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MetaCAR: Cross-Domain Meta-Augmentation
for Content-Aware Recommendation

Hui Xu, Changyu Li, Yan Zhang, Lixin Duan, Ivor W. Tsang and Jie Shao

Abstract—Cold-start has become critical for recommendations, especially for sparse user-item interactions. Recent approaches based
on meta-learning succeed in alleviating the issue, owing to the fact that these methods have strong generalization, so they can fast
adapt to new tasks under cold-start settings. However, these meta-learning-based recommendation models learned with single and
spase ratings are easily falling into the meta-overfitting, since the one and only rating rui to a specific item i cannot reflect a user’s
diverse interests under various circumstances(e.g., time, mood, age, etc), i.e. if rui equals to 1 in the historical dataset, but rui could
be 0 in some circumstance. In meta-learning, tasks with these single ratings are called Non-Mutually-Exclusive(Non-ME) tasks, and
tasks with diverse ratings are called Mutually-Exclusive(ME) tasks. Fortunately, a meta-augmentation technique is proposed to relief
the meta-overfitting for meta-learning methods by transferring Non-ME tasks into ME tasks by adding noises to labels without changing
inputs. Motivated by the meta-augmentation method, in this paper, we propose a cross-domain meta-augmentation technique for
content-aware recommendation systems (MetaCAR) to construct ME tasks in the recommendation scenario. Our proposed method
consists of two stages: meta-augmentation and meta-learning. In the meta-augmentation stage, we first conduct domain adaptation by
a dual conditional variational autoencoder (CVAE) with a multi-view information bottleneck constraint, and then apply the learned CVAE
to generate ratings for users in the target domain. In the meta-learning stage, we introduce both the true and generated ratings to
construct ME tasks that enables the meta-learning recommendations to avoid meta-overfitting. Experiments evaluated in real-world
datasets show the significant superiority of MetaCAR for coping with the cold-start user issue over competing baselines including
cross-domain, content-aware, and meta-learning-based recommendations.

Index Terms—Recommendation systems, meta-augmentation, cold-start, content-aware.
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1 INTRODUCTION

PErsonalized recommendations have been recognized as
one of the most critical and effective approaches for

alleviating information overload. They are key decision
support systems in various applications such as e-commerce
websites (Amazon, Netflix, Yelp, etc.), online educational
systems and online news systems. Existing recommenda-
tion models, e.g., NeuMF [1], are mainly based on users’
previous behavior interactions, such as purchase records,
ratings, click actions, and watch records. However, the in-
teraction matrix in real-world applications is generally very
sparse. Most users and items have only a few or even no
interactions. As a consequence, the recommendation model
cannot effectively learn effective users’ presentations from
these limited interactions and this leads to poor perfor-
mance. Existing recommendation models addressing cold-
start issues can generally be categorized into three sub-
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classes: content-aware recommendations [2], [3], [4], [5],
cross-domain recommendations [6], [7], and meta-learning-
based recommendations [8], [9], [10].

Content-aware recommendations [11], [12], [13], [14],
[15] integrate user-item interaction data and user/item con-
tent data, including context, figures and knowledge graphs,
to learn effective representations of users or items. These
content-aware recommendation systems can handle sparsity
and cold-start issues by effectively extracting representa-
tions from the content data. However, the performance
improvement is constrained by sparse interactions, and the
limitation of available content data, e.g., user profile data is
often unavailable.

Cross-domain recommendations [16], [17], [18] explore
across source and target domains by using interaction data
or content data from the source domain to enhance the
representations in the target domain to mitigate the data
sparsity and cold-start issues. These methods learn prior
knowledge, which is close to true data distributions, by
utilizing domain-shared and domain-specific properties of
source and target domains. The closer the prior knowledge
is to the true data distribution, the more meaningful it is,
and its performance in real-world applications is better.
Cross-domain recommendation models are based on the
shared property between two domains. Therefore, these
recommendations can easily overfit the shared properties
and lead to poor generalization ability.

Meta-learning is an emerging machine learning disci-
pline having fast adaption capabilities to new concepts
and can obtain optimal convergence with limited train-
ing samples. Due to its strong generalization ability, one
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representative meta-learning framework MAML [19] has
been introduced to recommendation systems to address
the data sparsity and cold-start issues [20], [21], [22].
Usually, meta-learning-based recommendations [23] treat
users’ preferences over items as meta-learning tasks. In
such a setting, they learn a good initialization for the
model with meta-training tasks (constructed by ratings of
active users), and then fast adapt to meta-testing tasks
with only a few ratings from cold-start user. However,
existing meta-learning-based recommendation models [20],
[21], [22] suffer meta-overfitting caused by the sparse and
Non-Mutually-Exclusive (Non-ME) tasks constructed with
the one and only ratings of users, which leads to poor
performance for cold-start recommendations. Specifically,
in meta-learning-based recommender systems, a user u
with different rantings r1u, r2u, r3u · · · can construct mutually-
exclusive (ME) tasks {T1 = (xu, r1u), T2 = (xu, r2u), T3 =
(xu, r3u), · · · }, where xu is the input, and a user u with the
one and only ratings, e.g., r1u, can only construct Non-ME
task {T1 = (xu, r1u)}.

... 
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Fig. 1. A motivating example. Taking Movies dataset on Amazon as
an example, suppose we have n users for training a recommender
system. Then we can construct n training tasks based on their ratings.
Tasks A1 · · ·An denote the observed interest of users u1 · · ·un (de-
noted as‘Non-ME’ tasks). Tasks I1 · · · In denote the potential(invisible)
interests, which is not available in the historical dataset. The above two
groups of tasks constitute a new training set, also named ‘ME’ tasks.
A test user who is probably interested in Comedy and Horror movies.
The upper flow chart of illustrates the meta-overfitting problem suffered
in the recommender systems trained on Non-ME tasks . The lower flow
chart shows how to avoid meta-overfitting by meta-augmentation in a
recommender system. The recommender system trained on ‘ME’ tasks
is supposed to recommend what the test user really like.

In practical, the one and only rating of a user to an
item cannot reflect the user’s dynamic interests in this
item. But a user’s preference (rating) over an item varies
indeed with different circumstances(e.g., time, mood, age,
etc). In meta-learning-based recommender systems, tasks
constructed with single ratings are called Non-ME tasks.
Figure 1 explains the meta-overfitting problem caused by
the sparse and Non-ME tasks intuitively on Movies dataset.
In this figure, the white box displays a training user’s
preferable movies so that ratings on these movies are 1,
and ratings on other movies are 0 in the historical dataset.
Tasks with available ratings are Non-ME tasks. As listed in
the figure, if all preferable movies in the training dataset are

Adventure movies, then the trained recommendation model
will recommend a test user with Adventure movie, even
though the test user prefers Horror and Comedy movies.
This phenomena is meta-overfitting in meta-learning-based
recommender systems, which caused by sparse and Non-
ME tasks. In fact, the meta-overfitting in meta-learning
includes memorization overfitting and meta-learner over-
fitting [24]. The former is caused by Non-ME tasks, and the
latter is induced by sparse tasks.

To avoid meta-overfitting, the meta-augmentation tech-
nique [24] for meta-learning generates different labels by
adding noises to the original ones without changing the
inputs, and then constructs Mutually-Exclusive(ME) tasks
based on both generated and original data, which transfers
the original Non-ME tasks to ME tasks by adding gener-
ated data into the training dataset. Similarly, in the recom-
mender system shown in Figure1, it is expected to avoid
meta-overfitting by adding new potential ratings (invisible)
to these items, i.e., adding the user’s possible preferable
movies, Halloween, Thirteen Ghost, Big world, Big Adven-
tures, etc. With both available and invisible ratings, we can
construct ME tasks. Then, the recommender system trained
on ME tasks are supposed to avoid the meta-overfitting and
provide recommendations for test users.

