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Abstract 

Facing the increasing depletion of traditional energy resources and the worsening 

environmental issues, wind energy sources have been widely considered. As an 

essential renewable energy resource, wind energy features abundant deposits, 

extensive distribution, non-pollution, etc. In recent years, wind power generation 

occupies a non-negligible position in the electric power industry. Stable and reliable 

power system operation demands accurate wind speed prediction (WSP), but the 

inherent randomness of wind speed sequences complicates their fluctuations and 

causes them to be uncontrollable. In this paper, an innovative WSP system is 

proposed, which combines data pre-processing technique, benchmark model selection, 

an advanced optimizer for point forecast and interval forecast. Furthermore, this paper 

theoretically demonstrates that the weights allocated by this optimizer are Pareto 

optimal solutions. Six interval data from two sites in China are utilized to validate the 

forecasting performance of our developed model. The experimental results indicate 

that the developed model can achieve superior accuracy compared to the tested 

models in all cases for point forecast, and also obtains the forecasting interval with 

high coverage and low width error, which is an extremely crucial instruction to 

guarantee the security and stability of the power system.  

 

Keywords: wind speed forecasting; data pre-processing; optimal benchmark 

model selection strategy; multi-objective optimization algorithm 

 

1. Introduction 

With environmental pollution and excessive consumption of resources, wind 

energy is increasingly in the spotlight. Compared to the traditional energy sources, 

wind power has no risk of fuel prices and is also without environmental costs. 

Moreover, the available wind energy is extensively distributed all over the world. 

These unique benefits show that wind power is gradually becoming an indispensable 

component of sustainable development strategies in many countries[1]. In the latest 

Wind Energy 2021 report, the Global Wind Energy Council (GWEC) declared that 

newly installed wind power facilities exceed 90GW, increased by 53% compared to 
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2019. Fig 1 illustrates the distribution of the top five wind power markets and regions 

in the world[2].  

Wind turbine is an essential component of wind power system, which is applied 

to convert wind energy into mechanical energy. Therefore, the wind turbine not only 

determines the output power of the whole wind power system, and it directly affects 

the performance of the wind turbine in terms of operational safety, stability and 

reliability, etc. Therefore, the research of wind turbines is particularly important[3]. 

Duan et al. [4] used the Turbowinds T600-48 upwind turbine airfoil data and 

experimental data, based on the blade element momentum theory of wind turbine 

modeling and numerical simulation of the aerodynamic performance to obtain the 

output power, and compared with the experimental data to validate the correctness 

and practicality of the model. Zhao et al. [5] designed a novel wind turbine based on 

the blade element momentum theory and conducted wind tunnel tests, and the 

fabricated wind turbine has more ideal output torque and power characteristics. Since 

the 1960s, wind power generation has received more and more attention, and precise 

WSP has become one of the necessary conditions for the stable guarantee of the 

power supply. However, the intermittency and instability of wind speed can have 

adverse effects on the stability and effectiveness of the grid systems[6]. Therefore, it 

is highly advisable to find reliable forecasting techniques to predict wind speed.[7]. 

After decades of research on WSP methods, they can be generally categorized into 

four types: physical strategies, traditional statistical strategies, artificial intelligence 

strategies, and combined optimization strategies[4]. The physical approach employs 

intricate physical parameters (temperature, humidity, barometric pressure, topographic, 

etc.) to perform WSP[9]. Specifically, numerical weather prediction (NWP) is a 

well-known technique in physical strategy[10]. This technique has proven to produce 

outstanding performance in long-term WSP[11]. However, it demands historical data 

and geographic information and also requires a lot of calculations[12]. Wang Han 

[13]used the sequence transfer correction algorithm to optimize the NWP model, 

which consequently yields comparatively satisfactory results. Nevertheless, this 

model failed to result in satisfactory forecasting results in the short-term forecasting 

field. However, conventional statistical models can achieve better performance in this 

field. This type of statistical model mainly contains ARMA and ARIMA[14]. Liu et al. 

[15] employed ARIMA to forecast wind speed, which produced satisfactory 

forecasting outcomes. However, due to the linear assumption of statistical methods 

and volatility and intermittency of wind speed, the approaches mentioned above are 

inadequate[16]. Hence experts started working with artificial neural networks (ANNS) 

in WSP[17]. Younes Noorollahi et al.[18] used BPNN to perform WSP in Iran and 

obtained promising results, which provided a reliable and valuable prediction system 

to Iran. Erasmo Cadenas et al. [19] altered the structure of the ANNS, which revealed 

that the most effective forecasting was realized when the ANNS had only two input 

and one output neuron and provided a reliable guarantee for Mexico Oaxaca energy 

supply. Moreover, many classical ANNS, such as BPNN[20], ELM[21], GRNN[22], 

ENN[23] have been broadly utilized to solve economic forecasting and power load 

forecasting problems and obtained superior effectiveness. Nevertheless, AI models 

still possess their intrinsic deficiencies, such as easily falling into local optimal 

solutions and overfitting[24]. Despite some intelligent optimization algorithms are 

proposed to optimize the hyperparameters in neural networks, such as the 

employment of GA to optimize the thresholds and weights of ANNS[25], the 

deficiencies mentioned above cannot be solved adequately. In recent years, deep 

learning has been widely applied to time series forecasting due to its excellent 
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adaptability and portability[8]. Compared with conventional shallow ANNS, it 

achieves better approaches to complex functions and extracts more valuable data traits 

by constructing networks with more hidden layers[26]. Farah Shahid et al.[27] 

performed WSP using LSTM on seven sites data in Europe and achieved good 

prediction results. Wang et al.[28] performed WSP based on the GRU neural network, 

the findings indicated that this method had better performance and shorter training 

time than the traditional models. A new forecasting technique for WSP based on TCN 

was employed by Gan et al. [29], the results demonstrated this technique had superior 

predictive validity in WSP. 

However, the characteristics of wind speed change with the sites, the single 

forecasting model may not achieve satisfactory results in all situations, hence scholars 

proposed combined optimization models[30]. The combined optimization model 

determines the weight coefficients for several single forecasting models to achieve 

higher stability and accuracy[31]. Lv et al. [32] designed a MOALO, Zhang et al.[33] 

developed a MODA to eliminate deficiencies in WSP, Liu et al. [34] devised a 

MOGOA to improve the precision of WSP. For the above-mentioned studies, the 

combined model can achieve satisfactory forecasting results. However, as the site and 

forecasting interval change, the optimal individual model consequently shifts. If the 

single forecasting models own inferior forecasting performance, the corresponding 

combined model will also fail to achieve satisfactory results[35]. 

Moreover, the variability and fluctuations existed in the wind speed tend to 

reduce the reliability and effectiveness of WSP [36]. Therefore, the original sequence 

needs to be processed to increase the forecasting accuracy. Fuzzy information 

granulation (FIG)[37] is a widely popular pre-processing approach to address the 

volatility and intermittency existing in the raw sequence[38]. Cheng et al.[39] used 

FIG technique to preprocess the raw wind speed sequence and used SVM to forecast 

the granularized data, and the experimental results demonstrated that the granularized 

data could effectively keep the features of original data and reduce the redundant 

information. Pan et al. [40] adopted the FIG technique to extract features from the 

original sequences and obtained the minimum, mean and maximum values that can 

represent the original interval, and employed a regularized ELM optimized by gravity 

search algorithm to perform gradient prediction, and the findings indicated that the 

model can effectively enhance the forecasting effectiveness. 

Based on the research of the above literature, the strengths and weaknesses of 

these approaches for WSP are summarized in Table 1, the overview of the above 

methods are as follows: 

(1) The physical strategies are generally unsatisfactory in forecasting short-term wind 

speed and also need massive historical data and excessive calculations time. 

(2) It is impractical for statistical methods to perform WSP with nonlinear features, 

since they require prior assumptions about the data distribution. 

(3) Shallow neural networks can catch the nonlinear features more than other 

statistical methods, hence improving the forecasting accuracy. However, these 

methods still have shortcomings, such as overfitting, getting into local optimal. 

(4) Deep learning model has multi-layer architecture, which results in a better 

approach to complex function and enhances forecasting efficiency. 

(5) The forecasting performance of combined model is largely determined by 

individual forecasting models. Moreover, forecasting time and site variation can affect 

the selection of the benchmark models. 
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Fig. 1. Top five wind-generating countries and regions worldwide in 2020 form GWEC.
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Table 1  

Four types of models in summary. 

Models  Reference Strengths Weaknesses 

Physical strategies       

NWP system  [10,41] 

   

It is well suited to solve global meteorological problems 

and is extensively applied in long-term WSP. 

It requires significant financial expenditure and 

long-term calculations and is inefficient compared to 

other models. 

Traditional statistical method    

ARIMA 

ARMA 

GM 

[14,15] 

[42,43] 

[44,45] 

In short-term WSP, these models can achieve relatively 

precise predictions and have shorter calculations. 

Achieve better performance for some uncertain systems. 

Non-linear features of wind speed make these methods 

ineffective. 

The gray correlation coefficient may change. 

Artificial intelligence models    

Shallow neural networks    

BPNN 

ELM 

GRNN 

ENN 

Deep neural networks 

LSTM 

TCN 

GRU 

[20,46] 

[21,47] 

[22,48] 

[34,49] 

 

[50,51] 

[29,52] 

[28,53] 

Unlike traditional statistical models, these models are 

effective in fitting the non-linear features of wind speed 

sequences, which results in more satisfactory forecasting 

performance. 

 

Compared to shallow neural networks, these methods can 

increase the depth of networks, which allows them to 

possess superior learning and generalization capabilities. 

Numerous parameters require adjustments. Despite the 

presence of optimization modules for these parameters 

in some hybrid models, they still suffer from overfitting 

and trapping in local optimal, etc. 

 

Costly methods, tend to possess higher modeling 

complexity and require higher computing equipment 

capacity. 

Combined optimization models    

MOALO 

MODA 

MOGOA 

[32] 

[33] 

[34] 

These models leverage the benefits of each forecasting 

model, which can significantly improve forecasting 

performance. 

The forecasting effectiveness of combined models 

largely relies on single models, which implies these 

models are determined by the validity of single models.  
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Nowadays, most of WSP systems involve in point forecast (PF). However, PF 

provides no information to the distribution of real data, which makes it difficult for 

administrators to develop optimal strategies based on PF[54]. Therefore, to minimize 

the decision-making risk, it is imperative to apply interval forecast (IF) to quantify the 

uncertainty of PF[55]. Li et al. [56]proposed a novel upper and lower bound 

estimation (LUBE) method to extract the features of the original sequences, the 

findings suggested the proposed model was superior to the conventional LUBE model. 

Li et al. [57] proposed an improved LSSVM to quantify the uncertainty of wind speed, 

the results revealed the coverage width criterion of the improved LSSVM was 

superior to the tested models. While the above-mentioned scholars have quantified the 

uncertainty of wind speed sequences, it is still insufficient. 

The above literature review indicates the deficiencies of the current forecasting 

methods and uncertainty in PF. Therefore, it is imperative to propose improvements 

and implement uncertainty measurements to the existing WSP system. In our paper, 

we propose a novel wind speed combined forecasting system (WSCFS), which 

involves data pre-processing, optimal benchmark model selection (OBMS) strategy, a 

novel multi-objective optimizer, PF and IF. Our significant contributions are as 

follows: 

(1) The main characteristics of the original wind speed sequence are extracted and 

the redundant components can be effectively eliminated. The original sequences are 

decomposed into several components, and each component is fuzzified, which 

simplifies the sample size and retains primary information.  

(2) The OBMS strategy is applied to select the suitable single forecasting models 

for the characteristics of different sites. Comprehensive evaluation metrics (CEM) 

objectively reflect the performance of different single forecasting models in different 

situations, which can significantly improve the forecasting performance of our 

proposed WSCFS. 

(3) A multi-objective variant of the Aquila optimizer is proposed. MOAO can satisfy 

the accuracy and stability of forecasting demand simultaneously by the pareto 

optimality criterion. Moreover, by incorporating the roulette and archive mechanism, 

the global search ability and search accuracy are significantly improved, which 

enables our WSCFS to possess superior forecasting performance and generalization. 

(4) We theoretically demonstrate that the weights assigned by this optimizer are 

pareto optimal solutions. This allows the combined model to have superior 

forecasting performance than the single model. 

(5) We consider the fitting distribution of forecasting sequences and propose a 

valid probabilistic forecasting method to quantify and analyze the uncertainty in PF. 
The optimal distributions of forecasting sequences are applied to determine the 

forecasting intervals, which allows the managers to quantify the risk and instability of 

the power system operation. 

In the upcoming studies. The methodology and framework of our proposed 

WSCFS are illustrated in Sections 2 and Sections 3. In Section 4, we describe the data 

sources, evaluation metrics, and simulated experimental analysis. Moreover, to further 

validate the stability and validity of the WSCFS, some specific discussions will be 

illustrated in Section 5. Finally, the experimental conclusions will be presented in 

Section 6. 
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Table 2  

List of abbreviations  

Abbreviations Nomenclatures 

AI Artificial intelligence 

ANNs Artificial neural networks 

AIS Average interval score 

ALO Ant lion optimizer 

AO Aquila optimizer 

ARMA Autoregressive moving average 

ARIMA Auto-regressive integrated moving average 

AWD Accumulated width deviation 

AWNN Adaptive Wavelet Neural Network 

BPNN Back propagation network 

CEM Comprehensive evaluation metrics 

CFM Combined forecasting model 

DA Dragonfly algorithm 

DF Distribution function 

ELM Extreme Learning Machine 

ENN Elman neural network 

FIG Fuzzy information granulation 

GA 

GM 

Genetic algorithms 

Grey model 

GOA Grasshopper optimization algorithm 

GRNN General regression neural network 

GRU Gated recurrent unit 

IF Interval forecast 

IR Improvement ratio 

LSSVM Least square support vector machines 

LSTM Long short-term memory network 

MAPE Mean absolute percent error 

MAE Mean absolute error 

MOAO Multi-objective aquila optimizer 

MODA Multi-objective dragonfly algorithm 

MOGOA Multi-objective grasshopper optimization algorithm 

MOALO Multi-objective ant lion optimization algorithm 

NWP Numerical weather prediction 

OBMS Optimal benchmark models selection 

PF Point forecast 

PI Prediction interval 

PICP Prediction interval coverage probability 

RMSE Root mean square error 

SDE Standard deviation of the error 

TCN Temporal convolutional network 

WSCFS Wind speed combined forecasting system 

WSP Wind speed prediction 
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2. Methodology 

In this section, we will illustrate the methodologies involved in our WSCFS.  

 

The Fuzzy Information Granulation Technique 

In our study, we adopt FIG to process the original wind speed sequences. The 

procedure is split into three steps，dividing the original sequences, determining the 

window length ( )lw  and building fuzzy information particles. The original wind 

speed sequences ( )i tx ( 1,2,...,6)i   are divided into subsequences with equal length 

as the operational windows, then the fuzzy particle 
s
P  is established through the 

affiliate function, which constructs a fuzzy set 
G  to replace the original sequence. 

1  ( )  s t 
 P x G          (1) 

The data in the operational windows are fuzzified by the affiliate function. In this 

paper, the triangular fuzzy particle is adopted and its affiliate function is defined as: 

1

1
1

1

1
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x λ
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A x λ λ λ

λ x
λ x λ

λ λ




 





 



1     ( ) maxtx λ










 

      (2) 

Where 1( )tx  refers to the original sequences, 
minλ , 

meanλ  and 
maxλ  are the minimum, 

average, and maximum values of each fuzzy particle, respectively. 

