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Abstract— In this paper, an improved magnetic equivalent
circuit (MEC) is applied to calculate the nonlinear magnetic field
in an interior-type permanent-magnet (IPM) brushless DC
(BLDC) motor. Compared with the finite element method, the
MEC method is much more time efficient, whereas compared
with the conventional MEC method, the improved MEC is more
accurate since it takes the complicate topological structure of the
motor into account. A rough design of the IPM BLDC motor was
firstly conducted by the improved MEC method. The particle
swarm optimization (PSO) algorithm is then employed to refine
the design for optimal structural parameters that result in the
lowest cost and highest performance.

Index Terms—Interior-type permanent-magnet brushless DC
motor (BLDC), magnetic equivalent circuit (MEC) method, particle
swarm optimization (PSO) algorithm.

I. INTRODUCTION

The interior-type permanent-magnet (IPM) brushless DC
(BLDC) motors can achieve high efficiency in a wide speed
range, and hence are very suitable for household appliances
requiring frequent start/stop and speed adjustment, such as air
conditioners, refrigerators, and washing machines. In an IPM,
the permanent magnets are inserted into the pre-punched slots
and need not be bound like those in surface mounted PM
motors [1], and the configurations of PMs in the rotor of an
IPM motor are multiform.
An improved magnetic equivalent circuit (MEC), which

combines the speed of the conventional MEC method and the
flexibility of finite element method (FEM), is sought in this
paper. The MEC is a very widely used technique for modeling
electromagnetic devices, by which useful information such as
torque, flux, magnetic motive force (MMF), electromotive
force (EMF), and current can be estimated. The improved
MEC method is different from the FEM in two aspects. Firstly,
the number of elements deployed for the MEC method is
much less than that required by the FEM. This reduces
accuracy, but allows rapid iterative computations. Better
accuracy may be achieved by concentrating the elements in
critical and saturated parts of the machine. Secondly, in the
MEC, the flux can pass through an element only in the
specified direction, whereas in the FEM there is no restriction
on the direction of flux through any element. The direction of
flux in each element of the MEC model must be decided

before the method is applied, which requires the user to have a
good knowledge of the possible field distribution. The better
knowledge the user has, the more accurate the MEC model
can be. This is in contrast to the finite element analysis, where
this is a result [2], and the user’s knowledge contributes very
little to the analysis. The MEC method has already been used
for a great number of motors with different types, such as the
switched reluctance motor [3,4], the permanent magnet linear
synchronous motor [5], the permanent magnet hysteresis
synchronous motor [6], and the brushless surface mounted
permanent magnet motor [7].
In the last decade, taking advantage of the increased

availability of powerful computing platforms, optimization
techniques are more and more used in electrical motor design,
stimulated by the pressing demands of the highly competitive
motor market and applications. The task is to achieve a design
with an optimized objective function for certain desired
features, e.g. minimum material cost, minimum weight,
highest efficiency, maximum torque-to-current ratio, or a
combination of them. The optimization procedure has to
consider different, often conflicting, design objectives at the
same time. In order to obtain a true optimum design, an
optimization technique has to be used together with a reliable
and accurate model of the electrical motor for predicting the
motor performance. Because of this, numerical models based
on the FEM are often chosen for the most exigent cases since
it is more rigorous than any sophisticated nonlinear analytical
models. However, the cost of the FEM in terms of
computation time is significantly higher than that of the MEC
method, and this may obstruct dramatically the optimization
process.
Diverse optimization algorithms have been developed from

a mathematical point of view. They are based on classical
techniques such as the direct search proposed by Hooke and
Jeeves, the simplex method, Rosenbrock algorithm; or based
on stochastic (probabilistic) techniques such as the genetic and
evolutionistic algorithms, and the simulated annealing
technique. The first group of algorithms is generally faster but
less safe in determining the optimum of the objective function;
the second group is slower but usually securer [8].
This paper presents an evolutionistic algorithm known as

the particle swarm optimization (PSO) algorithm to optimize
the size parameters of an interior-type permanent-magnet
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brushless DC motor. For magnetic field analysis, the improved
MEC model is employed. The characteristics predicted by the
improved MEC method with optimized parameters are
promising.