To address these two forms of meta-overfitting, we
propose a cross-domain meta-augmentation for content-
aware recommendation (MetaCAR) by generating mutually
exclusive tasks. MetaCAR consists of two stages: meta-
augmentation and meta-learning. In the meta-augmentation
stage, we first adopt a cross-domain component to learn
prior knowledge p from the shared users between source
and target domains. Then, we transfer the prior to the
target domain to generate meaningful plausible ratings by
utilizing the content information of the existing users from
the target domain. ME tasks therefore can be constructed
from the plausible and true ratings. In contrast, other data
augmentation techniques for recommendation [25], [26] re-
quire that the plausible ratings be very close to the true
data distribution, which is uncertain in the real world
applications. Furthermore, meta-augmentation cares about
both the difference and closeness between plausible ratings
and true ratings. Such a constraint relaxes the difficulty of
data augmentation. In addition, meta-augmentation gen-
erates new ratings for the same user, so we may assign
different ratings for the existing (already observed) item in
the dataset. Unlike this, other methods generate new ratings
for new items that do not exist in the dataset.

Our main contributions are summarized as follows:
• To address the meta-overfitting problem, we propose

simple and easy to implement MetaCAR to generate
ME tasks.

• To learn prior knowledge that satisfies both closeness
and distinguishment requirement of ME tasks, we build
a dual CVAE model and impose a multi-view infor-
mation bottleneck (MIB) [27] to learn domain-shared
properties and discard domain-specific properties.

• We develop a novel technique named meta-
augmentation with prior knowledge to generate
ME tasks by utilizing the same user content. To our
knowledge, this is the first study to augment the
data by generating plausible ratings for the existing
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user-item pair.
• We evaluate MetaCAR on public datasets to demon-

strate its superiority for the cold-start user problem
over different leading baselines.

The rest of this paper is organized as follows. We first
introduce the related work in Section 2. We then present
the preliminaries, including problem formulation and meta-
learning-based recommendation model in Section 3. Next,
the proposed MetaCAR is described in Section 4. Exper-
imental evaluations are reported in Section 5. Finally, we
draw our conclusions in Section 6.

2 RELATED WORK
2.1 Content-aware Recommendation Systems
Content-aware recommendation systems learn the repre-
sentation of items and users based on content data, e.g.,
user profile, behaviors, and item descriptions. Collabora-
tive topic regression (CTR) [3] concatenates the benefits
of collaborative filtering and probabilistic matrix factoriza-
tion with a topic model. It gains representations from a
large collection of articles through an interpretable latent
structure. Such representations can be used to deal with
existing and newly published articles. Collaborative deep
learning (CDL) [4] is a deep learning-based content-aware
recommendation system. CDL is implemented with a deep
probabilistic model that jointly learns the content data and
the preference rating matrices. Unlike CTR, CDL can handle
very sparse auxiliary information due to the effective deep
hierarchical Bayesian model. Multi-view group representa-
tion learning (MGPL) [28] address the cold-start issue in
group recommendation by learning the group preferences
from multiple views and incorporating the different types
of content. Context-aware diversity-oriented knowledge rec-
ommendation (CDKR) [29] is proposed to address the in-
context accuracy and diversity issue by fully considering
item context, user profiles, and problem-solving context.

Content is considered to provide additional information
that can describe users’ and items’ properties. Different from
these methods, our approach not only considers content
information but also takes into account the gap between
content and ratings. This can lead to a distinguishable prior
knowledge for creating mutually exclusiveness.

2.2 Cross-domain Recommendation Systems
Cross-domain recommendation methods facilitate the per-
sonalization process by exploiting specific domain knowl-
edge into its relevant domains. As a pioneering work, col-
lective matrix factorization (CMF) [6] achieves knowledge
integration across domains by factoring several rating matri-
ces and sharing parameters among users factors in multiple
domains. Subsequently, multi-domain collaborative filtering
(MCF) [7] was proposed by modeling the rating patterns in
different domains simultaneously and exploiting link func-
tion for different domains for adaptive knowledge transfer
across multiple domains. Cross-domain triadic factorization
(CDTF) [16] is another milestone that captures the triadic
factors of users, items, and domains by tensor factorization
with explicit and implicit feedbacks.

Recently, many cross-domain recommendations based
on deep learning have been developed to strengthen the

representations of target domains. Without relying on any
auxiliary information, the deep domain adaptation model
(DARec) [17] extracts and transfers only rating patterns by
utilizing a domain classifier that shares rating patterns of
the same user in different domains. Modeling user behav-
iors across different domains as a joint distribution, the
equivalent transformation learner (ETL) [18] assumes that
the shared user’s preferences in different domains can be
expressed by each other. In particular, ETL converts user’s
preferences from one domain to another by utilizing an
equivalent transformation. However, these methods still
suffer severely from data sparsity and cold-start issues when
integrating different domains. In our method, we adopt
a similar assumption by considering the preferences of a
shared user in two different domains as two views with the
same unknown label.

For better domain adaptation, content-aware cross-
domain models [30], [31], [32] consider both ratings and
content information from auxiliary domains to enhance
representation. Text-enhanced domain adaptation recom-
mendation (TDAR) [33] adopts the idea of projecting high-
dimensional data to subspace [34] by extracting the tex-
tual features in word semantic space for each user and
item. Then, the textual features are fed into a collaborative
filtering model for prediction. TDAR provides an effec-
tive textual feature extractor named text memory network
(TMN), which is used in our method. In addition, RecSys-
DAN [35] learns domain indistinguishable representations
by optimizing an adversarial loss.

Compared with these cross-domain methods which
transfer data distribution by learning a domain adaptation
model, MetaCAR transfers data patterns through the gen-
erated ratings. In addition, our main goal is also different.
While these methods focus on better domain adaptation,
our method focuses on the trade-off between closeness
(better domain adaptation) and distinguishable from the
true data distribution of target domain. Thus, MetaCAR
pays more attention to the domain-shared properties and
discards domain-specific properties. This is helpful to con-
struct mutually exclusive tasks, while other methods aim to
learn both domain-shared properties and domain-specific
properties.

2.3 Meta-Learning-based Recommendation Systems

Meta-learning [36] learns from the training tasks (user’s
preference) and tests or unseen tasks (new users) with
only a few samples (items) to fine-tune the model. In this
context, the recommendation generations can be seen as
a meta-learning problem. Naturally, meta-learning shows
its great potential to solve the data sparsity and cold-
start issues in recommendation systems [20]. Existing meta-
learning-based recommendation models employ the well-
known MAML [19] to address the cold-start issues. MAML
is an optimization-based meta-learning method with strong
generalization ability, which can be easily deployed without
any extra requirement. Due to the strong generalization
ability and fast convergence capabilities, the MAML-based
recommendation techniques [23], [37] demonstrate satisfac-
tory performance when applied to extremely sparse user-
item interactions. Additionally, considering the growing
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TABLE 1
Notations.

Symbol Description
rs ratings (implicit feedback) in the source domain
rt ratings (implicit feedback) in the target domain
xs concatenations of user and item embeddings in the source
xt concatenations of user and item embeddings in the target
zs latent representations in the source
zt latent representations in the target

Dtrain meta-training task set
Dtest meta-testing task set
q�s the distribution of latent representations in the source
q�t the distribution of latent representations in the target

µs,⌃s the mean and variance of latent representations zs
µt,⌃t the mean and variance of latent representations zt

need for customized preferences of an individual user in
practical recommendations, a MAML-based optimal strat-
egy introduced in MeLU [21] directly considers individual
users’ item consumption history and performs well with
only a limited number of training samples. MeLU shows
the powerful performance of meta-learning on three kinds
of cold-start issues: new users, new items, and new items
for new users. In this paper, we adopt the same setting by
treating the user’s preference as a task.

