
Extreme Programming in the University

Andrew Johnston
Creativity and Cognition Studios

School of Software, University of Technology Sydney
Sydney, Australia

andrew.johnston@uts.edu.au

Chris S. Johnson
School of Systems, Management and Leadership

University of Technology Sydney
Sydney, Australia

chris.s.johnson@uts.edu.au

Abstract—This paper summarises our experiences teaching
Extreme Programming to undergraduate students over a period
of 8 years. We describe an approach in which students learn
about the Extreme Programming (XP) method by using it on real
software development projects. This experiential learning
technique has been effective in helping students understand how
XP works in practice and helped them to develop the skills to
reflect on their current approaches to software development and
critically evaluate agile methods. Problems, including a steep
learning curve for some XP practices and difficulties scheduling
pair-programming time in a university environment are also
identified.

Keywords- Extreme Programming; learning, experience,
education.

I. INTRODUCTION
In this paper we outline the lessons we have learned during

eight years of teaching Agile software development,
specifically Extreme Programming (XP) [1]. Over this time we
have adopted and refined a number of strategies which help
students learn about XP by experiencing its application to a
real-world software development project.

We have concluded that some degree of compromise is
necessary when attempting to run an XP project in a university
setting. We describe the compromises we have made and the
reasons for so doing in the hope that others who are following
this path will be able to learn from our experiences and develop
their own approaches.

We begin by outlining the literature in this area and identify
the key challenges in meaningfully teaching XP in a university
setting. We then outline our approach to teaching XP and
present findings from subject evaluations conducted in 2008
and 2009 in order to link course design elements to actual
student experiences.

II. BACKGROUND

A. Extreme Programming
XP is a well-known and popular software development

method championed initially by Kent Beck [1]. In its original
form, XP is comprised of twelve software development
practices which are intended to reflect and reinforce four core
values: communication, simplicity, feedback and courage. In
the second edition of the book, a fifth value, respect, was added
[2].

In order to provide context for those who are less familiar
with XP, we will briefly summarise each of the twelve XP
practices before describing how we have tried to facilitate
student engagement with them in the classroom.

The XP practices are the practical manifestation of the XP
values of communication, feedback, simplicity, courage and
respect. They are the specific tasks and methods applied by
software developers when using XP. These practices were
adjusted and refined somewhat in the second edition of Beck’s
book [2], but as the original twelve practices are arguably best-
known and most widely applied we will present the original
practices here. The twelve practices are:

Planning Game The Planning Game is the process by
which the requirements for the software are identified. The
essence of the planning game is that requirements are elicited
in the form of user-stories. Developers estimate how long each
story will take to implement and customers prioritise which
stories the developers will work on during the next iteration.

On-Site Customer The customer should always be
available to provide feedback and clarify requirements. As XP
emphasises informal communication over formal
communication, it recommends that developers and customers
are physically co-located.

Small Releases Working software - with reduced
functionality - should be released to customers frequently in
order to maximise feedback.

Simple Design The software should always have the ideal
design for what it currently does. Developers should avoid the
temptation to design in anticipation of future requirements in
order to minimise re-work and ensure the design can evolve in
response to changing customer requirements.

Pair Programming Probably the most well-known of all
XP practices, pair programming requires that all code is written
by two people working at one computer.

Test Driven Development A suite of unit tests is
developed in parallel with the application code. In contrast to
traditional approaches, tests are written continuously during
development – not at the conclusion of the project. Standard
practice in XP is to write a failing test first, write enough
application code to make that test pass, write another failing
test, etc. In addition, customers write ‘acceptance tests’ which
test the application at the user level.

Refactoring Refactoring is improving the design of
existing code [6]. In XP, code continually refactored as
requirements emerge and/or change.

Collective Ownership Individual ‘ownership’ of portions
of the code base is strongly discouraged. The intention is that
any member of the XP team is able to make changes to any
part of the code.

Coding Standards All members of the development team
apply the same coding standards (indentation, capitalisation,
etc).

Continuous Integration Each coding pair sends their
updated code to a central repository several times per day. On
check-in code is compiled and test suites executed.

