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Abstract—Federated Learning (FL) with quantization and
deliberately added noise over wireless networks is a promising
approach to preserve the user differential privacy while
reducing the wireless resources. Specifically, an FL learning
process can be fused with quantized Binomial mechanism-
based updates contributed by multiple users to reduce the
communication overhead/cost as well as to protect the privacy
of participating users. However, the optimization of wireless
transmission and quantization parameters (e.g., transmit
power, bandwidth, and quantization bits) as well as the added
noise while guaranteeing the privacy requirement and the
performance of the learned FL model remains an open and
challenging problem. In this paper, we aim to jointly optimize
the level of quantization, parameters of the Binomial mecha-
nism, and devices’ transmit powers to minimize the training
time under the constraints of the wireless networks. The
resulting optimization turns out to be a Mixed Integer Non-
linear Programming (MINLP) problem, which is known to be
NP-hard. To tackle it, we transform this MINLP problem into
a new problem whose solutions are proved to be the optimal
solutions of the original one. We then propose an approximate
algorithm that can solve the transformed problem with an
arbitrary relative error guarantee. Intensive simulations show
that for the same wireless resources the proposed approach
achieves the highest accuracy and that is close to the accuracy
of the conventional FL with no quantization and no noise
added. This suggests the faster convergence/training time
of the proposed wireless FL framework while optimally
preserving users’ privacy.

Index Terms—federated learning, quantization level, differ-
ential privacy, communication constraints, Binomial mecha-
nism, convergence time optimization.

I. INTRODUCTION

The exponential growth of mobile devices and mobile
services provides a huge amount of data for AI-based
mobile applications, e.g., healthcare and e-commerce ser-
vices. However, effectively constructing a global model
from a large amount of mobile users’ data faces critical
challenges. First, due to the privacy concern, mobile users
are not always willing to share their raw data with their
AI mobile service providers (e.g., their locations, and
travel habits/data). Second, fusing users’ data to a mobile
server may incur significant communication overhead/cost.
In this context, Federated Learning (FL), among various
distributed learning frameworks, has recently emerged as
a great potential solution to address these two challenges.
Specifically, instead of requiring the mobile users to share
their raw data, FL only requires users to send their gradients
based on their local data to the server of application
providers for the learning process. By doing so, not only
the communication cost significantly decreases but also the
users’ privacy concern can be alleviated [1].

However, FL still poses several challenges when de-
ploying over wireless networks. First, even with just the
local gradients from mobile users, communication cost
still remains one of the biggest concerns for the FL

over wireless networks (FLoWNs). The reason is that a
mobile AI-based application may require updates/data from
a large number of devices, thus putting significant stress on
networks, especially at the wireless interface. Additionally,
to achieve a certain accuracy level, multiple rounds of
exchanging information between the participating devices
and the aggregated server may be required to advance.
These problems are particularly more pronounced with
complex deep learning models in which a local update
may contain millions of parameters [2]. Second, due to its
broadcast/open nature, wireless networks are vulnerable to
many types of attack, such as Man-in-the-Middle, DDoS,
and Sybil, leading to serious privacy concerns [3]. Recent
studies, e.g., [4], have revealed that it is possible to retrieve
the original data from the victims’ shared local gradient.
This can void the privacy protection advantage of FL.

To address the above challenges, a few works have
recently adopted the quantization technique to decrease
the communication costs as well as added noise to the
quantized local gradients. The authors in [5] present a quan-
tized FL framework that periodically averages the model’s
parameters at the server’s side and quantizes the message-
passing from the edge nodes to the server. Furthermore, to
improve the performance of FL (e.g., convergence rate),
each node locally updates its local model applying the
stochastic gradient descent (SGD) after a fixed number of
iterations. Finally, to better scale the system, the server
only updates the model with a fraction of the total nodes
in each round. Similarly, the study in [6] proposes an FL
with quantization constraint on the gradients, which is in
fact a vector quantization scheme for FL. They also prove
the theoretical guaranty of the proposed scheme. In [7],
the authors propose algorithms with periodical quantization
and analyze their convergence properties. In particular, they
derive an upper bound for convergence rates of various
objective functions including strongly convex and non-
convex ones.