Meta-learning is an effective tool to deal with cold-
start. Existing meta-learning-based recommendation mod-
els directly construct Non-ME tasks from the historical
data. Consequently, they lead to poor performance in
some cold-start scenarios (see MeLU in Section 5, and
shows poor performance in some scenarios due to the
serious meta-overfitting). In contrast, MetaCAR carefully
addresses the meta-overfitting problem by utilizing the
meta-augmentation process to construct mutually exclusive
training tasks from historical and meta-augmentation data.

3 PRELIMINARIES

3.1 Meta-Learning for Recommendations
Meta-learning, also named learning to learn, aims to learn
good initial weights for a model that can quickly adapt to
unseen tasks with a few samples [38]. In meta-learning-
based recommendation models [21], [23], user’s preferences
over items are denoted as a task T that is divided as a
support set S and a query set Q. Tasks of all users are
divided into two parts: one for meta-training denoted as the
set Dtrain and the remaining for meta-testing denoted as the
set Dtest. Meta-learning considers optimizing a model with
a series of tasks T 0 2 Dtrain, which are sampled from the
task distribution p(T ). In this paper, we consider the well-
known optimization-based meta-learning method MAML
[19] to optimize our recommendation system. The model
parameters can be customized via a standard fine-tuning
process for each user. The meta-objective function for meta-
training phase can generally be formulated as follows:

min
✓

X

T 0⇠Dtrain

LT 0(✓ � ↵r✓LT 0(✓,S),Q), (1)

where r✓ denotes the gradient w.r.t. parameters ✓ of a
model and ↵ is the step size.

In the meta-training phase, the task-specific parameters
are updated by one gradient step from the global ✓ as
(✓ � ↵r✓LT 0(✓,S) in the inner loop, and the gradient is

computed with S . The outer loop used to update ✓ is com-
puted with Q through task-specific parameters. Finally, the
model ✓ is updated by the gradients of the outer loop from
tasks sampled from Dtrain, so that the updated parameters
✓ are adapted to various tasks.

In the meta-testing phase, we firstly fine-tune the learned
model ✓ with support sets of tasks in Dtest; we then test the
recommendation performance on query sets in Dtest.

3.2 Problem Formulation
Let U = {1, 2, · · · , n} denote the user index set and
I = {1, 2, · · · ,m} denote the item index set. R = (rui)n⇥m

denotes the observed user-item interaction matrix. The in-
teractions could be explicit ratings (e.g., ratings 1 to 5) or
implicit feedback (i.e., binary observations such as 0 or 1).
As implicit feedback is more common in real applications
[39], we design our model with implicit feedback, where
rui = 1 denotes that user u has an interaction (such as
click, save, rating action, etc.) with an item i, while rui = 0
denotes that user u has no interactions with item i. Other
essential notations in the paper are listed in Table 1.

Cold-start User Problem: Given the rating dataset Rs =
{r(s)ui }ns⇥ms of ns users over ms items in a source domain,
the sparse rating dataset Rt = {r(t)ui }nt⇥mt of nt users over
mt items in a target domain, the content data XU

s (XU
t ) and

XI
s(XI

t ) of users and items in the source(target) domain. We
divide users(items) into active users(items) and cold-start
users(items). Active users(items) refer to the users(items)
with no less than k ratings. Instead, cold-start users(items)
denote the users(items) with less than k ratings. Our goal
is to improve the recommendation performance under the
cold-start user setting in the target domain.

Meta-overfitting Problem: In the target domain, suppose
the training set is denoted as Dtrain. Each task of Dtrain

is denoted as T = (xu, ru), where xu(ru) denotes the
content(rating) data of the user u. Since historical user-
item ratings collected are the one and only, these single
ratings cannot reflect users’ diverse interests under different
circumstances(e.g., time, mood, age, etc.), which leads to
meta-overfitting in meta-learning-based recommendations.
In meta-learning, tasks of Dtrain with these single rat-
ings are considered to be Non-Mutually-Exclusive (Non-
ME) (i.e., a one-to-one correspondence between the inputs
(xu) and the labels (ru)), which inevitably leads to meta-
overfitting [24], [40]. A feasible solution validated in [24] is
to transfer Non-ME into ME tasks by meta-augmentation,
that generates new data by adding noises to labels without
changing inputs, and then introduce these generated data
into constructing a new training set of one-to-many cor-
respondence between the inputs and labels. Similary, our
goal is to avoid the meta-overfitting issue in recommender
system by transferring Non-ME tasks in Dtrain into ME
tasks via meta-augmentation based on the source domain,
i.e., constructing a new training set of one-to-many corre-
spondence between xu and ru.

4 CROSS-DOMAIN META-AUGMENTATION FOR
CONTENT-AWARE RECOMMENDATIONS
MetaCAR is proposed to address the cold-start user issue by
meta-augmentation with prior technique using an auxiliary
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Fig. 2. The MetaCAR framework. We first train the domain adaptation component, implemented by a dual CVAE, with the preference data of shared
users between the source and target domains. Then, we generate ratings for users in the target domain with the condition content xt by the decoder
of CVAE (highlighted with red lines) to augment tasks. This process is denoted as meta-augmentation with prior. Note that we use only one tuple
(x, r) to denote the data of a task for simplicity. Finally, we sample a task T from the training dataset Dtrain, which includes the true and augmented
tasks. Each task can be divided into support set S and query set Q for a specific user ui. Then, we introduce them into the MAML component for
training the rating prediction model.

source domain and content information. The overall frame-
work is shown in Figure 2. It includes two stages: meta-
augmentation and meta-learning. Our goal is to generate
ME tasks in the meta-augmentation stage that might lead
different users’ preferences from the original user. Specif-
ically, firstly, it utilizes the domain adaptation component
to transfer users’ preferences from the source domain to
the target domain by a dual CVAE model. Then, it aug-
ments ratings by the decoder from the learned CVAE model
for the target domain and constructs mutually exclusive
tasks with these plausible ratings. We name this process
meta-augmentation with prior. Algorithm 1 shows the de-
tailed procedure of the above discussed. Finally, meta-
optimization framework MAML [19] can effectively learn
these ME tasks and alleviate meta-overfitting. Conceptually,
these settings have high potential to address the data spar-
sity and cold-start issues.

4.1 Domain Adaptation
In this section, we introduce our domain adaptation com-
ponent. Its main goal is to transfer prior knowledge that
is meaningful but distinguishable from the true data dis-
tribution in the target domain. The domain-shared prop-
erties sustain knowledge from both source and target
domains. Current cross-domain methods consider both
domain-shared and domain-specific properties to learn a
prior closer to the true data distribution. To trade-off be-
tween closeness for meaningful prior and distinguishment
for ME, MetaCAR adopts a simple but effective strategy by
considering the domain-shared properties and discarding
the domain-specific properties. Such a strategy mitigates the
difficulty of domain adaptation and suffices for creating ME
tasks. In order to learn domain-shared properties only, we
build our model as a dual CVAE with the content condi-
tioned on latent representations and impose the multi-view
information bottleneck (MIB) constraint to align the two
distributions of latent representations for source and target
domains. This simple but effective component enables dual
knowledge transfer across domains and lets them benefit
from each other.

