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Determining the flow between eccentric cylinders is crucial in a wide range of industries. The governing equations for the flow
between eccentric cylinders cannot be solved analytically. Therefore, three-dimensional incompressible viscous fluid flow
between eccentric and concentric cylinders has numerically been simulated in this paper to investigate them using a
characteristic-based approach. The first-order characteristic-based scheme is used to calculate convective terms, whereas the
second-order averaging technique is used to calculate viscous fluxes. The Taylor number, eccentricity distance, Reynolds
number, and radius ratio are considered the controlling parameters of fluid flow between the cylinders. The influence of flow
between cylinders on flow patterns is presented in terms of velocity, pressure, and flow contours. It is found that at a constant
Taylor number, the asymmetric centrifugal forces produce the Taylor vortices on the right of the internal rotating cylinder as
the eccentric distance increases. When the eccentric distance increases, the magnitude of shear stress and its fluctuation on the
cylinder wall, as well as the pressure on the cylinder wall, rise. The numerical results obtained were validated by comparing
them to previously published experimental results, which showed a high level of agreement.

1. Introduction

Researchers have conducted several numerical studies during
the last few decades. Thermo-flows, or flows involving heat
transfer, are the most challenging issues [1] that can be solved
numerically. Quiet flows are most frequently used in journal
bearings. Oil or fluid withstands the proper pressure difference
to sustain radial loads on the axis caused by eccentric cylinders
and axis rotation due to fluid viscosity sucking into wedge-
shaped spaces, hence avoiding axial wear. Internal cylindrical
rotation causes the fluid to rotate in the space [2], and in some
regimes, the rotational speed causes vortex appearance in the
flow. Across a cylinder, a three-dimensional incompressible
numerical study on thermo-flow was conducted by Reddy

et al. [3]. The flow was found turbulent, and the k - ωmethod
was used for simulating the turbulence. The simulations were
run for a wide range of Reynolds (Re) numbers, and the mean
Nuselt number and drag force in various scenarios were calcu-
lated and compared.

Kim and Hwang [4] numerically examined the flow
between two cylinders where the internal cylinder was rotat-
ing. They measured the effects of rotational speed, the flow
rates, and the working fluids on the pressureless and skin
friction coefficients. A strong correlation was found between
skin friction coefficients, Rossby numbers, and Reynolds
numbers in the laminar regimes. It was also demonstrated
that, when the Rossby number increases as the rotational
speed increases, the critical Reynolds number lowers as
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expected. Several kinds of research on hydrodynamic lubri-
cation examined the flow around the cylinder. For instance,
Ma et al. [5] studied the abnormal behavior of hydrody-
namic lubrication caused by wall sliding in journal bearings
using the Reynolds equation with the finite element method.
The results illustrated that if the lubricated surfaces are
designed as homogeneous slip surfaces, sliding on the wall
reduces the oil film’s load support. If there is a slip on the
wall at lubricating surfaces, the hydrodynamic impact of
the bearing is diminished, and the bearing is unable to with-
stand loads. To prevent slipping on the wall, the shear stress
limit on the bearing surfaces must be greater than the values
on the axis surface.

The classical hydrodynamic lubrication theory assumes
that the oil flow regime is laminar and that the inertia fluid
forces of the fluid film are negligible [6]. For large bearings
using low-viscosity lubricants or for high speed, inertial
forces can be significant because in such cases, nonlaminar
flow occurs. To investigate lubrication at high Reynolds
numbers, Frêne et al. [7] performed a combined analysis of
thin-film and Navier-Stokes equations. This study provided
an overview of nonlaminar lubrication. Various flow regimes
occurring in bearings and seals were shown, and theories for
obtaining flow characteristics were presented in the nonla-
minar state. The effects of inertial forces on laminar and tur-
bulent currents were investigated, and the results of solving
the complete Navier-Stokes equations were presented and
compared to the classical lubrication theory. Singh et al.
[8] performed a theoretical steady-state thermo-
hydrodynamic analysis of axial groove journal bearings with
oil supplied at constant pressure. The thermo-hydrodynamic
study required simultaneous solutions of the Reynolds equa-
tion, energy equation, and heat transfer equations in bush
and shaft. It was revealed that the oil film temperature is
increased due to the thermal friction, and consequently,
the fluid viscosity increases and reduces bearing load capac-
ity. The increased shaft speed causes an increase in load-
bearing capacity, bush temperature, flow rate, and friction
variable. However, solving the problem due to numerical
instability is complicated when the bearing is operating at
high eccentricity ratios.

