figs. 9(d-f)
show clearer communities than DBS. Moreover, we can separate
the two dense regions of Fig. 9(c) into a red region and a green
region. We also observe that the red region in Fig. 9(c) is similar
to the red region in Fig. 9(f), which consists of the same kernel
nodes in the community (such as: 851, 1310, 508, 1336, 786, 854...).
These results indicate that our proposedMBC model can identify
higher edge-connected and more accurate bursting communities
than DBS.

5.2 E�ciency Evaluation
Exp-5. Running time of the algorithms. Table. 3 evaluates the
running time of KC, DS, DBS, MBC-B, MBC and MBC+ with
parameters ; = 3 and X = 3. Similar results can also be observedwith
the other parameter settings. From Table. 3, we can see thatMBC+
is much faster thanDS,DBS,MBC-B andMBC on all datasets. Note
that KC is the fastest algorithm, as it has a linear time complexity
of [38]. However, KC is ine�ective in �nding bursting communities,

10

Table 3: Running time (s) of di�erent algorithms
Dataset KC DS DBS MBC-B MBC MBC+
Chess 0.05 13.45 8.32 1.32 0.78 0.50
Lkml 0.06 35.23 20.32 2.4 1.02 0.36
Enron 0.19 134.2 82.32 13.41 3.54 1.25
DBLP 6.84 1602.32 542.54 187.32 53.90 26.95
YTB 30.53 6653.23 3123.13 759.52 126.92 68.23
FLK 17.53 5234.23 3123.32 876.4 122.87 34.52
MO 0.11 5602.21 2213.21 1200.23 30.15 3.71
AU 0.52 10232.23 3121.31 2599.78 66.89 13.36
WT 2.15 23123.23 8021.31 11865.87 145.23 57.65

Table 4: Running time (s) of POMBC-B V.S. POMBC

POMBC-B (C1) POMBC (C2) C2/C1
Chess 245.23 53.24 21.7%
Lkml 682.32 175.32 25.6%
Enron 953.42 280.43 29.4%
DBLP 10232.32 2407.13 23.5%
YTB 24563.23 6153.52 25.1%
FLK 14245.23 3698.13 26.1%
MO 17232.42 3424.12 19.9%
AU 43231.45 11678.23 27.0%
WT >1 day >1 day N/A

(a) percents of |T | (b) percents of edges

Figure 10: Scalability testings onWT

as shown in Exp-1. Recall that the theoretical running time ofMBC+
is $ (U |T | + V;) where U = |+2 |, V = |⇢2 | denotes the number of
nodes and edges in :-core (: = X) of ⌧ . Thus, on DBLP, KC takes
6.8 seconds and our proposedMBC+ only consumes 26.9 seconds.
OnWT, we can see that DS takes 23123 seconds, DBS takes 8021
seconds, MBC-B takes 11865 seconds and MBC+ only takes 57
seconds. These results con�rm that our proposed algorithms are
indeed very e�cient on large real-life temporal networks.
Exp-6. Running time of computing all POMBCs. Table 4 shows
the running time of POMBC-B and POMBC with the default
parameter setting. We can see that POMBC requires approximately
20%-30% of the time of POMBC-B on all the datasets. For example,
POMBC-B needs approximately 17,232 seconds and 43,231 seconds
to compute all the POMBCs inMO and AU datasets but POMBC
only needs 19.9% and 27.0% times, respectively. This is because
the core reduction pruning in line 11 of Algorithm 4 reduces the
temporal graph into a much smaller size, and the speed up strategies
can avoid computing (;, X)-MBC with small ; and X . Note that both
POMBC-B and POMBC cannot obtain results onWT in 1 day. The
results above indicate that the pruning rule in Section 4 is indeed
very powerful in practice.
Exp-7. Scalability. Fig. 10 shows the scalability of MBC and
MBC+ on the WT dataset. Similar results can also be observed
on the other datasets. We generate ten temporal subgraphs of the
temporal edges by 10%-100% of the timestamps, sample the temporal
edges forward in time by 10%-100%, and then evaluate the running
times ofMBC andMBC+ on those subgraphs. As shown in Fig. 10,
the running time increases smoothly with increasing numbers of