Algorithm 1 MetaCAR algorithm in meta-augmentation
stage
Require: Ds and Dt: shared user preference data from

source domain and target domain.
Require: Dtrain : meta-training dataset in the target do-

main.
1: Random initialize CVAE framework, including �s, �xs ,

✓s, �t, �xt , ✓t.
2: while not done do
3: for all shared user u do
4: Sample data (xs, rs) and (xt, rt), corresponding to

user u, from Ds and Dt.
5: Fix �xs and �t, and update �s, ✓s, �t, ✓t via ELOB

loss (Eq. (2) and Eq. (3)), MIB loss (Eq. (5)) and
similarity loss (Eq. (8)) with (xs, rs) and (xt, rt).

6: Obtain zs and zt from �s and �s, where rs and rt
are the input.

7: Fix �s, ✓s, �xt , ✓t, and update �xs and �t via MSE
loss (Eq. (4)) with (xs, zs) and (xt, zt).

8: end for
9: end while

10: for all user u in Dtrain do
11: Obtain the condition terms ct via �xt , where xt is the

input.
12: Obtain r̂t via ✓t, where ct is the input.
13: Augment new task Ta : {(xt, r̂t)}, and put it into

Dtrain.
14: end for
15: return Dtrain

The content information is used to enrich the representa-
tions of users/items and transfer the domain-shared proper-
ties with meta-augmentation. In addition, the gap between
the content and ratings can also help to learn a distin-
guishable prior knowledge for creating MEness. The content
information of users/items is often used to alleviate cold-
start issues, but it cannot be shared due to certain model and
data dependencies. To align the representations, we explore
the domain-invariant reviews [41] as the content data. We
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first encode the user’s content csu and the item’s content
csi into the same dense low-dimensional embeddings and
concatenate them together as xui. We denote x(s)

ui 2 Xs
ui

and x(t)
ui 2 X(t)

ui as the user-item concatenation content in
the source domain and the target domain, respectively. For
simplicity, we use xs and xt to represent them. We denote
rs and rt as ratings rated by the shared user u to the item i.

CVAE is an extension of variational autoencoder, and it
can generate some specific data with the data generation
process of the condition on encoder and decoder [42]. In
this work, we use a dual CVAE network to learn users’
representations and reconstruct the input ratings rs and rt,
and add conditions xs and xt on the learned distributions
of latent representations, as highlighted in the blue dashed
part of Figure 2. We use the conditions xs and xt to control
the data generation process in the dual CVAE model to gen-
erate some specific data with domain-shared knowledge.
Specifically, we train the dense embedding encoders �xs and
�xt of the conditions xs and xt with shared users of source
and target domains. Then, user’s plausible preference can be
generated through the encoders �xs and �xt with domain-
shared knowledge.

In the dual CVAE, the encoder transforms the preference
of each user into low-dimensional latent representations
z. The input ratings of each user rs and rt are encoded
into distributions q�s(zs|rs, cs) and q�t(zt|rt, ct) of latent
representations zs and zt, respectively, where the condition
terms cs and ct are the output of a dense embedding
encoder parameterized by �xs and �xt with corresponding
input xs and xt, respectively. The distribution of the latent
representations zs and zt is chosen to be two Gaussian
distributions N (µs,⌃s) and N (µt,⌃t), respectively.

The decoders reconstruct ratings r̂s and r̂t with probabil-
ity distributions p✓s(rs|zs, cs) and p✓t(rt|zt, ct) by sampling
zs and zt. The optimization objective of each CVAE is
the evidence lower bound (ELOB) [43], which consists of
the sum of the reconstruction error and the negative KL
divergence between the variational posterior and the prior.
Thus, the loss function in the source domain can be written
as follows [42]:

LS(rs,xs; ✓s,�s) = Eq�s (zs|rs,xs)[log p✓s(rs|zs, cs)]
�DKL[q�s(zs|rs, cs)||p(zs)]. (2)

Similarly, the loss function in the target domain can be
written as:

LT (rt,xt; ✓t,�t) = Eq�t (zt|rt,xt)[log p✓t(rt|zt, ct)]
�DKL[q�t(zt|rt, ct)||p(zt)]. (3)

We apply alternating optimization to learn the embed-
ding encoders q�xs

and q�xt
with the mean square error

(MSE) as follows:

LX = ||zs � q�xs
(cs|xs)||2 + ||zt � q�xt

(ct|xt)||2. (4)

The multi-view information bottleneck (MIB) constraint [27]
is used to learn domain-shared properties and discard
domain-specific properties in this component. MIB is an
effective information-theoretic tool to reserve relevant in-
formation of two views for predicting the unknown label
and minimizing superfluous information. Therefore, we can
treat a shared user from the source and target domain as two

views. These two views can be regarded as the same class
with the same unknown label. Thus, we can use MIB to
reserve domain-shared information and drop out domain-
specific information which is not shared by both views.
This relies on two basic assumptions: the first is that each
domain has domain-specific information, and the second is
that two relevant domains share invariant factors that are
transferable from the source domain to the target domain
[44]. Therefore, the goals of MIB are twofold: (1) aligning the
two distributions of latent representations from the source
and target domains with domain-shared information and (2)
minimizing the irrelevant domain-specific information for a
better distinguishable prior learning. Specifically, we regard
the ratings rs from the source domain and rt from target
domains as two views of the shared user’s preference. In
particular, we assume that rs and rt have the same unknown
label, i.e., these preferences can be seen as the same class and
have some overlapped properties that can be learned by zs
and zt.

The MIB objective regarding zs and zt is as follows:

LMIB(�s,�t) = �I�s,�t(zs, zt)

+ �DSKL(p�s(zs|rs,xs)||(p�t(zt|rt,xt)), (5)

where the function I(·) denotes the mutual information
between inputs [27]. DSKL denotes the symmetrized KL
divergence for joint observations of ratings rs and rt, and
DSKL is computed by averaging the expected value of two
KL divergence terms:

DSKL(p�s(zs|rs,xs)||(p�t(zt|rt,xt))

=
1

2
DKL(p�s(zs|rs,xs)||p�t(zt|rt,xt))

+
1

2
DKL(p�t(zt|rt,xt)||p�s(zs|rs,xs)). (6)

The MIB objective is employed to learn domain-shared
representations, which enables the dual CVAE to transfer
users’ preferences from the source domain to the target
domain by the first term of Eq. (5). The second term of Eq. (5)
aims to discard domain-specific information for learning
compact but informative latent representations. Therefore,
the coefficient � of Eq. (5) is a hyper-parameter that is used
to trade-off between domain adaptation with shared proper-
ties and sufficient latent representations. The symmetrized
KL divergence DSKL can be computed directly with the
learned distributions p�s(zs|rs,xs) and p�t(zt|rt,xt). The
mutual information between the two learned representa-
tions I�s,�t(zs, zt) can be maximized by using a sample-
based differentiable mutual information lower bound. In
this paper, we use the InfoNCE estimator [45] implemented
by a 3-layer fully connected neural network.

In our dual CVAE component, the MIB objective
LMIB(�s,�t) constrains the encoders �s and �t by treating
the ratings rs and rt as two views with the same label.
However, it does not constrain the decoders ✓s and ✓t,
which we used to generate the plausible ratings. To align the
distributions of both decoders ✓s and ✓t, we add a similarity
(SIM) objective to constrain them. Specifically, we treat the
latent representations zs and zt as the same class with the
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same labels rs and rt for the decoders ✓s and ✓t to learn.
Therefore, the similarity loss can be defined as:

LSIM (rs,xs, rt,xt; ✓s,�s, ✓t,�t)

= Eq�s (zs|rs,xs)[log p✓s(rs|zs, cs)]
+ Eq�t (zt|rt,xt)[log p✓t(rt|zt, ct)]
+ Eq�s (zs|rs,xs)[log p✓t(rt|zt, ct)]
+ Eq�t (zt|rt,xt)[log p✓s(rs|zs, cs)]. (7)

However, the terms Eq�s (zs|rs,xs)[log p✓s(rs|zs, cs)] and
Eq�t (zt|rt,xt)[log p✓t(rt|zt, ct)] are the reconstruction losses
of LS and LT . We delete them from the similarity objective
LSIM , and rewrite the similarity loss as:

LSIM = Eq�s (zs|rs,xs)[log p✓t(rt|zt, ct)]
+ Eq�t (zt|rt,xt)[log p✓s(rs|zs, cs)]. (8)

In summary, the cross-domain adaptation objective of
MetaCAR is formulated as:

LMetaCAR = LS + LT + LX + ⌘LMIB + LSIM , (9)

where ⌘ is a hyper-parameter. We set the hyper-parameter
of LSIM to 1 according to Eq. (7).

