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Simple Summary: Cancer-associated fibroblasts (CAFs) stimulate phenotypic transformation and
acquisition of stemness in carcinoma cells. Targeting CAF-derived cytokines may suppress initiation
of these events. This study aimed to show the inhibitory effects of pirfenidone on phenotypic trans-
formation and stemness of cancer cells. To this end, we leverage the use of a 3D microfluidic device
to analyze carcinoma progression phenotypes. We found that pirfenidone decreased tumor spheroid
formation and epithelial–mesenchymal transition (EMT) the inhibition of cytokine production by
CAFs. In the microfluidic model, we demonstrate that pirfenidone significantly inhibits the migra-
tion of carcinoma cells and CAFs. This study highlights the potential application of pirfenidone in
suppressing invasion and potentially metastasis in breast cancer which can be further investigated
in vivo.

Abstract: The aim of this study was to assess the effects of pirfenidone (PFD) on promoting epithelial–
mesenchymal-transition (EMT) and stemness features in breast carcinoma cells through targeting
cancer-associated-fibroblasts (CAFs). Using The Cancer Genome Atlas (TCGA) database, we analyzed
the association between stromal index, EMT, and stemness-related genes across 1084 breast cancer
patients, identifying positive correlation between YAP1, EMT, and stemness genes in samples with a
high-stromal index. We monitored carcinoma cell invasion and spheroid formation co-cultured with
CAFs in a 3D microfluidic device, followed by exposing carcinoma cells, spheroids, and CAFs with
PFD. We depicted a positive association between the high-stromal index and the expression of EMT
and stemness genes. High YAP1 expression in samples correlated with more advanced EMT status
and stromal index. Additionally, we found that CAFs promoted spheroid formation and induced
the expression of YAP1, VIM, and CD44 in spheroids. Treatment with PFD reduced carcinoma cell
migration and decreased the expression of these genes at the protein level. The cytokine profiling
showed significant depletion of various EMT- and stemness-regulated cytokines, particularly IL8,
CCL17, and TNF-beta. These data highlight the potential application of PFD on inhibiting EMT and
stemness in carcinoma cells through the targeting of critical cytokines.

Keywords: tumor microenvironment (TME); cancer-associated fibroblasts (CAFs); epithelial–
mesenchymal transition (EMT); pirfenidone (PFD); 3D microfluidic device
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1. Introduction

The cellular components of the tumor microenvironment (TME) in promoting inva-
siveness and stemness features of carcinoma cells are well characterized [1,2]. Among
them, cancer-associated fibroblast (CAFs), a major component of TME, play a key role in
the regulation of tumor progression and metastasis, as well as the acquisition of stemness
in carcinoma cells through the induction of various processes, including epithelial-to-
mesenchymal transition (EMT) [3,4]. CAFs modulate various key factors within the TME
and rewire the TME toward an aggressive ecosystem. This is achieved by the secretion of
various cancer-promoting chemokines and cytokines, which activate tumor growth, and
trigger cancer invasion and immune escape [5–7]. Besides, CAFs remodel the extracellular
matrix leading to an increased stiffness which modify the phenotype in carcinoma cells [8,9].
Various studies highlighted the role of CAFs-induced Yes-activated protein (YAP1), a ma-
jor regulator of cell plasticity, stemness, drug resistance, and metastasis in carcinoma
cells [9,10]. Given the crucial role of CAFs within the TME, targeting these cells might be
a promising therapeutic approach to reduce the invasiveness and stemness of carcinoma
cells regulated by YAP1 [11]. The pirfenidone (PFD) is a well-known therapeutic agent
used for the treatment of idiopathic pulmonary fibrosis (IPF). The PFD target activated
fibroblasts and secretory cytokines. Numerous recent studies demonstrated the therapeutic
potential of PFD as a combination treatment modality with chemotherapy, targeted therapy,
and immunotherapy in various cancers through the depletion of cytokines [12–15].