Bhatti et al. [9] conducted a semianalytical study in a
fluid flow exposed to an electromagnetic field where the
Nusselt numbers were obtained for different parameters. A
differential transform method was used to obtain the numer-
ical results of nonlinear coupled differential equations. The
comparison was done using a shooting scheme for the Nus-
selt number. The proposed scheme was found stable to solve
the nonlinear differential equations. Shahid et al. [10]
worked on a nanofluid flow over a porous wall with a sinu-
soidal solid boundary. The flow was exposed to an electro-
magnetic field, and governing equations were obtained by
considering non-Newtonian fluid. A similarity solution was
used to transform the governing equations into ordinary dif-
ferential equations. The obtained equations were solved by
implementing the spectral local linearization technique
numerical method. Bhatti et al. [11] also performed a
numerical analysis on a fluid flow with nanoparticles. The
flow was limited by two circular parallel solid boundaries

with an angular velocity. The nanofluid flow was subjected
to an electromagnetic field, and the obtained outcome can
be used for thermal energy storage systems.

Roy and Laha [12] theorized the dynamic and steady-
state characteristics, including the eddy instability of the oil
in the bearing with the axial groove at different positions,
while the oil was fed at constant pressure. The Reynolds
equation was numerically solved using the finite difference
method and proper boundary conditions. The results
showed that when the groove is at 12°, both the load capacity
and the currents are at their maximum and begin to dimin-
ish at subsequent positions. In high eccentricity and velocity
cases, the stability for lower angles and groove lengths got
improved. The stiffness and damping coefficient values were
higher for grooves with small angles and shorter lengths.
Kumar et al. [13] studied the effect of a magnetic field on
the flow between two concentric rotating cylinders. The
equations governing the Jeffrey fluid were employed in the
cylindrical coordinates. Squadron fixed point theory was
used for the analysis of momentum equations. The studies
discussed above mainly investigated the flow patterns in dif-
ferent regimes. However, all of the key parameters that affect
the performance of the cylinders such as the Taylor number,
Reynolds number, eccentricity ratio, and fluid viscosity were
not considered in those studies, and thus, the actual perfor-
mance of the cylinders did not reflect. Therefore, the present
study assesses the 3D (three-dimensional) flow pattern to
measure the cylinder performance in two flow regimes by
considering these as the controlling parameters.

2. Governing Equations

The governing equations (continuity, momentum in three
dimensions, and energy equation) for the incompressible
unsteady flow in the cylindrical coordinates are [14]