II. THE IPMBRUSHLESSMOTOR

Fig. 1 (a) shows the cross section of the IPM BLDC motor
to be optimized, and Fig. 1(b) shows the flux distribution
obtained by using the FEM. When the MEC method is used
for field analysis, due to the structural symmetry, only
one-third of the motor is modeled. Because the fluxes of two
adjacent teeth and yokes are not quite the same, the flux is not
constrained to flow in one direction, and hence the
conventional MEC method cannot reflect the flux distribution
correctly. Moreover, there is some flux leakage between the
slot and the edge of the rotor.

(a) Configuration (b) Flux distribution
Fig. 1. IPM brushless DC motor and flux distribution

III. MODEL OF IMPROVEDMECMETHOD

The MEC method uses a lumped parameter network to
represent a distributed magnetic circuit. The source of the
network is known as the MMF and the resistive components
are known as the reluctances, whose values depend on the
geometry, and for ferromagnetic materials, the flux density in
the region as well. The MEC model, combined with electric
equivalent circuits, can give insight into the phenomena in a
real, saturated machine. Effects due to spatial values like the
number and shape of stator and rotor slots, saturation, type and
connection of the windings, may be included [9, 10].
The MEC modeling is selected for further investigation as it

seems a good technique providing high speed and acceptable
accuracy compared to the FEM and the empirical methods.
The conventional MEC method, which uses flux tubes to
constrain magnetic flux to flow in one direction, is not
accurate for predicting the field in the IPM BLDC motor. This
paper presents an improved MEC model for predicting the PM
motor performance with higher accuracy while maintaining
the computing speed. The results are compared with those
obtained from the measurements on the motor.

A. The Improved MEC Model

The model consists of flux tubes, each described by a
reluctance value and optional MMF or flux sources. The
distribution of these elements is crucial, as reduction of the
number of elements increases the simulation speed.
Fig. 2 shows the proposed MEC model for the IPM BLDC

motor. The stator yokes are modeled by unidirectional
elements. These elements allow only radial or tangential flux

to flow, neglecting the leakage flux in slots and outside the
periphery of the motor. As the predetermination of the flux
direction in other parts is impossible, bidirectional elements
may be employed, allowing the flux to flow both radially and
tangentially.
The MEC model follows the general principle for mesh

generation in the FEM. A dense mesh is used at the air-gap to
enhance accuracy. The tooth and the pole-shoe are equaled
with dense meshes for non-homogeneous distribution of flux.
Elsewhere, the mesh is less critical, and is generally much
coarser. Flux is constrained to flow in iron, air-gap, slot
opening sections, magnet and magnet retainer.

Fig. 2. MEC model for IPM brushless DC motor

In the MEC model illustrated in Fig. 2, the equivalent
reluctance includes linear reluctance, and parameter nonlinear
reluctance. Re stands for a reluctance of yoke, RTσ a leakage
reluctance of slot, Rg a leakage reluctance between the
pole-shoes, Rσ a leakage reluctance between the adjacent
magnets, Gm an inner magnetic conductance of one magnet
element, Ggσ a leakage conductance in magnet elements, Fm an
MMF of magnet element, and F an MMF of armature tooth.
Sub-networks 1, 2, 4, 5, 6, 7 and 8 are all made of
bidirectional elements. Sub-network 3 uses dense mesh and
bidirectional elements. The nodes connecting the air-gap to the
rotor will change accordingly when the rotor rotates.