Optimal Benchmark Model Selection (OBMS) 

In our study, we choose seven single forecasting models as benchmark models to 

improve the forecasting performance of the WSCFS in different situations, which are 

BPNN, ELM, ENN, GRNN, LSTM, TCN and GRU, respectively. 
In our proposed WSCFS, the OBMS strategy is applied to choose the optimal 

individual models, for enhancing the generalizability and robustness of our proposed 

WSCFS[58]. The process of constructing the CEM criterion and its formula is 

detailed as follows. 

(1) Calculating the SDE, RMSE, MAE, and MAPE of the forecasting values based 

on each benchmark model respectively. 

(2) The calculated error metrics are normalized by using Eq. (3). 

1

1 1

( )
*

( ) ( )

{ }

{ }
j

j j

i N

i N i N

i min

i
max min

 

   






Metrics Metrics

Metrics
Metrics Metrics

                    (3) 

Where jN represents the number of individual models, 
*

iMetrics refers to the 

normalized values of SDE, RMSE, MAE, and MAPE based on individual models. 

(3) Calculating CEM values for each model with Eq. (4). 

 
* * * * *

0.25 0.25 0.25 0.25i ii i i       CEM SDE RMSE MAE MAPE
  (4) 

(4) The five optimal benchmark models are chosen according to the smallest CEM 

values. 

Meta-heuristic Optimization Algorithm 
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In recent years, meta-heuristic optimization algorithms have become an effective 

solution to complicated optimization projects for their non-dependence on gradient 

information, the avoidance of falling into local optimality significantly [59]. 

(a) Aquila Optimizer (AO) 

Laith Abualigah et al.[60] proposed a novel intelligence optimizer, which was 

incited by the hunting behavior of Aquila. This algorithm searches for optimal 

solutions through the four methods of Aquila's hunting process. The principle of the 

algorithm is shown below. 

  Expanded exploration: high soar with a vertical stoop ( 1Ψ ) 

In the first method ( 1Ψ ), Aquila soars high with a vertical stoop to hunt airborne 

birds. This hunting behavior is presented through Eq. (5). 

         1
1 01 1 ic

best mean bestc c c c

m

urrent

urrent urrent ur n

a

rent urr

x

e t

t
t t t t

T
Ψ Ψ Ψ Ψ ε

 
          

 
     (5) 

Where 
maxT  and 

currentt represent the maximal and current iterations.  1 1cur ec r ntt Ψ  

represents the next iterative solution,  tbest ccurrentΨ refers to the optimal solution at 

currentct .   tmean ccurrentΨ  refers to the mean of the solution position at 
currentct , which is 

calculated by     icurrent currenm tean t mean tΨ Ψ  . 1

0

i
ε is a random number in[0,1] . 

  Narrowed exploration: contour flight with short glide attack ( 2Ψ ) 

Aquila hovers low around the hunting area and then glides to hit the target. This 

hunting behavior is presented through Eq. (6). 

      2
2 01 ( ) ( )current curren rt curre

i
best f ntt t D t


        Ψ Ψ Levy Ψ y x ε            (6) 

Where  2 1currentt Ψ  represents the next iterative solution, D  is the dimension of the 

proposed problem, ( )
f

D


Levy  is the Lévy flight function, the detailed calculation is 

given in [60], and  currentr tΨ is the random solution generated in the range 1,..., N  at 

currentt . x  and y  represent the spiral search space, which can be calculated in 

( )jx r sin


   and ( )jy r cos


  , where j dk cr r ρ D
      and 3 2dcθ ω D π

    . 
k


r  

is a value from 1 to 20 for specific search periods, d



D  is an integer, 
c


ρ  and 

c


ω  are 

both constants. 

  Expanded exploration: Slow-flying attack with vertically descent ( 3Ψ ) 

In the third method ( 3Ψ ), the Aquila detects the prey and then swoops down and 

flies low to attack the target. This hunting behavior is presented through Eq. (7).      

       3 3
3 0 01current current curren

i i
best mean tt t t  

 

    
             

  
Ψ Ψ Ψ α ε UB LB ε LB δ        (7)

Where  3 1currentt Ψ  represents the next iterative solution, 3

0

i
ε  is a random number, 



α  and 

δ  are fixed at 0.1. 


UB  and 


LB  refer to the upper and lower bound for 
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the proposed problem, respectively. 

  Narrowed exploration: Walk and grab prey ( 4Ψ ) 

The fourth method is walking and seizing prey. This hunting behavior is 

presented through Eq. (8). 

      4 4
4 41 2 11 0 01 ( )current cu n

i i
best rrent curre t ft t t DΨ QF Ψ G Ψ ε G Levy ε G


                 (8) 

Where  4 1currentt Ψ  represents the next iterative solution, 
1QF denotes quality function, 

which is calculated by  
24

0 max2 1 1

1

i

curre

T

ntt
ε

QF
   . 1G  is a random value in [ 1 1]- , . 2G  

means the flight gradient, which descends from 2 to 0 and its calculation equation is 

 2 max2 1 currentt TG     . 

 

(b) Multi-Objective Aquila Optimizer (MOAO) 

In this section, the proof of pareto optimality, objective function setting, and 

archive with roulette wheel will be presented, respectively. The flow chart and 

pseudo-code of MOAO will be presented in Fig 2 and Table 3.  

  Pareto Optimality 

Multi-objective optimized problems require optimizing one or more two 

objective functions, and in most scenarios, the objective functions conflict with each 

other. Hence, scholars introduced the pareto optimality to address this problem[61]. 

Considering two vectors 1 2 kM ,M , ,M
 

   
 

M = and 1 2 kN ,N , ,N
 

   
 

N = , if 

[ {1,2,..., }: ( ) ( )] [ {1,2,..., }: ( ) ( )]s s s ss S M N s S M N      Η Η Η Η ,where ( )s MΗ  is the ths  

objective function, we refer to M  precedes N ( M N ).  

If none gained solutions precedes M , we refer to M M is the optimal solution, 

i.e., 1,2,..., : / | ( ) ( )s ss S N M   N M Η Η . 

  Archive with Roulette Wheel 

To improve the local and global search capability of MOAO, the pareto optimal 

results are archived. Once the archive is full, the solution with the most adjacent 

individuals will be replaced with a new one based on the roulette wheel mechanism, 

the probability of being replaced is defined by /in qiP , 1q  . 
in  means the 

attachment individuals’ number, and q  is obtained through the pareto mechanism. 

  Objective Functions 

Meanwhile, the MOAO objective function is defined as follows: 

1

1

1
( ) ( ) 100

( ) ( ) , 1,2,...,

K
act pre act

i i i

i

act pre

i i

P P - P P
K

P std P - P i K




  


  



2

Obj

Obj

| | %
Minimize                 (9) 

Where act

i
P  and pre

i
P  denote to the thi actual value and predictive value. 

  Proof 

If the optimal solution ( )
Wt Q  obtained by MOAO doesn't have the minimum 

fitness value, there should be at least one neighboring solution = *  P Q ,( 0*  ). 

Its weight satisfies [ { , ,..., }: ( ) ( )] [ { , ,..., }: ( ) ( )]s s s s

         1 2 1 2s S fit P fit Q s S fit P fit Q , 

so 
P  is saved in the archive, in which ( )

Wt P  precedes ( )
Wt Q . Due to the 

limited storage capacity of the archive, 
Q  is removed from the archive with 

probability /in q  or ranked behind 
P . The position with the highest fitness value is 
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considered to be the optimal position, and the optimal weight matrix is ( )
Wt P  

instead of ( )
Wt Q .The Pareto optimal solutions are proved by the proof of 

contradiction. 

 
Fig. 2. The flow chart of MOAO. 
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Table 3  

Pseudo-code for MOAO 

Algorithm 1: MOAO 

 Objective functions: 

1

1

1
( ) ( ) 100

( ) ( ) , 1,2,...,

K
act pre act

i i i

i

act pre

i i

P P - P P
K

P std P - P i K




  


  



2

Obj

Obj

| | %
Minimize  

Input: (0) (0) (0)( (1), (2), , ( ))
(0)

train n Y = x x x  ——Training Data 

(0)
(0) (0) (0)( ( ), ( 1), , ( ))test n n m  Y x x x ——Testing Data 

Output: W *——Optimal weights via optimization 

 Parameters: 

Intermax - the maximum iteration number  

n - the Aquila’s number  

Fi - the ith Aquila’s fitness function  

xi- the ith Aquila’s position  

t – the number of current iterations  

d - the dimensions’ number 

1 /* Initialize the parameters of MOAO (i.e., 

α , 

δ ,etc.). */ 

2 /* Initialize candidate solution of MOAO randomly. */ 

3 For each Aquila 

4 Calculate objective value by the ranking process. 
5 End for 
6 /* Identify the best search agent X * */ 
7 While the criteria are not fulfilled 
8 For each Aquila 

 9 Update the x , y , 1G , 2G , ( )
f

D


Levy , etc. 

 10       If  2 / 3 maxcurrentt T    then 

11         If 0.5rand   then 

12          step 1: Expanded exploration ( 1Ψ )   

13 /∗ Update the Aquila’s position by Eq.(5).∗/ 

14 If 0.5rand   then 

15 step 2: Narrowed exploration ( 2Ψ ) 

16 /∗  Update the Aquila’s position by Eq.(6).∗/ 
17 End if 
18 End if 

 19 Else  2 / 3c maxurrentt T    then 

20         If 0.5rand   then 

21 step 3: Expanded exploration ( 3Ψ ) 

22 /∗  Update the Aquila’s position by Eq.(7).∗/ 

23 If 0.5rand   then 

24 step 4: Narrowed exploration ( 4Ψ ) 

25 /∗  Update the Aquila’s position by Eq.(8).∗/ 
26 End if 
27 End if 
28 End else 
29 End for 
30 /∗ Check whether Aquila’s position exceeds the search boundary, if so, correct it.∗/ 

31 /∗ Calculate all Aquila’s objective values. ∗/ 

32 /∗ Locate the non-dominated solutions. ∗/ 

33 /∗ Update the archive based on non-dominated solutions. ∗/ 

34 If the archive is filled 

35      /∗ Using Roulette wheel with Pi=ni /q to remove poorer solutions and add better solutions ∗/ 
36 End if 
37 End while 
38 Return archive 

39 Acquire the best W *   
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3. Framework of Our Proposed WSCFS 

In this part, we will introduce our proposed WSCFS, which includes data fuzzy 

granulation, OBMS, PF and IF. The detailed processes of WSCFS are shown below, 

and the framework is depicted in Fig 3. 

Fig. 3. The flow of our WSCFS. 

 

3.1 Data Fuzzy Granulation 

The FIG technique reconstructs and granulates the chaotic original sequences. 

After applying FIG to the original sequence ( )i tx , we can extract three main 

parameters ˆ ( )low tΦ , ˆ ( )upper tΦ  and ˆ ( )trend tΦ , which respectively refer to the lower, 

upper bound, and trend. In our study, we employ ˆ ( )trend tΦ  for the following 

prediction in our proposed WSCFS. 

3.2 Optimal Forecasting Model Selection 

Considering none of any individual forecasting models can achieve satisfactory 

results in all cases, we formulate the OBMS strategy. Based on the rolling prediction 

mechanism, which will be utilized in one-step and multi-step forecasts. Six granulated 

sequences ˆ (1 2880 )trend th thΦ   are applied to the benchmark models for WSP. The 

ˆ (1 2160 )trend th thΦ   serve as the training set for the benchmark models, the

ˆ (2160 2304 )trend th thΦ   serve as the validation set to determine the hyperparameters 

in each benchmark model and validate the training effectiveness of the model, and the 
ˆ (2305 2880 )trend th thΦ   serve as the testing set to verify the performance of candidate 

models. The optimal sequences (2305 2880 ) ( 1,2,...,6 ; 1,2,...,5)
ij

th th i jy   ˆ  will 

be integrated by MOAO to obtain the combined forecasting sequences 

(2737 -2880 )combined

i
th thY

ˆ
( 1,2,...,6)i  . Therefore, the CEM values are calculated based 

on the (2305 2880 )
ij

th thy ˆ  and the candidate models with the smallest CEM are 
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considered as the benchmark models. Specially, the optimal benchmark models in 

different situations are illustrated in Table 4. 
Table 4  
Results of optimal benchmark model in different situations. 
Interval Site 1   Site 2   

 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 

30 min 

FIG-ELM FIG-LSTM FIG-LSTM FIG-LSTM FIG-ELM FIG-ELM 

FIG-ENN FIG-ELM FIG-ELM FIG-ELM FIG-BP FIG-GRU 

FIG-BP FIG-ENN FIG-BP FIG-BP FIG-ENN FIG-ENN 

FIG-LSTM FIG-BP FIG-ENN FIG-ENN FIG-LSTM FIG-BP 

FIG-GRU FIG-GRU FIG-GRU FIG-GRU FIG-GRU FIG-LSTM 

       

60 min 

FIG-ENN FIG-BP FIG-ENN FIG-ENN FIG-ENN FIG-ENN 

FIG-ELM FIG-ELM FIG-LSTM FIG-ELM FIG-ELM FIG-ELM 

FIG-BP FIG-ENN FIG-ELM FIG-BP FIG-BP FIG-GRU 

FIG-LSTM FIG-LSTM FIG-BP FIG-LSTM FIG-LSTM FIG-BP 

FIG-GRU FIG-GRU FIG-GRU FIG-GRU FIG-GRU FIG-LSTM 

       

120 min 

FIG-ELM FIG-ENN FIG-ENN FIG-LSTM FIG-ENN FIG-ENN 

FIG-ENN FIG-ELM FIG-ELM FIG-ELM FIG-ELM FIG-GRU 

FIG-BP FIG-BP FIG-BP FIG-ENN FIG-LSTM FIG-ELM 

FIG-LSTM FIG-LSTM FIG-LSTM FIG-BP FIG-BP FIG-BP 

FIG-GRNN FIG-GRNN FIG-GRNN FIG-GRU FIG-GRU FIG-LSTM 

Note: In this table, the five optimal benchmark models are selected based on the OBMS strategy, 

and the higher-ranked ones imply that they have better forecasting performance. 

 

3.3 Point Forecast 

After using OBMS strategy, the five optimal sequences (2305 2880 )
ij

th thy ˆ  

are integrated into the combined model. In MOAO, the (2305 -2736 )
ij

th thŷ  are 

served as training sets to obtain  i

jw ( 1,2,...,6; 1 2 5)i j  , , ... , the detailed procedure 

for calculating  i

jw  is as follows. 

   
 

 

1 2 ,

ˆ
(2305 2736 ) (2305 -2736 ) 

mean 100%
(2305 2736 ) 

ˆ
     (2305 2736 ) (2305 -2736 )

. . 1 ,

i
j

i
j

i

j

train

i i

i

train

i i

j

arg min Obj Obj

th th th th

th tharg min

std th th th th

s t




   
  
     
 

      



w

w

i

j

w

x Y

x

x Y

w
1

  -2 2 
J

  
i

j
w J

   (10) 

1

(2305 -2736 ) = (2305 -2736 )
J

train i

i j ij

j

th th th thY y


  
ˆ ˆw        (11) 

Furthermore, (2305 -2736 )train

i
th thY

ˆ  will also be utilized in the interval forecast to 

measure the uncertainty features of (2737 -2880 )combined

i
th thY

ˆ
. Then 

(2305 -2736 )
ij

th thŷ  are served as testing sets to be multiplied with  i

jw  to get 

(2737 -2880 )combined

i
th thY

ˆ
. The detailed equation for this process is as follows. 