Currently, the complexity of TME is commonly modelled using advanced 3D models,
including tumor organoids, co-culture aggregates [16], or animal models using patient-
derived xenografts [17,18]. However, the lack of real-time monitoring and controlling
various variables of the microenvironment regulation in the study of TME is challenging in
these model systems. These limitations prompted the development of a cancer-on-a-chip
platform, which is a biomimetic approach to mimic the physiological tumor’s environment
through seeding human cancer cells in a microfabricated platform in order to model the
parameters, such as fluid shear force [19], concentration gradient [20], and a particular
feature of TME including tumor and stromal cell interaction [21,22]. Given the merits of
microfluidic cell culture platforms, these models enable the study of therapeutic agents
that target key features of TME [21]. Herein, using a microfluidic model of tumor invasion
using CAF-tumor spheroids, we demonstrated that targeting CAFs with PFD not only
reduces EMT and invasion capacity of cancer cells but also decrease stemness by blocking
the secretion of cytokines and the expression of YAP1 in breast carcinoma cells.

2. Materials and Methods
2.1. In-Silico Data Analysis

The TCGA breast cancer genomic information and clinical data were downloaded from
the cBioportal data portal (https://www.cbioportal.org/ accessed on 25 March 2021) [23]
and analyzed under Bioconductor tools in R-Software (version 3.8). A detailed description
of used packages and related scripts to gene expression and mutation analysis is avail-
able at https://bioconductor.org/packages/release/bioc/vignettes/maftools/inst/doc/
maftools.html accessed on 25 March 2021. The stromal index was calculated based on
the ESTIMATE scoring method [24]. The EMT score in this study was calculated accord-
ing to our previous study [25]. Protein–protein interaction analysis was performed with
STRING [26,27].

2.2. Cell Lines and Media

Human breast adenocarcinoma cells, MCF7 and MDA-MB-231, were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) (Thermo Fisher Scientific, Waltham, MA,
USA), supplemented with 10% (v/v) FBS, 100 U of penicillin/mL, and 100 µg of strepto-
mycin/mL. The breast cancer-derived CAFs were cultured in DMEM supplemented with
1% (v/v) insulin–transferrin–selenium (ITS) (Thermo Fisher Scientific), 2% FBS (Thermo

https://www.cbioportal.org/
https://bioconductor.org/packages/release/bioc/vignettes/maftools/inst/doc/maftools.html
https://bioconductor.org/packages/release/bioc/vignettes/maftools/inst/doc/maftools.html
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Fisher Scientific), and 1% penicillin/streptomycin (Sigma-Aldrich, St. Louis, MO, USA) in
37 ◦C.

2.3. Spheroid Formation

In order to obtain human tumor spheroids with stemness feature, the MCF7 cells
were detached and suspended as individual cells at 1 × 105 cells/mL in a Mammo Cult
Human Medium Kit (STEMCELL Technology, Cat# 05620) included with hydrocortisone
(STEMCELL Technology, Cat# 07925) and heparin solution (STEMCELL Technology, Cat#
07980), and cultured for 14 days onto a 100 mm ultra-low attachment dish (corning). To
use the appropriate size of spheroids in the microfluidic device, the generated spheroids
were collected and filtered in two consecutive filtration steps: (a) 40-µm filtration, in order
to exclude all the spheroids smaller than 40 µm; and (b) 100-µm filtration to exclude
aggregates larger than 100 µm and centrifuged by 250× g for 5 min to separate them
from the supernatant. Dried plat containing spheroids were suspended in collagen Type-I
solution on ice for loading in microfluidic devices [28].

2.4. Preparation of CAFs Condition Medium

CAFs were cultured at a concentration of 1 × 104 cells/cm2 in DMEM medium
supplemented with 1% (v/v) ITS and 1% (v/v) penicillin/streptomycin. Once the cells
reached 95% confluence, cells were washed with PBS, and the culture media were replaced
with serum and ITS-free DMEM followed by incubation for an additional 48 h. The
concentrated supernatant was collected by centrifuging (Eppendorf, Hamburg, Germany))
at 1200 RPM for 5 min at room temperature, filtered through 0.45 µm filters, and designated
as CAFs-conditioned medium (CAF-CM). The conditioned medium was then stored at
−80 ◦C until use.

