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Abstract

Temporal grounding in videos aims to localize one tar-
get video segment that semantically corresponds to a given
query sentence. Thanks to the semantic diversity of natural
language descriptions, temporal grounding allows activ-
ity grounding beyond pre-defined classes and has received
increasing attention in recent years. The semantic diver-
sity is rooted in the principle of compositionality in lin-
guistics, where novel semantics can be systematically de-
scribed by combining known words in novel ways (composi-
tional generalization). However, current temporal ground-
ing datasets do not specifically test for the compositional
generalizability. To systematically measure the composi-
tional generalizability of temporal grounding models, we
introduce a new Compositional Temporal Grounding task
and construct two new dataset splits, i.e., Charades-CG
and ActivityNet-CG. Evaluating the state-of-the-art meth-
ods on our new dataset splits, we empirically find that they
fail to generalize to queries with novel combinations of
seen words. To tackle this challenge, we propose a varia-
tional cross-graph reasoning framework that explicitly de-
composes video and language into multiple structured hi-
erarchies and learns fine-grained semantic correspondence
among them. Experiments illustrate the superior compo-
sitional generalizability of our approach. The repository
of this work is at https://github.com/YYJMJIC/
Compositional-Temporal-Grounding.

1. Introduction

Understanding rich and diverse activities in videos is a
prominent and fundamental goal of video understanding.
While there have been significant works in activity recog-
nition [3, 8] and localization [28, 38], one major limitation
of these works is that they are restricted to pre-defined ac-
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Original Query A: Shuffled Query A:  Query B with novel composition:

A woman takes a selfie selfie takes A a sits A child smells then throws a
while sits on a horse.  horse on woman a. handful of flowers into the air..

(a) Examples and Prediction

No Perturbation | Shuffled > Novel Composition
49.45% 49.32% 29.42%

(b) Performance of SOTA Method: (R@1,l0U=0.5)

Figure 1. (a) On the top, we show three examples of two queries.
(b) On the bottom, we report comparisons on Charades-CG with
metric R@1, loU@0.5. The left blue box represents the original
model. The middle yellow box represents the model with shuffled
queries as input. The right green box represents the performance
on the queries that contain novel compositions.

tion classes, thus suffering from scaling to various complex
activities. A natural solution to this problem is to utilize the
systematic compositionality [4, 9, 31] of human language,
which allows us to form novel compositions by combin-
ing known words in novel ways to describe unseen activ-
ities (i.e. compositional generalization). Therefore, a new
task, namely temporal grounding in videos [10, 16], has
recently received increasing attention. Formally, give an
untrimmed video and a query sentence, it aims to identify
the start and end timestamps of one specific moment that
semantically corresponds to the given query sentence.

Although the compositional generalization is a key prop-
erty of human language that allows temporal grounding
beyond pre-defined classes, current temporal grounding
datasets do not specifically test for this ability. The train-
ing and testing splits of existing datasets contain almost
the same compositions (e.g. verb-noun pair, adjective-noun
pair, etc). Our statistical results show that only 1.37%
and 5.19% of testing sentences contain novel compositions
in the Charades-STA [10] and ActivityNet Captions [16]



datasets, respectively. To systematically measure the com-
positional generalizability (CG) of existing methods, we in-
troduce a new task, Compositional Temporal Grounding.
Our compositional temporal grounding task aims to test
whether the model can generalize to the sentences that con-
tain novel compositions of seen words. We construct two
re-organized datasets Charades-CG and ActivityNet-CG.
Our dataset split protocols enable us to measure whether a
model can generalize to novel compositions, of which the
individual components have been observed during training
but the combination is novel.

Using our newly constructed datasets, we evaluate mod-
ern state-of-the-art (SOTA) temporal grounding models,
and empirically find that SOTA models fail to achieve
compositional generalization, though they have achieved
promising progress on the typical temporal grounding task.
We observe that their performance drops dramatically (Fig-
ure 1.b, left vs. right). The results indicate that the SOTA
models may not well generalize to novel compositions. Fur-
thermore, as word order is a crucial factor for the composi-
tionality of language, we analyze the word order sensitivity
of SOTA models to gain more intuitive insight. Specifically,
we randomly shuffled queries in advance and then use the
shuffled sentences to train and evaluate the models. Sur-
prisingly, we find that they are insensitive to the word order,
even though permuting word order destroys the complete
semantics of original sentences (Figure 1.b, left vs. middle).
These observations confirm with recent studies [35,42] sug-
gesting that current models are heavily driven by superficial
correlations. This pushes us to rethink the solution of tem-
poral grounding.