1
r
∂
∂r

rurð Þ + 1
r
∂u∅
∂∅

+
∂uz
∂z

= 0
∂ur
∂t

+
1
r
∂
∂r

rururð Þ + 1
r

∂
∂∅

ruru∅ð Þ − u2∅
r

+
∂
∂z

uzurð Þ

= −
1
ρr

∂p
∂r

+ ϑ
1
r
∂
∂r

r
∂ur
∂r

� �
+

1
r2
∂2ur
∂∅2 −

ur
r2

−
2
r2
∂u∅
∂∅

+
∂2ur
∂z2

" #

+ gβ T − T0ð Þ sin ∅ð Þ ∂u∅∂t +
1
r
∂
∂r

ruru∅ð Þ + 1
r

∂
∂∅

u2∅
� �

+
uru∅
r

+
∂
∂z

uzu∅ð Þ = −
1
ρr

∂p
∂∅

+ ϑ
1
r
∂
∂r

r
∂u∅
∂r

� �
+

1
r2
∂2u∅
∂∅2 −

u∅
r2

+
2
r2
∂ur
∂∅

+
∂2u∅
∂z2

" #

+ gβ T − T0ð Þ cos ∅ð Þ − ∂uz
∂t

+
1
r
∂
∂r

ruruzð Þ

+
1
r

∂
∂∅

uzu∅ð Þ + ∂
∂z

u2z
� �

= −
1
ρ

∂p
∂z

+ ϑ
1
r
∂
∂r

r
∂uz
∂r

� �
+

1
r2
∂2uz
∂∅2 +

∂2u∅
∂z2

" #
∂T
∂t

+
1
r
∂
∂r

rurTð Þ

+
1
r

∂
∂∅

Tu∅ð Þ + ∂
∂z

uzTð Þ = α
1
r
∂
∂r

r
∂T
∂t

� �
+

1
r2

∂2T
∂∅2 +

∂2T
∂z2

" #
,

ð1Þ

2 Geofluids



where ur , uΦ, uz represents the fluid velocities, T denotes
the temperature, P signifies the pressure, t is the time, T0 is
the reference temperature, and g and β are the gravitational
and thermal compressibility coefficient, respectively. The r, z
, and∅ represent the directions in cylindrical coordinates. A
term gβðT − T0Þ was added to the governing equation (1)
that decomposes in two directions r,Φ. The Boussinesq
approximation was used to consider the free convection
effect. The density change was thus assumed to be negligible,
and the flow was considered incompressible. The governing
equation was used for laminar flow. Therefore, the two-
equation turbulent scheme, k‐ε turbulence model, was used
to assess the turbulent flow behavior. The governing equa-
tions for the k‐ε turbulence model are presented below [14].
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In the system of equation (2), the first equation repre-
sents turbulent kinetic energy and the second one shows
the dissipation equation.

3. Numerical Approaches

The fluid flow modeling analysis was performed by a code
written in FORTRAN, and the effect of the parameters on
cylinder performance was investigated in both laminar and
turbulent regimes. The k-ε turbulence model was used for
turbulent flow. The finite volume method was applied for
numerical solutions. The numerical results obtained were
validated with the experimental data and the results of other
models. The three-dimensional characteristic-based scheme
was utilized for convective fluxes whereas the second-order
averaging method was used to calculate viscous fluxes. Time
marching was obtained by using the fifth-order Runge-
Kutta method. The inner cylinder was considered a rotary
cylinder, while the outer cylinder was regarded as fixed.
The rotational Reynolds number was calculated from the
following equation:

Re∅m =
ρΩa b − að Þ

μ
, ð3Þ

where Re is the Reynolds number, a and b are the diam-
eter of the cylinders, σ is the angular velocity, and μ is the
viscosity of the fluid.

4. Results and Discussion

The problem was simulated for various grids to test the grid
independence on the simulations. The pressure on the cylin-

der for different mesh sizes is shown in Figure 1. In this fig-
ure, the diameter respect and the eccentricity are defined as κ
and ε, respectively, and θ is the angle on the cylinder. To
obtain grid independence, simulations with different grids
at κ = 0:2, ε = 0:9, and Re = 48000 were performed. The pres-
sure distribution across the cylinder was obtained at differ-
ent angles through the simulation. The pressure obtained
at θ = 30° was compared in different grids. The grid indepen-
dence was achieved when this pressure was nearly constant.

The results for a grid with 591856 elements differed lit-
tle from those for a grid with 394571 elements. Therefore,
the grid having 591865 elements was chosen for the simula-
tions. Other simulations with different κ, ε, and Re were
performed, and the results have been shown in the follow-
ing figures. The grids in both two and three dimensions
are presented in Figure 2. The geometric parameter and
boundary conditions are defined in this figure. The inner
cylinder is rotating with constant angular velocity, and the
outer cylinder is fixed. No-slip condition is considered in
solid boundaries.