2.5. Microfluidic Device Design and Cell Culture

The microfluidic devices were purchased from AIM Biotech Company (Singapore).
Each single device was composed of 2 side channels for loading cell culture medium and
a central region channel for loading hydrogel containing cells. Next, 200 µL of collagen
gel solution (2.5 mg/mL) at pH 7.4 was prepared on ice by the mixture of 20 µL of
10× PBS, 4 µL of NaOH (0.5 N), 129.2 µL of collagen Type-I (Corning, Cat# 354236.), 10 µL
of cell suspension medium containing 1000–2000 tumor spheroids, and 22.9 µL of cell
culture grade deionized water. After loading gel–cell solution into the central channel,
the device was kept in the cell culture incubator at 37 ◦C and 5% CO2 for 40 min to allow
gel polymerization. After polymerization, media channels filled with 120 µL of stemness
medium or CAF-conditioned medium (CM), with or without PFD, by adding 70 µL in one
port and another 50 µL into the opposite connected port of a media channel. This approach
prevents shear stress on the gel channel following the loading medium.

For migration and co-culture study, the central channel was filled with a collagen gel
solution (2.5 mg/mL) without embedded cells containing 20 µL of 10×PBS, 4µL of NaOH
(0.5 N), 129.2 µL of collagen Type-I, and 42.8 µL of deionized water. Immediately after gel
polymerization, the two side channels were filled with MDA-MB-231 (one side channel)
and CAFs (opposite side channel) at the concentration of 10,000 cells for each cell line.
Finally, 120 µL of the serum-free cell culture medium with or without PFD was added to
the both side channels to feed the cells. In both experiments, the devices were kept in the
incubator with the standard condition for four days.

2.6. Cytokine Profiling Assays on Treated samples

The culture medium of devices treated with PFD was analyzed using the Human Cy-
tokine Antibody Array (Abcam, Cat# ab133997, Cambridge, UK) according to the provided
protocol by manufacture. Briefly, the culture medium was collected from microfluidic
devices and centrifuged followed by hybridization to the array membrane overnight at
4 ◦C. After washing the membrane, anti-cytokine secondary antibody was used. Finally,
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cytokines were detected by adding HRP-conjugated streptavidin on the membrane. The
captured signals from each cytokine spots were quantified using ImageJ software.

2.7. Immunofluorescence Staining and Imaging Analysis

Cell culture media were removed from the devices, and samples in the microfluidic
devices were first rinsed in 1X PBS by adding 70 µL of PBS into one port and another
50 µL into the opposite connected port of a media channel. Then, the cells were fixed with
4% paraformaldehyde (PFA) (Sigma-Aldrich, St. Louis, MO, USA) for 15 min at room
temperature. Next, 0.1% Triton-X 100 (Sigma-Aldrich, St. Louis, MO, USA) was added,
and the device was incubated for 10 min before blocking by BSA 1% (Sigma-Aldrich cat
no.: A5611) for two hours, followed by staining of cells for α-SMA (1:100, Abcam, Cat#
ab197240.), Vimentin (1:200, Biolegend Cat# 677804. San Diego, CA, USA), YAP1 (1:200,
Abcam, Cat# ab205270), CD44 (1:200, Abcam, Cat# ab194988), and CDH1 (1:200, Biolegend
Cat# 324104). Nikon Ti2 confocal microscopes were used for imaging of the samples.
The intensity of fluorescent signal, an indicator of protein expression, was analyzed on
multiple z-stack. Finally, the images’ mean fluorescent intensity (MFI) was quantified using
Cell-Sense software (Olympus, Japan).

2.8. Statistical Analysis

The results of quantitative experiments were analyzed as mean ± SEM. The statistical
analysis was performed with the Student t-test. * p-value < 0.05 was considered as a
statistically significant and **** p-value < 0.0001 was considered as extremely significant.
Microscopic images are representative images from three independent experiments.

3. Results
3.1. The Association of Tumor Stromal Content with the Expression of YAP1 and Metastasis
Feature

To better understand the potential association of YAP1 with classical stemness and
EMT markers, we comprehensively analyzed the gene and protein expression levels of
YAP1 across 1084 breast cancers from the TCGA cohorts. To evaluate the association
between the expression of YAP1 and stromal content of TME, especially CAFs, we divided
samples into two groups of the high-stromal index (HSI) and low-stromal index (LSI)
according to the ESTIMATE score of samples (Figure 1). We observed a significantly high
expression of YAP1 in samples with HSI scores compared to the LSI group (Figure 1A–C)
at both transcriptome and protein levels. To study the association between YAP1 with EMT
related features, we annotated HSI and LSI samples based on their EMT scores, namely a
high EMT score (H-EMT) and a low EMT score (L-EMT), and measured expression of YAP1
across these groups at protein level (Figure 1C,D). Interestingly, we found that most of the
samples with the HSI score include a H-EMT score sample compared to the LSI group.