4.2 Meta-Augmentation with Prior
In this subsection, we augment ratings in the target domain
to enrich interaction data and generate ME tasks for alle-
viating the meta-overfitting problem. With such a problem
alleviated, meta-learning methods show great potential for
solving cold-start issues. Simply generating noise labels is
proven to be effective for alleviating meta-overfitting [24],
as introduced in Section 1. However, the ratings and the
user-item pairs have strong connections in recommenda-
tions, and noise ratings may lead to a meaningless result.
Traditional data augmentation methods such as [25], [26]
all generate new samples with new user-item pairs and
new ratings, e.g., plausible ratings are augmented for new
user and item interactions that are not observed in the true
rating matrix. These methods provide each user-item pair
with only one rating, and hence we still cannot construct
ME tasks by utilizing those traditional data augmentation
methods. In contrast, we learn prior knowledge with a dual
CVAE trained on shared users, and then generate plausible
ratings that are meaningful but distinguishable from true
ratings.

Specifically, as shown in the red dashed part of Figure 2,
we generate rating r̂t for a specific user u with learned
CVAE by the content xt of user u and item i. Note that,
we use only one interaction to denote user preference for
simplicity. This creates a new rating for the same content
xt, which is reasonable because a user’s preferences should
vary in the real world, and users and items that have similar
content data might lead to different ratings. These ratings
denote the preferences of user u in the source domain by
transferring preferences, which enrich the interaction data
for the target domain. It is worth noting that we augment
ratings for existing user-item pairs in the target domain. To
facilitate the construction of meta-learning tasks, we treat
these different ratings as another task for the same user.
That is to say, we have different ratings for the same user
and construct different tasks, which are ME. We call this
process meta-augmentation with prior.

4.3 Meta-Learning with Augmented Data
Considering the preference of user u of the target domain as
a task T , we construct a new task Ta from the same input
xt of task T , by using the plausible ratings generated from
the dual CVAE with learned prior. Then, task T and the
augmented task Ta can be expressed as:

T = { (xt, rt)| {z }
true ratings

}, (10)

Ta = { (xt, r̂t)| {z }
plausible ratings

}, (11)

where r̂t is the plausible ratings rated by the user u. We
consider a meta-learning optimization method MAML [19]
that trains the rating prediction model f on training task set
Dtrain, which includes the original tasks T and augmented
tasks Ta. As implicit feedback is taken into consideration
in our work, we use the binary cross-entropy loss as the
objective of rating prediction.

5 EXPERIMENTS

We performed extensive experiments to justify our claim
that the proposed MetaCAR is capable of addressing meta-
overfitting in meta-learning recommendation over the cold-
start user setting. The goal of our experiments is to show
how the proposed method alleviates the meta-overfitting
problem by evaluating the recommendation performance
for cold-start users. To this end, we compare the pro-
posed MetaCAR with four types of competing recommen-
dation baselines: (1) content-aware recommendation meth-
ods represented by CDL [4], (2) cross-domain recommenda-
tion methods including TDAR [33], ETL [18] and DARec
[17], (3) meta-learning-based recommendations including
MeLU [21], and (4) matrix-factorization-based methods rep-
resented by NeuMF [1].

5.1 Experimental Settings
5.1.1 Datasets

We evaluate the performance of the proposed MetaCAR and
the competing baselines on the Amazon dataset1, which
contains user reviews and metadata from the e-commerce
site Amazon.com, and the Douban dataset, which was
crawled from the Douban website2. The Amazon dataset
covers user interactions on items as well as item content on
24 product categories. For the Amazon dataset, we chose
four different categories: Electronics, Movies, Music, and
CDs, which are subsets of the Amazon dataset. The Douban
dataset includes three categories: DoubanMovie, Douban-
Book, and DoubanMusic. We adopt the same strategy to
filter these datasets such that the remaining users and items
have at least k = 5 reviews each. Statistics are shown
in Table 2. Note that these datasets are usually used in
recent works for cross-domain recommendation [17], [18],
[46], [47]. To test the cross-domain performance, we select
Electronics, Movies, and Music as three source (target)
domains and CDs as the target (source) domain for the

1. http://jmcauley.ucsd.edu/data/amazon/
2. https://www.douban.com/
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TABLE 2
Statistics of datasets.

Dataset #User #Item #Rating Sparsity

Amazon

Movies 123,960 50,052 1,697,438 99.97%
Electronics 192,402 63,001 1,687,993 99.98%

Music 5,541 3,568 64,705 99.67%
CDs 25,400 24,904 43,903 99.99%

Douban
DoubanMusic 1,672 5,567 69,709 99.25%
DoubanBook 2,110 6,777 96,041 99.33%
DoubanMovie 2,712 34,893 1,278,401 98.65%

TABLE 3
Statistics of user overlaps.

Amazon CDs

Shared Users Ratio Ratio
(CDs)

Movies 18031 14.54% 23.96%
Electronics 6260 3.25% 8.32%

Music 5331 96.21% 7.08%

Douban DoubanMusic

Shared Users Ratio Ratio
(DoubanMusic)

DoubanBook 1815 66.92% 99.72%
DoubanMovie 1736 78.48% 95.38%

Amazon dataset, and select DoubanMovie and DoubanBook
as two source (target) domains and DoubanMusic as the
target (source) domain for the Douban dataset. Following
[17], we find the shared users between the source and
target domains for cross-domain recommendation learning.
Statistics of overlaps are shown in Table 3. For each dataset,
we split it into training set, validation set, and test set
randomly. The training set includes all shared users in target
domains.

5.1.2 Meta-Training Tasks

In the training set, we follow the protocol proposed in [21] to
construct a meta-learning task in a recommendation system.
Specifically, since Amazon has explicit feedback ratings, to
construct implicit feedback, we set the rating rij as “1” if
user i interacts with item j and “0” otherwise. According to
the experimental results of NeuMF [1] in which the optimal
sampling ratio between negative and positive instances is
approximately 3 to 6, we choose a ratio of 5 to construct
a meta-learning task. Specifically, we implement it by us-
ing the tuple that includes one positive instance and five
negative instances. Each task consists of tuples. The posi-
tive instances are randomly sampled from the interaction
history, and the negative instances are randomly sampled
from the missing data [48], which are positive instances of
other users. We adopt the same strategy to construct the
augmented tasks.

For each training task, MeLU [21] samples fewer items as
the query set Q and the rest of (most) items as the support
set S . However, the main contribution of the meta-gradient
of MAML comes from the outer loop, computed with the
query set [49]. Therefore, we use a quarter of the task data
as the support set and the remaining data as the query set
in the meta-training phase.

5.1.3 Evaluation Protocols

In the meta-testing phase, to evaluate the performance of
MetaCAR, we follow the common strategy [1], [50], which
adopts the leave-one-out evaluation. Specifically, we ran-
domly sample 99 negative items that have no interaction
with the user, ranking one test (positive) item among 100

items. These 100 items constitute the query set of the test
task. To comply with the few-shot (cold-start) problem set-
ting and simulate real-world applications that contain very
few interactions, we limit the number of tuples used for fine-
tuning the test task to a maximum of five. These fine-tuning
data constitute the support set of the test task. After the
test task construction, we fix the test task for performance
evaluation. More precisely, all methods in our experiments
use exactly the same fine-tuning data and test data.