When we systematically analyze the SOTA models, we
find that previous temporal grounding methods largely ne-
glect the structured semantics in video and language, which
is crucial for compositional reasoning. These methods [10,

,46,48] mainly encode both sentence and video segments
into unstructured global representations, respectively, and
then devise specific cross-modal interaction modules to fuse
them for final prediction. These global representations fail
to explicitly model video structure and language composi-
tions. Take the novel composition of “throws flowers” in
Figure 1.a as example. If the model infers the individual
semantics of the two words, as well as establish the cor-
respondence of them to specific semantics in video (i.e. the
action “throw” and the object “flower” in video ), the model
can easily localize the novel composition in video by com-
posing the corresponding video semantics of the two words.

Motivated by this insight, we propose a novel
Varlational croSs-graph reAsoning (VISA) framework for
compositional temporal grounding. By explicitly modeling
the semantic structures of video and language, and inferring
the fine-grained correspondence between them, our VISA
model can achieve joint compositional reasoning. Specifi-

cally, we first introduce a hierarchical semantic graph that
explicitly decomposes both video and language into three
semantic hierarchies (i.e. global events, local actions, and
atomic objects). The hierarchical semantic graph serves as
unified structured representations for both video and lan-
guage, which tightly couple multi-granularity semantics be-
tween the two modalities. Second, we propose a variational
cross-graph correspondence learning that establishes fine-
grained semantic correspondence between the semantic hi-
erarchical graphs of video and language.
Our contributions are summarized as follows:

e We introduce a new task, Compositional Temporal
Grounding, as well as new splits of two prevailing tem-
poral grounding datasets, which are able to measure
the compositional generalizability of existing methods.

* We perform in-depth analyses on several SOTA mod-
els and empirically find that they fail to achieve com-
positional generalization

* We propose a Varlational croSs-graph reAsoning
(VISA) framework that decomposes video and lan-
guage into hierarchical graphs and learns fine-grained
cross-graph correspondence between them.

» Experimental results validate the significant superior-
ity of our approach on compositional generalizability.

2. Related Work

Temporal Grounding. Recently, the development of deep
learning [20,25] promotes the prosperity of computer vision
[?, 24, 54] and vision-and-language understanding [21, 23,
,49,50,53]. Temporal grounding in videos via language is
arecently proposed task [ 10, 16]. Existing supervised meth-
ods can be categorized into two groups. 1) Proposal-based
methods [10,43,45,48] first extract candidate proposals by
temporal sliding windows and then match the query sen-
tence with them by multi-modality fusion. 2) Proposal-free
methods [26,32,44,46] directly predict the temporal bound-
aries of target segments without pre-defining proposals. In
this paper, we evaluate the compositional generalizability of
current methods.
Compositional Generalization. Recently, compositional
generalization has received increasing attention as its ad-
vantages on robustness and sample efficiency. To evaluate
the compositional generalization, Lake et al. [17] propose
the SCAN benchmark, which requires translating instruc-
tions generated by a phrase-structure grammar to action se-
quences. The SCAN is split such that the testing set con-
tains unseen compositions in the training set. The following
works have proposed several techniques to improve SCAN,
including data augmentation [ 1], meta-learning [6, 18, 34],
and architectural design [5, 12]. Some recent works also
explore compositional generalization on other applications,



including image captioning [33,51,52], visual question an-
swering [13, 14], action recognition [30, 40, 55], and state-
object recognition [29]. In this paper, we systematically
study the compositional generalization on temporal ground-
ing natural language sentences in videos.

3. Compositional Temporal Grounding

3.1. Problem Formulation

To systematically benchmark the progress of current
methods on compositional generalization, we introduce a
new task, Compositional Temporal Grounding. Our com-
positional temporal grounding task aims to evaluate how
well a model can generalize to query sentences that con-
tain novel compositions or novel words. We construct
new splits of two prevailing datasets Charades-STA [10]
and ActivityNet Captions [16], named Charades-CG and
ActivityNet-CG, respectively. Specifically, we define two
new testing splits: Novel-Composition and Novel-Word.
Each sentence in the novel-composition split contains one
type of novel composition. We define the composition as
novel composition if its constituents are both observed dur-
ing training but their combination way is novel. Each sen-
tence in the novel-word splits contains a novel word, which
aims to test whether a model can infer the potential seman-
tics of the unseen word based on the other learned compo-
sition components appearing in the context.