B. Equations

The reluctance can be represented by
l

R
Sµ

= (1)

where l and S are the axial length and cross-sectional area, and
µ is the permeability. For a nonlinear reluctance of a
ferromagnetic material, µ is not a constant, and should be
determined by the B-H characteristic. The MMF generated by
the armature winding is

aF NI= (2)

where N and Ia are the number of turns in one slot and the
current flowing in one conducting wire, respectively.
For the magnet, Fm is the MMF of the magnet and can be

expressed as

m c mF H h= ⋅ (3)

where Hc and hm are the coercive force and the thickness of the
magnet, respectively. Gm is obtained by
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where W1 and W2 are shown in Fig. 3. The leakage
conductance Ggσ is deduced as follows [11].
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Fig. 3. Zone of solution for magnet
The flux density distribution of IPM motor may be obtained

from the improved MEC, and then the EMF and torque could
be acquired. Besides the loss in windings, hysteresis and eddy
current loss are applied by using loss data curves. Subsequently,
the unknown hysteresis constant is determined. Rotational
losses are estimated using an empirical approach, suggested by
Bergcluist (check the name, not the same as that in ref) [12].

C. Model Verification

The prototype motor is experimented, and the comparison
of characteristics between the experiment and simulation by
using the MEC model is listed in Table I.

TABLE I
COMPARISON BETWEEN EXPERIMENT AND SIMULATION

Motor Experiment Simulation

Speed (rpm) 3600 3600

Terminal voltage (V) 158 158
Back EMF (V) 144 145.86
Current (A) 5.2 5.03

Torque (Nm) 2 1.95
Output power (W) 736.56 697.23
Efficiency (%) 89.65 87.73

The result of comparison indicates that the improved MEC
model of IPM BLDC motor is correct, and can predict the
motor characteristics accurately. This comparison gives us the
confidence to apply the method for design purpose.

D. Comparison of MEC, FEA and IMEC

The conventional MEC model can only reflect one position
of rotor. It’s not convenient to determine the parameters for
diverse IPM brushless DC motor. The FEA is more accuracy
than MEC. However, it sacrifices more time, and is not
suitable for optimization.
The IMEC model needs one network and determines

parameters one time. Computing time with one condition is
about a few seconds by IMEC method, and a few minutes by
FEA. The average relative error of flux density by IMEC is
about 10%. Less computing time and acceptable accuracy
result, which makes it have large dominance in optimization.

A motor of larger power rating with the same configuration
is firstly designed by using the proposed MEC method, and
then optimized by using the PSO algorithm.

IV. MODEL FOR OPTIMIZATION

A. Objective Function

For motor optimization, it is very important to choose a
suitable number of optimization variables. Selection of more
optimization variables can give more freedom, but it would be
difficult to balance the relationship among these variables and
it would take more computing time. Fewer variables can result
in fast computation, but the freedom is small. Meanwhile, the
influence of different variables on the objective function is
also important. Following the above principle, for the motor
design optimization, the design variables are chosen and listed
in Table II.

TABLE II
DESIGN VARIABLES

Variables Symbol
Inner diameter of stator Da
Axial length of stator L
Stator slot height H

Pole-shoe height of stator B
Length of pole-shoe t0

Tooth width bt
Number of turns of winding W
Winding conductor diameter d
Average arc length of magnet bm

Thickness of magnet hm

The objective function for optimization of the IPM BLDC
motor is derived to find the solution for the lowest total cost in
manufacture as

1 1 2 2 0min ( ) ( , ) ( , , , , , )a tf PM W d P M D L h b t b= +x

3 3( , , )m mPM b h L+ (6)

where P1, P2 and P3 are prices for unit of copper, silicon sheet
and magnet, M1, M2 and M3 which are functions of design
variables are the weight of winding, stator and rotor, and
magnet, respectively.