To quantify and address the privacy concern in FL, there
is a rising interest in Differential Privacy (DP). The idea
of DP is to add noise to private individual records in the
dataset before aggregating. In [8], the authors propose an
FL framework with artificial noise added to the parameters
before the aggregation phase at the server. They also
analyze the optimal number of the devices to minimize
the convergence time of the underlying learning process.
This theoretical analysis also captures the trade-off between
the privacy level and the convergence rate as well as the
impact of the number of devices. To alleviate the privacy
leaking and reduce the communication cost, the authors
in [9] integrate FL with two bits quantization and local
DP mechanisms over the Internet of Vehicles network.
The local DP mechanisms include three-outputs mechanism
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with three output possibilities for small privacy budget
and piecewise mechanism-suboptimal with infinite output
possibilities for large privacy budget. In [10] the authors
consider Gaussian mechanism to add noise to gradients of
FL. In comparison to other works, the authors achieve a
tighter bound for privacy budget.

It can be observed that most existing works, including
the aforementioned ones (i.e., [5]-[10]), do not take into
account the optimization problem of system parameters
(i.e., transmit power, bandwidth, transmission time) while
guaranteeing the DP of users in the underlying FL process.
This problem is in fact very challenging since privacy-
preserving methods often add noise to data, or use quan-
tization, hence significantly reducing the learning quality
[1]. For example, the authors in [1] propose a framework
leveraging quantization and Binomial mechanisms to re-
duce communication costs and provide differential privacy.
However, they only focus on the theoretical side without
considering the practical factors in an FL system over
wireless networks, e.g., limited bandwidth, transmit power,
transmission time, and energy consumption. In practice, the
optimal parameters of quantization and Binomial mecha-
nisms under the constraints of wireless networks so as to
minimize the convergence time or maximize the accuracy
of the learning process while still providing the required
DP are of pivotal importance. Nevertheless, the impact of
these system parameters on the performance of FLoWNs
still remains an open question.

To fill the gap, this paper aims to jointly optimize the
level of quantization, parameters of the Binomial mecha-
nism and devices’ transmit powers to minimize the training
time under the constraints of the wireless networks. To
this end, we derive the relationship between the training
time and the above parameters and provide a theoretical
bound on the training time. We then decompose the bound
into two components of which one can be minimized by
optimizing the wireless resource, quantization, and added
noise parameters. The resulting optimization turns out to
be a Mixed Integer Non-linear Programming (MINLP)
problem, which is known to be NP-hard. To tackle it, we
transform the MINLP problem into a new problem whose
solutions are proved to be the optimal solutions of the
original one. We then propose an approximate algorithm
to solve the transformed problem with an arbitrarily small
error. The numerical results demonstrate that even with
noise introduced by the quantization and Binomial mecha-
nisms, our proposed approach helps the FLoWNs achieve
an accuracy close to that of the conventional FL with no
quantization and DP.

The remaining of this paper is organized as follows.
Section II presents the architecture of FL over a wireless
network based on MEC architecture. Then, the problem for-
mulation is described in Section III. After that, we discuss
our proposed solution and numerical results in Section IV
and Section IV, respectively. Finally, the conclusions are
drawn in Section V.

II. SYSTEM MODEL AND CONVERGENCE ANALYSIS

This work considers a typical Mobile Edge Computing
(MEC) architecture in which a Mobile Ege Server (MES)
orchestras an FL process consisting of a set K of K mobile
users. Each mobile device k, k ∈ [1, . . . ,K], has a private
local dataset. This dataset can be created through the user’s
activities captured by this device (e.g., health- or travel-
related data) and hence subject to data privacy protection.

A. Federated Learning over MEC
In general, the tasks in FL can be expressed as an

optimization problem [11]:

min
w∈Rd

{
F (w) =

1

K

K∑
k=1

fk(w)

}
, (1)

where fk(w) is the loss function processed on device
k ∈ K, w ∈ Rd is the weight vector and d is the number
of dimensions of w. The objective is to minimize the loss
function by finding an optimal model parameter set w.
The problem (1) can be solved by the Federated Stochastic
Gradient Descent (FSGD) [11] that continuously iterates
the following steps:

1) Broadcast: At the beginning of iteration t, the MES
broadcasts the current model parameters wt to all K
devices.

2) Local computation: After receiving wt, the device k
computes its local gradient gk(wt) = ∇fk(wt) based
on its local dataset, and then sends gk(wt) to the
server.