Table 5: Memory overhead ofMBC andMBC+

Graph in Memory Memory ofMBC Memory ofMBC+

Chess 3.5MB 9.2MB 44.2MB
Lkml 20.1MB 44.4MB 121.2MB
Enron 53.3MB 107.6Mb 303.2MB
DBLP 1,089.5MB 2,328.2MB 3,934.3MB
YTB 698.5MB 1,452.8MB 3,318.1MB
FLK 1,375.5MB 3,198.2MB 5,647.2MB
MO 13.23MB 45.23MB 92.75MB
AU 50.23MB 140.32MB 459.2MB
WT 324.5MB 1023.23MB 3,163.2MB

(a) vary ; (DBLP) (b) vary X (DBLP)

Figure 11: E�ectiveness ofMBC with varying ;, X on DBLP

(a) vary ; (DBLP) (b) vary X (DBLP)

Figure 12: Running time (s) with varying ;, X on DBLP

Michael Stonebraker

(a) ; = 3,X = 3

Michael Stonebraker

David Maier

David J. DeWitt

Stanley B. Zdonik

Surajit Chaudhuri

Raghu Ramakrishnan

Mitch Cherniack

Michael J. Franklin

Ugur Çetintemel

Samuel Madden

Alexander Rasin

Magdalena Balazinska

Michael J. Carey Rakesh Agrawal

Joseph M. Hellerstein

(b) ; = 5,X = 5

Michael Stonebraker

Surajit Chaudhuri

Gerhard Weikum

Raghu Ramakrishnan

Sunita Sarawagi

Michael J. Carey

Michael J. Franklin

Laura M. Haas

Rakesh Agrawal

Alon Y. Halevy

Yannis E. Ioannidis

Samuel Madden
Joseph M. Hellerstein

Philip A. Bernstein

(c) ; = 7,X = 7
Figure 13: Case study of (;, X)-MBCs on DBLP

edges or increasing sizes of |T |. These results suggest that our
proposed algorithms are scalable when handling large temporal
networks.
Exp-8. Memory overhead. Table 5 shows the memory usage
of MBC and MBC+ on di�erent datasets. We can see that the
memory usage of MBC and MBC+ is higher than the size of the
temporal graph, becauseMBC only needs to store 346[D] (for each
nodeD) butMBC+ needs to storeMSD[D],MTS[D],DS[D] (for
each node D). In practice, we can free the memory of MSD[D],
MTS[D] and DS[D] once D has been added into the deleting
queue Q. Therefore, on large datasets, the memory usage ofMBC+
is typically lower than ten times of the size of the temporal graph.
For instance, onWT,MBC+ consumes 3,163.2MB memory while
the graph needs 324.5MB. These results indicate that MBC and
MBC+ achieve near linear space complexity, which con�rms our
theoretical analysis in Section 3.
Exp-9. E�ectiveness results with varying parameters. Here
we study how the parameters a�ect the e�ective performance of
our algorithm. Fig. 11 shows the results of MBC with varying
parameters on DBLP. Similar results can also be observed on the
other datasets. As seen, AD increases with growing ; and X . This is

11

because AD measures the inside degrees of MBC, and when ; or X
values increase, ; ⇤ X will be larger and AD will de�nitely increase.
We also observe that the AS changes slightly in Fig. 11. The reason
may be that when ; or X values increase, both the numerator and
denominator of ASwill increase. Furthermore, as ; and X control the
lower bound of the segment density and directly a�ect the internal
average density, the AS slightly increases.
Exp-10. Running timewith varying parameters. Fig. 12 shows
the running time of KC,MBC andMBC+ with varying parameters
on DBLP. Similar results can also be observed on the other datasets.
As seen,MBC+ is faster thanMBC under all parameter settings. In
Fig. 12(a), the running times of KC and MBC remain unchanged,
but the running time ofMBC+ increases slowly with increasing ; .
These results con�rm that the time complexity of KC and MBC is
independent of ; , and the time complexity of MBC+ is linear w.r.t.
; . We also see that the running time ofMBC+ andMBC decrease
with increasing X , because all of them need to reduce the graph by
the :-core based on Property 3, and the size of the :-core decreases
as X increases.
Exp-11. Case study on DBLP with varying parameters. We
conduct a case study using DBLP to show the (;, X)-MBCs with
varying parameters ; and X . Figs. 13(a-c) show the three communi-
ties of Prof. Michael Stonebraker obtained by MBC with ; = X = 3,
5 and 7. Note that, to be more visualized, we only keep the temporal
edges that exist at more than 5 timestamps, which means that the
researchers at two ends of each edge in Fig. 13 have cooperated for
no fewer than 5 years. In Fig. 13(c), we can see that the (7, 7)-MBC
comprises close collaborators of Prof. Stonebraker. Interestingly,
some researchers are not cooperated with Prof. Stonebraker most
frequently, such as Sunita Sarawagi, Surajit Chaudhuri and Michael
J. Franklin, but all of them are top researchers and have published
more than 100 papers in their research areas. This is the reason that
MBC can �nd the bursting cores which are actually kernels in the
communities. From Figs. 13(a-b), we can see that the (3, 3)-MBC
and the (5, 5)-MBC not only contain (7, 7)-MBC in Fig. 13(c), but
also include some other close collaborators of Prof. Stonebraker,
such as Stanley B. Zdonik, Ugur Çetintemel and so on. In conclusion,
we can use ;, X to control the MBC depending on the application
requirements, and the larger ;, X is, the more likelyMBC is the core
of the temporal graph.