Moreover, HSI samples represented high expression of YAP1 at the protein level
(Figure 1C). To better understand whether there is an association between YAP1 and EMT,
we analyzed the correlation coefficient between YAP1 and classical EMT genes, VIM and
CDH1, plus stemness marker CD44 and immune checkpoint protein PD-L1. We found a
positive association between YAP1 and VIM, CD44, and PD-L1, while YAP1 negatively
correlated with CDH1 (Figure 1D).

Following these findings, we analyzed metastatic stages of individual samples across
HSI and LSI groups and the prevalence of YAP1 expression. As depicted in Figure 1E, in
comparison with the LSI group, most of the samples with the high expression of YAP1
at the protein level and a MX or M1 metastatic stage were enriched in the HSI group,
indicating a positive correlation between stromal content, expression of YAP1, and high
metastatic stage (Figure 1E). Taken together, these data highlight the positive association of
high tumor stromal content of TME with the expression of YAP1 and induction of EMT
and metastasis.
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high-stromal index (HSI) and low-stromal index (LSI) indicating that samples with HSI expressed a high level of YAP1. 
(C) A High EMT status is enriched in samples with the HSI status and high level of YAP1 at the protein level. (D) Corre-
lation coefficient analysis between the expression of YAP1 and classical EMT markers (VIM, CDH1), stemness marker 
(CD440, and immunosuppressive marker (PD-L1). The results show a negative association between YAP1 and CDH1 and 
a positive correlation with CD44, VIM, and PD-L1. (E) Association between the protein expression of YAP1 and metastatic 
stages in samples with a HSI and LSI score, showing enrichment of an adverse stage of metastasis in samples with high 
YAP1 expression and HSI score. 
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into two groups of YAP1-high and YAP1-low, based on its gene expression level. The on-
coprint analysis illustrated enrichment high expression of EMT and stemness-related 
genes in samples with high expression of YAP1 (Figure 2A). Moreover, the gene-set en-
richment analysis (GSEA) of YAP1-low and -high samples resulted in the enrichment of 
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Figure 1. Genomic analysis of the TCGA breast cancer cohort. (A) The oncoprint illustrates YAP1 expression in two groups
of samples annotated based on the stromal score signature. (B) Comparing the expression of YAP1 between samples with
high-stromal index (HSI) and low-stromal index (LSI) indicating that samples with HSI expressed a high level of YAP1.
(C) A High EMT status is enriched in samples with the HSI status and high level of YAP1 at the protein level. (D) Correlation
coefficient analysis between the expression of YAP1 and classical EMT markers (VIM, CDH1), stemness marker (CD440,
and immunosuppressive marker (PD-L1). The results show a negative association between YAP1 and CDH1 and a positive
correlation with CD44, VIM, and PD-L1. (E) Association between the protein expression of YAP1 and metastatic stages
in samples with a HSI and LSI score, showing enrichment of an adverse stage of metastasis in samples with high YAP1
expression and HSI score.

3.2. Association of YAP1 with EMT and Stemness Markers

To further demonstrate of association between YAP1 and EMT, we classified samples
into two groups of YAP1-high and YAP1-low, based on its gene expression level. The
oncoprint analysis illustrated enrichment high expression of EMT and stemness-related
genes in samples with high expression of YAP1 (Figure 2A). Moreover, the gene-set en-
richment analysis (GSEA) of YAP1-low and -high samples resulted in the enrichment of
hallmark of EMT in YAP1-high samples in comparison with YAP1-low (Figure 2B), in
which the expression of classical EMT markers VIM and ZEB1 were significantly higher
across YAP1-high samples (Figure 2C,D). In contrast, CDH1 expression was enriched in
the YAP1-low group (Figure 2E). Additionally, samples with the high expression of YAP1
represented a significant expression of stemness marker CD44 compared to the YAP1-low
expressing samples (Figure 2F).
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Figure 2. In silico data analysis between samples expressing high and low levels of YAP1. (A) The oncoprint plot depicts the
high expression of EMT- and stemness-related genes in samples with YAP1-high status at the transcriptome level. (B) The
gene-set enrichment analysis (GSEA) shows the enrichment of hallmarks of EMT in samples with a high level of YAP1.
(C–F) The comparison between high and low YAP1 groups in terms of VIM expression (C), ZEB1 (D), CDH1 (E), and CD44
(F). *** p < 0.0002, **** p < 0.0001 using student t-test.