The numerical results were compared with the experi-
mental observation obtained by Escudier et al. [15] to vali-
date them. The velocity profiles obtained at three different
cross sections were compared and are presented in
Figure 3. This section investigates the effect of eccentricity
on current properties. Several numerical tests were con-
ducted to ensure the configuration and correctness of Taylor
vortices. The flow is simulated with a radius of 0.2 and a
Taylor number of 50 with the inner cylinder rotated coun-
terclockwise. Figure 4 shows the streamlines of Taylor vorti-
ces with this radius ratio and Taylor number at the exit in
different eccentricities.

As illustrated in Figure 4, the vortices behave differently
under various conditions. Asymmetric centrifugal effects
increase as eccentricity rises, resulting in Taylor vortex for-
mation on the right side of the inner cylinder. In the small
inner cylinder with low eccentricity, no Taylor vortices are
seen. The magnitude of velocity is also low in Taylor
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Figure 1: Pressure on the cylinder for Re = 48000, κ = 0:2, and
ε = 0:9 at θ = 30° at different cell numbers.
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vortices. However, there is a large Taylor vortex in medium
and high eccentricity. This vortex becomes thinner when the
radius of the inner cylinder is increased. The Taylor vortices
are generated because of the reverse flow that occurs in the
flow field. Centrifugal acceleration causes the fluid to flow
in a radial direction, resulting in the formation of Taylor
vortices and a low-pressure zone in that region of the flow.
The formation of Taylor vortices changes the pressure field
and thus modifies the bearing forces.

At a radius ratio of 0.2, Figure 5 depicts the shear stress
distribution around the revolving inner cylinder as eccen-
tricity increases. The shear stress diagram surrounding the
cylinder demonstrates that when the eccentricity of the two
cylinders and the asymmetry of the velocity distribution
increase, the velocity gradients and shear stress rise as well.
It is seen that most shear stress occurs at an angle of 180

degrees. This is due to the high-velocity gradients in the
region. The proximity of two solid walls in the area mainly
increases this velocity gradient.

Simulations were repeated for the radius ratio of 0.8 to
survey the flow characteristics. The pressure contours for
different eccentricities and the pressure distribution on the
cylinder are shown in Figures 6 and 7, respectively. As seen
in the figures, the isobar lines shift and the location of the
maximum and minimum pressure also changes; therefore,
the location of these pressures also fluctuates as a result of
the eccentricity change. Maximum and minimum pressure
approaches 180° as eccentricity increases. Proximity to the
solid wall is the main reason behind this.

The pressure distribution diagram for different Taylor
numbers around the cylinder is illustrated in Figure 8. The
figure shows that as the Taylor number increases, the
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Figure 2: Grids in two and three dimensions with the geometric parameters.
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Figure 3: Comparison of velocity distribution in different sections of nested cylinders with the results of Escudier et al. [15].
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pressure on the inner cylinder increases as well. The pressure
variations on the inner cylinder become more complex as
the Taylor number increases, and the pressure diagram has
different local maximum and minimum. The absolute max-
imum and minimum occur at around an angle of 180
degrees. As the Taylor number increases, the amount of
pressure at different angles increases with approximately
the same coefficient.

According to the pressure distribution diagrams for dif-
ferent Taylor numbers, it is observed that in the lower part
of the bearing, the pressure is greater than that of the wider
bearing part, due to the pumping of current by the viscous
forces into the wedge-shaped space. This pressure difference
generates a perpendicular radial force and can endure radial
forces because of the axial loading. The magnitude of this
pressure difference on the sides of the axis and therefore

the bearing force of the bearing depends on the current Tay-
lor number. Furthermore, vortices do not arise in general for
flows between two rotating cylinders when the impurity is
too small such as in journal bearings. This is because the
outer cylinder wall interferes with the flow, preventing the
formation of a separate fluid flow region. The variations in
the velocity along the y-axis for different Reynolds numbers
are shown in Figure 9.