40 Hour Week XP teams work at a ‘sustainable pace’ [2].
This means that excessive overtime is discouraged so that
quality of work does not suffer.

Metaphor The XP team work to develop simple metaphors
for the system and its behaviour in order to improve
communication between customers and developers and avoid
the use of overly technical terms.

B. XP in the University
Several authors have identified issues teaching XP in

university settings and proposed strategies to mitigate these
problems. Muggeridge, et al [10] describe their use of XP on
three student projects involving between 55 and 70 students.
They report difficulty in effectively teaching XP practices in
this setting, reporting particular difficulty with on-site
customer, continuous integration, 40 hour week, metaphor and
the use of customer acceptance tests. They conclude that, “it is
clear that XP cannot be taught in a single semester, nor in a
single project. We recommend that prior class and laboratory
time be dedicated to building experience in many of the XP
practices before a full XP project is attempted.” [10], p.409.

Our experience has been that it is possible to teach XP in
one semester - provided that students entering the subject have
sufficient grounding in fundamental software development
skills. However, extensive coaching is necessary, particularly
in the early stages of student projects. We will return to this
point later.

Jackson, et al [9] list several factors which are likely to
affect XP projects in universities. These include:

• The ‘customer’ that students develop software for is
often the lecturer in charge of the XP subject.

• Students have limited access to the customer.

• Because they are required to be completed within a
university semester, projects usually have a short time
scale.

• There are no set working hours.

• The XP projects are done in conjunction with other
work (ie. other subjects, real work, etc).

• There is a lack of adequate XP coaching.

• There is a need for a broad range of skills within XP
teams.

• There is a danger that the focus will be on the XP
process rather than the developed software.

• Lack of customer engagement during semester can
lead to delivery of a ‘shrink-wrapped product’ at the
conclusion of semester, as opposed to software refined
during development based on ‘continuous feedback’
from the customer.

The difficulty that students face in organising face-to-face
time to conduct pair-programming sessions and generally
functioning as a co-located team is recurring theme in the
literature (eg. [11, 9]). For this reason, it has been argued that
XP is best taught in intensive blocks of focused full-time work
rather than in a more typical university course with classes
spread throughout a longer semester [12].

Williams and Kessler [13] argue that for students to
successfully apply pair programming they need to be provided
with supervised lab sessions during which they are effectively
‘forced’ to pair program. During these sessions, staff are able
to support the students as they begin to develop their
collaborative programming skills. This involves ensuring that
students swap roles frequently between ‘pilot’ and ‘co-pilot’.
Our experience has been that while students readily understand
the theory behind pair programming, effectively applying it is
often more difficult than they at first appreciate. In the early
stages of running this subject we did not allow students enough
time in a supportive lab environment to develop XP skills.
Gradually we have reduced the time devoted to lectures about
XP and and increased the time allocated to lab based coaching.

III. OUR APPROACH
Drawing on the work described above, and on our

experience running an XP subject for the past 8 years, we have
developed an experiential learning approach which allows
students to learn about XP by experiencing the benefits and
difficulties of applying this method to a real-world software
development project. In this section we outline the key points
of our approach.

‘Extreme Programming’ is an elective subject available to
students taking the three-year (full time) Bachelor of Science in
IT at the University of Technology Sydney. Students entering
this subject are required to have completed several pre-
requisite subjects which introduce fundamental programming
and project management concepts. This means that students
will be in the second half of their course and will have
previously developed a number of programming assignments
in other subjects.

A. Lectures and Labs
Students attend class for 3 hours per week for 14 weeks - a

standard attendance pattern in our university. Most classes
include a short lecture and discussion of particular aspects of
XP. This typically takes around 60 minutes and is followed by
lab time of typically 2 hours. During the first five weeks of
semester lab time is given over to a number of activities which
aim to allow students to experience how the various XP

practices covered in lectures are applied in practice. The
activities are structured so as to encourage students to focus on
the principles underlying the various practices. We aim to
make the activities enjoyable and as non-technical as possible
so that students of all abilities are able to actively participate.