3.3. CAFs Induce Spheroid Formation

To investigate whether CAFs can induce and stimulate spheroid formation, we gen-
erated a concentrated condition medium from CAFs (CAF-CM) and co-cultured MCF7
cells in well-plate and microfluidic devices in 50:50 (v/v) ratio of CAF-CM and stemness
induction medium for seven days. We found that the number and the diameter of gener-
ated spheroids were significantly increased when the cells were co-cultured with CAF-CM
(Figure 3A–C), while integrated density properties of spheroids were reduced after seven
days in comparison with the monoculture group (Figure 3D). The assessment of the ep-
ithelial marker E-cadherin showed that CAF-CM significantly reduced expression of this
gene, suggesting that CAF-CM may induce migration of cells in spheroids (Figure 3E,H).
Moreover, we found a significant expression on YAP1 (Figure 3F,H) and CD44 in spheroids
co-cultured with CAF-CM compared to the monoculture samples (Figure 3G,H). These
data indicate an invasion and stemness induction role of CAF cells through the secretion of
cytokines.
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Figure 3. CAFs induces spheroid formation with increased diameter and expression of YAP1. (A) Bright-filed snapshot
image of the formation of spheroids in well-plate (left) and microfluidic device (right) co-cultured with or without CAF-CM.
The micrographs show an increase in the number and size of generated spheroids on both platforms in the presence of CAF-
CM. (Scale bar: 200 µm) (B) The CAF-CM significantly increased the formation of spheroids per 1000 cells in comparison with
monoculture. (C) In comparison with monoculture, co-culturing cancer cells with CAF-CM significantly increased the size
of generated spheroids. (D) The integrated density in spheroids co-cultured with CAF-CM was lower than in monoculture,
indicating the stimulation of cell invasion from spheroids in the ECM channel. (E–G) The immunofluorescence staining
of the EMT marker ECAD (E) and stemness marker CD44 (F) indicates that CAF-CM stimulates EMT and stemness. Co-
culturing with CAF-CM increased the expression of YAP1 in generated spheroids (Scale bar: 100 µm). (H) The quantitative
analysis of mean fluorescence intensity in ECAD, YAP1, and CD44 resulted in a significant reduction in the expression of
ECAD and an increase in CD44 and YAP1 in the co-culture group to the monoculture. * p < 0.05, ** p < 0.002, *** p < 0.0002
using the Student t-test.

3.4. Pirfenidone Reduces the Migration of CAFs and Carcinoma Cells

The role of tumor stromal cells, particularly CAFs, in the induction of migration
in carcinoma cells has been shown previously [29]. To study the potential of PFD in
reducing invasive properties of carcinoma cells, we first co-cultured MCF7 carcinoma cells
known as low-vimentin expressers with CAF-CM for 48 h and then treated cells with a
low concentration of PFD (40 µM) for 72 h (Figure 4A). In comparison with the control
group, we observed a significant reduction in vimentin expression in spheroids treated with
PFD (Figure 4A). Following these results, we assessed the effects of PFD on the migration
of carcinoma cells and CAFs. To this aim, we co-cultured CAFs and MDA-MB-231 as
representative of aggressive breast cancer in the 3D microfluidic device and treated cells
with 40 µM of PFD for 72 h, followed by measuring cell migration distance in control and
PFD-treated cells (Figure 4B). Figure 4C presents a snapshot of the 3D device including
migration of CAFs and MDA-MB-231 through the ECM channel in three different time
points. In PFD-treated samples, we loaded serum-free culture medium containing (40 µM)
PFD following seeding cells in the device.
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(A) Tumor spheroids derived from MDA-MB-231 show a significant reduction in the expression of EMT marker VIM
(scale bar: 100 µm). (B) The schematic image of invasion and migration assay performed in the 3D microfluidic device in
which MDA-MB-231 and CAFs are injected in side channels. The migration of cells was monitored for three days after
seeding. (C) A representative bright-field image of migration of CAFs and MDA-MB-231 in the presence and absence of
PFD highlight that PFD significantly suppressed the migration of both cells during 72 h. (scale bar: 200 µm). (D,E) The
quantitative analysis of migration distance for CAFs (D) and MDA-MB-231 cells (E) indicated that PFD did not significantly
suppress the migration of CAFs after 72 h; however, in comparison with the control group, a reduction was observed. In
the case of MDA-MB-231 cells, PFD significantly suppressed the invasion and migration of these cells after 48 and 72 h.
** p < 0.002 using the Student t-test, *** p < 0.0002 using ANOVA.