The performance of a ranked list, which includes 100
items in the query set of the test task, is judged by hit
ratio (HR), mean reciprocal rank (MRR), normalized discounted
cumulative gain (NDCG) [51] , and F-score (F1). We truncate
the ranked list at k for each metric and finally use the
average metrics of all users to report the performance of
the models.

5.1.4 Baselines

As introduced in Section 1, we choose four types of compar-
ison baselines:

• TDAR: Text-enhanced domain adaptation recommen-
dation [33] is a distribution pattern transfer method. It
adopts domain-invariant textual features as the anchor
points to align the latent space embeddings and then
feeds them into a domain classifier for domain adapta-
tion.

• DARec: Domain adaptation recommendation [17] ex-
tracts and transfers patterns with an adversarial learn-
ing process from rating matrices of shared users only
without relying on any auxiliary information. For a
fair comparison, we pretrain the target domain part
of DARec with data of the training set and then train
DARec with shared user representations across differ-
ent domains.

• ETL: The equivalent transformation learner [18] learns
both the overlapped and domain-specific properties for
cross-domain recommendation by modeling the joint
distribution of user behaviors across different domains.
We adopt the same strategy of DARec to train ETL for
a fair comparison.

• CDL: Collaborative deep learning [4] is a hierarchical
Bayesian-based method that has been explored by cou-
pling deep learning for content information and collab-
orative filtering (CF) for the ratings matrix. For a fair
comparison, we replace the content embedding with
text memory network (TMN) [33] to extract effective
word semantic vectors. Moreover, we obtain the ratings
of the items of the query set from the ratings matrix to
test the performance.

• MeLU: Meta-learned user preference estimator [21]
is a state-of-the-art meta-learning method that adapts
MAML for solving the cold-start issue by treating it
as a few-shot task in recommendation. For a fair com-
parison, we adopt the same binary cross-entropy loss
and neural network architecture with MetaCAR meta-
learning component.

• NeuMF: Neural collaborative filtering [1] is a neural
network-based matrix factorization method that uses a
neural network to model the interaction between user
and item embeddings by wide & deep structures for
prediction ratings.
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(a) Electronic-to-CDs. (b) Movies-to-CDs. (c) Music-to-CDs.

(d) CDs-to-Electronic. (e) CDs-to-Movies. (f) CDs-to-Music.

Fig. 3. Performance comparison on the Amazon dataset.

(a) DoubanBook-to-DoubanMusic. (b) DoubanMovie-to-DoubanMusic. (c) DoubanMusic-to-DoubanBook. (d) DoubanMusic-to-DoubanMovie.

Fig. 4. Performance comparison on the Douban dataset.

5.1.5 Model and Hyper-Parameter Settings

In the domain adaptation component, the model is opti-
mized with the Adam optimizer. The number of training
epochs is set to 50. The batch size is set to 64 for Mu-
sic and Electronics and 16 for Movies. To better extract
domain-invariant features, we adopt a memory structure
text memory network (TMN) [33] to extract textual features
by mapping user and item content information (reviews)
into the word semantic space and linearly combining word
semantic vectors. In TMN, the word semantic matrix, used
to calculate weights for users and items, is pretrained on
GoogleNews corpus by word2vec [52] for English reviews
and Tencent AI Lab Embedding Corpus for Chinese Words
and Phrases [53] for Chinese reviews. In each domain, we
pretrain TMN and fix it to generate embedding vectors
of 300 dimensions (English reviews) and 200 dimensions
(Chinese reviews) for each user and item. All encoder and
decoder networks are implemented with two-layer MLP,
and the embedding size is set to 100. The meta-learning
component models via a deep fully connected (FC) structure
with 2 layers of size 64. The dimension of user and item

embedding vectors is set to 300 for English reviews and 200
for Chinese reviews. We set the step size of the inner loop
and outer loop to 0.01 and 0.001. The number of inner-loop
updates is set to 5. The batch size and the epochs are set to
64 and 20, respectively.

We tune the optimal hyper-parameters for MetaCAR and
other comparison methods with a coarse grain linear search.
Specifically, for hyper-parameter � in loss function LMIB ,
we tune it among [0.001, 0.01, 0.1, 1, 10, 100] according to the
validation set. The weight factor for loss functions LMIB is
fixed to 1.0 for simplicity.

5.2 Performance Comparison

In this experiment, we test the performance of our method
and baselines on bi-directional cross-domain. The results
of the performance comparison are shown in Figure 3 and
Table 4 for the Amazon dataset, and Figure 4 and Table 5 for
the Douban dataset. We use “source-to-target” to denote the
transfer of the “source” domain to the “target” domain. In
this part, we first demonstrate the meta-overfitting problem
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via MeLU, and then compare MetaCAR with other baselines
to show its superiority.

5.2.1 Discussions of Meta-overfitting

MeLU is a state-of-the-art method designed to address
the cold-start recommendation via meta-learning. However,
MeLU will undoubtedly meet meta-overffiting because it
trained on Non-ME tasks. On the one hand, MeLU demon-
strates the superiority of the meta-learning method over
the cold-start issue on the Electronics, Movies, Music, and
DoubanMusic datasets, as shown in Figure 3 (d), (e) and
(f), Figure 4 (a) and (b), Table 4 and Table 5. Especially on
Movies, it outperforms all other baselines except MetaCAR.
Those results demonstrate the robustness of MAML to
the non-mutually exclusive tasks. However, MeLU has not
shown the true strength of meta-learning under Non-ME
task scenarios. On the other hand, MeLU performs poorly
on the CDs and DoubanBook datasets, as shown in Figure 3
(a), (e) and (f), Figure 4 (c) and (d), Table 4 and Table 5, and it
is only comparable to NeuMF and CDL, which demonstrate
the worst performance. This is because that MeLU meets
serious meta-learning overfitting problem when trained on
insufficient and non-mutually exclusive tasks. Such problem
seriously limits the generalization ability of meta-learning
on the cold-start issue.

MeLU-AUG denotes MeLU is directly trained on the
combinations of real interactions from both the source and
target domains. It can be treated as meta-augmentation with
random ratings, which introduces large interactions from
the source domain without any guarantee for the correctness
of the ratings. For a fair comparison, it adopts the same
loss and architecture as MeLU and meta-learning compo-
nent of MetaCAR. Compared with MeLU, the performance
of MeLU-AUG may demonstrate a slight improvement
or deterioration on all datasets except DoubanMovie-to-
DoubanMusic and DoubanMusic-to-DoubanBook, in which
MeLU-AUG shows severe performance decline, as shown
in Figure 3 , Figure 4, Table 4 and Table 5, and it is
only comparable to NeuMF and CDL, which demonstrate
the worst performance. This validates the intuition that
assigning random ratings to the user-item pairs in the
recommendation system will lead to a meaningless result.
Thus, generating meaningful ratings is very important for
constructing effective ME tasks.

In the meta-learning stage, MetaCAR can be consid-
ered as MeLU with extra meta-augmentation meaningful
tasks. In experiments, MetaCAR outperforms MeLU with
remarkable improvements in all metrics on all datasets, no
matter how good or bad the MeLU performs. Such results
validate the effectiveness of constructing meaningful ME
tasks in addressing the meta-overfitting problem. The main
drawback of these meta-learning-based recommendation
methods, e.g., MeLU, may be due to poor task designing,
and directly constructing Non-ME tasks from true ratings.
In addition, MetaCAR also obtains significant improvement
over MeLU-AUG in all metrics on all datasets. These results
validate that carefully constructing ME tasks via meta-
augmentation with prior is an effective method to address
meta-overfitting. In contrast, constructing ME tasks from
random ratings is ineffective.