1

(2737 -2880 ) = (2737 -2880 )
J

combined i

i j ij

j

th th th thY y


  
ˆ ˆw                (12) 

 

3.4 Interval Forecasting Based on Point Forecasting Results 

In our study, four distribution functions (DF), including Lognormal, Weibull, 

Logistic, and Rayleigh distributions, are selected to determine the optimal distribution 
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of (2305 -2736 )train

i
th thY

ˆ . Moreover, in practical applications, since the distribution of 

(2737 -2880 )combined

i
th thY

ˆ  is unknown, these DFs are supposed to be fitted to the real-time 

(2305 -2736 )train

i
th thY

ˆ . The fitting performance largely relies on the distribution 

parameters. Therefore, we adopt two methods to search the optimal parameters of four 

distributions, which are the MLE and AO. The effectiveness of the fitting is also 

evaluated by goodness-of-fit ( 2
R ). Furthermore, the upper and lower bounds of the 

forecasting interval are calculated by the following equations. 

1 ( /2)

ˆ
( (2305 -2736 ))ˆ

(2737 -2880 )
432

train
combined i
i

var th th
Upperbound th th Dist

Y
Y         (13) 

1 ( /2)

ˆ
( (2305 -2736 ))ˆ

(2737 -2880 )
432

train
combined i
i

var th th
Lowerbound th th Dist

Y
Y         (14) 

Where   represents the width adjusted coefficient for the IF, which is fixed to 0.6 

in our study. 1 ( /2)Dist   refers to the quantile of DFs. 

 

4. Experiment and Analysis 

We performed five experiments to validate the effectiveness of our proposed 

WSCFS in this section. Moreover, the dataset source, some statistical metrics of the 

samples, and the indicators employed to evaluate the PF and IF performance are also 

shown in this section. 

 

4.1 Data source presentation 

In our study, we adopt two datasets from Penglai, Shandong, China. Each site 

contains three groups with different time intervals of wind speed sequences. The 

specific data characteristics and the regions of research are shown in Fig 4.  
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Fig. 4. The specific data information and the location of the wind farm. 

 

4.2 Evaluation metrics 

The establishment of evaluation metrics is an essential component of our 

research, hence we applied four indicators to evaluate the performance of PF, and also 

employed three indicators for IF. The SDE, RMSE, MAE, MAPE are adopted as the 

criteria to assess the performance of PF, the PICP, AWD, and AIS are applied to 

verify the performance of IF. Specifically, it is emphasized that PICP and prediction 

interval (PI) are intrinsically conflicting, the PICP increases, the width of PI also 

increases, whereas a wide PI is typically pointless. Therefore, the AIS is the 

comprehensive metric for evaluating the IF capability, by rewarding valid PI and 

penalizing invalid PI. The definitions of these metrics and the formulas are detailed in 

Table 5. 
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Table 5  

evaluation indicators applied in our study. 
Metric Definition Expression 

SDE  
  The standard deviation of N forecasting 

error 
2

1

1
( )

K
act pre

i i

i

P P
K 

  SDE  

RMSE  
The square root of the average error 

squares 
 

2

1

1 K
act pre

i i

i

P P
K 

  RMSE  

MAE  
The mean absolute error of N forecasting 

results 
1

1 K
act pre

i i

i

P P
K 

 MAE  

MAPE  The average absolute percentage error 
1

1
100%

act preK
i i

act
i i

P P

K P


 MAPE  

( )

i


UB  

The upper bound of the prediction 

interval 
( )

1 ( /2)

( )pre
pre

i i

var P
P Dist

K



    UB  

( )

i


LB  

The lower bound of the prediction 

interval 
( )

1 ( /2)

( )pre
pre

i i

var P
P Dist

K



    LB  

( )
PICP  Prediction interval coverage probability 

( ) ( )

( ) ( ) ( )

( ) ( )
1

1,   [ , ]
C ,C

0,   [ , ]

actK
i i i

i i act
i i i i

P LB UB
K

P LB UB

 

  

 


 
  


PICP  

( )
AWD  Accumulated width deviation 

( )

1

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )
AWD AR

( ) / ( ),   

AWD                      0,              [ , ]

( ) / ( ),  

K
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i

act act

i i i i i i

act

i i i i

act act

i i i i i i

LB P UB LB P LB

P LB UB

P UB UB LB P UB
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( )
AIS  The average interval score of the model  

 

( )

1

( ) ( )

( ) ( ) ( )

( ) ( )

( )
S

2 4 ,   

S 2 ,                          [ , ] 

2 4 ,    

K

i

act act

i i i i i
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i i i i

act act

i i i i i
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Note: 
act

ip ,
pre

ip and K  refer to the actual value, predicted value, and sample size, respectively,

 denotes the significance level,   represents the width adjusted coefficient for the PI, which is 

fixed to 0.6 in our study. 1 ( /2)Dist   refers to the quantile of DFs, AR means the range of actual 

values and 
i

  can be defined as 
( ) ( )

i i iUB LB     . 

 

4.3 Experimental settings and presentation 
Five experiments are implemented to validate the superiority of our proposed 

WSCFS in this section. The detailed parameter settings of tested models involved in 

the experiments will be presented in Table 6. 

 
Table 6 
Parameter details of key models. 

Model Parameter Implication Value or Function 

BPNN nh Number of nodes in the hidden layer 10 

 ni Number of nodes in the input layer 5 

 lr Learning rate 0.0001 

 Af Activation function Sigmoid 

    

ELM nh Number of nodes in the hidden layer 16 

 ni Number of nodes in the input layer 5 

 Af Activation function Sin 

    

ENN nh Number of nodes in the hidden layer 15 

 ni Number of nodes in the input layer 5 

 Af Activation function Tansig 
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GRNN ni Number of nodes in the input layer 5 

 sp Spread 1 

    

LSTM nh Number of nodes in the hidden layer 15 

 ni Number of nodes in the input layer 5 

 eh Training number 100 

 op Optimization algorithm Adam 

    

GRU nh Number of nodes in the hidden layer 64 

 ni Number of nodes in the input layer 5 

 eh Training number 200 

 op Optimization algorithm Adam 

    

TCN nh Number of nodes in the hidden layer 4 

 ni Number of nodes in the input layer 5 

 eh Training number 500 

 op Optimization algorithm Adam 

    

MOAO ier Number of iterations 200 

 ach Archive size 500 

 ner Number of individuals 40 

    

MOALO、MODA、MOGOA ie Number of iterations 200 

 ac Archive size 500 

 nr Number of individuals 40 

 

Experiment I: Model selection based on OBMS strategy 

We conducted this experiment to select five optimal models from seven 

benchmark models to improve forecasting effectiveness in our proposed WSCFS, 

which are FIG-BP (nh=10, ni=5, lr=0.0001), FIG-ELM (nh=16, ni=5), FIG-ENN 

(nh=15, ni=5), FIG-GRNN (ni=5, sp=1), FIG-LSTM (nh=15, ni=5, eh=100), FIG-TCN 

(nh=4, ni=5, eh=1000) and FIG-GRU (nh=64, ni=5, eh=200) respectively. Detailed 

results of the OBMS strategy are shown in Table 7. More specifics regarding this 

experiment are as follows: 

 

(a) For 30-min intervals, in the one-step forecasting, we can notice that FIG-ELM 

has the best forecasting performance at Site 1 with the CEM  value of 0.0000, and 

FIG-LSTM achieves the most satisfactory results at Site 2 with the CEM  value of 

0.0000. As the forecasting steps increase, we can find that FIG-BP, FIG-ELM, 

FIG-ENN, FIG-LSTM and FIG-GRU always yield desirable forecasting results. 

(b) For 60-min intervals, the optimal models are similar to the 30-min intervals, 

which are FIG-BP, FIG-ELM, FIG-ENN, FIG-LSTM and FIG-GRU. At Site 2, we 

can find that FIG-ENN achieves the optimal forecasting results in one-step and 

multi-step forecasting with the
1

 0.0023
step

CEM site 2 , 
2

 0.0087
step

CEM site 2 and 
3

 0.0003
step

CEM site 2  respectively. 

(c) For 120-min intervals, we observe that the optimal models vary for different sites. 

At Site 2, the optimal models remain the same as the previous 30-minute intervals and 

60-minute intervals, but at Site 1, the optimal benchmark models change to FIG-BP, 

FIG-ELM, FIG-ENN, FIG-GRNN, FIG-LSTM. This indicates that as the site and 

time intervals change, the benchmark models will also change, which implies the 

OBMS strategy can be applied to different forecasting step. 

 

Remark. According to the OBMS strategy, we select the optimal models based on 

CEM , which can significantly enhance the forecasting performance of the WSCFS. 
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Table 7  
The CEM results of optimal benchmark model selection. 

Note: The above table gives the optimal model options under different situations based on  
* * * * *

0.25 0.25 0.25 0.25i ii i i       CEM SDE RMSE MAE MAPE . 

The CEM values for the optimal benchmark models for different situations are bolded.  

  

Datasets Models 
30 min interval 60 min interval 120 min interval 

1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 

Site 1 

FIG-BP 0.1002 0.0465 0.0456 0.1011 0.0070 0.0366 0.0943 0.2113 0.3353 

FIG-ELM 0.0000 0.0300 0.0429 0.0368 0.0174 0.0253 0.0029 0.1660 0.2486 

FIG-ENN 0.0444 0.0369 0.0491 0.0000 0.0195 0.0000 0.0611 0.0000 0.0613 

FIG-GRNN 0.6949 0.1595 0.2125 0.5893 0.1269 0.2272 0.4752 0.3644 0.4260 

FIG-LSTM 0.1018 0.0111 0.0000 0.1249 0.0282 0.0094 0.1410 0.2741 0.3374 

FIG-TCN 0.9992 1.0000 1.0000 1.0000 0.8016 1.0000 1.0000 1.0000 1.0000 

FIG-GRU 0.1099 0.0903 0.0606 0.2799 0.0474 0.1545 0.4775 0.5779 0.5320 

Site 2 

FIG-BP 0.0187 0.0422 0.0865 0.0495 0.0356 0.0291 0.1617 0.1224 0.1831 

FIG-ELM 0.0086 0.0152 0.0226 0.0144 0.0097 0.0167 0.1154 0.0738 0.1638 

FIG-ENN 0.0214 0.0222 0.0594 0.0023 0.0087 0.0003 0.0571 0.0000 0.0000 

FIG-GRNN 0.5285 0.2965 0.1737 0.6149 0.2582 0.1525 0.4534 0.3342 0.4825 

FIG-LSTM 0.0000 0.0454 0.1543 0.1330 0.0696 0.0612 0.0108 0.1066 0.2166 

FIG-TCN 1.0000 1.0000 1.0000 1.0000 1.0000 0.7917 1.0000 1.0000 0.7672 

FIG-GRU 0.0937 0.1084 0.0309 0.3348 0.2184 0.0261 0.2937 0.1686 0.1466 
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Experiment II: Comparison to other benchmark models based on FIG technique 

The purpose of this experiment aims to verify the WSCFS owns superior 

forecasting performance and effectiveness compared to seven benchmark models. The 

detailed results of this experiment are presented in Table 8, 9. More specifics 

regarding this experiment are as follows: 

 

(a) For 30-min intervals, the WSCFS (ier=200, ach=500, ner=40) shows the best 

performance in two sites. The values of 1 step
SDE

site1
, 1 step

RMSE
site1

, 1 step
MAE

site 1
, 

1 step
MAPE

site1
 are 0.4912, 0.4897, 0.3821 and 4.1216% respectively. Meanwhile, the 

WSCFS still achieves the optimal forecasting performance in Site 2 in all cases. For 

instance, the 1 step
MAPE

site 2
 is 5.0643%, which is decreased by 

1  2.4505
FIG-BP

%
step D , 

1  2.4204
FIG-ELM

%
step D , 

1  2.4737
FIG-ENN

%
step D , 

1  3.2359
FIG-GRNN

%
step D , 

1  2.4422
FIG-LSTM

%
step D , 

1  4.8343
FIG-TCN

%
step D  and  

1  2.5424
FIG-GRU

%
step D  respectively. 

Take one-step at 30-min intervals for instance, the comparative results are depicted in 

Fig. 5. 

(b) For 60-min intervals, our proposed WSCFS demonstrates the best-evaluated 

metric, which are 1  0.9801step SDE
site1

, 1 0.9050step RMSEsite1
, 1  0.7219step MAE

site1
 and 

1  13.1232step MAPE
site1

%  respectively. At Site 2, the WSCFS as before performs better 

than the single models in all situations.  

(c) The situation for the 120-minute intervals is analogous to the 30-minute and 

60-minute intervals. The WSCFS still achieves the best forecasting effectiveness and 

stability in any situation. 

 

Remark. According to the analysis of experiment two, the performance of our 

proposed WSCFS outshines the benchmark models.
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Fig. 5. A comparison of our proposed WSCFS and benchmark models in Site1 at 30-min intervals. 
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Table 8 
Predictive performance comparison of our proposed WSCFS and benchmark models in Site1. 