Interestingly, we found that the presence of PFD in the culture medium significantly
reduced the migration of MDA-MB-231 cells (Figure 4E) after 48 and 72 h. In the case
of CAFs, although migration inhibitory of PFD did not reach statistical significance, we
observed a reduction in migration of CAFs through the ECM after 72 h compared to
the control group. These data highlight the potential of PFD to reduce the invasion and
migration capacity of carcinoma cells and CAFs.

3.5. Pirfenidone Reduces YAP1 and CD44 Expression in Spheroids by Targeting Key Cytokines

The cytokine production inhibitory role of PFD has been shown in various
studies [15,28]. Targeting cancer progression-promoting cytokines using PFD may re-
duce stemness and immune suppression promoted by CAFs. To study the effect of PFD
on the expression of stemness marker CD44 and also of YAP1, we first cultured MCF7
cells with CAF-CM for 72 h and then generated spheroids that include both MCF7 and
CAFs in a ratio of 2:1 and cultured them into the 3D device. The generated spheroids
were treated with stemness medium containing 40 µM of PFD for 72 h before performing
imaging and cytokine profiling. Interestingly, we found that PFD not only significantly
reduced the expression of YAP1 (Figure 5A) and CD44 (Figure 5C) but also the level of
α-SMA after treatment, indicating a reduction in CAFs activity in spheroids (Figure 5A,B).
To better understand the inhibitory effects of PFD, we collected culture medium from 3D
microfluidic devices from both groups after 72 h and performed a cytokine profiling array
against 42 cancer-promoting cytokines (Figure 5C). A significant reduction was observed in
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the secretion of various cytokines after treatment with PFD, including IL8, CCL17, TNF-β,
and CCL2 (Figure 5D).
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Figure 5. PFD reduces CAFs activity and expression of CD44 and YAP1 through the blockade of key cytokine secretion.
(A) The immunofluorescence staining shows a significant decrease in protein expression of YAP1 and α-SMA following
treatment with PFD (scale bar: 100 µm). (B) Besides α-SMA, PFD also reduced the expression of CD44 in spheroids that
include CAFs (scale bar: 100 µm). (C) The picture of cytokine profiling performed on culture medium retrieved from
PFD-treated and non-treated spheroids in devices. The array shows the depletion of numerous cytokines in treated samples.
(D) The quantitative analysis of the mean-pixel density analysis of cytokine membranes using ImageJ software, shows
a significant depletion of IL6, IL8, CCL17, TNF-β. * p < 0.05, ** p < 0.002, *** p < 0.0002, using Student t-test (A,B) and
ANOVA (D).

Moreover, we observed a slight decrease in the level of CXCL1, IL6, CSF, OSM, PDGF,
and VEGF in treated samples as compared to the control group (Figure 5D). The protein–
protein interaction analysis between classical EMT genes, stemness, and PFD targeted
cytokines revealed associations between YAP1 and CD44 with VIM, CDH1, and AXL
and IL8 (Figure 6A,B). In order to further evaluate, the association between identified
cytokines with EMT and YAP1, we analyzed expression of these cytokines in samples
with high and low expression of YAP1 from TCGA breast cancer cohort. As illustrated in
Figure 6C, a significant expression of IL8 and CCL2 was enriched in samples with high
YAP1 level. Besides, although the YAP1-high samples showed the high expression of
CCL17 and TNF-β in comparison with YAP1-low, however, significant difference was not
observed between these groups. (Figure 6C). Following these findings, we analyzed EMT
scores across 1084 samples from TCGA and classified samples into high and low EMT
scores and assessed the expression of identified cytokines. Interestingly, we found the
significant enrichment of targeted cytokines in samples with a high EMT score compared
to the low EMT score samples, indicating a positive association between expression of
targeted cytokines and EMT in breast cancer (Figure 6D). These results indicate that PFD
might reduce the stemness and invasion capacity of the carcinoma cells through targeting
cytokine production in CAF that regulate EMT, which in turn can stimulate YAP1-associated
stemness.
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network. (C) Comparison between the expression of four identified cytokines in samples with high- and low expression of
YAP1 in breast cancer indicating enrichment of these cytokines in YAP1-high samples. (D) Key cytokines are enriched in
samples with high EMT score. * p < 0.05, ** p < 0.002, *** p < 0.0002, **** p < 0.0001, using the Student t-test.