B. Real Projects
A number of software development courses have moved

beyond the ‘mock’ projects that students are normally
assigned, getting students to work on developing software that
real people actually want (eg. [8]). XP, with its emphasis on
surfacing requirements using frequent, informal interactions
with the customer, almost seems to demand this approach. We
feel that no matter how much effort teaching staff might put
into simulating real-world projects and acting like real
customers, they are no substitute for giving students
responsibility for liaising with actual customers. We see a
number of benefits:

• Students are motivated because they “know that
someone wants their work and will use it” [8].

• Because the projects need to deliver working software
that customers will use in their organisation, students
are required to consider the broader context within
which their software will be deployed. This includes
technical issues (eg. infrastructure, existing software,
etc) and organisational (ie. social) issues.

• The necessarily dynamic nature of customer
requirements is made apparent to students through
their interactions with their customer. Through this
experience they are able to realise that, in general,
customers do not capriciously change requirements
merely for the sake of it, but make changes as a result
of learning more about the problem as they evaluate
the evolving solution. Usually, the customer does not
have a fully-developed set of requirements in their
mind at the outset of the project which must be
somehow ‘extracted’. Rather, the customer and
developers together discover and refine requirements
through creation and evaluation of potential solutions.

• Students learn how to manage and maintain
relationships with clients. This includes scheduling
meetings, demonstrating software in a professional
manner, running the planning game, etc. Customers are
usually unaware of the XP methodology, and we
deliberately do not explain it to them. This means the
students are required to explain the method to their
customer and ensure they understand their role.

Students in our subject have worked on a wide range of
projects. Each semester we recruit customers from our contacts
and colleagues. Before accepting a customer we vet the project
to be sure it has roughly appropriate scope for one semester’s
work, that it does not require unreasonable amounts of research
into new technologies, and that it can be expanded if the
students deliver the software more quickly than we anticipate.

In this context, management of customer expectations is
important [8]. Most clients are pleasantly surprised at the
quality of work done by student groups but, as with any

subject, not all groups are effective and the software they
produce may not be fit for purpose. The incremental nature of
XP development at least ensures that staff and customers
become aware of problem groups early and can take steps to
address issues.

When working for external clients it is important that
ownership and intellectual property rights are clarified at the
outset. Our position has been that students retain ownership of
the code they create during semester. If the customer feels that
the software is good enough, they can negotiate with students
at the end of semester to buy the code. We have found that this
extra incentive is often effective at motivating student groups
to engage with their client’s projects. As many clients are not-
for-profit groups there is no expectation that students will be
financially rewarded for their work – if this occurs it is
considered a bonus. We are mindful that clients are giving up
their time to help students gain experience and this in itself is a
form of compensation for the students’ work. Our experience
has been that where the client is a non-profit organisation
students are happy to provide their code at no charge at the end
of semester in return for the experience. In order to ensure that
students do not feel exploited we believe that they should retain
control over the results of their labour. In 8 years we have not
experienced problems with any of our students or clients in this
area. Indeed, a number of our XP projects have morphed into
paid projects which continue after semester has completed.

C. Teams
Students form teams based on availability and language

skills. This is in contrast to Hedin, et al [7] who assign students
to teams randomly. We can see the benefits of random
assignment but given the diversity of student experience, the
range of technologies required by customers and the scheduling
difficulties which arise because of our lack of common
development time, it is problematic in our situation. Instead,
we ask students to organise themselves into groups of four in
which:

• Everyone is familiar with a particular programming
language/environment.

• Group members have compatible blocks of time during
which they are able to pair program.

While groups will have differing experience levels, we
wish to avoid a situation where students have to learn a new
technology from scratch. If all group members have a solid
grounding in one programming language (eg. Java, .NET, etc)
then they are more able to focus on the XP method and
applying it to their project without the additional distraction of
learning new technologies.