3.2. Dataset Re-splitting

For each dataset, we first combine all instances in the
original training set and testing set, and remove the in-
stances that can be easily predicted solely based on videos.
We then re-split each dataset into four sets: training, novel-
composition, novel-word, and test-trivial. The test-trivial
set is similar to the original testing set, where most of the
compositions are seen during training. Concretely, We use
AllenNLP [ ! 1] to lemmatize and label all nouns, adjectives,
verbs, adverbs, prepositions in language queries. Based on
dependency parsing results, we define 5 types of composi-
tions: verb-noun, adjective-noun, noun-noun, verb-adverb,
and preposition-noun. For each type of composition, we
construct a statistical table, where the row indexes are all
possible first components of the composition and the col-
umn indexes are all possible second components of the
composition. Taking verb-noun as an example, the element
in row ¢ and column j corresponds to the composition that
consists of the ¢ —th verb and the 7 —th noun in the dataset.
For each table, we first sample an element from each row
and each column, and then add all queries that contain the
sampled compositions to the training set, which ensures
that all components of compositions can be observed in the
training set. Next, for each type of composition, we sample
compositions from tables and add the corresponding queries
into the novel-composition split. Meanwhile, we sample

Dataset Split Videos  Queries
Training 3555 8281
Novel-Composition 2480 3442

Charades-CG— \iovel-Word 588 703
Test-Trivial 1689 3096
Training 9659 36724

.. Novel-Composition 4202 12028

ACVItYNet-CG el Word 2011 3944

Test-Trivial 4775 15712

Table 1. Statistics of Charades-CG and Activity-CG.

some words as new words and add the queries that contain
the new words into the novel-word split. Since each video
is associated with multiple text queries, if one query is se-
lected into the training set, we will add other queries of the
same video into the training set. If one query is selected into
the novel-composition or novel-word split, we will add the
remaining queries of the same video into the test-trivial set.
Thus, we make sure that there is no video overlap between
training and testing sets. Table | summarizes detailed statis-
tics. We provide more details in supplementary materials.

4. Method

As illustrated in Figure 2, our VISA framework mainly
consists of two components: a hierarchical semantic
graph and a variational cross-graph correspondence
learning. Given an untrimmed video V" and a query sen-
tence (), the hierarchical semantic graph first decomposes
them into three semantic hierarchies (i.e. global events, lo-
cal actions, and atomic objects), respectively. Then, the
variational cross-graph correspondence learning establishes
fine-grained semantic correspondence between two graphs.
Finally, based on the fine-grained semantic correspondence
between video and sentence, our VISA infers the target mo-
ment that semantically corresponds to the given query.

4.1. Hierarchical Semantic Graph

Language queries describe some semantic events [22],
which can be further parsed to central predicates and
their corresponding arguments. Similarly, videos naturally
record some relevant events in our lives, which consist of
a variety of actions and each action involves multiple ob-
jects. Therefore, language and videos are both inherently
organized in hierarchical structures. Based on this observa-
tion, given a video V' and a query (), we decompose both
of them into three semantic hierarchies, which correspond
to global events, local actions, and atomic objects, respec-
tively. Such a hierarchical semantic graph provides a unified
structured representation for modeling fine-grained seman-
tic correspondence between videos and language queries.
Graph Initialization. For an untrimmed video V', we first
divide it into a sequence of segments with a fixed length and
extract the features using pre-trained 3D CNN: {V;}L_,,
where V; = {f{}X | and f! denotes the C3D features of
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Figure 2. Overview of our VISA framework. We omit the details of the input video and sentence.