Interval Models 
SDE RMSE MAE      MAPE (%) 

Step-1 Step-2 Step-3 Step-1 Step-2 Step-3  Step-1  Step-2 Step-3 Step-1 Step-2 Step-3 

30 min 

FIG-BP 0.8062 1.1035  1.3198 0.8047  1.1082  1.3285  0.6174 0.8694  1.0126 6.7328 9.5449 11.0923 

FIG-ELM 0.7848 1.1009   1.3500   0.7842  1.0995  1.3493  0.6039 0.8646  1.0408 6.5955 9.5710 11.3828 

FIG-ENN 0.7851 1.1299  1.3515 0.7843  1.1302  1.3514  0.6056 0.8802  1.0376 6.6511 9.6962 11.3408 

FIG-GRNN 0.9075 1.1991  1.4242  0.9078  1.2004  1.4281  0.7089 0.9241  1.0842 7.6451  10.0346 11.8657 

FIG-LSTM 0.8041 1.1013  1.3618 0.8453  1.1310  1.3606 0.6619 0.8872  1.0373 7.0978 9.7167 11.4604 

FIG-TCN 1.0638 1.6504 1.5563 1.0736 1.6544 1.5514 0.8077 1.3115  1.2024 8.7643  14.6475 13.7019 

FIG-GRU 0.8070 1.1315 1.3591 0.8050 1.1294 1.3618 0.6282 0.8957  1.0406 6.8732 9.9472 11.3816 

Proposed WSCFS 0.4912 0.6276 0.8776 0.4897  0.6261  0.8757  0.3821 0.4980  0.6847 4.1216 5.5656 7.7479 

60 min 

FIG-BP 1.2699  2.0497  2.4985 1.2661 2.0481  2.4903 0.9670 1.5385  1.8760  18.9698 30.6460 36.8597 

FIG-ELM 1.2720  2.0214  2.5468 1.2708  2.0188  2.5422 0.9501 1.5279  1.9547  17.6122 29.5009 36.9795 

FIG-ENN 1.2333 2.0477  2.5080 1.2360  2.0499  2.5047  0.9114 1.5482  1.9247  16.5335 29.7458 36.3279 

FIG-GRNN 1.4661 2.1386 2.7406 1.4649 2.1345 2.7479 1.1193 1.6859  2.1801  21.9121 32.8771 45.4528 

FIG-LSTM 1.2748  2.0887  2.5819 1.2977  2.0819  2.5797  0.9981 1.5850  1.9667  19.9990 32.2531 37.5999 

FIG-TCN 1.7106 2.6897 3.1287 1.7056 2.6824 :3.1179 1.3266 2.0074  2.4072  24.6015 41.4330 45.8778 

FIG-GRU 1.4490 2.0823 2.6452 1.4566 2.0774 2.6477 1.0698 1.5899  2.0609  22.4586 32.6330 43.4168 

Proposed WSCFS 0.9081 1.6160 2.1641 0.9050  1.6120  2.1616 0.7219 1.2466  1.6603  13.1232 23.8782 30.7028 

120 min 

FIG-BP 0.8977  1.3494 1.5166  0.8982 1.4574  1.7104  0.7192 1.2002  1.4509  19.6284 36.1213 44.7397 

FIG-ELM 0.8444 1.3315 1.5290  0.8809 1.4500  1.7119  0.7111 1.2277  1.4513  19.4964 36.6110 44.5304 

FIG-ENN 0.8512  1.2607 1.4510 0.9028  1.35991  1.6212 0.7431 1.1437  1.3739  20.9691 33.3771 41.3651 

FIG-GRNN 0.9256 1.3289  1.5406 0.9814  1.4568 1.7479 0.8143 1.2545  1.4801  23.7753 37.6344 45.4528 

FIG-LSTM 0.8698 1.3671 1.5468 0.9184 1.4873 1.8697 0.7382 1.2440  1.5497  21.1383 37.7367 50.2111 

FIG-TCN 1.2860 2.0066 2.2928 1.3231 1.6767 2.4660 1.0214 1.6767  1.9543  27.6763 47.1806 56.9219 

FIG-GRU 1.0123  1.5891 1.7543  1.0580  1.7658  1.8734  0.8326 1.4213  1.5416  23.3034 43.8049 47.5398 

Proposed WSCFS 0.6217 1.0634 1.2514 0.6252  1.0942  1.3649 0.4803 0.8890  1.1459  12.7251 24.3349 31.9833 

Note: The above table specifically shows the PF evaluation index values of our proposed WSCFS and seven benchmark models in Site 1. The lower the values of the 

evaluation index, the better the performance of the model. The optimal index values are bolded. 
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Table 9 
Predictive performance comparison of our proposed WSCFS and benchmark models in Site 2. 

Interval Models 
SDE RMSE MAE MAPE (%) 

Step-1 Step-2 Step-3 Step-1 Step-2 Step-3 Step-1 Step-2  Step-3  Step-1 Step-2 Step-3 

30 min 

FIG-BP 0.9115 1.2259 1.5005 0.9131 1.2294 1.5042 0.6875 0.9528 1.1747 7.5184 10.7117 13.1650 

FIG-ELM 0.9068 1.2277 1.4933 0.9072 1.2313 1.4955 0.6808 0.9496 1.1602 7.4847 10.6360 13.0312 

FIG-ENN 0.9176 1.2253 1.5009 0.9178 1.2283 1.5018 0.6887 0.9530 1.1717 7.5380 10.6905 13.1745 

FIG-GRNN 0.9983 1.2852 1.4866 1.0039 1.2923 1.4945 0.7653 1.0048 1.1518 8.3002 11.0896 12.7831 

FIG-LSTM 0.9135 1.2127 1.5181 0.9138 1.2625 1.5514 0.6891 0.9728 1.2084 7.5065 10.6369 13.3217 

FIG-TCN 1.1497 1.4709 1.7814 1.1458 1.4717 1.7752 0.8763 1.1567 1.4046 9.8986 13.1590 16.0614 

FIG-GRU 0.9195 1.2403 1.4751 0.9164 1.2362 1.5046 0.6914 0.9721 1.1699 7.6067 10.9455 12.9143 

Proposed WSCFS 0.5635 0.8499 1.0545 0.5619 0.8472 1.0538 0.4539 0.6318 0.8210  5.0643 7.1645 9.4055 

60 min 

FIG-BP 1.2130 1.9611 2.4642 1.2123 1.9575 2.4559 0.9009 1.4731 1.8103  17.9064 30.6906 37.6699 

FIG-ELM 1.2211 1.9770 2.4517 1.2209 1.9775 2.4456 0.9103 1.4916 1.8072  18.2885 30.6571 37.5283 

FIG-ENN 1.2032 1.9752 2.4572 1.2012 1.9705 2.4500 0.8842 1.4753 1.8351  17.2521 29.9598 36.8603 

FIG-GRNN 1.3968 2.0634 2.5146 1.3965 2.0597 2.5095 1.0636 1.5234 1.8992  22.9530 32.9678 40.8140 

FIG-LSTM 1.2474 1.9646 2.4683 1.2590 1.9688 2.4622 0.9359 1.4811 1.8381  19.2904 32.0748 39.4295 

FIG-TCN 1.3965 2.3897 2.7959 1.3956 2.4035 2.8663 1.1189 1.8141 2.2569  22.3284 37.5376 48.9463 

FIG-GRU 1.3552 2.0663 2.4612 1.3684 2.0869 2.4542 1.0148 1.5375 1.8223  22.7513 34.3327 37.7232 

Proposed WSCFS 1.0360 1.6704 2.4261 1.0333  1.6647 2.4219  0.7805 1.2486 1.7404  15.2888 24.0599 33.7250 

120 min 

FIG-BP 0.8027 1.1595 1.3449 0.8437 1.2877 1.5640 0.6882 1.0730 1.3112  19.9194 34.5306 43.7706 

FIG-ELM 0.7652 1.1565 1.3432 0.8148 1.2833 1.5749 0.6661 1.0726 1.3132  19.6929 34.6125 44.2253 

FIG-ENN 0.7622 1.1402 1.3342 0.7987 1.2722 1.5503 0.6546 1.0515 1.2843  18.9548 33.2935 42.6051 

FIG-GRNN 0.8557 1.2360 1.3993 0.9308 1.4049 1.6573 0.7947 1.1741 1.3901  25.2919 39.4474 47.5824 

FIG-LSTM 0.7657 1.2126 1.3418 0.7736 1.2797 1.5319 0.6296 1.0724 1.2893  17.5104 34.3864 43.5440 

FIG-TCN 1.2323 1.6919 2.2928 1.3133 1.8141 2.4660 1.0483 1.4589 1.9543  29.2509 42.9915 56.9219 

FIG-GRU 0.7845 1.1671 1.3289 0.8201 1.3231 1.5788 0.6809 1.1131 1.3190  19.3648 36.2661 44.1340 

Proposed WSCFS 0.5757 0.9825 1.2432 0.5812  0.9935  1.3735 0.4537 0.7256 1.1275  13.1076 24.7976 36.6291 

Note: The above table presents the PF evaluation index values of our proposed WSCFS and seven benchmark models in Site 2. The smaller the values of the 

evaluation index, the better the performance of the model. The optimal index values are bolded.
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Experiment III: Compared to the individual models without pre-treatment 

techniques 

The purpose of this experiment is to verify the effectiveness of our WSCFS 

compared with other classical individual models. The evaluation indicators for these 

models are presented in Table 10，11. The details of the experimental finds are 

illustrated below: 

 

(a) For 30-min intervals, the WSCFS always outperformed the conventional neural 

networks. the values of the evaluation indicators are 1  0 5635step SDE
site 2

. , 
1 0.5619step RMSE
site2

, 1  0.4539step MAE
site 2

and 1  5.0630step MAPE
site 2

% respectively. In 

multi-step forecasting, the WSCFS with the 2  7.1645step MAPE
site 2

% and
3  9.4055step MAPE
site 2

% . By contrast, the ranks of the BP, ELM, ENN, GRNN, LSTM, 

TCN and GRU are  2 2  6  4  3  5  7  1step R
site 2

, , , , , , . Take Site 2 at 30-min intervals for 

example, the comparative results are depicted in Fig. 6. 

(b) For 60-min intervals, our proposed WSCFS still possesses satisfactory 

effectiveness concerning the individual models in any situation, the error metrics are 
2  1.6160step SDE
site1

, 2 1.6120step RMSE
site1

, 2  1.2466step MAE
site1

and 
2  23.8782step MAPE
site1

% respectively. In contrast, the remaining seven single models 

show a significantly inferior forecasting performance compared to our proposed 

WSCFS in all cases.  

(c) For 120-min intervals, the most satisfactory model continues to be the WSCFS in 

all cases, the MAPE metrics are 1  13.1076step MAPE
site 2

% , 2  24.7976step MAPE
site 2

%and 

3  36.6291step MAPE
site 2

% respectively, the indicators are declined by 1  16.5796
BP

%
step D , 

1  18.7527
ELM

%
step D , 1  15.0606

ENN
%

step D , 
1  16.3941
GRNN

%
step D , 

1  15.6194
LSTM

%
step D , 

1  21.2055
TCN

%
step D  and  

1  19.3815
GRU

%
step D  respectively. 

 

Remark. As shown in this experiment, our proposed WSCFS still achieves the best 

forecasting effectiveness in all situations. 
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Fig. 6. The comparative results of our proposed WSCFS and classical models in Site 2 at 30-min intervals. 

 

 



26 
 

Table 10 
Comparative results of our proposed WSCFS with the classical models in Site1. 

Interval Models 
SDE RMSE MAE MAPE (%) 

Step-1 Step-2 Step-3 Step-1 Step-2 Step-3  Step-1  Step-2   Step-3 Step-1 Step-2 Step-3 

30 min 

BP 0.9672  1.2362  1.4676  0.9678  1.2366  1.4648 0.7492 0.9614 1.1360 8.1852 10.6598 12.5024 

ELM 1.0214 1.2452   1.4684  1.0183 1.2436  1.4679 0.7816 0.9634 1.1191 8.6749 10.6791 12.2839 

ENN 0.9302  1.2154  1.4690 0.9288  1.2144  1.4678 0.7271 0.9451 1.1168 8.0287 10.4680 12.3047 

GRNN 1.0401 1.3136 1.5488 1.0437  1.3180  1.5583 0.8090 1.0065 1.1768 8.8197 11.0245 12.8097 

LSTM 0.9422  1.2134  1.4382  0.9731  1.2344  1.5240  0.7618 0.9551 1.1358 8.2555 10.4712 12.0484 

TCN 1.2575 1.7362 1.9675 1.2611 1.7304 1.9608 0.9594 1.3362 1.4752 10.6185 14.9521 15.9010 

GRU 0.9573 1.2356 1.4445 0.9539 1.2318 1.4409 0.7321 0.9514 1.1256 8.1722 10.6849 12.5684 

Proposed WSCFS 0.4912 0.6276 0.8776 0.4897  0.6261  0.8757  0.3821 0.4980 0.6847 4.1216 5.5656 7.7479 

60 min 

BP 2.0145  2.3730  2.8610 2.0154 2.3681  2.8595  1.4811 1.8783 2.2707 27.4307 37.1303 42.0051 

ELM 1.8467  2.8284  2.8695 1.8468  2.8186  2.8755  1.4145 2.2282 2.3549 26.2315 40.4399 43.0242 

ENN 1.8972 2.3510  2.7871  1.8940  2.3512  2.7917  1.4237 1.8457 2.2269 26.2529 34.2205 40.0391 

GRNN 1.9849 2.4703 2.6366 1.9851 2.4773 2.6333 1.5126 1.9774 2.1000 27.9322 36.7102 40.3824 

LSTM 1.9523  2.3975 2.7864  1.9474  2.3909  2.7813 1.4854 1.8763 2.2329 27.9202 36.8345 44.0615 

TCN 2.2119 2.6852 3.3151 2.2046 2.6773 3.3053 1.7040 2.1654 2.6705 31.7809 40.3754 50.2771 

GRU 1.9335 2.4467 2.8681 1.9288 2.4389 2.8896 1.4685 1.8985 2.2867 28.1648 37.0898 46.9865 

Proposed WSCFS 0.9081 1.6160 2.1641 0.9050  1.6120  2.1616 0.7219 1.2466 1.6603 13.1232 23.8782 30.7028 

120 min 

BP 1.2116 1.4326 1.5833 1.2757 1.5886 1.8142 1.0182 1.3481 1.5526 29.1523 41.0618 47.8477 

ELM 1.2639 1.5949 1.6962 1.3627 1.7981 1.9564 1.0970 1.5360 1.6681 31.9733 46.3124 52.1950 

ENN 1.2090 1.4577 1.5915 1.2596 1.5833 1.7934 1.0024 1.3634 1.5468 28.0191 40.0604 47.1335 

GRNN 1.2238 1.4446 1.5524 1.2816 1.5552 1.8098 1.0278 1.3224 1.5608 29.4321 39.3955 48.1273 

LSTM 1.1836 1.4724 1.5962 1.2548 1.5632 1.8822 1.0102 1.3086 1.5945 28.8072 38.5880 49.8817 

TCN 1.5563 1.9943 2.2933 1.6070 2.1757 2.4708 1.2991 1.7482 2.0002 35.6633 49.8283 56.3275 

GRU 1.2357 1.6747 1.8743 1.2881 1.8350 2.0485 1.0183 1.4828 1.6369 28.1520 44.7245 50.2641 

Proposed WSCFS 0.6217 1.0634 1.2514 0.6252  1.0942  1.3649 0.4803 0.8890 1.1459 12.7251 24.3349 31.9833 

Note: The above table gives the detailed PF results of the evaluation metrics for our proposed WSCFS and seven classical models in Site 1. The smaller the values of 

the evaluation metrics, the better the performance of the model. The best evaluation metrics are bolded. 
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Table 11 
Comparative results of our proposed WSCFS with the classical models in Site 2. 