6 RELATEDWORK
 -core [7, 9, 15, 16, 37] is an important cohesive subgraph model
that can represent communities in a graph. Such a concept of :-
core was �rst proposed by Seidman [35]. Recently, Malliaros et al.
perform an in-depth discussion of core decomposition [28]. Other
notable cohesive subgraph models include :-truss [21], :-plex [4,
12], maximal clique [10] and quasi-clique [36]. However, bursting
core mining in temporal graph is a novel task that has not been well
studied before. Below, we review the recent studies on temporal
subgraph analysis and dynamic community mining.
Temporal Subgraph Analysis. Temporal subgraph analysis has
attracted much attention in recent year, including (i) Temporal Core
Model: Galimberti et al. [14, 17] proposed temporal span-cores, in
which each node has minimum degree in a speci�c time interval;
Wu et al. [38] studied the core decomposition problem in temporal
networks; Yu et al. [42] computed the historical :-cores in the

graph snapshots over the time window; Li et al. [23] developed
an algorithm to detect persistent cores in a temporal graph. (ii)
Temporal Clique Model: Qin et al. [29] proposed a model for seeking
periodic cliques in a temporal graph. Yang et al. [40] studied a
problem of �nding a set of diversi�ed quasi-cliques from a temporal
graph. (iii) Temporal Subgraph Model: Yang et al. [41] proposed an
algorithm to detect frequent changing components in temporal
graph; Huang et al. [20] investigated the minimum spanning tree
problem in temporal graphs; Gurukar et al. [18] presented a model
to identify the recurring subgraphs that have similar sequence of
information �ow. (iv) Temporal Densest Subgraph Model: Ma et al.
[27] and Bogdanov et al. [6] investigated the densest subgraph
problem in weighted temporal graphs. Rozenshtein et al. [32]
studied the problem of mining densest subgraphs at di�erent
time intervals, and a problem of �nding the densest subgraph
in a temporal network [33]. Liu et al. [26] proposed a novel
stochastic approach to �nd the densest lasting subgraph. Some other
works [5, 13] maintained the average-degree densest-subgraph in a
graph streaming scenario. However, the above works do not study
the problem of mining bursting communities in temporal graphs.

Recently, Chu et al. [11] studied the problem of mining the
densest and bursting subgraphs in temporal graphs. However, to
search the bursting communities, the model of the densest and
bursting subgraph has three limitations compared to MBC we
proposed, as described in Section 1. Furthermore, in Section 5, the
experiments show our algorithm MBC+ performs better than DBS
in the testing of e�ciency and e�ectiveness.
Dynamic Community Mining. In dynamic networks, each edge
is associated with a created timestamp [31]. Di�erent from the
temporal subgraph analysis, the studies on dynamic community
mining aim to maintain communities that evolve over time. For
example, Lin et al. [25] proposed a probabilistic generative model
for analyzing communities and their evolutions; Chen et al. [8]
tracked community dynamics by introducing graph representatives;
Agarwal et al. [1] studied how to �nd dense clusters e�ciently for
dynamic graphs despite rapid changes to microblog streams. Li et
al. [24] devised an algorithm that can maintain the :-core in large
dynamic graphs. Unlike these studies, our work mainly aims to
detect bursting communities in evolving graphs.