frame ¢ in segment ¢. Then, we adopt off-the-shelf object
detection and action recognition models to extract objects
and actions for each segment, where each segment contains
N object nodes {Ef,}ivzll € RPN and Ny action nodes
{5032 € R¥N2. We initialize both object and action
nodes by the sum of the GloVe [36] vectors of each word
in the object labels and action labels. Finally, all the object
nodes S and action nodes S* across segments constitute
the first and second hierarchies of the video semantic graph.
For query (), we use semantic role labeling (SRL) to de-
compose the query into multiple semantic structures. Each
semantic structure contains a central predicate (verb) and
some corresponding arguments (noun phrases including
prep, adj, and adv). The predicates are considered as action
nodes denoted by {¢¢}%2, € R¥*12, and the arguments are
considered as object nodes denoted by {7 ; f;l € RIxIs,
If a word serves as multiple arguments for different predi-
cates, we duplicate it for each action node. Similarly, we
initialize them using GloVe word vectors. Finally, all the
object nodes C” and action nodes C" constitute the first
and second hierarchies of the language semantic graph.
Semantic-Contextualized Learning. Events are high-
level semantic abstractions of video context and involve
complicated interactions between different semantic con-
cepts. For example, the query “the camel stands up and
walks off with the family riding on its back” is composed
of objects (camel, the family), actions (stands up, walks
off, and riding on), and the underlying relations among
them such as the spatial relation (on its back), the tem-
poral relation (stands up and walks off), and the agen-
tive relation (riding on). Therefore, to achieve comprehen-
sive understanding of video events, we present semantic-
contextualized learning to model the complicated interac-
tion between the semantic nodes and learn fine-grained con-
textual information beyond the coarse semantic labels. Fur-
ther, semantic contextual information is crucial for resolv-
ing semantic ambiguity of individual semantic nodes as the
pre-trained detector might be noisy and the detected actions
and objects might have dramatic variations in appearance.
Concretely, we define three types of undirect edges:

action-action, action-object, and object-object. For the
video semantic graph (/the language semantic graph), the
object nodes in the same segment (/semantic structure) are
connected by the object-object edges, the action and object
nodes in the same segment (/semantic structure) are con-
nected by the action-object edges, and all the action nodes
are connected by the action-action edges. Afterward, we
perform relation-aware graph convolution on video seman-
tic graph. For a semantic node 5; € {5, 5°}, we calculate
the adjacency correlation for each edge type r as:

exp(ay;)

&y = (Ws)T-(W's;), afy = 2~ ()
! ’ ! Zje/\/;‘ exp(aij)
where N is the neighborhood nodes of s; on edge type r
and W, is the relation-specific projection matrix. Then, we

refine s; using the neighboring nodes of all edge types as:

§i=Y Y ap-(Us)) 2)
reRFENT

where R is the three types of edges and U, is another
transformation matrix. §; is the result of the first relation-
aware graph convolution layer. To model multi-order rela-
tions, we perform M layers of relation-aware graph convo-
lution and learn final semantic-contextualized node features
S = {5}, € RNv*4 where N, is the total number of
action and object nodes. In the same manner, we can ob-
tain semantic-contextualized node features C' = {¢;}\, €
RN:*4 of language semantic graph.
Visual-Contextualized Learning. We further propose
visual-contextualized learning to collect relevant visual
context from videos to the video semantic graph. Specif-
ically, for a semantic node s;, let V; = { fj’f 3K:1 denotes
the corresponding segment, and f; is the frame feature (fol-
lowing, we omit the superscript i for simplicity). We first
compute the visual filter for each frame f; in the segment
and obtain the filtered visual feature as:

g5 = o(W9ss; f; fi] + by), fJ/‘:fj ©g 3



where ® denotes the Hadamard product, and f is ob-
tained by performing average pooling on the V;. Then,
we perform max-pooling across the filtered frame fea-
tures to get the semantic-relevant visual context as F; =
MazPool(fy, ..., f3). Finally, we concatenate s; with F;
and transform them to the original dimension by a transfor-
mation matrix W,, as s; = W"[s;, F;]. Here, we reuse s;
to represent the final visual-contextualized semantic node
representation for simplicity.

Hierarchical Semantics Aggregation. Based on the ob-
servation that semantic events are composed of a series of
interactional actions and objects, we propose the hierarchi-
cal semantic aggregation mechanism, which aggregates the
semantics from the contextualized action nodes and object
nodes to compose the global event nodes. Inspired by the
success of positional query encoding [2] in object detection,
we initialize the event nodes as a set of learnable query vec-
tors {p; f\;”l and then aggregate relevant semantics from ac-
tion nodes and object nodes to refine the event nodes. Here
we take the video semantic graph as an illustration. For an
event query p;, we calculate the attention weights over se-
mantic nodes {s; };Vzl and update the p;, given by:

N, T
~ e e exrp Wep, (WEs.:
piZZaij.sj,aij: N (Wi 11 §~ 2 Jz)

J=1 Zj:l exp(Wipi)™ - (Wgsj))

“)
where W, W5 are projection matrices, and p; is the
semantics-aware event node. Subsequently, we stack mul-
tiple such graph self-attention layers and merge the final
event nodes into {s,}j\[:“1 to form the complete hierarchi-

cal semantic graph of video, denoted by M = {m;} =

i=1
R*Nm  In the same manner, we can obtain the com-
plete hierarchical semantic graph of language, denoted by
H = {h;}" € R&>Nn_ M and H are the unified structure
of three semantic hierarchies, which tightly couple multi-

granularity semantics between the two modalities.