As team collocation is a critical part of XP, it is essential
that students are able to meet regularly during semester in order
to pair-program. A common problem for XP subjects
conducted within universities is the lack of defined working
hours [9]. The strategy we use to mitigate this problem is to
emphasise that face-to-face teamwork is required and that
teams must be able to schedule this. Once students have formed
teams they are required to indicate to us the times they will be
free to work with one another. While this does not avoid the

problem completely (as work or university schedules may
change during semester) it has greatly reduced it. We make a
point of emphasising this aspect of the subject early in semester
and advising students that if they are unable or unwilling to
commit to face-to-face teamwork then they ought to
considering enrolling in another subject. We are able to do this
because XP is an elective subject. If it were a core subject it
would probably be necessary to schedule an additional block of
eight hours for project work on the timetable, which would
mean that the university timetabling system would ensure
students did not have clashing classes.

D. Coaching
Given that one of XP’s key values is ‘simplicity’, the XP

method itself is not difficult to understand. However, applying
the practices can be difficult [3], particularly when the XP
practices conflict with various ‘rules’ of software development
that students may have learned in previous subjects. For this
reason, we have found that ‘coaching’ is of critical importance,
especially in the early stages of the students’ projects.

As Cockburn notes [3], XP is a method that requires a
significant degree of discipline:

 “XP is a high-discipline methodology. It calls
for tight adherence to strict coding and design
standards, strong unit test suites that must pass at
all times, good acceptance tests, constant
working in pairs, vigilance in keeping the design
simple, and aggressive refactoring.”

Using an XP coach is common practice in industry,
particularly early on. We have found that unless students are
getting regular feedback from an experienced coach as they
begin their projects they tend to neglect key XP practices –
particularly test-first. During coaching sessions we emphasise
the supportive (as opposed to punitive) role of the coach. The
coach is there to help students become accustomed to XP and
develop necessary skills. Having said this, the coach also needs
to make problems visible, call students’ attention to issues as
they arise and provide suggestions for how they might be
addressed.

E. Assessment
The overall breakdown of assessment is as follows:

Assignment 1 (20%) Project progress report. Students are
asked to reflect on their experiences with XP: how easy or
difficult they have found each of the practices to apply and
how effective the practices have been for their project. Students
are also asked to outline what they will try to do to address any
issues they identify. This assignment is due when students have
been working on their project for 5 to 6 weeks.

Assignment 2 (30%) Final project report. Summarises the
group’s overall experiences with XP. Students are also required
to outline whether the changes they proposed in assignment
one were successful or not and to reflect on the suitability of
the XP method for their project. For both assignments, a
significant portion of marks are allocated for evidence of
reading.

Blog (10%) Students maintain a web-based diary or ‘blog’
in which they document their experiences with XP during
semester. Student blogs are visible to the entire class.

Class Participation (10%) Because the XP method
emphasises face-to-face communication, attending and actively
participating in classes is critical.

Exam (30%) Arguably an exam is unnecessary for this
subject, but it does provide us with a final chance to verify that
individual students (who may perhaps have made minimal
contributions to a strong group) have engaged with the subject
material and gained sufficient understanding of the XP method.
Educationally we feel that the exam is probably unnecessary.
Having said this, exam questions are structured so as to require
students to draw on their experiences in the subject to provide
informed opinion on the application of XP in certain scenarios.
We therefore see the exam as a final opportunity for student
reflection on their work during semester, as opposed to an
exercise in rote-learning.

It can be see that like Dubinsky and Hazzan [4], we allocate
a significant portion of student marks to reflection. Our aim is
to encourage students to consider how XP relates to the broader
activity of developing software for real-world clients, and how
the method as described in books may need to be adapted to
deal with specific situations without compromising the core
principles that underpin it.

Because the emphasis is on understanding XP – the reasons
for its existence and the consequences of its application – our
marking scheme does not place great emphasis on how
successful the project was from the customers’ perspective.
While this is taken into account, our experience has been that
students tend to be intrinsically motivated to deliver what the
client asks for. This is, of course, one of our primary reasons
for using real customers as opposed to having staff members
act as customers. However, a problem can be that in their
eagerness to deliver working software, students do not make
the effort to apply the XP practices which they find more
difficult or which they perceive will slow down their progress.

As coaches, then, we have found it necessary to emphasise
that – at least in the first phase of the project – process is more
important that working code. Our emphasis in assessment is on
how well the students applied the XP practices and on the
quality of their reflections on the process.