7 CONCLUSION
In this work, we study a problem of mining bursting cores
in a temporal graph. We propose a novel model, called (;, X)-
MBC, to characterize the bursting core in the temporal graph. To
�nd all (;, X)-MBCs, we �rst develop an dynamic programming
algorithm which can compute the segment density e�ciently.
Then, we propose an improved algorithm with several novel
pruning techniques to improve the e�ciency. Subsequently, we
develop an algorithm which can compute the pareto-optimal
bursting communities w.r.t. the parameters ; and X . Finally, we
conduct comprehensive experiments using 9 real-life temporal
networks, and the results demonstrate the e�ciency, scalability
and e�ectiveness of our algorithms. In the future, we plan to extend
ourmodel to capture the evolution of the community by considering
the joins and exits of vertices. Furthermore, we can also consider
the graph with bursting labels by �rst embedding the topic labels
of each timestamp into a list of popular index, and then modifying
the proposed algorithm to calculate the most bursty parts.

12

REFERENCES
[1] Manoj K. Agarwal, Krithi Ramamritham, and Manish Bhide. 2012. Real Time

Discovery of Dense Clusters in Highly Dynamic Graphs: Identifying Real World
Events in Highly Dynamic Environments. Proc. VLDB Endow. 5, 10 (2012), 980–
991.

[2] Sitaram Asur, Srinivasan Parthasarathy, and Duygu Ucar. 2007. An event-based
framework for characterizing the evolutionary behavior of interaction graphs.
In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Jose, California, USA, August 12-15, 2007. 913–921.

[3] Albert-Lászlo Barabási. 2005. The origin of bursts and heavy tails in human
dynamics. Nature 435, 7039 (2005), 207–211.

[4] Devora Berlowitz, Sara Cohen, and Benny Kimelfeld. 2015. E�cient Enumeration
of Maximal k-Plexes. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia, May 31 - June
4, 2015. 431–444.

[5] Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalam-
pos E. Tsourakakis. 2015. Space- and Time-E�cient Algorithm for Maintaining
Dense Subgraphs on One-Pass Dynamic Streams. In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015. 173–182.

[6] Petko Bogdanov, Misael Mongiovì, and Ambuj K. Singh. 2011. Mining Heavy
Subgraphs in Time-Evolving Networks. In 11th IEEE International Conference on
Data Mining, ICDM 2011, Vancouver, BC, Canada, December 11-14, 2011. 81–90.

[7] Francesco Bonchi, Arijit Khan, and Lorenzo Severini. 2019. Distance-generalized
Core Decomposition. In Proceedings of the 2019 International Conference on
Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019. 1006–1023.

[8] Zhengzhang Chen, Kevin A. Wilson, Ye Jin, William Hendrix, and Nagiza F.
Samatova. 2010. Detecting and Tracking Community Dynamics in Evolutionary
Networks. In ICDMW 2010, The 10th IEEE International Conference on Data Mining
Workshops, Sydney, Australia, 13 December 2010. 318–327.

[9] James Cheng, Yiping Ke, Shumo Chu, and M. Tamer Özsu. 2011. E�cient core
decomposition in massive networks. In Proceedings of the 27th International
Conference on Data Engineering, ICDE 2011, April 11-16, 2011, Hannover, Germany.
51–62.

[10] James Cheng, Yiping Ke, Ada Wai-Chee Fu, Je�rey Xu Yu, and Linhong Zhu. 2011.
Finding Maximal Cliques in Massive Networks. ACM Trans. Database Syst. 36, 4
(2011), 21:1–21:34.

[11] Lingyang Chu, Yanyan Zhang, Yu Yang, Lanjun Wang, and Jian Pei. 2019. Online
Density Bursting Subgraph Detection from Temporal Graphs. Proc. VLDB Endow.
12, 13 (2019), 2353–2365.

[12] Alessio Conte, Donatella Firmani, Caterina Mordente, Maurizio Patrignani, and
Riccardo Torlone. 2017. Fast Enumeration of Large k-Plexes. In Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Halifax, NS, Canada, August 13 - 17, 2017. 115–124.