Interval Models 
SDE RMSE MAE        MAPE (%) 

Step-1 Step-2 Step-3 Step-1 Step-2 Step-3 Step-1  Step-2   Step-3 Step-1 Step-2 Step-3 

30 min 

BP 1.0445 1.3211 1.5741 1.0415 1.3189 1.5724 0.7989 1.0471 1.2329 8.9736 11.8106 13.9606 

ELM 1.0609 1.3470 1.5872  1.0606 1.3429 1.5896 0.8210 1.0596 1.2532 9.1109 12.0340 14.1043 

ENN 1.0341 1.3312 1.5818 1.0329 1.3314 1.5820 0.7868 1.0559 1.2414 8.8258 11.9053 14.0107 

GRNN 1.0767 1.3451 1.5617 1.0796 1.3458 1.5616 0.8468 1.0652 1.2070 9.4004 11.8507 13.5725 

LSTM 1.0396 1.2947 1.5817 1.0381 1.3189 1.5808 0.7969 1.0801 1.2460 8.9436 12.6059 14.0687 

TCN 1.4254 1.8133 2.0000 1.4208 1.8081 2.0079 1.0943 1.3971 1.6294 12.1940 15.7037 18.1002 

GRU 1.0185 1.2958 1.5292 1.0327 1.2993 1.5244 0.7978 1.0246 1.2016 8.8702 11.5022 13.6272 

Proposed WSCFS 0.5635 0.8499 1.0545 0.5619  0.8472 1.0538 0.4539 0.6318  0.8210 5.0643 7.1645 9.4055 

60 min 

BP 1.8547 2.3375 2.5822 1.8488 2.3298 2.5752 1.3545 1.7910  2.0041 26.2618 36.5613 41.4711 

ELM 1.7854 2.3756 2.5476   1.7468 2.3673 2.5395 1.4371 1.8069  1.9801 28.0806 36.0594 39.1714 

ENN 1.8348 2.3134 2.5246 1.8286 2.3054 2.5158 1.3291 1.7661  1.9826 25.8142 34.9473 39.3005 

GRNN 1.9498 2.3046 2.5525 1.9438 2.2973 2.5440 1.4742 1.7888  1.9960 29.3929 36.5520 41.2269 

LSTM 1.8677 2.3157 2.5422 1.8613 2.3080  2.5369 1.3804 1.7619  1.9575 26.6025 36.6265 40.1665 

TCN 2.2575 2.7497 3.1538 2.2808 2.7402 3.1634 1.6933 2.1339  2.4260 35.2821 40.4581 50.0731 

GRU 1.9219 2.4768 2.5080 1.9284 2.4933 2.4994 1.4120 1.9158  1.9464 28.2885 41.6243 38.7396 

Proposed WSCFS 1.0360 1.6704 2.4261 1.0333  1.6647 2.4219  0.7805 1.2486  1.7404 15.2888 24.0599 33.7250 

120 min 

BP 1.1327 1.3534 1.4886 1.1930 1.5002 1.7743 0.9592 1.2809  1.4979 28.8660 41.3772 51.2367 

ELM 1.0854 1.3846 1.4506   1.1468 1.5533 1.7126 0.9371 1.3199  1.4255 28.0806 43.5503 48.0741 

ENN 1.0723 1.3364 1.4384 1.1259 1.4761 1.6769 0.9094 1.2417  1.3965 27.2525 39.8582 46.8440 

GRNN 1.1079 1.3787 1.4919 1.1680 1.5154 1.6879 0.9617 1.2678  1.3781 29.6098 41.1917 47.0450 

LSTM 1.1047 1.3474 1.5280 1.1340 1.4957  1.8071 0.9114 1.2589  1.5114 26.8936 40.4170 51.6688 

TCN 1.5084 1.8416 2.2213 1.5409 1.8978 2.3389 1.2225 1.5650  1.8422 34.6531 46.0031 56.0811 

GRU 1.1345 1.5410 1.8743 1.1891 1.7214 2.0485 0.9829 1.3970  1.6369 29.8600 44.1791 50.2641 

Proposed WSCFS 0.5757 0.9825 1.2432 0.5812  0.9935  1.3735 0.4537 0.7256  1.1275 13.1076 24.7976 36.6291 

Note: The above table gives the detailed PF results of the evaluation metrics for our proposed WSCFS and seven classical models in Site 2. The smaller the values of 

the evaluation metrics, the better the performance of the model. The best evaluation metrics are bolded. 
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Experiment Ⅳ: Comparison of our WSCFS and the combined models employing 

other optimization algorithms. 

This trial is aim to validate the performance of the WSCFS and combined 

forecasting models (CFM) utilizing other optimization algorithms, which are ALO 

(ier=200, ach=500, ner=40), DA (ier=200, ach=500, ner=40) and GOA (ier=200, 

ach=500, ner=40). The calculated evaluation metrics are shown in Table 12 and 13, 

and more details will be discussed in the following: 

 

(a) For 30-min intervals, there is no wide discrepancy between the CFM employing 

different optimization algorithms with the average value of 1 5.4782step MAPE
site1

% . The 

MAPE value of our proposed WSCFS is 4.1216% in the same situation, which is the 

minimum value among all the CFMs. The error metrics are declined by 
1  1.1865
ALO

%
step D , 1  1.3133

DA
%

step D  and 
1  1.5701
GOA

%
step D  respectively. As for the 

multi-step prediction, the WSCFS is always the dominant version compared to CFMs 

employing various optimization algorithms. Take Site 1 at 30-min intervals for 

instance, the comparative results are depicted in Fig. 7.   

(b) For 60-min intervals, the discrepancy between the WSCFS and the CFMs using 

different optimization algorithms is not significant in one-step forecasting. However, 

as the forecasting steps increase, this gap is increasing. Taking three-step forecasting 

in Site1 for instance, our proposed WSCFS owns the smallest 3 30.7028step MAPE
site1

%, 

simultaneously, the relatively inferior forecasting performance is ALO-CFM with the 
3 31.7808step MAPE
site1

%.  

(c) As similar to the 60-min intervals, in the one-step forecasting, there is no 

noticeable performance gap between the WSCFS and the CFMs, the WSCFS still 

achieves satisfactory forecasting accuracy and stability among all CFMs. 

 

Remark. Compared to CFMs employing different optimization algorithms, the 

WSCFS still owns the highest effectiveness in all cases. Moreover, the differences in 

forecasting performance between ALO-CFM, DA-CFM, and GOA-CFM are not 

significant. 
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Fig. 7 A comparison of our proposed WSCFS and combined models in Site1 at 30-min interval. 
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Table 12 

Comparative results of our proposed WSCFS and CFMs using different optimization algorithms in Site 1. 

Interval Models 
SDE RMSE MAE MAPE (%) 

Step-1 Step-2 Step-3 Step-1 Step-2 Step-3 Step-1 Step-2 Step-3 Step-1 Step-2 Step-3 

30 min 

ALO-CFM 0.6177 0.8589 1.0038 0.6162  0.8565  1.0020  0.4802 0.6711 0.7767 5.3081 7.4983 8.7722 

DA-CFM 0.6356 0.9041 0.9740 0.6335  0.9015 0.9721 0.4941 0.7030 0.7628 5.4349 7.8804 8.6308 

GOA-CFM 0.6605 0.9123 1.0577 0.6584  0.9095  1.0553  0.5173 0.7162 0.8105 5.6917 8.0190 9.2020 

Proposed WSCFS 0.4912 0.6276 0.8776 0.4897  0.6261  0.8757  0.3821 0.4980  0.6847 4.1216 5.5656 7.7479 

60 min 

ALO-CFM 1.1490 1.7509 2.1901 1.1466  1.7474  2.1857  0.8990 1.3279 1.6978 15.7373 25.2472 31.7807 

DA-CFM 1.1492 1.8537 2.2262 1.1457  1.8498  2.2295  0.9084 1.4364 1.8047 15.8979 27.5108 34.7349 

GOA-CFM 1.1325 1.8105 2.4260 1.1313  1.8048  2.4247  0.8911 1.3707 1.8740 15.5690 26.7575 35.1170 

Proposed WSCFS 0.9081 1.6160 2.1641 0.9050  1.6120  2.1616 0.7219 1.2466 1.6603 13.1232 23.8782 30.7028 

120 min 

ALO-CFM 0.6486 1.1329 1.2788 0.6641  1.1777  1.3753  0.5193 0.9665 1.1628 13.8439 27.3083 33.5137 

DA-CFM 0.6530 1.1062 1.4294 0.6729  1.1362 1.5060 0.5333 0.9374 1.2703 14.5150 25.8559 36.8066 

GOA-CFM 0.6617 1.1218 1.3729 0.6700  1.1682  1.4484 0.5323 0.9568 1.2329 13.9879 26.7779 34.5747 

Proposed WSCFS 0.6217 1.0634 1.2514 0.6252  1.0942  1.3649 0.4803 0.8890 1.1459 12.7251 24.3349 31.9833 

Note: The above table shows the detailed contents of our proposed WSCFS and the CFMs using different optimization algorithms in Site 1. The most satisfactory 

index values are bolded. 
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Table 13 

Comparative results of our proposed WSCFS and CFMs using different optimization algorithms in Site 2. 

Interval Models 
SDE RMSE MAE MAPE (%) 

Step-1 Step-2 Step-3 Step-1 Step-2 Step-3 Step-1 Step-2 Step-3 Step-1 Step-2 Step-3 

30 min 

ALO-CFM 0.7023 1.0827 1.0945 0.7007 1.0798 1.0927 0.5700 0.8430 0.8485 6.3507 9.6921 9.7308 

DA-CFM 0.6844 1.0952 1.1923 0.6841 1.0945 1.1921 0.5553 0.8601 0.8656 6.1846 9.8395 9.9290 

GOA-CFM 0.6720 0.9199 1.0943 0.6703 0.9172 1.0907 0.5385 0.7132 0.8514 6.0273 8.0603 9.8075 

Proposed WSCFS 0.5635 0.8499 1.0545 0.5619  0.8472 1.0538 0.4539 0.6318 0.8210 5.0643 7.1645 9.4055 

60 min 

ALO-CFM 1.0549 1.6929 2.4519 1.0514 1.6898 2.4377 0.8183 1.2625 1.8377 16.1666 26.4274 35.0431 

DA-CFM 1.0688 1.7044 2.4542 1.0657 1.7017 2.4484 0.8216 1.2728 1.8898 15.6689 25.0570 33.9303 

GOA-CFM 1.0506 1.6805 2.4496 1.0473 1.6860 2.4498 0.8031 1.2542 1.8456 16.1927 24.9170 35.3620 

Proposed WSCFS 1.0360 1.6704 2.4261 1.0333  1.6647 2.4219  0.7805 1.2486 1.7404 15.2888 24.0599 33.7250 

120 min 

ALO-CFM 0.7895 1.1319 1.2572 0.7871 1.1943 1.4023 0.6260 0.9403 1.1586 16.6680 27.7421 37.9108 

DA-CFM 0.6796 1.0787 1.2517 0.6896 1.0776 1.4226 0.5603 0.9125 1.1810 15.7409 25.9288 39.1962 

GOA-CFM 0.6754 1.2701 1.2753 0.6862 1.1834 1.4057 0.5589 0.9787 1.1616 16.0133 29.4898 38.2319 

Proposed WSCFS 0.5757 0.9825 1.2432 0.5812  0.9935  1.3735 0.4537 0.7256 1.1275 13.1076 24.7976 36.6291 

Note: The above table shows the detailed contents of our proposed WSCFS and the CFMs using different optimization algorithms in Site 2. The most satisfactory 

index values are bolded.
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ExperimentⅤ: Comparative results of interval forecast according to point forecast 

and fitting distribution. 

In this experiment, we employ AO and MLE to search the optimal parameters of 

four DFs. Moreover, based on 2
R , the DFs are fitted to the forecasting sequence to 

determine the optimal distribution in different situations. To validate the supremacy of 

the WSCFS in terms of IF, three CFMs are employed for comparison. The 2
R  of the 

WSCFS are shown in Table 14, 15. Furthermore, it can be noticed that the AO 

strategy possesses better fitting performance than the MLE. Take one-step for instance, 

the results of distribution fitting are depicted in Fig. 8. The significance level α  is 

set at 0.05, 0.1 and 0.15, and the detailed results are detailed in Table 16, 17, the 

specific experimental conclusions are as follows: 

 

(a) For 30-min intervals, the PICP of the WSCFS outperforms all CFMs in all 

situations. Taking Site 1 for example, the PICP of WSCFS are  0 05

  
100.000.

1-step

 PICP , 

 0 1

  
100.000.

1-step

 PICP  and  0 15

  
98.6111.

1-step

 PICP ,which are increased by 0 05 4.8611 .

ALO
I ,

0 1 7.6389 .

ALO
I  and 0 15 8.3333 .

ALO
I  respectively. Simultaneously, the AWD values of the 

WSCFS are also the lowest in all cases. Take Site 2 for instance, the AWD values of 

the WSCFS are 0 05 0.0000.

1-step

 AWD , 0 05 0.0041.

2-step

 AWD  and 0 05 0.0094.

3-step

 AWD  

respectively, which are declined by 1 0.0027
DA

D
step  , 2 0.0078

DA
D

step   and 3 0.0035
DA

D
step   

respectively. As for AIS, it can provide a comprehensive evaluation on the 

performance of the PI, and the lower the absolute value, the better the effectiveness of 

the PI. The AIS acquired from the WSCFS is lower than the three CFMs. 

(b) As for 60-min intervals, despite the IP performance of the WSCFS is not as better 

as 30-minute intervals, which is attributed to the increasing uncertainty embedded in 

the wind speed sequence as the forecasting time intervals increase. However, 

compared to the other three CFMs, the WSCFS is still the optimal model in terms of 

IF. 

(c) For 120-min intervals, the results are compatible with the above two scenarios, 

the WSCFS is still the optimal model compared to the remaining three CFMs. Take 

Site 1 for instance, the IF results of our proposed WSCFS are depicted in Fig. 9. 

 

Remark. Through fitting the optimal DFs to our proposed WSCFS, significantly 

improves the effectiveness of the WSCFS concerning IF. 
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Fig. 8 The comparative results of distribution fitting for two methods.
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Fig. 9. The IF results of our proposed WSCFS in Site 1. 



35 
 

Table 14 
The results of fitting distributions for our proposed WSCFS in Site 1. 

Forecasting Interval Step Method Lognormal Weibull Rayleigh Logistic Optimal Distribution 

30min 

1-step 
AO 0.9927 0.9880 0.9816 0.9861 Lognormal 
MLE 0.9814 0.9876 0.9698 0.9804 Lognormal 

2-step 
AO 0.9916 0.9911 0.9782 0.9866 Lognormal 
MLE 0.9890 0.9874 0.9649 0.9807 Lognormal 

3-step 
AO 0.9902 0.9798 0.9692 0.9798 Lognormal 
MLE 0.9897 0.9832 0.9545 0.9771 Lognormal 

60min 

1-step 
AO 0.9859 0.9993 0.9435 0.9985 Weibull 
MLE 0.9820 0.9990 0.9113 0.9970 Weibull 

2-step 
AO 0.9899 0.9988 0.9382 0.9967 Weibull 
MLE 0.9856 0.9978 0.9032 0.9945 Weibull 

3-step 
AO 0.9937 0.9972 0.9226 0.9958 Weibull 
MLE 0.9897 0.9956 0.8815 0.9933 Weibull 

120min 

1-step 
AO 0.9911 0.9731 0.9682 0.9617 Lognormal 
MLE 0.9850 0.9575 0.9597 0.9599 Lognormal 

2-step 
AO 0.9882 0.9684 0.9307 0.9643 Lognormal 
MLE 0.9813 0.9419 0.9306 0.9606 Lognormal 

3-step 
AO 0.9811 0.9632 0.8873 0.9668 Lognormal 
MLE 0.9738 0.9248 0.8824 0.9598 Lognormal 

Note: The above table presents the fitting distributions of the forecasting sequences for PF at different time intervals in Site 1. The fitting effectiveness is  

calculated by 2
R , the detailed calculation equation of 2

R  is defined as:    
2 2

1 1

K K
pre act act act

i i i i

i i

P P P P
 

   2
R , where 

pre

iP ,
act

iP  and 
act

iP refer to 

the predicted values, actual values and the mean of actual values respectively. The best-fitting 2
R  is bolded in the table. 
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Table 15 
The results of fitting distributions for our proposed WSCFS in Site 2. 