As seen in Figure 9, the velocity increases when the
Reynolds number increases. Additionally, given the nonslip
fluid condition and the stationary state of both cylinders,
the velocities on both sides are zero. The main reason for
these zero velocities is that both cylinders are stationary
and there is an axial pressure gradient. The boundary layer
formed on both cylinders can be noticed depending on the
velocity profiles. Outside the boundary layer, the velocity is

𝜀 = 0.9 𝜀 = 0.6 𝜀 = 0.3

Figure 4: Streamlines showing Taylor vortices with a radius ratio of 0.2 and Taylor number of 50 at the exit in different eccentricities.
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Figure 6: Pressure contours for κ = 0:8, Ta = 50, and eccentricities.
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Figure 7: Pressure changes around the cylinder at different ε and κ = 0:8 and Ta = 50.
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nearly constant, but within it, it increases from zero on the
solid wall to the ultimate value at the boundary layer’s bor-
der. The flow simulation is discussed in the following at a
rotational Reynolds number of 12000. The velocity distribu-
tions at this Reynolds number are presented in Figure 10 in

terms of streamlines and pressure contours. The formation
of different vortices can be observed in these conditions.
High-pressure and low-pressure zones on the cylinder are
also identified. High-pressure regions occur between 270
and 360 degrees, and low-pressure areas are visible in the

0.00
0.00 0.40 0.80

y (cm)
1.20 1.60

0.05

0.10

0.15

0.20

𝜐
 (m

/s
)

Re = 500
Re = 1000Re = 2000

Re = 100

Figure 9: The velocity distribution along the y-axis for different Reynolds numbers at κ = 0:2 and ε = 0:9.

Figure 10: The velocity distribution along the y-axis for different Reynolds numbers at κ = 0:2 and ε = 0:9.
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range of zero to 90 degrees and 180 to 270 degrees. The pres-
sure changes between the two cylinders are also shown in
Figure 11 at different Reynolds numbers.

The pressure distribution at the upper cross section of
the inner cylinder on the vertical line increases with increas-
ing Reynolds numbers, which is the process of pressure
change toward the outer cylinder decreasing. The pressure
distribution over the cylinder is also shown in Figure 12 at
different Reynolds numbers.

It is seen from the pressure distribution figures, the pres-
sure is experiencing complex changes at high Reynolds
numbers. Therefore, the pressure diagram has multiple max-
imums and minimums at high Reynolds numbers. The dif-
ference between the maximum and minimum pressure
around the cylinder increases with the increasing Reynolds
number.

5. Conclusion

A characteristic-based scheme investigated the flow between
two decentered cylinders in two different regimes. The
parameters such as the Taylor number, eccentricity distance,
Reynolds number, and radius ratio were considered the con-
trolling fluid flow parameters between the cylinders. The
inner cylinder was rotated counterclockwise while the outer
cylinder was remained fixed. The major findings of the pres-
ent study are outlined below:

(i) The asymmetric centrifugal forces produce Taylor
vortices to the right of the internal rotating cylinder
as the eccentricity grows at a constant Taylor num-
ber. As a result, this vortex is stretched at larger
radius ratios and inclines leftward. The vortex
stretching phenomena are dominated by Re and
eccentricity

(ii) Taylor vortices do not appear for axial flow with no
cylindrical rotation

(iii) Depending on the strength of Taylor vortices, the
pressure oscillations could be fortified or dampened.
As the eccentricity increases, the shear stress fluctu-
ates, causing the pressure to rise

(iv) At different Taylor numbers in the narrowing part
of the bearing, the pressure is greater than the wider
part of the bearing, which is shaped by wedge forces
pumped by the viscous forces

(v) The amount of shear stress and its variation on the
cylinder, as well as the pressure on the cylinder,
increases with increasing eccentricity
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