4.2. Variational Cross-Graph Correspondence

After parsing both videos and language queries into in-
dividual hierarchical semantic graphs, we then model the
cross-modality interactions between two graphs by cross-
graph convolution, and induce the fine-grained semantic
correspondence between them for final prediction. The ob-
jective function can be formulated as P(Y|M, H), where
Y is the target time interval. Since the ground-truth cor-
respondence between two graphs is not available, we treat
the cross-graph correspondence as a latent variable z. The
problem can then be formulated into a variational inference
framework [39] and the objective function can be rewrit-
ten as P(Y|M, H, z)P(z|M, H). Instead of directly max-
imizing P(Y|M, H), we propose to maximize its evidence

lower bound (ELBO) [15] as follows:

EELBO(¢70) = Eq¢,(z|]\/[,H,Y)logp9(Y|M7 H,Z)

- KL(QQS(ZlM’ H,Y)||pe(2|M, H))
< logp(Y'|M, H)
)

Specifically, we characterize P(Y|M, H) using three com-
ponents: a prior model py(z|M, H), a posterior model
q4(2|M, H,Y), and a likelihood model py(Y'|M, H, z). In
the following, we first introduce cross-graph convolution to
capture the semantic correlation between two graphs and
then describe these three models in detail.
Cross-Graph Convolution. Given the graphs M and H,
we perform cross-graph convolution between the same hi-
erarchical levels of two graphs. For a video semantic node
mf, the cross-convolution from H to M is formulated as:

Conk T. chk
ah?m _ 6.’Ep((W1 ml) (W2 ])) (6)

Y e eap(Wimb) - (Wsht))

i =1-pHomf+pfo Y o™ bk ke {e a0}
JENE

(7
where B¥ = o(U9mF + b) controls the information flow
from H to M, k denotes three semantic levels (i.e. event,
action, object), N I’; denotes the nodes of H in level k. In a
similar manner but reversed order, we can obtain H.
Prior Model. Given M and H , the prior model
po(z|M, H) aims to infer the cross-graph correspondence
captured by a latent variable z € RV XNt where z;; cor-
responds to the semantic correspondence between m; and

h;. Specifically, the z;; can be formulated as:

exp(Zi;)

~ - \T ~
Zii = (Wimg)™ - (W5qOhj), zij = ——————
! ( ! ) ( ? J) ! Z;y:hl efp(iij)

®)

where ¢ is the global sentence feature that guides the se-
mantic correspondence inference.

Approximate Posterior Model. The posterior model
¢4(2|M, H,Y) infers the cross-graph correspondence with
additional information of ground-truth Y. According to the
temporal boundary Y, we can determine the segments in Y
and the action and object nodes that correspond to these seg-
ments. These nodes in the video graph contain the most rel-
evant semantics to the language semantic graph, which can
better guide cross-graph correspondence learning. There-
fore, we obtain m* through mean-pooling over these nodes



and use m* to guide the correspondence learning:

exp(Zij)

Nn, =
Zj:l exp(Zij)

©))

where m* and g serve as global visual and linguistic guid-
ance, respectively.
Likelihood Model. The likelihood model py(Y|M, H, z)
predicts the temporal boundary based on the latent corre-
spondence z and hierarchical semantic graphs M and H.
Specifically, we first integrate two graphs based on the
learned cross-graph correspondence to obtain joint multi-
modality representations:

Zi; = (Wim* @) -(Wiqohy), 2 =

M7 =W [M; M| € R&>Nm
(10)
where projection matrix W7 € R9*24 and M is the joint
multi-modality representations of the hierarchical seman-
tic graph. Next, we use M to refine segment features
X = {z,}1, € R¥T. We perform mean-pooling over
frame features { f{}X | of segment V; to obtain the segment
features x;. We adopt multi-head cross-modal attention to
softly select relevant information from M“ to X. Con-
cretely, we take X as queries and M7 as keys and values:

M =zH e R¥*Nm,

X* = Multi Attn(X, M7, M7) (11)

where X* is the semantics-aware segment representations.
Subsequently, we summarize the segment representations
using attentive pooling based on the sentence feature g:
T q q
Yz exp(Wi )" - (Wy:))

T
* __ q * q _
v —Zozi Ty, Q=
=1
(12)

where v* is the summarized video feature. Finally, we pre-
dict the time interval (¢°,¢¢) as ¢*,t° = M LP(v*).