3) Model update: As soon as having updates from all K
devices, the MES estimates the gradient ∇F (wt) by
aggregating local gradients. Then, it updates the model
parameters for the next iteration wt+1 as follows:

g(wt) =
1

K

∑
k∈K

gk(wt),wt+1 = wt − γg(wt).

Since the expectation of the gradient E[g(wt)] =
∇F (wt) [12], g(wt) is an unbiased estimation of∇F (wt).
The process stops when the loss function converges or
achieves a desirable accuracy, e.g., ||g(wt)|| ≤ θ with
0 ≤ θ ≤ 1. In the next subsection, we will describe how
quantization and Binomial mechanism can effectively lower
communication cost and guarantee data privacy for the FL.

B. Quantization and Privacy for FL over MEC
As aforementioned, to deal with data-excessive (millions

of data-points, e.g., [13]) local gradients that significantly
consume wireless resources of mobile devices and the
MES, quantization is often employed to reduce the update
size [1], [14]. In the sequel, we adopt a stochastic q-level
quantization which converts the real values of the gradients
into the integer values with log(q) bits, thus significant
reducing the communication overhead. This quantization
mechanism is parameterized by the maximum value of the
gradient D and the quantization level q.

At the beginning of the training process, the server
instructs the devices on quantization parameters, i.e., the
maximum value D and the level of quantization q. A
simple choice value of D is the maximum value of the
loss function gradient [1]. Then, all devices re-scale each
element gik(wt) of their local gradients gk(wt) to the range
[−D, D] [1]. Specifically, similar to [1], we define V (j)
as follows:

V (j) = −D +
2D

q − 1
j. (2)

where of j ∈ [0, q − 1] is an integer. As such, V (j) is
always within [−D,D]. Then, the quantized local gradient
of gik(wt), denoted by Q(gik(wt)), is defined as follows:

Q(gik(wt)) =

{
V (r + 1) with probability gik(w

t)−V (r)
V (r+1)−V (r) ,

V (r) otherwise,
where r ∈ [0, q − 1] is an integer such that the value of
gik(wt) is within [V (r), V (r + 1)). Thereby, the gradient
size is significantly reduced by controlling the parameters,
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e.g., the quantization level q and the maximum value of the
gradient D.

Another major challenge when employing an FL system
over an edge network is the leak of privacy when sending
gradients over networks. A potential solution to guarantee
the DP for mobile devices is to add random noise to the lo-
cal gradient updates [15]. As defined in [15], a randomized
mechanismM satisfies (ε, δ)-differential privacy if for two
neighboring input datasets, i.e., x and y differing by up to
one element, and for any output S of M we have:

Pr{[M (x) ∈ S]} ≤ eε Pr{[M (y) ∈ S]}+ δ,

where ε > 0 represents the privacy loss, called differential
privacy budget. The smaller ε is, the better privacy pro-
tection is. The real number δ > 0 demonstrates the upper
bound of the probability that a bad event, i.e., the privacy
is broken, occurs. In advance, δ is given. In our paper, we
leverage the Binomial mechanism [1] to achieve the (ε, δ)-
differential privacy.

Under the Binomial mechanism, the noise vector z is
drawn from the Binomial distribution B (n, p), i.e., for each
coordinate i: zi ∼ B (n, p), is added to Q(g(wt)) as:

M(g(wt)) = Q(g(wt)) + s (z− np) ,
where n and p are parameters of the Binomial distribution,
and s is the noise scale computed as follows [1]:

s =
2D

q − 1
. (3)

The above stochastic level quantization and Binomial
mechanism FL (referred to as SLQBM-FL) [1] under the
mobile edge computing framework is illustrated in Fig.
1. With K mobile devices, the SLQBM-FL is proved
to achieve (ε, δ)-differential privacy [1] if the following
inequality holds.