Forecasting Interval Step Method Lognormal Weibull Rayleigh Logistic Optimal Distribution 

30min 

1-step 
AO 0.9951 0.9945 0.9677 0.9906 Lognormal 
MLE 0.9913 0.9916 0.9512 0.9866 Lognormal 

2-step 
AO 0.9945 0.9934 0.9640 0.9885 Lognormal 
MLE 0.9928 0.9892 0.9470 0.9847 Lognormal 

3-step 
AO 0.9944 0.9912 0.9512 0.9889 Lognormal 
MLE 0.9942 0.9881 0.9314 0.9858 Lognormal 

60min 

1-step 
AO 0.9932 0.9986 0.9683 0.9962 Weibull 
MLE 0.9916 0.9969 0.9540 0.9949 Weibull 

2-step 
AO 0.9859 0.9977 0.9600 0.9958 Weibull 
MLE 0.9822 0.9970 0.9368 0.9931 Weibull 

3-step 
AO 0.9555 0.9951 0.9119 0.9943 Weibull 
MLE 0.9550 0.9911 0.8752 0.9927 Weibull 

120min 

1-step 
AO 0.9972 0.9826 0.9630 0.9773 Lognormal 
MLE 0.9940 0.9563 0.9570 0.9721 Lognormal 

2-step 
AO 0.9780 0.9606 0.8301 0.9635 Lognormal 
MLE 0.9673 0.9018 0.8147 0.9589 Lognormal 

3-step 
AO 0.9723 0.9480 0.8055 0.9533 Lognormal 
MLE 0.9550 0.8973 0.7795 0.9500 Lognormal 

Note: The above table presents the fitting distributions of the forecasting sequences for PF at different time intervals in Site 2. The fitting effectiveness is  

calculated by 2
R , the detailed calculation equation of 2

R  is defined as:    
2 2

1 1

K K
pre act act act

i i i i

i i

P P P P
 

   2
R , where 

pre

iP ,
act

iP  and 
act

iP refer to 

the predicted values, actual values and the mean of actual values respectively. The best-fitting 2
R  is bolded in the table. 
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Table 16 
The comparative results of interval forecasting for our proposed WSCFS and other tested models in Site 1. 
Forecasting 

Interval 

Forecasting 

Step 

Alpha Proposed WSCFS FIG-MOALO FIG-MODA FIG-MOGOA 

AIS PICP AWD AIS PICP AWD AIS PICP AWD AIS PICP AWD 

30min one 0.05 -0.3007 100.000 0.0000 -0.2946 95.1389 0.0026 -0.3062 93.7500 0.0032 -0.3330 91.6667 0.0048 

 0.1 -0.5204 100.000 0.0000 -0.5387 92.3611 0.0047 -0.5555 91.6667 0.0048 -0.5690 90.9722 0.0053 

 0.15 -0.7156 98.6111 0.0012 -0.7534 90.2778 0.0056 -0.7713 90.9722 0.0057 -0.7758 86.1111 0.0086 

two 0.05 -0.3255 98.6111 0.0012 -0.4965 84.7222 0.0092 -0.5476 79.1667 0.0119 -0.5829 81.9444 0.0118 

 0.1 -0.5758 96.5278 0.0031 -0.7639 79.8611 0.0119 -0.8400 76.3889 0.0148 -0.8638 77.0833 0.0153 

 0.15 -0.7940 95.8333 0.0039 -0.9996 73.6111 0.0162 -1.0851 74.3056 0.0169 -1.1068 72.9167 0.0171 

three 0.05 -0.4245 91.6667 0.0066 -0.6726 79.1667 0.0133 -0.6351 75.4129 0.0187 -0.8117 76.3889 0.0154 

 0.1 -0.7311 85.4167 0.0091 -0.9866 73.6111 0.0158 -0.9427 72.9167 0.0156 -1.1291 69.4444 0.0200 

 0.15 -0.9973 82.6389 0.0110 -1.2534 70.1389 0.0187 -1.2041 70.1389 0.0179 -1.3945 67.3611 0.0220 

60min one 0.05 -0.4620 97.9167 0.0004 -0.5431 95.1389 0.0019 -0.5311 97.2222 0.0005 -0.5366 97.2222 0.0014 

 0.1 -0.8731 96.5278 0.0013 -0.9942 92.3611 0.0033 -0.9634 95.1389 0.0015 -0.9796 94.4444 0.0024 

 0.15 -1.2544 96.5278 0.0014 -1.3970 92.3611 0.0035 -1.3548 93.7500 0.0025 -1.3932 91.6667 0.0038 

two 0.05 -1.0546 83.9444 0.0073 -1.1707 83.3333 0.0075 -1.3722 77.7778 0.0108 -1.2256 79.3792 0.0078 

 0.1 -1.5279 81.8611 0.0091 -1.7068 81.2500 0.0089 -1.9127 76.3889 0.0122 -1.7796 77.7317 0.0099 

 0.15 -1.9479 80.7778 0.0108 -2.1546 79.5556 0.0115 -2.3591 73.6111 0.0142 -2.2473 75.3691 0.0114 

three 0.05 -2.2622 67.8889 0.0184 -2.1408 66.6667 0.0186 -2.5978 57.6389 0.0237 -2.6976 63.1944 0.0207 

 0.1 -2.7669 62.5000 0.0200 -2.7168 61.8056 0.0204 -3.1445 54.8611 0.0267 -3.2754 61.1111 0.0230 

 0.15 -3.1969 61.1111 0.0218 -3.1891 58.3333 0.0225 -3.5788 50.6944 0.0304 -3.7328 59.7222 0.0253 

120min one 0.05 -0.3115 92.3611 0.0046 -0.3547 87.5000 0.0060 -0.3606 87.5000 0.0062 -0.3971 84.7222 0.0099 

 0.1 -0.5291 88.1944 0.0070 -0.5799 83.3333 0.0084 -0.5768 85.4167 0.0085 -0.6060 82.6389 0.0112 

 0.15 -0.7137 83.3333 0.0095 -0.7727 81.9444 0.0099 -0.7666 79.8611 0.0101 -0.7804 78.4722 0.0130 

two 0.05 -0.9998 65.9722 0.0196 -1.4911 50.0000 0.0339 -1.3959 49.3056 0.0350 -1.7410 40.9722 0.0486 

 0.1 -1.3497 56.9444 0.0272 -1.7739 45.8333 0.0395 -1.6817 43.7500 0.0419 -1.9962 38.8889 0.0547 

 0.15 -1.6163 52.0833 0.0318 -2.0004 43.0556 0.0434 -1.9078 40.9722 0.0472 -2.1882 38.8889 0.0585 

three 0.05 -1.8561 45.8333 0.0387 -2.2803 36.8056 0.0529 -2.7351 29.8611 0.0655 -2.7674 25.0000 0.0756 

 0.1 -2.2383 40.9722 0.0487 -2.5559 34.7222 0.0584 -3.0117 27.7778 0.0725 -3.0468 23.6111 0.0838 

 0.15 -2.5173 36.8056 0.0542 -2.7726 33.3333 0.0625 -3.2297 25.6944 0.0786 -3.2507 22.9167 0.0895 

Note: The above table shows the specific IF results of our WSCFS and the tested models in Site 1. The significance level α  is set as 0.05α , 0.1α  

and 0.15α respectively. The optimal results are bolded in the table.
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Table 17 
The comparative results of interval forecasting for our proposed WSCFS and other tested models in Site 2. 
Forecasting 

Interval 

Forecasting 

Step 

Alpha Proposed WSCFS FIG-MOALO FIG-MODA FIG-MOGOA 

AIS PICP AWD AIS PICP AWD AIS PICP AWD AIS PICP AWD 

30min one 0.05 -0.3308 100.000 0.0000 -0.3279 93.0556 0.0041 -0.3146 95.1389 0.0027 -0.3174 95.8333 0.0020 

 0.1 -0.5816 97.2222 0.0024 -0.5871 89.5833 0.0063 -0.5736 92.3611 0.0041 -0.5780 92.3611 0.0041 

 0.15 -0.8095 97.2222 0.0025 -0.8160 89.5833 0.0066 -0.8058 90.9722 0.0044 -0.8112 90.9722 0.0050 

two 0.05 -0.4344 93.7500 0.0041 -0.6909 84.7222 0.0107 -0.7401 82.6389 0.0119 -0.5287 85.4167 0.0092 

 0.1 -0.7505 91.6667 0.0046 -1.0279 79.1667 0.0118 -1.0740 75.0000 0.0156 -0.8243 82.6389 0.0113 

 0.15 -1.0200 89.5833 0.0069 -1.3149 76.3889 0.0140 -1.3582 71.5278 0.0191 -1.0774 79.1667 0.0126 

three 0.05 -0.6265 86.1111 0.0094 -0.6614 85.4167 0.0096 -0.7231 81.2500 0.0129 -0.6700 83.3333 0.0104 

 0.1 -0.9742 81.8611 0.0124 -1.0084 80.9444 0.0129 -1.0654 75.6944 0.0166 -1.0206 78.4722 0.0127 

 0.15 -1.2662 77.7778 0.0141 -1.3046 76.3889 0.0140 -1.3560 72.9167 0.0177 -1.3212 74.3056 0.0143 

60min one 0.05 -0.5144 97.2222 0.0010 -0.5928 96.6111 0.0011 -0.5594 96.6111 0.0023 -0.4690 95.1389 0.0030 

 0.1 -0.9554 95.8333 0.0011 -1.0362 95.6111 0.0012 -0.9562 91.6667 0.0044 -0.8661 92.3611 0.0041 

 0.15 -1.3574 95.1389 0.0017 -1.4400 94.8333 0.0027 -1.3620 90.9722 0.0047 -1.2132 92.3611 0.0043 

two 0.05 -1.0870 84.0278 0.0075 -0.9595 82.6389 0.0077 -1.2270 81.2500 0.0093 -1.0734 79.8611 0.0096 

 0.1 -1.5772 82.6389 0.0085 -1.4526 78.4722 0.0094 -1.7261 77.0833 0.0114 -1.5233 75.6944 0.0124 

 0.15 -2.0067 81.2500 0.0099 -1.8728 77.7778 0.0104 -2.1447 75.0000 0.0127 -1.9090 72.2222 0.0146 

three 0.05 -2.9611 61.1111 0.0304 -3.1254 56.2500 0.0311 -3.6316 45.8333 0.0438 -3.5751 44.4444 0.0431 

 0.1 -3.4424 56.9444 0.0340 -3.6408 52.0833 0.0354 -4.1231 41.6667 0.0494 -4.0228 39.5833 0.0474 

 0.15 -3.8600 52.0833 0.0367 -4.0448 45.8333 0.0405 -4.4963 40.9722 0.0521 -4.3768 36.8056 0.0508 

120min one 0.05 -0.3155 89.5833 0.0062 -0.6080 74.3056 0.0233 -0.5459 75.6944 0.0166 -0.7211 70.8333 0.0332 

 0.1 -0.5119 84.7222 0.0082 -0.8306 64.5833 0.0277 -0.7738 69.4444 0.0193 -0.9331 63.8889 0.0365 

 0.15 -0.6818 78.4722 0.0124 -1.0223 58.3333 0.0319 -0.9679 63.8889 0.0231 -1.1111 61.8056 0.0393 

two 0.05 -0.9821 60.5295 0.0136 -1.3068 48.6111 0.0300 -2.0088 40.2778 0.0754 -1.9941 34.7222 0.0656 

 0.1 -1.2390 56.8917 0.0196 -1.5919 44.4444 0.0361 -2.2129 33.3333 0.0853 -2.2210 30.5556 0.0731 

 0.15 -1.5672 50.3296 0.0239 -1.8229 41.6667 0.0392 -2.3760 31.2500 0.0908 -2.4001 29.1667 0.0783 

three 0.05 -2.2313 38.1944 0.0501 -2.5245 36.1111 0.0573 -2.7202 32.6389 0.0661 -2.6272 35.4167 0.0643 

 0.1 -2.5040 36.8056 0.0557 -2.7690 32.6389 0.0655 -2.9494 29.8611 0.0732 -2.8578 31.2500 0.0727 

 0.15 -2.7132 34.7222 0.0612 -2.9640 31.9444 0.0700 -3.1322 29.1667 0.0780 -3.0423 29.8611 0.0781 

Note: The above table shows the specific IF results of our WSCFS and the tested models in Site 2. The significance level α  is set as 0.05α , 0.1α  

and 0.15α respectively. The optimal results are bolded in the table.
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5. Discussion  

In this section, we further discuss the PF and IF results to validate the superior 

performance of the WSCFS, which involves the Diebold-Mariano (DM) test, metrics 

improvement ratio (IR), and forecasting sensitivity analysis. Moreover, the practical 

applications of our proposed WSCFS will be further illustrated. 

 

5.1 Diebold-Mariano (DM)-test 

It is insufficient to use the error evaluation indicators to illustrate the WSCFS has 

superior performance than the tested models. Therefore, the DM test is applied to 

verify the significant difference between the WSCFS and tested models. Moreover, 

we also tested the discrepancy between the forecasting sequences obtained by the 

proposed WSCFS and the original sequences. 

We define ˆ ˆ ˆ( , )i a b

var ij ijΩ    as a variance function. The ˆ a

ij  and ˆ b

ij  represent the 

PF error or IF score of the WSCFS and other tested models. As for the test of 

forecasting and original sequences, ˆ a

ij  and ˆ b

ij  refer to the forecasting sequences 

and original sequences. 

The DM statistic is calculated by: 

               1

2

ˆ ˆ ˆ( , )
T

i a b

v a r i j i j

t

T

DM
T

Ω  





 
  




       (15) 

Where  T  represents the length of the sequence, 2  represents the variance of 

ˆ ˆ ˆ( , )i a b

var ij ijΩ   . 

For the test of PF, the formulation of the null hypothesis 
0

H  and alternative 

hypothesis 
1H  are as follows. 

( ) ( )var var

ˆ ˆ
: , nΩ Ω       

      

a b

ij ij0
H E error E error     (16) 

1 ( ) ( )  var var

ˆ ˆ
: , nΩ Ω       

      

a b

ij ijH E error E error     (17) 

While for IF, the null hypotheses 
0

H  and alternative hypotheses 
1H  are defined as 

follows. 

( ) ( )var var

ˆ ˆ
: , nΩ Ω       

      

a b

ij ij0
H E score E score     (18) 

1 ( ) ( )  var var

ˆ ˆ
: , nΩ Ω       

      

a b

ij ijH E score E score     (19) 

For the test of forecasting sequences and original sequences, the null hypotheses 
0

H  

and alternative hypotheses 
1H  are determined by the following formulas. 

              ( ) ( )v a r v a r

ˆ ˆ
: , nΩ Ω         

      

a b

0 ij ij
H E forecast E original       (20)  

1 ( ) ( )  var var

ˆ ˆ
: , nΩ Ω       

      

a b

ij ij
H E forecast E original      (21) 

The specific values of DM statistics are presented in Table 18-21 respectively. 

The detailed analysis is illustrated below. 

 

(a) In PF, comparing with the benchmark models, it is apparent that almost all the 

models pass the significance test at the confidence level  0.1α   in all cases. As for 

CFMs, it can be noticed that all the tests are significant, excluding one model in Site 1. 

Moreover, by comparing with some classical neural network models, almost all DM 
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statistics values are higher than 
0.01/2 2.58Z . The DM test further validates the 

performance of our WSCFS-PF compared to other models for PF. 

(b) As for IF, we adopt the PI score to gauge the discrepancy between the WSCFS 

and three CFMs. It can be observed that most of the DM statistics values are higher 

than 
0.1/2 1.645Z  . The largest DM statistic is 6.7688, which is higher than 

0.01/2 2.58Z  . Therefore, the DM test applied to the IF performance suggests that 

there are significant differences between the WSCFS-IF and CFMs-IF. 