exp(Wiq)" - (Wiay))

4.3. Optimization

As described in Equation 5, the ELBO objective func-
tion consists of two terms. The first term corresponds to
the negative number of the regression loss. Specifically,
following [32], we minimize the sum of smooth L; dis-
tances between the normalized ground-truth time interval
(t5,1¢) € [0,1] and our prediction (¢°,t¢). This term not
only teaches the likelihood model to predict the correct
time interval but also encourages the approximate poste-
rior model to learn more accurate cross-graph correspon-
dence. The second term corresponds to the KL-divergence
loss. Concretely, as the latent variable 2 is a correlation ma-
trix, we compute the KL-divergence by rows. Intuitively,
through minimizing this term, we can teach the prior model
to capture the cross-graph semantic correspondence as well

as the approximate posterior model. During testing with-
out access to the ground-truth, we can use the learned prior
model to replace the approximate posterior model to infer
the cross-graph correspondence. Note that we use the ap-
proximate posterior model to generate z during training.

5. Experiments
5.1. Benchmarking the SOTA Methods

We evaluate the compositional generalizability of SOTA
methods on the proposed Charades-CG and ActivityNet-
CG datasets. Specifically, these methods can be categorized
into four groups: 1) Proposal-based methods: TMN [27],
2D-TAN [48]; 2) Proposal-free methods: LGI [32], VL-
SNet [46]; 3) RL-based method: TSP-PRL [41]; 4)
Weakly-supervised method: WSSL [7]. Due to the space
limitation, we provide more experimental results and im-
plementation details in supplemental materials.
Evaluation Metrics. Following previous works, we adopt
“R@n, IoU=m” and mloU (i.e. the average temporal IoU)
as our evaluation metrics. Specifically, given a testing
query, it first calculates the Intersection-over-Union (IoU)
between the predicted moment and the ground truth, and
“R@n, IoU=m" is defined as the percentage of at least one
of top-n predictions with IoU larger than m.

5.2. Results on Compositional Temporal Grounding

Table 2 and Table 3 summarize the results of the above
methods on compositional temporal grounding. Overall,
our VISA achieves the highest performance on all dataset
splits, demonstrating the superiority of our proposed model.
Notably, we observe that the performance of all tested
SOTA models drops significantly on the novel-composition
and novel-word splits. The difference in performance
between test-trivial and novel-composition (novel-word)
ranges up to 20%. In contrast, our VISA surpasses them by
a large margin on novel-composition and novel-word splits,
demonstrating superior compositional generalizability. Par-
ticularly, for the novel-composition splits of Charades-CG
and ActivityNet-CG datasets, our method significantly sur-
passes the SOTA methods by 30.86% and 23.32% relatively
on mloU, respectively.

5.3. In-Depth Analysis

Effect of Individual Components. We conduct an abla-
tion study to illustrate the effect of each component in Ta-
ble 4. Specifically, we train the following ablation mod-
els. 1) w/o SCL: we remove the Semantic-Contextualized
Learning (SCL). 2) w/o VCL: we remove the Visual-
Contextualized Learning (VCL). 3) w/o HSA: we remove
the Hierarchical Semantics Aggregation (HSA). 4) w/o
VCC: we replace the Variational Cross-graph Correspon-
dence learning (VCC) by directly using cross-modal self-



Test-Trivial

Novel-Composition

Novel-Word

Method
IoU=0.5 1IoU=0.7 mloU IoU=0.5 IoU=0.7 mloU IoU=0.5 IoU=0.7 mloU
Weakly-supervised WSSL 15.33 5.46 18.31 3.61 1.21 8.26 2.79 0.73 7.92
RL-based TSP-PRL 39.86 21.07 38.41 16.30 2.04 13.52 14.83 2.61 14.03
Proposal-based TMN 18.75 8.16 19.82 8.68 4.07 10.14 9.43 4.96 11.23
2D-TAN 48.58 26.49 44.27 30.91 12.23 29.75 29.36 13.21 28.47
LGI 49.45 23.80  45.01 29.42 12.73 30.09 26.48 12.47 27.62
Proposal-free VLSNet 4591 19.80  41.63 24.25 11.54 31.43 25.60 10.07 30.21
Ours-VISA  53.20 26.52 47.11 45.41 22.71 42.03 42.35 20.88 40.18
Table 2. Performances (%) of SOTA temporal grounding models and our VISA on the proposed Charades-CG datasets.
Method Test-Trivial Novel-Composition Novel-Word
IoU=0.5 1IoU=0.7 mloU IoU=0.5 IoU=0.7 mloU IoU=0.5 IoU=0.7 mloU
Weakly-supervised WSSL 11.03 4.14 15.07 2.89 0.76 7.65 3.09 1.13 7.10
RL-based TSP-PRL 34.27 18.80 37.05 14.74 1.43 12.61 18.05 3.15 14.34
Proposal-based TMN 16.82 7.01 17.13 8.74 4.39 10.08 9.93 5.12 11.38
2D-TAN 44.50 26.03 42.12 22.80 9.95 28.49 23.86 10.37 28.88
LGI 43.56 23.29 41.37 23.21 9.02 27.86 23.10 9.03 26.95
Proposal-free VLSNet 39.27 23.12 42.51 20.21 9.18 29.07 21.68 9.94 29.58
Ours-VISA 4713 29.64 44.02 31.51 16.73 35.85 30.14 15.90 35.13