Knp(1− p) ≥ max

{
23 log

(
10d

δ

)
, 2(q + 1)

}
, (4)

where ε is calculate as:

ε =
∆2

√
2 ln 1.25

δ√
np(1− p)

+
∆2cp

√
ln 10

δ + ∆1bp

np(1− p)(1− δ
10 )

+
2
3∆∞ ln 1.25

δ + ∆∞dp ln 20d
δ ln 10

δ

np(1− p)
, (5)

where:
cp =

√
2
(

3p3 + 3 (1− p)3 + 2p2 + 2 (1− p)2
)
, (6)

bp =
2

3

(
p2 + (1− p)2

)
+ (1− 2p) , (7)

dp =
4

3

(
p2 + (1− p)2

)
, (8)

∆1 =
2
√
dD

s
+

√
4
√
dD ln

(
2
δ

)
s

+
4

3
ln

(
2

δ

)
, (9)

∆2 =
2D

s
+

√√√√
∆1 +

√
4
√
dD ln

(
2
δ

)
s

, (10)

∆∞ = q + 1. (11)
The rationale behind Eq. (4) is that the variance of the
Binomial mechanism np(1 − p) needs to exceed a lower
bound to guarantee the (ε, δ)-differential privacy require-
ment. This lower bound is directly proportional to the
number of dimensions d and inversely proportional to the
probability of privacy broken, i.e., δ.

Mobile Device 1 

Quan�za�on
and Binomial
Mechanism 

MEC Server 

Quan�za�on
and Binomial
Mechanism 

Quan�za�on
and Binomial
Mechanism 

...
 

Mobile Device 2 

Mobile Device K 

Fig. 1: Stochastic Binomial mechanism and Level quanti-
zation FL over MEC architecture

After the quantization and Binomial process, instead
of sending the actual gradient as in a conventional FL,
each device k sends M(gk(wt)) to the MES. By doing
so, the gradient size is significantly reduced. In particular,
the reduced size of the local quantized and randomized
gradient is sk = d log2(q+n) bits [1]. We assume that Or-
thogonal Frequency-Division Multiple Access (OFDMA)
is employed on the up-link so that mobile devices send
their local gradients to the MES. All devices have the
same bandwidth W and transmission time T , and the server
uses a dedicated channel to broadcast global update to all
devices. It should be noted that the sk must not exceed the
capacity of its channel:

d log2(q + n) ≤ RkT, ∀k ∈ K, (12)
where Rk is the transmission rate of device k. The trans-
mission rate of device k is provided by the Shannon
equation as follows:

Rk = W log2(1 +
Pkhk
ω0

), k ∈ K, (13)

where ω0, hk, and Pk are the noise power, the channel gain,
and the transmit power of device k, respectively. Thus we
have the following equation:

d log2(q + n) ≤WT log2(1 +
Pkhk
ω0

), k ∈ K. (14)

Finally, the server aggregates the local quantized and
randomized gradients in a similar way to the standard
FSGD:

g̃(wt) =
1

K

∑
k∈K

M(g(wt)). (15)

The process continues until it converges. In the next sub-
section, we will present the convergence analysis of our
SLQBM-FL.

C. Convergence Rate of Level Quantization and Binomial
Mechanism and FL (SLQBM-FL)

In this subsection, we first analyze how the quantization
and Binomial mechanism affect the performance of FL
system, i.e., the convergence time. When using the Stochas-
tic Gradient Descent (SGD) method to solve the problem
(1), it is well understood that the algorithm achieves an
accuracy θ after O(1/ log(θ)) iterations [16]. However,
the convergence time under the biased estimation of the
global gradient at the server is still unknown. To derive
the convergence time of SLQBM-FL, let us assume the
following:
• The loss function F (wt) is L-smooth:

||∇F (x)−∇F (y)|| ≤ L||x− y||.
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• The gradient of the loss function has an upper bound:
‖∇F (wt)‖2 ≤ G.

• The gap between values of loss function at an initial
parameter w0 and at an optimal parameter w∗ has an
upper bound:

F (w0)− F (w∗) ≤ Gf .
Following a similar approach as in [12] that shows the

convergence time of their Randomized SGD algorithm for
computing an (θ,Λ)-solution, i.e., a point w̃ such that
Prob(||∇F (w̃||) ≤ θ||) ≥ 1 − Λ for some θ > 0 and
Λ ∈ (0, 1), we derive the Theorem 1 which states the
convergence time of SLQBM-FL. The formal result is
stated in the Theorem 1.

Theorem 1 (Convergence rate of SLQBM-FL). The num-
ber of iterations, which is performed by SLQBM-FL to
achieve an (θ,Λ)-solution, for θ ≥ 0 and Λ ∈ (0, 1), is
bounded by:

O
{

1

Λε
+

σ2

Λ2θ2

}
,

where σ2 = U + B with U as the variance of the global
gradient, and B denoting the upper bound of the quadratic
bias introduced by M:

U = max
1≤t≤T

2E
[
‖g(wt)−∇F (wt)‖2

]
, (16)

B =
dG2

K

1 + 4np(1− p)
(q − 1)2

. (17)

Proof. See Appendix A.