4. Discussion

The role of cellular components of TME, especially CAFs, in promoting carcinoma
progression is well understood [3,8]. Numerous studies highlighted that CAFs could
induce stemness features in carcinoma cells through the secretion of various cytokines
and remodeling ECM toward developing a high stiffness of ECM which, in turn, stimu-
lates phenotypic changes including EMT and induces the expression of related stemness
genes [8,30–33]. Targeting CAFs to either suppress their activity or reprogram them into
an inactive state showed some promising effects [34]. Inhibiting carcinoma progression-
promoting cytokines released from CAFs may be an efficacious therapeutic strategy for
cancer treatment [35–37].

Recently, various clinical and preclinical studies demonstrated the potential applica-
tion of PFD as a combination therapy with chemotherapy and radiotherapy in various
types of cancers, including lung and pancreatic carcinoma [13,37]. However, few studies
showed PFD application in suppressing invasive properties, particularly EMT, and reduc-
tion in carcinoma-stemness through the targeting of key cytokines and genes that regulate
ECM synthesis and remodeling [38–40]. As a proof-of-concept study, we hypothesized that
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PFD could reduce CAF-induced EMT and consequently EMT-regulated stemness in breast
carcinoma cells by depletion of key cytokines.

Using a comprehensive in-silico data analysis on the breast cancer cohort from TCGA,
we showed the enrichment of high-level YAP1 expression in samples with the highest
stromal score. Moreover, we illustrated that samples with high stromal scores exhibit a
high score of EMT and invasive properties. A positive association between high level of
YAP1 and EMT-related genes, including vimentin and ZEB1 and stemness genes, at both
transcriptomic and protein levels was observed [41,42]. In line with these findings, several
studies demonstrated that YAP1 is a mediator of EMT and stemness in numerous types of
carcinoma, including breast cancer [42–45].

Tumor stromal cells, particularly CAFs, are among the main modulator of EMT and
stemness [46] through the induction of YAP1 and secretion of various cytokines. The
strategy based on targeting these proteins directly or indirectly by targeting CAFs might
be a promising approach to the treatment of advanced carcinoma [36,39]. To model and
study the cellular interaction of TME, particularly CAFs, and the effects of stromal cells
in the migration of cancer cells, various in-vitro models have been developed ranging
from co-culture 2D platforms to 3D cell-culture models [47,48], including tumor organoids.
However, the drawbacks of each model limited their application as a reliable and low-cost
model for both TME analysis and drug screening [49]. To overcome these limitations,
microfluidic 3D cell-culture platforms offered a reliable and physiologically relevant model
to study and mimic particular features of TME, especially tumor–stromal cell interaction in
a fully controlled setting. Using low input material, controlling over culture compared to
current 3D models, high capability of real-time imaging, and the possibility of co-culturing
tumor organoids with other components of TME, including stromal cells and immune
cells, enable this platform to model cellular interaction of TME in a reliable fashion [21].
Moreover, the design of microfluidic devices allows the modelling of cellular infiltration
and compound diffusion in the TME site [50,51].

In this study, using a 3D microfluidic platform, we modelled the reciprocal interaction
between CAFs and breast carcinoma cells. Using our invasion and migration model,
we demonstrated that CAFs promote spheroid formation and the migration capacity of
carcinoma cells [15], possibly through the secretion of cancer-promoting cytokines that
play a haptotactic or chemotactic role for carcinoma cells [52]. Following treatment with
PFD, we found that PFD significantly reduced the migration of an invasive type of breast
cancer cells and CAFs, and significantly decreased the expression of EMT marker vimentin,
stemness marker CD44, and YAP1 in CAF-tumor spheroids at the protein level [41]. Similar
observations were reported previously for the migratory inhibition effect of PFD on both
carcinoma cells and CAFs in pancreatic cancer [13] and breast cancer [15,53]. The role
of matrix-metalloproteinases (MMPs) on the stimulation of invasion and angiogenesis is
well established [54]. It has been shown that MMP-9 and MMP-2 released from CAFs can
stimulate the potential of invasion and migration in carcinoma cells [55,56]. Through our
invasion model, we demonstrated the migration inhibitory effect of CAFs. These data
suggest that, besides EMT genes, PFD may suppress invasion by depletion of particular
MMP in both CAFs and cancer cells.