Table 3. Performances (%) of SOTA temporal grounding models and our VISA on the proposed ActivityNet-CG datasets.

Charades-CG | ActivityNet-CG Type Charades-CG ActivityNet-CG

Method | )" Word | Comp  Word P w/o VCC w/o SCL VISA |w/o VCC w/o SCL VISA

Verb-Noun | 36.56  38.82 41.37| 2441 2632 28.89

1 wioSCL | 4375 40.16 | 29.03  29.41 Adj-Noun | 42.17  44.04 45.06| 2676 2831 30.67

2 w/oVCL | 4226 38.62 | 29.34  28.09 Noun-Noun| 4038 4256 43.41| 2951 3020 33.93

3 w/oHSA | 4422 41.09 | 30.29 29.31 Verb-Adv 43.81 46.37 47.83| 31.08 33.46 35.60

4 w/oVCC | 41.08 37.54 | 27.32 26.37 Prep-Noun | 44.12 4786 48.61| 34.78 36.03 37.35

5 Detection | 1297 11.70 | 10.92  10.07 Table 5. Performance of our models on each composition type.
6 VISA 4541 42.35 | 31.51 30.14

Table 4. Ablation results with metric R@1, IoU=0.5 on novel-
composition (Comp) and novel-word (Word) splits.

attention to fuse two graphs. 5) Detection-based: we di-
rectly use the detection results and SRL labels as features.
The results of Row 1 and Row 2 indicate that learning
fine-grained contextualized information is crucial for com-
positional reasoning. Also, the results of Row 3 validate
the importance of event-level hierarchy on global semantic
understanding. Ours w/o VCC does not achieve satisfying
results, because directly fusing the graphs of video and sen-
tence could possibly disrupt the semantic correspondence
between them, which causes a negative effect on temporal
grounding performance. In contrast, the proposed VCC es-
tablishes fine-grained cross-graph correspondence by varia-
tional inference, which is meticulous and achieves the best
results. Furthermore, Row 5 suggests that the main per-
formance gain does not directly come from the pre-trained
detection models. Instead, these detected semantic labels
serve as unified symbols for joint compositional reasoning.
Results on Different Composition Types. To gain fur-
ther insight, we examine the results (R@1, IoU=0.5) of our
models on different types of compositions. Table 5 shows
that generalizing to “Verb-Noun” compositions is the most
difficult, as it requires the model to accurately identify the
corresponding action and objects in video and jointly reason
over them to infer the semantics of the novel composition.

Word Order Sensitivity. To gain more intuitive insight,
we explore whether the models are sensitive to the word
order, which is a crucial factor for the compositionality of
language. Intuitively, if we change the word order of a sen-
tence, its semantics might change greatly and thus the orig-
inal ground-truth temporal boundaries might not be suitable
for the shuffled sentence. Specifically, we randomly shuffle
queries in advance and then use the shuffled queries to train
and evaluate the models. We define the sensitivity metric
as the relative performance degradation of the shuffled ver-
sion on R@1, IoU=0.5. The higher value indicates a higher
sensitivity. According to Table 6, we surprisingly find that
SOTA models are insensitive to the word order. In con-
trast, our method are sensitive to the linguistic structure of
sentences. Moreover, we observe the highest sensitivity of
our VISA on novel-word splits, indicating that the linguis-
tic structure is important for inferring the semantics of novel
words. In the end, we observe that the proposed SCL and
VCC promote our method to capture the linguistic structure
of sentences in a mutually rewarding way.