5.2.2 Performance Comparison with Competing Methods

TDAR is a text-enhanced cross-domain method that pro-
vides a valuable component named text memory network
(TMN) used in our framework. It obtains the outstand-
ing performance on most datasets except CDs-to-Movies
and CDs-to-Music and the second-best on Electronic-to-
CDs, Movies-to-CDs, Music-to-CDs, and DoubanMusic-
to-DoubanBook. This is because of the effectiveness of
the domain adaptation component, designed for sparse
datasets, and textual features extracted by TMN. DARec
is a rating pattern transfer method, and it can extract
patterns that depend on the rating matrices only with-
out any content information. It works well on the CDs-
to-Movies and DoubanMusic-to-DoubanBook datasets and
obtain the second best performance on the DoubanMovie-
to-DoubanMusic dataset. This demonstrates the effective-
ness of its strategy. ETL learns both domain-specific and
shared properties by modeling the joint distribution of user
behaviors across different domains. This strategy is useful,
and it obtains third best performance on the Electronic-to-
CDs, Movies-to-CDs and Music-to-CDs dataset, as shown in
Figure 3 (a), (b) and (c), and Table 4. However, both DARec
and ETL did not consider the side information and lead to
a lower performance than TDAR in many cases.

MetaCAR can also be seen as a cross-domain method
by transferring domain-shared properties via generated rat-
ings. Compared with other cross-domain baselines TDAR,
DARec, and ETL, MetaCAR also achieved significant perfor-
mance improvement in all metrics on all datasets. MetaCAR
considers both content information and cross domain
to learn domain-shared properties and discard domain-
specific properties. Adding other effective strategies, e.g.,
meta-augmentation and the strong generalization ability,
MetaCAR obtains superior performance to TDAR, DARec,
and ETL with significant improvement. In contrast, due to
meta-overfitting, MeLU performs worse in most cases than
cross-domain methods TDAR, DARec, and ETL.

NeuMF is a deep version of the matrix factorization
method to learn the latent representations of users and
items. CDL is a content-aware recommendation with a deep
hierarchical Bayesian model. Both methods are known as
collaborative filtering (CF) systems and have proven to be
very successful. However, both NeuMF and CDL obtain
poor or even worst performance in most cases, as shown
in Figure 3 , Figure 4, Table 4 and Table 5. This may be
because they both face the serious overfitting problem due
to data sparsity and lack of the generalization ability to deal
with cold-start.

Compared with NeuMF and CDL, our MetaCAR from
all six cross-domains obtained remarkable performance im-
provement in all metrics, specifically 1.86 times higher in
NDCG@20 for the best case (comparing MetaCAR with
NeuMF on Music-to-CDs). Moreover, cross-domain base-
lines generally outperform single-domain baselines except
MeLU in most cases of our experiments. This validates the
importance of transferring knowledge across domains for
the cold-start recommendation.

Overall, MetaCAR consistently produces the best perfor-
mance in all metrics on all datasets with significant improve-
ment except MRR@10 and MRR@20 on the DoubanMusic-
to-DoubanMovie dataset, where TDAR obtains the best and
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TABLE 4
Performance comparison on the Amazon dataset.

Domain Metric HR@10 MRR@10 NDCG@10 F1@10 HR@20 MRR@20 NDCG@20 F1@20

CDs
NeuMF 0.1183 0.0410 0.0583 0.0200 0.2449 0.0497 0.0902 0.0219
MeLU 0.1139 0.0282 0.0476 0.0207 0.2518 0.0373 0.0819 0.0240
CDL 0.1183 0.0333 0.0527 0.0215 0.2231 0.0404 0.0790 0.0201

Electronics-to-CDs

TDAR 0.1666 0.0488 0.0757 0.0303 0.3292 0.0597 0.1165 0.0314
DARec 0.1171 0.0315 0.0510 0.0213 0.2223 0.0386 0.0773 0.0212

ETL 0.1471 0.0431 0.0669 0.0267 0.2869 0.0523 0.1017 0.0273
MeLU-AUG 0.1210 0.0330 0.0529 0.0220 0.2579 0.0423 0.0873 0.0246
MetaCAR 0.2122 0.0665 0.1001 0.0386 0.3425 0.0752 0.1327 0.0326

Movies-to-CDs

TDAR 0.1658 0.0479 0.0750 0.0301 0.3151 0.0579 0.1123 0.0300
DARec 0.1320 0.0379 0.0595 0.0240 0.2512 0.0459 0.0894 0.0239

ETL 0.1552 0.0463 0.0712 0.0282 0.2817 0.0548 0.1028 0.0268
MeLU-AUG 0.1171 0.0324 0.0517 0.0213 0.2489 0.0412 0.0846 0.0237
MetaCAR 0.2074 0.0689 0.1007 0.0377 0.3557 0.0788 0.1378 0.0339

Music-to-CDs

TDAR 0.1708 0.0471 0.0757 0.0311 0.3317 0.0582 0.1159 0.0316
DARec 0.1330 0.0417 0.0625 0.0242 0.2456 0.0491 0.0904 0.0234

ETL 0.1711 0.0511 0.0787 0.0311 0.2921 0.0592 0.1089 0.0278
MeLU-AUG 0.1375 0.0356 0.0587 0.0250 0.2919 0.0459 0.0971 0.0278
MetaCAR 0.2684 0.0832 0.1257 0.0488 0.4364 0.0945 0.1678 0.0416

Electronics
NeuMF 0.1106 0.0345 0.0519 0.0154 0.2295 0.0426 0.0818 0.0163
MeLU 0.1314 0.0728 0.0863 0.0238 0.2022 0.0774 0.1038 0.0193
CDL 0.1230 0.0394 0.0588 0.0224 0.2270 0.0466 0.0851 0.0216

CDs-to-Electronics

TDAR 0.1689 0.0567 0.0307 0.0825 0.2941 0.0651 0.1138 0.0280
DArec 0.1468 0.0460 0.0691 0.0267 0.2301 0.0517 0.0901 0.0219

ETL 0.1385 0.0454 0.0668 0.0252 0.2471 0.0527 0.0939 0.0235
MeLU-AUG 0.1065 0.1059 0.1060 0.0200 0.1207 0.1067 0.1094 0.0124
MetaCAR 0.1964 0.1115 0.1307 0.0357 0.3130 0.1195 0.1601 0.0298

Movies
NeuMF 0.1159 0.0351 0.0536 0.0220 0.2195 0.0420 0.0794 0.0223
MeLU 0.1931 0.0788 0.1048 0.0351 0.3639 0.0904 0.1476 0.0347
CDL 0.1604 0.0583 0.0819 0.0292 0.2571 0.0648 0.1060 0.0245

CDs-to-Movies

TDAR 0.1246 0.0931 0.0734 0.0226 0.1405 0.0943 0.1157 0.0134
DArec 0.1775 0.0576 0.0851 0.0323 0.2961 0.0657 0.1149 0.0282

ETL 0.1593 0.0601 0.0832 0.0290 0.2547 0.0665 0.1071 0.0243
MeLU-AUG 0.1917 0.0756 0.1018 0.0348 0.3498 0.0861 0.1413 0.0333
MetaCAR 0.2463 0.0864 0.1234 0.0448 0.3878 0.0961 0.1590 0.0369

Music
NeuMF 0.1230 0.0327 0.0531 0.0224 0.2460 0.0410 0.0838 0.0238
MeLU 0.1868 0.0527 0.0832 0.0340 0.2872 0.0596 0.1085 0.0273
CDL 0.1094 0.0292 0.0475 0.0199 0.2521 0.0391 0.0837 0.0240

CDs-to-Music

TDAR 0.1516 0.0365 0.0628 0.0276 0.2611 0.0439 0.0902 0.0249
DArec 0.2142 0.0632 0.0981 0.0390 0.2764 0.0674 0.1137 0.0263

ETL 0.1310 0.0350 0.0565 0.0238 0.2323 0.0418 0.0818 0.0221
MeLU-AUG 0.1215 0.0727 0.0841 0.0221 0.2681 0.0828 0.1212 0.0255
MetaCAR 0.2333 0.1036 0.1322 0.0424 0.2955 0.1074 0.1473 0.0281

-

(a) Electronics-to-CDs.