B. Constraints

1) Constraints of axial length
The axial length of the IPM BLDC motor is required less

than 80 mm so that it can be installed in the container and be
fixed facilely. The constraint on the axial length can be
expressed as

80 0rotorL− ≥ (7)

where Lrotor, the rotor length, is 4 mm longer than L defined in
Table II.
2) Constraints of winding
The winding and the insulation area in a slot must be smaller
than the area of slot. The constraints of this can be expressed
as

1 2( ) 0slotS S S− + ≥ (8)

where the fill factor is 70%, and Sslot is the area of slot, S1 and
S2 are the areas of winding and insulation in one slot. The
thickness of insulation is 1 mm.
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3) Constraints of efficiency
The motor efficiency η should be over 91%. Its constraint

can be expressed as

0.91 0η − ≥ (9)

V. THE PARTICLE SWARMOPTIMIZATION METHOD

The PSO method is a population based stochastic
optimization technique developed in 1995 by Kennedy and
Eberhart, inspired by the social behavior of birds flocking and
fish schooling [13]. In the PSO, each potential solution,
known as a ‘particle’, flies in the problem search hyperspace
to look for the optimal position. As the time passes, a particle
adjusts its position according to its own ‘experience’, and that
of the neighboring particles.
Suppose that the search space has D-dimensions. The

position of the i-th particle in the swarm can then be
determined by its coordinates in the D-dimensional search
space, and expressed as a vector Xi(t)=(Xi,1(t),Xi,2(t),…,Xi,D(t)).
The velocity (position change) of this particle can be
represented by another vector Vi(t)=(Vi,1(t),Vi,2(t),…,Vi,D(t)).
The i-th particle also maintains a memory of its previous best
position in vector pbesti=(pbesti,1, pbesti,2, …, pbesti,D). In each
iteration step, gbest is designated as the index of the best
particle in the swarm. Subsequently, the swarm is manipulated
according to the following two equations [14]:

, , 1 1 , ,( ) ( 1) ( ( 1)) /i d i d i d i dV t wV t c r pbest X t τ= − + × − − ∆

2 2 ,( ( 1)) /d i dc r gbest X t τ+ × − − ∆ (10)

and , , ,( ) ( 1) ( )i d i d i dX t X t V t τ= − + × ∆ (11)

where d=1,2,…,D, and i=1,2,…,N, N is the size of the swarm,
c1 and c2 are two positive constants, namely social and
cognitive parameters, r1 and r2 two random numbers
distributed within the range [0,1], t is the iteration number,
∆t=1, and w is inertia weight.
Using (10), the particle updates its velocity according to its

previous velocity and the distances to its current position from
both its own best historical position and the best positions of
the neighbors in every iteration step, and then it flies towards a
new position given by (11).

VI. STRUCTURAL PARAMETER OPTIMIZATION USING PSO

The improved MEC model is used for the initial motor
design, and the PSO method is used to optimize the motor
design. Because of the use of time efficient MEC model, the
computing time is very short.
Table III tabulates the predicted motor characteristics

before and after the optimization. As shown, the optimized
motor characteristics are significantly better than the initial
design and the resultant motor can well meet the requirement.
The cost is smaller than that of the initial design.

VII. CONCLUSION

In this paper, an improved EMC model is applied to predict
the characteristics of IPM BLDC motor and conduct the initial
rough design. The MEC model is proved to be accurate for the
prototype motor proved by the experiment. A new heuristic
algorithm known as PSO is introduced to handle the structural

parameter optimization of the IPM BLDC motor for low cost
and high performances. The optimized results demonstrate
that the cost is reduced without sacrificing the performances,
and it has short computation time. It is proved that the PSO
algorithm is an attractive alternative for solving the structural
parameter optimization problems of IPM BLDC motor.

TABLE III
OPTIMIZED IPMBLDC MOTOR CHARACTERISTICS

Motor Before After

Speed (rpm) 3600 3600

Terminal voltage (V) 158 158
Back EMF (V) 129.43 146.64
Current (A) 15.03 7.73

Torque (Nm) 0.83 2.99
Efficiency 80.6% 92.2%
Cost () 206 171
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