(c) As can be seen in Table 21, the DM statistic values all fall into the acceptance 

field in any case, which indicates that we cannot reject the null hypothesis and believe 

that there is no discrepancy between the forecasting sequences of the proposed 

WSCFS and the original sequences, further demonstrating that our proposed WSCFS 

possesses superior forecasting performance.
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Table 18 
The PF results of the DM test in Site 1. 

Models 30 min 60 min 120 min 

 Step-1 Step-2 Step-3 Step-1 Step-2 Step-3 Step-1 Step-2 Step-3 

FIG-BP 4.8069* 6.6153* 4.9453* 4.1605* 4.0514* 2.5018** 5.6094* 4.8962* 5.2656* 

FIG-ELM 5.0913* 6.4587* 5.0701* 3.9130* 3.6994* 3.0884* 5.8253* 5.8001* 5.2337* 

FIG-ENN 4.9675* 6.5512* 5.0094* 3.5176* 4.4731* 2.9866* 6.4704* 4.7871* 4.1269* 

FIG-GRNN 6.2571* 6.6309* 5.3096* 5.2212* 4.4654* 3.8063* 6.8819* 6.0859* 5.5002* 

FIG-LSTM 5.2985* 6.5344* 4.8920* 4.1322* 4.1009* 3.2287* 6.2717* 5.6762* 6.3872* 

FIG-TCN 4.6131* 5.5526* 5.4445* 5.1759* 4.9250* 4.4938* 6.3758* 6.7711* 5.6427* 

FIG-GRU 5.2170* 6.8575* 5.1144* 4.2008* 3.9963* 3.5885* 5.0377* 4.8411* 5.2878* 

FIG-MOALO 4.7894* 5.2557* 5.5525* 3.9745* 3.0325* 1.5246 2.7709* 5.3328* 1.6533*** 

FIG-MODA 5.1672* 5.6233* 5.8747* 4.2097* 4.4635* 1.7628*** 2.9573* 4.1293* 4.8743* 

FIG-MOGOA 5.6550* 5.8277* 6.2171* 3.8810* 4.1342* 3.0048* 2.1405** 5.3409* 3.4527* 

BP 7.0053* 6.4438* 5.5229* 5.5431* 4.7418* 5.0753* 7.0114* 6.0385* 5.8358* 

ELM 6.3900* 6.6786* 5.2952* 7.2432* 5.0789* 5.4092* 8.1483* 7.1326* 6.4676* 

ENN 7.1011* 6.5845* 5.1564* 6.9830* 4.7390* 4.8114* 6.9825* 6.0441* 5.7519* 

GRNN 7.5154* 6.7468* 5.0146* 6.7302* 5.7557* 5.7209* 7.2967* 5.8791* 5.9056* 

LSTM 7.0818* 6.4827* 4.9988* 7.0594* 5.0796* 4.4145* 7.5658* 5.3803* 5.7864* 

TCN 6.7735* 7.5707* 5.3454* 7.2342* 6.0160* 6.5255* 8.2909* 6.7912* 6.7813* 

GRU 6.9132* 6.5086* 5.6774* 6.5178* 5.3960* 4.3287* 6.9837* 5.5074* 4.6251* 

Note: The PF results of DM test values for our proposed WSCFS and tested models in Site 1 are detailed in the above table, and the 
0

H  and 
1H  are 

( ) ( )var var

ˆ ˆ
: , n

a b

ij ij0H E error E error       
      
Ω Ω  and 

1 ( ) ( )  var var

ˆ ˆ
: , n

a b

ij ijH E error E error       
      
Ω Ω , where 

a

ijerror  and 
b

ijerror  refer to the forecasting error of our proposed 

WSCFS and tested models respectively. The DM statistic is calculated as 
2

1

ˆ
( , ) /

T
a b

i
ij ijvar

t

DM error error T
T





       
 Ω . Moreover, the asterisks *, **, and *** denote a 

significance level of 1%, 5%, and 10% respectively. 
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Table 19 
The PF results of the DM test in Site 2. 

Models 30 min 60 min 120 min 

 Step-1 Step-2 Step-3 Step-1 Step-2 Step-3 Step-1 Step-2 Step-3 

FIG-BP 4.4254* 5.9913* 5.3977* 2.0193** 2.9467* 3.0177* 4.9828* 4.4076* 3.3685* 

FIG-ELM 4.3787* 5.9385* 5.3934* 2.0516** 3.1663* 3.4606* 4.8124* 4.4582* 3.7454* 

FIG-ENN 4.2748* 5.8190* 5.6073* 1.9648** 3.0454* 3.1298* 4.3682* 4.5722* 3.2463* 

FIG-GRNN 5.4917* 5.8003* 4.6431* 3.2547* 3.0237* 4.1300* 7.4829* 5.8788* 4.6510* 

FIG-LSTM 4.4016* 5.5346* 4.7714* 2.3006** 3.0653* 2.7409* 4.0176* 3.5597* 5.5538* 

FIG-TCN 4.8030 5.7069* 5.7786* 3.5926* 4.2360* 2.3196** 6.0826* 3.8629* 4.7172* 

FIG-GRU 4.5204 6.0728* 5.2130* 3.0865* 3.4643* 1.9665** 5.0266* 3.0049* 3.6456* 

FIG-MOALO 5.3844* 5.7663* 4.8182* 2.1437** 2.8885* 2.0204** 3.4931* 2.5555* 1.9550*** 

FIG-MODA 4.6077* 6.0283* 2.9489* 2.4395** 2.9693* 1.9743** 3.1049* 3.6878* 2.5814* 

FIG-MOGOA 4.1890* 2.9185* 4.7814* 2.6859* 2.3177** 2.0956** 3.5637* 2.2473** 2.1666** 

BP 6.1153* 6.3205* 5.3314* 4.7930* 4.2349* 3.4390* 7.4523* 6.8977* 5.8056* 

ELM 6.5326* 6.7664* 5.5344* 4.6713* 4.1021* 4.1484* 7.9101* 7.2992* 4.8007* 

ENN 6.0151* 6.3557* 5.2853* 4.6820* 3.9365* 3.0526* 7.6333* 6.6323* 4.5205* 

GRNN 7.0896* 6.4258* 4.8786* 5.2427* 3.4779* 4.1679* 8.2145* 7.0945* 4.3096* 

LSTM 6.2868* 7.4169* 5.4344* 4.9840* 3.9012* 3.1185* 7.3409* 5.7886* 5.7934* 

TCN 7.5001* 6.1665* 6.6630* 5.5713* 5.4327* 4.6232* 6.9545* 6.5549* 5.7707* 

GRU 6.0167* 5.9516* 5.3212* 5.4045* 4.6553* 2.1986** 7.9693* 5.1260* 5.7519* 

Note: The PF results of DM test values for our proposed WSCFS and tested models in Site 2 are presented in the above table, and the 
0

H  and 
1H  are 

( ) ( )var var

ˆ ˆ
: , n

a b

ij ij0H E error E error       
      
Ω Ω  and

1 ( ) ( )  var var

ˆ ˆ
: , n

a b

ij ijH E error E error       
      
Ω Ω , where 

a

ijerror  and 
b

ijerror  are refer to the forecasting errors of our 

proposed WSCFS and tested models respectively. The DM statistic is calculated as 
2

1

ˆ
( , ) /

T
a b

i
ij ijvar

t

DM error error T
T





       
 Ω . Moreover, the asterisks *, **, and 

*** denote a significance level of 1%, 5%, and 10% respectively. 
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Table 20 
The IF results of the DM test for our proposed WSCFS and tested models. 

Note: The IF results of DM test values for our proposed WSCFS and tested models are presented in the above table, and the 
0

H  and 
1H  are 

( ) ( )var var

ˆ ˆ
: , n

a b

ij ij0H E score E score       
      
Ω Ω  and 

1 ( ) ( )  var var

ˆ ˆ
: , n

a b

ij ijH E score E score       
      
Ω Ω , where 

a

ijscore  and 
b

ijscore  are refer to the interval score of our proposed 

WSCFS and tested models respectively. The DM statistic is calculated as 
2

1

ˆ
( , ) /

T
a b

i
ij ijvar

t

DM score score T
T





       
 Ω . Moreover, the asterisks *, **, and *** denote 

a significance level of 1%, 5%, and 10% respectively. 

Forecasting interval Model 1-step Forecasting 2-step Forecasting 3-step Forecasting 

 = 

0.05 

 = 

0.10 

 = 

0.15 

 = 

0.05 

 = 

0.10 

 = 

0.15 

 = 

0.05 

 = 

0.10 

 = 

0.15 

The IF values of the DM test for our proposed WSCFS and tested models in Site1 

30 min FIG-MOALO 1.4410 1.6424 2.0308** 2.4626** 2.6550* 2.8104* 3.4959* 3.8200* 4.0013* 

 FIG-MODA 1.5864 2.0979** 2.4103** 2.7037* 2.9761* 3.1834* 3.3168* 3.6443* 3.8072* 

 FIG-MOGOA 1.7169*** 2.6073* 3.2926* 2.2582** 2.5947* 2.8922* 3.2695* 3.5781* 3.7743* 

60 min FIG-MOALO 2.4531** 2.1181** 2.1627** 1.4465 1.9033*** 2.2132* 1.5618 1.6239 1.5181 

 FIG-MODA 2.3063** 1.9466*** 1.9111*** 2.1756** 2.6565* 2.9277* 2.5207** 3.0282* 3.1291* 

 FIG-MOGOA 3.0810* 2.5891* 2.6158* 1.3817 1.8457*** 2.3604** 2.4365** 2.6769* 2.7950* 

120 min FIG-MOALO 2.3475** 1.5970 5.0016* 4.5607* 4.2857* 2.1730** 2.3678** 2.4294** 2.0074** 

 FIG-MODA 1.8519*** 1.9649** 4.6309* 3.6163* 2.9924* 3.4291* 5.4404* 4.9910* 4.7553* 

 FIG-MOGOA 2.1713** 2.2157** 6.7370* 6.7688* 6.6303* 4.5902* 5.6047* 5.1642* 4.8428* 

 

The IF values of the DM test for our proposed WSCFS and tested models in Site 2 

30 min FIG-MOALO 1.6251 1.9602** 2.1427** 3.3494* 3.5785* 3.6946* 2.7961* 2.5963* 2.2700** 

 FIG-MODA 1.6729*** 1.5380 1.5464 3.6965* 3.8844* 3.9914* 3.0229* 2.9529* 2.7913* 

 FIG-MOGOA 1.6611*** 1.5912 1.7673*** 2.3147** 2.0107** 1.7763*** 3.1166* 2.7104* 2.2612** 

60 min FIG-MOALO 1.9821** 1.9384*** 1.9065*** 1.8767*** 1.7140*** 1.9966** 4.4019* 4.2506* 4.1110* 

 FIG-MODA 1.6341 1.6896*** 1.6935*** 1.6551*** 2.0076** 1.8001*** 3.7186* 3.3922* 3.1782* 

 FIG-MOGOA 1.7008*** 1.8791*** 1.5034 2.0956** 1.6697*** 1.6662*** 2.4514** 2.1743** 2.0797** 

120 min FIG-MOALO 3.2300* 3.9330* 4.0648* 4.1952* 4.0800* 3.9676* 1.9980** 1.9429*** 1.8466*** 

 FIG-MODA 3.2319* 3.9888* 4.1195* 4.5244* 4.5170* 4.4786* 2.3016** 2.1489** 2.0811** 

 FIG-MOGOA 3.4754* 3.8648* 3.9984* 3.3572* 3.2995* 3.2302* 1.9088*** 1.7502*** 1.6823*** 
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Table 21 

The DM results for the forecasting sequence of our proposed WSCFS and original sequence. 

Note: The DM test values for the sequences of WSCFS and original sequences are presented in 

the above table, and the 
0

H  and 
1H  are ( ) ( )var var

ˆ ˆ
: , n

a b

0 ij ij
H E forecast E original       

      
Ω Ω  and 

1 ( ) ( )  var var

ˆ ˆ
: , n

a b

ij ij
H E forecast E original       

      
Ω Ω , where 

a

ij
forecast  and 

b

ij
original  are refer to the 

forecasting sequences of our proposed WSCFS original sequences. The DM statistic is calculated 

as 
2

1

ˆ
( , ) /

T
a b

i

var ij ij

t

DM forecast original T
T





       
 Ω . 

 

5.2 Improvement ratio (IR) analysis 

In this section, we adopt two vital metrics including MAPE and PICP to 

determine the improvement ratio (IR) of the WSCFS and tested models. The 

calculation formula for the IR is defined as follows: 

100
metrics metrics

metrics
Ρ


 

compared proposed

metrics

compared

%           (22) 

Where metrics
compared and metrics

proposed  refer to the evaluation metrics of the tested 

models and the WSCFS.  

The contents of IR are shown in Table 22 and 23 and the analysis of the IR is 

shown below. 

 

(a) As can be seen in Table 22, the PF performance of the WSCFS is superior to the 

tested models. We adopted a simple average strategy for two sites to gauge the 

average IR. For the benchmark models，the maximum IR is
1 54.6054step P
MAPE

% ,the 

minimum IR is acquired by FIG-MOALO in 60-min intervals with the value of 
3 3.5765step P
MAPE

% .For classical neural networks, the IR values for BPNN are 
1 46.6051step P
MAPE

%， 2 43.5636step P
MAPE

%  and 
1 35.3285step P
MAPE

%  in 30-min intervals. 

The above IR analysis of WSCFS-PF once more illustrates that our proposed WSCFS 

achieves more satisfactory forecasting results than the tested models. 

(b) Simultaneously, the performance of WSCFS-IF is also dominated over three 

CFMs-IF. The maximum IR is 
2 67.6710step P
PICP

% , the minimum IR is obtained by 

FIG-MODA in 60-min intervals with the value of 
1 1.0818step P
PICP

%  at 0.05α . 

Furthermore, As the time interval and forecasting step increase, the values of IR 

increase in parallel. For the above IR analysis, it can be concluded that our proposed 

WSCFS owns more excellent forecasting effectiveness than the tested models 

regarding both PF and IF. 

Interval 
Site 1 Site 2 

Step-1 Step-2 Step-3 Step-1 Step-2 Step-3 
30 min 0.2611 0.5503 0.6152 0.4411 0.3115 0.8970 

60 min 0.3436 0.5309 0.8228 1.4302 1.4208 1.5275 

120 min 1.6206 1.0389 1.3830 1.5538 1.4795 1.5935 
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Table 22 
The PF average values of IR for our adopted models. 