[13] Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. 2015. E�cient Densest
Subgraph Computation in Evolving Graphs. In Proceedings of the 24th Interna-
tional Conference on World Wide Web, WWW 2015, Florence, Italy, May 18-22, 2015.
300–310.

[14] Edoardo Galimberti, Alain Barrat, Francesco Bonchi, Ciro Cattuto, and Francesco
Gullo. 2018. Mining (maximal) Span-cores from Temporal Networks. In
Proceedings of the 27th ACM International Conference on Information and
Knowledge Management, CIKM 2018, Torino, Italy, October 22-26, 2018. 107–116.

[15] Edoardo Galimberti, Francesco Bonchi, and Francesco Gullo. 2017. Core
Decomposition and Densest Subgraph in Multilayer Networks. In Proceedings of
the 2017 ACM on Conference on Information and Knowledge Management, CIKM
2017, Singapore, November 06 - 10, 2017. 1807–1816.

[16] Edoardo Galimberti, Francesco Bonchi, Francesco Gullo, and Tommaso Lanciano.
2020. Core Decomposition in Multilayer Networks: Theory, Algorithms, and
Applications. ACM Trans. Knowl. Discov. Data 14, 1 (2020), 11:1–11:40.

[17] Edoardo Galimberti, Martino Ciaperoni, Alain Barrat, Francesco Bonchi, Ciro
Cattuto, and Francesco Gullo. 2020. Span-Core Decomposition for Temporal
Networks: Algorithms and Applications. ACM Trans. Knowl. Discov. Data 15, 1,
Article 2 (dec 2020), 44 pages.

[18] Saket Gurukar, Sayan Ranu, and Balaraman Ravindran. 2015. COMMIT: A
Scalable Approach to Mining Communication Motifs from Dynamic Networks.
In Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015. 475–489.

[19] Petter Holme and Jari Saramaki. 2012. Temporal networks. Physics Reports 519
(2012), 97–125.

[20] Silu Huang, Ada Wai-Chee Fu, and Ruifeng Liu. 2015. Minimum Spanning
Trees in Temporal Graphs. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Australia, May 31 - June

4, 2015. 419–430.
[21] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Je�rey Xu Yu. 2014. Querying

k-truss community in large and dynamic graphs. In International Conference on
Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014. 1311–
1322.

[22] Rohit Kumar, Toon Calders, Aristides Gionis, and Nikolaj Tatti. 2015. Maintaining
Sliding-Window Neighborhood Pro�les in Interaction Networks. In Machine
Learning and Knowledge Discovery in Databases - European Conference, ECML
PKDD 2015, Porto, Portugal, September 7-11, 2015, Proceedings, Part II. 719–735.

[23] Rong-Hua Li, Jiao Su, Lu Qin, Je�rey Xu Yu, and Qiangqiang Dai. 2018. Persistent
Community Search in Temporal Networks. In 34th IEEE International Conference
on Data Engineering, ICDE 2018, Paris, France, April 16-19, 2018. 797–808.

[24] R. H. Li, J. X. Yu, and R. Mao. 2014. E�cient Core Maintenance in Large Dynamic
Graphs. IEEE Transactions on Knowledge and Data Engineering 26, 10 (2014),
2453–2465.

[25] Yu-Ru Lin, Yun Chi, Shenghuo Zhu, Hari Sundaram, and Belle L. Tseng. 2008.
Facetnet: a framework for analyzing communities and their evolutions in dynamic
networks. In Proceedings of the 17th International Conference on World Wide Web,
WWW 2008, Beijing, China, April 21-25, 2008. 685–694.

[26] Xuanming Liu, Tingjian Ge, and Yinghui Wu. 2019. Finding Densest Lasting
Subgraphs in Dynamic Graphs: A Stochastic Approach. In 35th IEEE International
Conference on Data Engineering, ICDE 2019, Macao, China, April 8-11, 2019. 782–
793.

[27] Shuai Ma, Renjun Hu, Luoshu Wang, Xuelian Lin, and Jinpeng Huai. 2017. Fast
Computation of Dense Temporal Subgraphs. In 33rd IEEE International Conference
on Data Engineering, ICDE 2017, San Diego, CA, USA, April 19-22, 2017. 361–372.