As the expression of stemness marker CD44 on cancer cells is linked to the hypoxic
condition, recent studies highlighted that hypoxic and hypo-nutritional conditions might
induce the expression of CD44 on CAFs as well [57,58]; however, the validation of these
findings require further studies in the broad range of cancer types. Although we used a
non-hypoxic condition in our model, the effect of PFD on the reduction in CD44 on breast
carcinoma cells suggests that further investigation is required on the stemness inhibitory
role of PFD on a hypoxic model of TME.

In this study, we measured the expression of vimentin, ZEB1, and E-cadherin as
major EMT-related markers in our generated spheroids in microfluidic device. The protein–
protein interaction analysis also resulted in an association between other EMT-related
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genes, including N-cadherin with YAP1, CD44, and α-SMA, suggesting that these genes
may play a dual role in both the activation of CAFs and stemness in carcinoma cells [59].

Recent single-cell analysis studies revealed that a sub-population of CAFs, called in-
flammatory CAFs, express IL6 and TNF-α/β [60]. The co-culture of colon tumor organoids
with this population of CAFs resulted in the upregulation of vimentin and ZEB1 in tumor
cells [60]. Moreover, CAF-derived cytokines significantly induce the expression of HOTAIR,
which in return promotes the EMT program in metastatic breast cancers [53]. This study
also showed that targeting CAFs with PFD blocks the TGF-β1/HOTAIR axis and decreases
the migration potential of MDA-MB-231 cells. In addition to these findings, we found that
the level of α-SMA decreased after treatment with PFD, indicating that PFD can reduce
CAFs activity [34]. In line with these observations, numerous in-vitro studies highlighted
the inactivity of CAFs after treatment with PFD [15,28].

Using cytokine profiling, we demonstrated that PFD significantly depleted the secre-
tion of cancer- and invasion-promoting cytokines, particularly IL8, CCL17, and TNF-β.
Many studies highlighted the critical role of these factors in the interaction of the carcinoma–
stromal cell and ECM deposition toward the induction of an invasive TME and activation
of EMT and stemness [6,7,61,62].

It has been shown that the secretion of IL8 by CAFs, known as EMT and stemness
modulator [63], and tumor-associated mesenchymal stem cells (TA-MSCs) not only induced
the migration of carcinoma cells but also up-regulated immune suppression in carcinoma
cells through the PD-L1 expression. The treatment of TAMs with PFD reduced expression
of PD-L1 and migration of carcinoma cells in in vitro models [28]. CCL17 was reported as
a key cytokine in the generation of tumor-associated macrophages [64], which stimulates
EMT and stemness [65,66]. Moreover, it has been shown that the production and secretion
of CCL17 within the TME through the CAFs trigger the recruitment of myeloid-derived
suppressor cells (MDSCs) to the TME, promoting invasion in various cancers [67–69]. For
instance, recently, Omland and colleagues reported that CCL17 secreted from resident CAFs
within cutaneous basal cell carcinoma TME increases tumor progression and amplifies
immune suppression [70].

Taken together, in line with numerous studies, the results reported in this study
highlight the importance of suppressing CAF-derived cytokines that can induce both EMT
and stemness. This study also emphasizes the need to further explore the cross-talks
between carcinoma cells and other cells of the TME to better control tumor progression.

5. Conclusions

Targeting CAFs has a great potential in treating highly aggressive types of cancers,
including breast carcinoma. The PFD, as a well-known anti-fibrotic agent, can suppress
the activation of fibroblasts through targeting cytokines. In this study, using a microfluidic
culture platform, we demonstrated the inhibitory function of PFD on invasion, EMT, and
stemness characteristics of invasive breast cancer cells through the depletion of cytokines.
However, further in vivo investigation is needed to delineate the potential of PFD as a
treatment modality in combination with current therapeutic agents in the treatment of
metastatic cancers.
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