Models 
30 min 60 min 120 min 

Step-1 Step-2 Step-3 Step-1 Step-2 Step-3 Step-1 Step-2 Step-3 

FIG-BP 35.7123 37.4028 29.3537 22.7194 21.8444 13.5879 34.6834 30.4083 22.4141 

FIG-ELM 34.9234 37.2442 29.8782 20.9451 20.2894 13.5540 34.0855 30.9438 22.6763 

FIG-ENN 35.4239 37.7914 30.1447 16.0033 19.7093 11.9951 35.0816 26.3046 18.3535 

FIG-GRNN 42.5371 39.9652 30.5629 36.7503 27.1957 24.9101 47.3262 36.2381 26.3268 

FIG-LSTM 37.2329 37.6831 30.8957 27.5624 25.4772 16.4055 32.4723 31.6997 26.0913 

FIG-TCN 50.9055 53.7787 42.4471 39.0922 39.1368 32.0875 54.6054 45.3708 39.7311 

FIG-GRU 36.7285 39.2962 29.5480 37.1837 28.3747 19.9412 38.8530 38.0351 24.8640 

FIG-MOALO 21.3043 25.9271 7.5098 11.0203 7.1904 3.5765 14.7211 10.7510 3.9737 

FIG-MODA 21.1393 28.2802 7.7510 9.9395 8.5918 6.1066 14.5302 5.1227 9.8269 

FIG-MOGOA 21.7815 20.8543 9.9505 10.6458 7.1003 8.5996 13.5867 12.5172 5.8437 

BP 46.6051 43.5636 35.3285 46.9709 34.9419 22.7926 55.4706 40.4027 30.8330 

ELM 48.4516 44.1739 35.1205 47.7627 37.1154 21.2712 56.7612 45.2574 31.2652 

ENN 45.6418 43.3266 34.9511 45.3930 30.6881 18.7524 53.2437 38.5200 26.9747 

GRNN 49.6975 44.5299 35.1086 50.5012 34.5656 21.0832 56.2484 39.0144 27.8423 

LSTM 46.7248 45.0070 34.4197 47.7631 34.7422 23.1777 53.5440 37.7911 32.4948 

TCN 59.8268 58.5771 49.6553 57.6871 40.6954 35.7907 63.2468 48.6291 38.9523 

GRU 46.2361 42.8117 34.6670 49.6798 38.9090 23.8003 55.4509 44.7298 31.7481 

Note: The above table presents the WSCFS-PF compared to the tested models. The 
metricsΡ  is aimed to measure the improvements between our proposed WSCFS 

and tested models, and the calculation of Ρ
metrics

is defined as 100
metrics compared proposed compared

%MAPE MAPE MAPE  Ρ  where MAPE
compared

 and MAPE
proposed

 represent 

the MAPE values of the tested models and our proposed WSCFS. ,
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Table 23 
The IF average values of IR for our adopted models. 

 

 

Forecasting interval Model 1-step Forecasting 2-step Forecasting 3-step Forecasting 

 = 

0.05 

 = 

0.10 

 = 

0.15 

 = 

0.05 

 = 

0.10 

 = 

0.15 

 = 

0.05 

 = 

0.10 

 = 

0.15 

30 min FIG-MOALO 6.2861 8.3989 8.8789 13.5246 18.3295 23.7307 8.3012 12.1365 9.8200 

 FIG-MODA 5.8881 6.7669 7.6336 19.0033 24.2930 27.1072 13.7680 17.2552 12.2442 

 FIG-MOGOA 6.7194 7.5934 10.6932 15.0475 18.0749 22.2931 11.6667 14.7720 13.6767 

60 min FIG-MOALO 1.7761 2.3719 2.4168 1.2070 3.0310 3.0003 5.2376 5.2284 9.1992 

 FIG-MODA 1.0818 3.0026 3.7716 5.6737 7.1854 9.0346 25.5583 25.2953 23.8333 

 FIG-MOGOA 1.4520 2.9827 4.1553 5.4843 7.2434 9.8382 22.4644 23.0662 21.9174 

120 min FIG-MOALO 13.0581 18.5081 18.1094 28.2311 26.1244 20.8792 15.1486 15.3830 9.5563 

 FIG-MODA 11.9521 12.6260 13.5869 42.0414 50.4169 44.0867 35.2547 35.3779 31.1455 

 FIG-MOGOA 17.7435 19.6656 16.5804 67.6710 66.3096 53.2434 45.5881 45.6537 38.4425 

Note: The above table presents the WSCFS-IF compared to the tested models. The 
metricsP  is aimed to measure the improvements between our proposed WSCFS and 

tested models, and the calculation of Ρ
metrics

 is defined as 100
metrics compared proposed compared

%PICP PICP PICP  Ρ  ,where  PICP
compared

 and  PICP
proposed

 represent the PICP 

values of the tested models and our proposed WSCFS. 
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5.3 Sensitivity analysis 

To explore the sensitiveness of the WSCFS regarding the critical parameters 

varying, the sensitive mechanism is discussed in this section, we alter only one key 

parameter in the model while maintaining the other parameters invariant 

simultaneously. By observing the fluctuations of the evaluation metrics, and analyzing 

the sensitivity of the parameters. The sensitivity coefficients are defined by the 

standard deviation of the four evaluations metrics in PF. 

  
2

1

( )
( )

n
k

k

M M
M

n
S




        (23) 

where n indicates the testing time, 
kM  represents the value of the error indicators 

which include SDE, RMSE, MAE and MAPE at the k-th time. M  refers to the 

mean of all the testing times. The lower value of S  implies that the model is more 

robust. In the WSCFS, there are three key parameters which are Aquila’s number, 

iteration number, and archive number. 

 Regarding Aquila’s number, we specify its variation range as 20-100, where the 

interval is 20, we define this pattern as 20 40 60 80 100Q , , , ,
    . Meanwhile, the 

iteration number and archive number are set to range from 50 to 250 and 100 to 500, 

with intervals of 50 and 100, respectively, we refer to these patterns as 

50,100,150,200 ,250T
     and 100,200,300,400,500A

    . The symbol   refers to the 

optimal parameter in the variation range, which is determined by a trial-and-error 

manner. We define QΔ(TA)  as Aquila’s number continuously increasing from 20 to 

100 with the growth interval of 20, while other parameters are fixed. The fluctuations 

of these error indicators are shown in Table 23, and the comparative results of three 

key parameters for three-intervals forecast at Site 2 are depicted in Fig. 10. 

 For 30-min intervals, at Site 1, the archive number is the most influential factor 

for the forecasting performance among the three parameters. While for Site 2, the 

iteration number becomes the parameter that contributes to the greatest fluctuation to 

the WSCFS performance. Moreover, the evaluation indicators increase with the 

forecasting step, which is attributed to the existence of more uncertainty factors in 

multi-step forecasting. Nevertheless, almost all the metrics are not very high in all 

situations. Through the analysis of the parameter variation, we can conclude that the 

performance of the WSCFS is not significant for the changes of three critical 

parameters in many cases, which further validates the superior robustness of the 

WSCFS. 
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Fig. 10. Comparison of three key parameters for three-intervals forecast at site 2.
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Table 24 
The results of sensitivity analysis for our proposed WSCFS. 

Interval Modes 1-step Forecasting 2-step Forecasting 3-step Forecasting 

SSDE SRMSE SMAE SMAPE SSDE SRMSE SMAE SMAPE SSDE SRMSE SMAE SMAPE 

The results of sensitivity analysis in Site 1 

30 min Δ(TA)Q  0.0023 0.0205  0.0198  0.1469  0.0033  0.0580  0.0294  0.1981  0.0052 0.0971  0.0781  0.6088  

 
TΔ(QA)  

0.0021  0.0157  0.0171  0.1159  0.0024  0.0684  0.0343  0.2288  0.0063  0.0942  0.0706  0.5314  

 
AΔ(QT)  

0.0026  0.0114  0.0137  0.3565  0.0016  0.0602  0.0292  0.1655  0.0040  0.1027  0.0827  0.6449  

60 min 
Δ(TA)Q  

0.0122  0.0161  0.0127  0.3166  0.0130  0.0206  0.0234  0.6196  0.0121  0.0252  0.0237  0.5489  

 
TΔ(QA)  

0.0125  0.0141  0.0161  0.6179  0.0124  0.0163  0.0185  0.7121  0.0221  0.0338  0.0309  0.5925  

 
AΔ(QT)  

0.0085  0.0091  0.0114  0.4552  0.0138  0.0261  0.0291  0.4427  0.0109  0.0286  0.0288  0.5290  

120 min Δ(TA)Q  0.0393  0.0797  0.0781  1.3988  0.0646  0.1810  0.1758  2.1523  0.0611  0.2132  0.1802  2.5533  

 TΔ(QA)  0.0544  0.1096  0.1139  1.5874  0.0529  0.1409  0.1396  2.0429  0.0637  0.2308  0.2363  2.4634  

 AΔ(QT)  0.0368  0.1119  0.1343  1.9163  0.0602  0.1563  0.1529  2.1913  0.0643  0.2585  0.2440  2.2614  

The results of sensitivity analysis in Site 2 

30 min Δ(TA)Q  0.0019  0.0257  0.0228  0.1554  0.0043  0.0632  0.0344  0.2395  0.0096  0.0761  0.0463  0.4305  

 TΔ(QA)  0.0033  0.0347  0.0311  0.2292  0.0061  0.0664  0.0380  0.2208  0.0096  0.0917  0.0608  0.6622  

 AΔ(QT)  0.0018  0.0280  0.0248  0.1634  0.0038  0.0721  0.0410  0.2416  0.0084  0.0802  0.0498  0.5084  

60 min Δ(TA)Q  0.0060  0.0139  0.0128  0.6336  0.0045  0.0147  0.0219  0.5607  0.0059  0.0368  0.0371  0.7701  

 TΔ(QA)  0.0065  0.0131  0.0127  0.6453  0.0054  0.0141  0.0202  0.5391  0.0048  0.0358  0.0346  0.8719  

 AΔ(QT)  0.0056  0.0140  0.0126  0.6341  0.0033  0.0140  0.0201  0.6416  0.0050  0.0332  0.0302  0.8053  

120 min Δ(TA)Q  0.0334  0.0697  0.0633  1.1691  0.0465  0.1651  0.1710  2.6684  0.0890  0.2050  0.1706  2.8510  

 TΔ(QA)  0.0252  0.0746  0.0725  1.1523  0.0426  0.1635  0.1589  2.5798  0.0266  0.2110  0.2170  2.6483  

 AΔ(QT)  0.0371  0.0594  0.0598  1.4464  0.0481  0.1328  0.1208  2.5935  0.0452  0.2011  0.2025  2.7654  



50 
 

Note: The above table presents the detailed evaluation indicators for the sensitivity analysis of our proposed WSCFS. The critical parameters of the WSCFS are 

Aquila’s number, iteration number, and archive number. Δ(TA)Q represents the Aquila number increase from 20 to 100 with the interval of 20. Δ(QA)T denotes the 

iteration number set to 50,100,150,200,250. Δ(QT)A denotes the archive number set to 100, 200, 300, 400, and 500.
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5.4 Practical applications in power systems 

The above discussion indicates that our proposed WSCFS owns superior 

precision and robustness in different time intervals WSP. Accurate and reliable WSP 

is crucial to the distribution and dispatch of wind power facilities and the security of 

grid operation. The estimable benefits of our proposed WSCFS and practical 

application to power systems are shown below. 

 

(1) Accurate and reliable forecasting results facilitate dispatchers to grasp the power 

variation of wind farms in advance, promptly develop dispatching operational 

schedules, enhance energy transformation efficiency, minimize risks, and boost power 

generation. If the WSP has an increase in the accuracy rate within 10%, it can 

enhance power generation by approximately 30%[62]. Therefore, accurate WSP 

contributes to the efficient deployment of wind resources and the operational 

efficiency of wind farms. Moreover, it also contributes to the wind power 

grid-connection and stable operation and provides timely alarms for risks that may 

affect the security and stability operation of the grid, which will prevent power loss or 

even grid collapse resulting from random fluctuations in wind power. The wind 

energy potential assessment is determined by the WSP, which is attributed to the fact 

that wind energy is proportional to the cube of the wind speed. Therefore, to ensure 

that we can exploit and utilize wind energy to the greatest extent feasible, it is crucial 

to assess wind energy potential for wind farms. Our proposed model has stable and 

reliable prediction capability, which can provide high accuracy results of wind speed 

and wind power, thereby contributing to the decision-making support for wind energy 

assessment and wind farm construction. 

(2) Wind speed features intermittency and fluctuation, and as one of the most sensitive 

parameters of wind power systems, the value variation will generate a tremendous 

impact on wind farm power generation and grid operation. On the one hand, wind 

farms can reasonably operate, and overhaul wind turbines and other equipment based 

on WSP, which contributes to solving possible abnormal issues, further directing the 

installation capacity of wind farms, and consequently improving the effective 

utilization of wind farms equipment. Moreover, our proposed WSCFS assists the 

power system dispatching department to optimize the dispatching program timely and 

provides the power system operation and dispatching department with variations of 

wind power, which can be utilized to formulate or adapt the dispatching programs 

promptly, further reducing the spare capacity and operation cost of the power system, 

which is overwhelming guidance for the stable operation of wind power systems. 

(3) In the power market, compared with other controllable power generation methods, 

such as hydroelectric power generation and nuclear power generation, the volatility 

and instability of wind speed and other characteristics lead to a considerable influence 

on the safety and stability of the power grid, which will inevitably make wind power 

less competitive in the power market and even be financially penalized for its unstable 

power supply. Moreover, the existence of uncertainties in the actual data, model 

structure, and model parameters frequently render PF unreliable and inaccurate. In 

our study the proposed WSCFS is capable of quantifying the uncertainty in wind 

speed, IF can significantly mitigate the adverse effects attributed to wind speed 

uncertainties and other features, which effectively enhances the competitiveness of 

wind energy in the market and promotes the development of wind power.  

 

6. Conclusion 

As a green and renewable energy resource, wind energy has been widely utilized 
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all around the world in recent years. Accurate WSP is indispensable for the 

high-efficiency utilization of wind energy and the stability as well as security of grid 

operation. However, in the previous research, the scholars merely achieved accurate 

PF for wind speed, while ignoring the importance of IF for WSP. Therefore, in our 

study, we propose a novel WSCFS based on fuzzy information granulation, optimal 

benchmark models selection, which also combines neural networks, deep learning, 

and an advanced multi-objective optimizer, to promote PF and IF capability in wind 

speed. We adopt six intervals of wind speed data from two sites to simulate the 

experiment with fourteen benchmark models and three CFMs. Furthermore, to verify 

the forecasting validity and generalization ability of our WSCFS, hypothesis testing, 

IR analysis, and sensitivity analysis are introduced in the discussion section to 

comprehensively evaluate the WSCFS. The summary of the simulated experiments is 

listed below. 

(1) The FIG technique is adopted to establish fuzzy windows to sufficiently exploit 

the effective information in the wind speed data, hence it can enhance the forecasting 

effectiveness of the models.  

(2) The OBMS strategy is applied to select the optimal five models with the best 

forecasting performance in different situations, which can greatly improve the 

performance of the combined model. 

(3) A theoretical demonstration indicates that the optimal solutions acquired by 

MOAO are the optimal weights. 

(4) Comparing AO with three optimizers (ALO, DA, GOA), AO can better improve 

the forecasting accuracy and stability of the combined model. 

(5) Based on four distribution functions, the forecasting values are fitted to the 

distribution, which consequently quantifies the uncertainty and random fluctuations of 

wind speed. 

Moreover, the DM test also affirms that the WSCFS is significantly different 

from the tested models for PF and IF as well as original sequences. The IR analysis 

demonstrates that the WSCFS exhibits considerable improvement compared to tested 

models. The sensitivity analysis verifies the WSCFS exhibits high stability towards 

the variation of key parameters. Overall, the experimental findings suggest that our 

proposed WSCFS can achieve superior forecasting effectiveness and excellent 

generalization as well as robustness in PF and IF compared to the tested models.  
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