IV. OUTCOMES
In this section we present some findings from student

surveys undertaken in 2008 and 2009. While overall student
response has been positive, there are still difficulties running
XP projects within the university. We first outline the more
successful elements of the subject and then discuss ongoing
issues and strategies which might help.

A. Successful Elements
Overall student response to the XP subject has been very

positive. As a way of gathering high-level feedback from
students we conduct surveys at the conclusion of each
semester. These surveys contain a set of 9 statements requiring
Likert-scale responses from students - all oriented around

whether the subject met their expectations, was delivered
effectively, etc.

While the survey questions give only limited insight into
the broader experiences of students in this subject, we will
nonetheless present some quantitative data here to back up our
claim that the XP subject provides an engaging experience for
students. We draw on the two most recent surveys, conducted
in the final weeks of semester in 2008 and 2009. The mean
response to the statement, “My learning experiences in this
subject were interesting and thought provoking,” was 4.45 (out
of 5) in 2008 and 4.46 in 2009. This compares with a faculty
average of 3.81 (2008) and 3.68 (2009). The statement,
“Overall I am satisfied with the quality of this subject,”
received mean responses of 4.36 (2008) and 4.62 (2009),
compared with faculty averages of 3.76 (2008) and 3.60
(2009). While we are wary about drawing firm conclusions
from such broad statements, we nevertheless believe this
provides a degree of evidence that students find the subject
engaging and hold it in relatively high regard.

In addition, the questionnaires provided qualitative data that
we have drawn on to evaluate and refine our approach to
teaching XP. Firstly, the surveys we discussed above included
the following open questions in 2009:

• What did you like particularly in this subject?

• Please suggest any improvements that could be made
to this subject.

Responses to the first of these questions indicate that
students have a positive reaction to developing software for a
real client:

 “I’m in my final year and this subject has been
my favourite by far. The reason I’ve enjoyed it is
because the subject takes such a pragmatic
approach.”

“One of the best subjects I have done in my
course at UTS. The content was relevant to
todays working environment and I was able to
gain real world working experience, facing real
problems, which other subject fail to
demonstrate.”

“[I particularly liked] being able to work in real
projects to be able to share the experiences I
have in industry with others.”

“[I particularly liked] the project based
assignment. Doing something that had the
potential for actual benefit or use to someone
was a great motivating factor.”

As the quotes above illustrate, the positive student feedback
revolved around several key themes. Firstly, they find the
subject’s emphasis on applying XP to real-world projects
enjoyable and highly motivating. The software that students
develop for customers, who have a genuine need for it and will
use it, is concrete evidence of their achievement in the subject.
It seems that students find this more intrinsically satisfying
than ‘only’ receiving marks allocated by a lecturer towards
their final degree.

B. Remaining Challenges
Students also identified several areas that could be

improved. The fact that both assignments required students to
reflect on their experiences using XP over a relatively brief
period of time led several to suggest that the assignments were
too similar:

 “[You should] have a bigger gap between
assignment 1 and assignment 2. Make the 2
assignments different, seems to similar.”

As this student suggests, one way to address this issue
would be to have a larger time gap between the two
assignments, so that students have more time to improve their
knowledge and/or application of XP and would therefore be
better placed to reflect on the progress they have made. As the
semesters are only 14 weeks long and projects don’t begin until
week 3, this is difficult to manage. An alternative strategy
might be to have students provide a brief class presentation
earlier in the project on their experiences to date, followed by a
more complete, written reflective account later in semester.
This is something we plan to trial in 2011.

Students have also commented that the fact that students
are assessed on their efforts to apply the XP method - as
opposed to how much they deliver to the customer - can lead to
the pace of development falling off towards the end of
semester.

 “I felt the mentality and pace of the group
dropped once they realised they didn’t need to
complete the project. This only happened in the
final week or so. Possibly suggest that you may
be “marking” the project itself.”