[28] Fragkiskos D. Malliaros, Christos Giatsidis, Apostolos N. Papadopoulos, and
Michalis Vazirgiannis. 2020. The core decomposition of networks: theory,
algorithms and applications. VLDB J. 29, 1 (2020), 61–92.

[29] Hongchao Qin, Rong-Hua Li, Guoren Wang, Lu Qin, Yurong Cheng, and Ye Yuan.
2019. Mining Periodic Cliques in Temporal Networks. In 35th IEEE International
Conference on Data Engineering, ICDE 2019, Macao, China, April 8-11, 2019. 1130–
1141.

[30] Lu Qin, Rong-Hua Li, Lijun Chang, and Chengqi Zhang. 2015. Locally Densest
Subgraph Discovery. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia,
August 10-13, 2015. 965–974.

[31] Giulio Rossetti and Rémy Cazabet. 2018. Community Discovery in Dynamic
Networks: A Survey. ACM Comput. Surv. 51, 2 (2018), 35:1–35:37.

[32] Polina Rozenshtein, Francesco Bonchi, Aristides Gionis, Mauro Sozio, and Nikolaj
Tatti. 2018. Finding Events in Temporal Networks: Segmentation Meets Densest-
Subgraph Discovery. In IEEE International Conference on Data Mining, ICDM 2018,
Singapore, November 17-20, 2018. 397–406.

[33] Polina Rozenshtein, Nikolaj Tatti, and Aristides Gionis. 2017. Finding Dynamic
Dense Subgraphs. ACM Transactions on Knowledge Discovery from Data 11, 3
(2017), 27:1–27:30.

[34] Ahmet Erdem Sariyüce, C. Seshadhri, and Ali Pinar. 2018. Local Algorithms for
Hierarchical Dense Subgraph Discovery. Proc. VLDB Endow. 12, 1 (2018), 43–56.

[35] Stephen B. Seidman. 1983. Network structure and minimum degree. Social
Networks 5, 3 (1983), 269–287.

[36] Charalampos E. Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo,
and Maria A. Tsiarli. 2013. Denser than the densest subgraph: extracting optimal
quasi-cliques with quality guarantees. In The 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA,
August 11-14, 2013. 104–112.

[37] DongWen, Lu Qin, Ying Zhang, Xuemin Lin, and Je�rey Xu Yu. 2016. I/O e�cient
Core Graph Decomposition at web scale. In 32nd IEEE International Conference
on Data Engineering, ICDE 2016, Helsinki, Finland, May 16-20, 2016. 133–144.

[38] Huanhuan Wu, James Cheng, Yi Lu, Yiping Ke, Yuzhen Huang, Da Yan, and
Hejun Wu. 2015. Core decomposition in large temporal graphs. In 2015 IEEE
International Conference on Big Data, Big Data 2015, Santa Clara, CA, USA, October
29 - November 1, 2015. 649–658.

[39] Jaewon Yang and Jure Leskovec. 2012. De�ning and Evaluating Network
Communities Based on Ground-Truth. In 12th IEEE International Conference
on Data Mining, ICDM 2012, Brussels, Belgium, December 10-13, 2012. 745–754.

[40] Yi Yang, Da Yan, Huanhuan Wu, James Cheng, Shuigeng Zhou, and John C. S.
Lui. 2016. Diversi�ed Temporal Subgraph Pattern Mining. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, San Francisco, CA, USA, August 13-17, 2016. 1965–1974.

[41] Yajun Yang, Je�rey Xu Yu, Hong Gao, Jian Pei, and Jianzhong Li. 2014. Mining
most frequently changing component in evolving graphs. World Wide Web 17, 3
(2014), 351–376.

[42] Michael Yu, DongWen, Lu Qin, Ying Zhang,Wenjie Zhang, and Xuemin Lin. 2021.
On Querying Historical K-Cores. Proc. VLDB Endow. 14, 11 (2021), 2033–2045.

13

	response
	main
	Abstract
	1 Introduction
	2 Preliminaries
	3 Algorithms For Mining MBC
	3.1 The MBC Algorithm
	3.2 Dynamic Programming of Computing MSD
	3.3 An improved MBC+ algorithm

	4 Algorithms For Mining POMBCs
	5 Experiments
	5.1 Effectiveness Evaluation
	5.2 Efficiency Evaluation

	6 Related Work
	7 Conclusion
	References