-

(b) Movies-to-CDs.

Fig. 5. Effect of multi-view information bottleneck.

MetaCAR obtains second best performance. The superior
performance of MetaCAR over all competing baselines in-
dicates the importance of meta-augmentation, which can
effectively prevent meta-overfitting and overlap the data
distribution of new tasks for better performance.

5.3 Effectiveness of Multi-view Information Bottleneck
In this part, we discuss the effectiveness of multi-view infor-
mation bottleneck (MIB). We test the proposed framework
with and without the MIB loss on the Electronics-to-CDs,
Movies-to-CDs, and Music-to-CDs datasets, and the results
are shown in Figure 5. When this constraint is deleted,
the performance of MetaCAR significantly declines. It only
gains a small performance improvement over TDAR in
NDCG@20 (0.1274 versus 0.1159). MetaCAR (0.1434) with
MIB outperforms MetaCAR without MIB (0.1274) by more
than 12.5% in NDCG@20. This validates the effectiveness of
the MIB loss in our framework. However, our framework
can still perform well without MIB and demonstrates better
performance than baselines. This is because the similarity
constraint and the gap between content and ratings can
still ensure the meaningfulness and distinguishment of the
learned prior. Furthermore, it validates the robustness of the
proposed MetaCAR.

5.4 Sensitivity of Hyper-Parameter
The coefficient � is a hyper-parameter to trade-off be-
tween sufficient domain-shared properties and robustness
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TABLE 5
Performance comparison on the Douban dataset.

Domain Metric HR@10 MRR@10 NDCG@10 F1@10 HR@20 MRR@20 NDCG@20 F1@20

DoubanMusic
NeuMF 0.0964 0.0234 0.0399 0.0175 0.2064 0.0307 0.0673 0.0196
MeLU 0.1151 0.0294 0.0490 0.0209 0.2521 0.0384 0.0831 0.0240
CDL 0.1000 0.0320 0.0475 0.0182 0.1951 0.0385 0.0715 0.0186

DoubanBook
-to-

DoubanMusic

TDAR 0.1205 0.0393 0.0580 0.0219 0.2077 0.0454 0.0800 0.0198
DARec 0.1320 0.0310 0.0540 0.0240 0.2121 0.0363 0.0739 0.0201

ETL 0.0986 0.0276 0.0439 0.0179 0.2029 0.0344 0.0697 0.0192
MeLU-AUG 0.1109 0.0388 0.0553 0.0202 0.226 0.0469 0.0845 0.0215
METACAR 0.1503 0.0509 0.0737 0.0273 0.2461 0.0571 0.0973 0.0234

DoubanMovie
-to-

DoubanMusic

TDAR 0.1223 0.0372 0.0567 0.0222 0.2082 0.0430 0.0783 0.0198
DARec 0.1373 0.036 0.0589 0.0250 0.2585 0.0438 0.0889 0.0245

ETL 0.1091 0.0319 0.0493 0.0198 0.2120 0.0389 0.0752 0.0201
MeLU-AUG 0.0951 0.0331 0.0475 0.0173 0.1927 0.0400 0.0723 0.0182
METACAR 0.1475 0.0400 0.0649 0.0268 0.2721 0.0483 0.0959 0.0259

DoubanBook
NeuMF 0.0842 0.0374 0.0490 0.0168 0.1421 0.0448 0.0674 0.0202
MeLU 0.0923 0.0262 0.0413 0.0168 0.2055 0.0339 0.0697 0.0196
CDL 0.1064 0.0297 0.0476 0.0193 0.1807 0.0350 0.0664 0.0171

DoubanMusic
-to-

DoubanBook

TDAR 0.1349 0.0410 0.0627 0.0245 0.2426 0.0482 0.0895 0.0230
DARec 0.0777 0.0247 0.0368 0.0141 0.1948 0.0324 0.0659 0.0185

ETL 0.1100 0.0326 0.0503 0.0200 0.2125 0.0396 0.0760 0.0201
MeLU-AUG 0.0890 0.0256 0.0400 0.0162 0.1814 0.0319 0.0632 0.0173
METACAR 0.1377 0.0529 0.0724 0.0250 0.2179 0.0582 0.0924 0.0208

DoubanMovies
NeuMF 0.0729 0.0314 0.0417 0.0243 0.1571 0.0423 0.0685 0.0285
MeLU 0.0944 0.0375 0.0656 0.0172 0.2451 0.0372 0.1027 0.0233
CDL 0.1119 0.0327 0.0508 0.0203 0.2060 0.0389 0.0742 0.0196

DoubanMusic
-to-

DoubanMovie

TDAR 0.1175 0.0553 0.0695 0.0214 0.2529 0.0638 0.1026 0.0240
DARec 0.1265 0.0372 0.0577 0.0230 0.2707 0.0468 0.0936 0.0257

ETL 0.1424 0.0366 0.0605 0.0259 0.3174 0.0522 0.1073 0.0312
MeLU-AUG 0.0811 0.0399 0.0724 0.0148 0.2102 0.0482 0.1041 0.0200
METACAR 0.1993 0.0464 0.0810 0.0362 0.3424 0.0562 0.1169 0.0325

β

(a) Electronics-to-CDs.

β

(b) Movies-to-CDs.

Fig. 6. Sensitivity of hyper-parameter �.

representation. We apply a linear search in the coarse-
grain range of {0.001, 0.01, 0.1, 1, 10, 100}. The results of
Electronics-to-CDs and Movies-to-CDs are shown in Fig-
ure 6. We can see that MetaCAR has varying sensitiv-
ity to the hyper-parameter � on different datasets. After
grid searching, we obtain � = 0.1 for Electronics-to-CDs,
� = 0.001 for Movies-to-CDs, � = 1 for Music-to-CDs,
� = 0.1 for DoubanBook-to-DoubanMusic and � = 0.01
for DoubanMovie-to-DoubanMusic. In addition, as for bi-
directional cross-domain, we set � = 0.1 for CDs-to-
Electronics, � = 0.001 for CDs-to-Movies, � = 1 for CDs-
to-Music, � = 0.1 for DoubanMusic-to-DoubanBook and
� = 0.01 for DoubanMusic-to-DoubanMovie.

6 CONCLUSION

In this paper, we propose a cross-domain meta-
augmentation model for content-aware recommendation
(MetaCAR) to address two types of meta-overfitting on

cold-start recommendations. Specifically, we adopt a do-
main adaptation component, implemented by dual condi-
tional variational autoencoders (CVAEs) and constrained by
MIB, to learn a prior. Then, such a prior is used to plausible
ratings to constructing ME tasks for meta-learning. Exten-
sive experiments on ten datasets demonstrate that MetaCAR
is an effective method to address the two forms of meta-
overfitting and can significantly improve the meta-learning
recommendation performance in cold-start scenarios. Al-
though MetaCAR can benefit from its auxiliary domains,
what criteria are to be used to determine the optimal domain
is still open. We leave this problem for future research.
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