We do actually allocate 5 (of 20) marks in assignment 1
and 5 (of 30) marks in assignment 2 (10% of the total subject
mark) to the customer. Customers are asked to rate the
students’ work on their project overall - including attendance at
meetings, etc. To address the problem raised by this student
(which we too have noticed in some groups), it may be helpful
to increase this percentage. However, we feel that there is a
significant risk that this would tempt students to ‘deliver
software at all costs’ and ditch XP practices which they find
initially difficult.

A key aspect of XP is that while customers have the right to
ask for anything, developers are in charge of estimating how
long functional requirements will take to implement. This
means that if the coach and/or customers are not technically
savvy it is possible that students can reduce the amount of
work they are required to do by artificially inflating their
estimates [5]. (This, of course, can be a problem for real-world
XP teams too.)

In practice we have found that the weekly coaching
sessions allow us to identify this tendency in groups when it
arises. If appropriate steps are taken – in-depth discussion of
estimates for example – groups respond well. Where necessary
the 10% allocated to customer satisfaction can be used as a
‘stick’ for recalcitrant groups. Because our classes remain
relatively small (maximum of 30 students) we are able to
monitor groups without difficulty. In our experience, a far

more common problem is groups neglecting ‘difficult’ XP
practices in favour of delivering the requested functionality.

V. CONCLUSION
In this paper we have described an approach to teaching XP

in a university setting which we have developed and refined
over 8 years. An experiential learning approach in which
students develop software for real-world customers using the
XP method has been described and findings from subject
evaluations presented. We hope that this work will provide
others with ideas and, perhaps, inspiration to take this type of
approach in other contexts.

ACKNOWLEDGEMENTS
The authors would like to thank the students who have

participated in our Extreme Programming classes for their
many contributions to the work we have described here.

REFERENCES
[1] K. Beck. Extreme Programming Explained: Embrace Change. Addison-

Wesley, Reading, MA, 1999.
[2] K. Beck and C. Andres. Extreme Programming Explained: Embrace

Change (2nd Edition). Addison-Wesley Professional, 2004.
[3] A. Cockburn. Agile Software Development. Addison-Wesley, 2002.
[4] Y. Dubinsky and O. Hazzan. A framework for teaching software

development methods. Computer Science Education, 15(4):275–296,
2005.

[5] J. B. Fenwick. Adapting xp to an academic environment by phasing-in
practices. In Extreme Programming and Agile Methods - XP/Agile
Universe 2003, volume 2753 of Lecture Notes in Computer Science,
pages 162–171. Springer Berlin / Heidelberg, 2003.

[6] M. Fowler. Refactoring: improving the design of existing code.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999.

[7] G. Hedin, L. Bendix, and B. Magnusson. Teaching extreme
programming to large groups of students. Journal of Systems and
Software, 74(2):133–146, 2005.

[8] M. Holcombe, M. Gheorghe, and F. Macias. Teaching xp for real: some
initial observations and plans. In Proceedings of 2nd International
Conference on Extreme Programming and Flexible Processes in
Software Engineering, pages 14–17. Pearson Education Inc, 2001.

[9] A. Jackson, S. L. Tsang, A. Gray, C. Driver, and S. Clarke. Behind the
rules: Xp experiences. In ADC ’04: Proceedings of the Agile
Development Conference, pages 87–94, Washington, DC, USA, 2004.
IEEE Computer Society.

[10] R. Mugridge, B. MacDonald, and E. D. Roop, Partha S.and Tempero.
Five challenges in teaching xp. In Extreme Programming and Agile
Processes in Software Engineering (XP 2003), 4th International
Conference, Lecture Notes in Computer Science, pages 406–409.
Springer, 2003.

[11] L. B. Sherrell and J. J. Robertson. Pair programming and agile software
development: experiences in a college setting. Journal of Computing in
Small Colleges, 22(2):145–153, December 2006.

[12] K. Stapel, D. Lübke, and E. Knauss. Best practices in extreme
programming course design. In ICSE ’08: Proceedings of the 30th
international conference on Software engineering, pages 769–776, New
York, NY, USA, 2008. ACM.

[13] L. A. Williams and R. R. Kessler. Experiments with industry’s “pair-
programming” model in the computer science classroom. Computer
Science Education, 11(1):7–20, 2001.