5.4. Qualitative Analysis

Sensitivity on Specific Shuffling. We manually select
some query sentences and change their word order in some
specific ways, such that the changed query can still semanti-
cally correspond to other segments in their original videos.



Charades-CG ActivityNet-CG

Trivial Comp Word Trivial Comp Word
2D-TAN 0.41 052 043 0.29 030 041

Method

12.3s |-
(a) Query with Confusable Composition:
A man stretches and prepares to jump in front of the audience.

LGI 0.28 023  0.16 0.31 022  0.19
VLSNet 0.07 024  0.10 0.24 0.31 0.48
VISA 2414 2980 3397 22.09 27.60 31.89

w/o SCL  19.64 2431 2972 18.07 24.64 28.73
w/o VCC 21.32 2673 30.88 20.15 2546 29.79

Table 6. The word order sensitivity of SOTA models and VISA.

Original Query :
He is speaking to the camera,
then he starts playing.

Deliberately Changed Query :
He is playing, then he starts
speaking to the camera.

Predictions for the deliberately changed query:

Ours 44,98 |-----=-mmmmmm oo
2D-TAN[e==============mmmooooooooooo- -6.7s ~72.8s
VLSNet|-----===m=mmmmmmmoomoooo e 13.4s ~ 69.55

Figure 3. Qualitative examples on specifically shuffled queries.

As shown in Figure 3, we annotate the changed query with
a new ground-truth (red box) and use the changed query to
test models. Interestingly, the predictions of SOTA meth-
ods have higher IoU with the original temporal boundary,
though the semantics of the sentence has been deliberately
modified. In contrast, our VISA keenly captures the seman-
tics change and locates to the new temporal boundary.

Qualitative Examples. Figure 4 visualizes three qualita-
tive examples, which indicate the importance of composi-
tionality. In the first case, the baseline fails to understand
the composition meaning of “prepares to jump ”, so it mis-
takenly localizes to the “jump” segment. In contrast, our
VISA successfully captures the compositional meanings.
The second case contains complex compositions, which de-
scribe two events. Without inferring their temporal relation-
ship from the composition structure, the baseline localizes
a wrong segment, even though it also contains the two in-
dividual events (i.e. “a man talk” and “the reporter in the
street talks”). Conversely, our VISA understands the cor-
rect temporal order of these two events. The third case
shows that our VISA successfully generalizes to novel com-
position. While pulling (e.g. pulling rope) and horse (e.g.
lead horse) are both observed in the training split, the base-
line suffers from generalizing to this novel composition.

Visualizing Learned Graph. In Figure 5, we present the
learned hierarchical semantic graph. We visualize some key
nodes and the edges with high weights. The yellow dotted
lines represent the cross-graph semantic correspondence. If
the semantic correspondence score between two nodes is
greater than a specific threshold, we connect them with a
yellow dotted line. We represent the event nodes by their
most related semantics according to their attended nodes.
Our VISA successfully aligns the visual semantics “punch-
ing person” and “boxing ring’ to the linguistic words “per-

VLSNet 26,18l ====== === mmmmmm oo 1101.8s
(b) Query with Complex Composition:

A man talks from an office, and the young reporter in the street continues talking.

Ours
VLSNet 5.25 - =======mccooe- +| 34.65
(c) Query with Novel Composmon A man and a woman walks pulling a horse.

Figure 4. Qualitative examples of our VISA and VLSNet. The red
boxes represent the ground-truth.

Hierarchical Semantic Graph of Video Hierarchical Semantic Graph of Sentence

Event
rope ! pekson
Eoo o o o\o

woman beach exerclse rope boxlngpunchlng she up baII she kickboxing ring
Figure 5. Visualization of the learned hierarchical semantic graph.

form kickboxing”. Also, our VISA can connect “push up”
and “exercise ball” to the words “push up (with) ball”.

6. Conclusions

In this paper, we introduce a new task, compositional
temporal grounding to systematically evaluate the compo-
sitional generalizability of temporal grounding models. We
conduct in-depth analyses on SOTA methods, and find they
lack of compositional generalizability. We then introduce
a novel VISA framework that learns fine-grained seman-
tic correspondence between video and language in three se-
mantic hierarchies. Experiments illustrate significant im-
provement of our VISA on compositional generalizability.
Limitations and Futuer work. We observe some failure
cases that VISA cannot discriminate subtle semantics of ad-
verbs, e.g., “fly close” to “fly away”. We expect future re-
search to utilize the new benchmarks to make progress on
fine-grained semantics grounding, thus achieving composi-
tional generalization.
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