From Theorem 1, the convergence time of SLQBM-
FL is controlled by σ. Since σ2 = U + B, reducing U
and B will speed up the learning process. However, from
the expression of U in Eq. (31), since ∇F (·) is hard to
be computed and the value of g(wt) is unknown [12],
we cannot effectively estimate U . Moreover, U does not
depend on the wireless resources parameters like transmit
powers, bandwidth, or the transmission time. Hence, to
minimize the training time, we observe that it is more
practical to minimize B that is a function of the wireless
resources, quantization and added noise parameters. In the
next section, we will formulate the problem of minimizing
the convergence time by optimizing B.

III. PROBLEM FORMULATION AND SOLUTIONS

Given the analysis in Section II, to minimize the con-
vergence time of SLQBM-FL under the constraints on
the channel capacity and transmit power of devices while
guaranteeing the (ε, δ)-differential privacy protection, we
can minimize B in Eq. (30) by jointly optimizing the
transmit power, the quantization level, and the parameters
of Binomial mechanism. The optimization problem is for-
mally stated as follows:

(Φ1) : min
q,n,p,Pk

ϕ(q, n, p, Pk), (18)

s.t. ε ≤ ε̄, (19)
(4), (14)

Pmink ≤ Pk ≤ Pmaxk ,∀k ∈ K, (20)
q ∈ Q, n ∈ N , (21)
p ∈ (0, 1), (22)

where the domain sets and the objective function are
defined as follows:
Q,N = {2, . . . , b(1 + min

k∈K
Pmax
k hk/ω0)(TW )/dc − 2},

(23)

ϕ(q, n, p, Pk) =
1 + 4np(1− p)

(q − 1)2
. (24)

Since the data dimension d, the gradient’s upper bound
G, and the number of devices K are known in ad-
vance [1], we omit dG2/K from B in (30) to obtain
the objective function (24) of (Φ1). The constraints of
(Φ1) represent the differential privacy and system im-
plementation requirements. In particular, constraint (19)
ensures that the differential privacy budget ε, expressed
in Eq. (5), does not exceed a given upper bound ε̄.
Constraint (4) guarantees that the framework follows the
(ε, δ)-differential privacy. The constraints (14) and (20)
are the restrictions on the channel capacity and transmit
power of each device. Finally, the constraints (21) and
(22) describe the domain set of the quantization level q
and Binomial mechanism parameters n and p. The upper
bound b(1 + mink∈K P

max
k hk/ω0)(TW )/dc − 2 of q and n

is derived from Eq. (14).
Finally, we discuss the relationship between the system

parameters, e.g., the maximal transmit power, the band-
width, the transmission time, and the optimal objective
value of (Φ1). The optimal objective value of (Φ1) varies
if these input parameters varies. Remark 1 presents the
correlation between the optimal objective value of (Φ1) and
these parameters.

Remark 1 (Optimal solution value in dependence on the
system parameters). If the maximal transmit power Pmax

k
or the maximal transmission time T or the bandwidth W
increases the optimal objective function of (Φ1) will not
increase.

Proof. See Appendix B.

A. Problem Transformation

The proposed problem (Φ1) is a MINLP problem, and
thus is NP-hard [17]. In this section, we convert (Φ1) to an
equivalent problem (i.e., based on the optimal solution set
of this problem, we can derive the optimal solution set of
the initial problem and vice versa) that can be effectively
solved by using an approximate algorithm. In particular,
applying transformations on the constraints of (Φ1), we
obtain a new MINLP programming problem denoted as
(Φ2).

(Φ2) : min
q,n,p,Pk

ϕ(q, n, p, Pk), (25)

s.t. (21), and (22),

Pk = min{Pmax
k ,max{Pmin

k ,
ω0[(q + n)

d
TW − 1]

hk
}},

∀k ∈ K, (26)

n = min([d
max{23 ln 10d

δ , 2(q + 1)}
Kp(1− p)

e,+∞)

∩ ([n1, n2] ∪ [n3,+∞)), (27)
where ϕ(q, n, p, Pk) is defined in (24), and n1, n2, and n3
are as follows.

In particular, the constraint (26) follows from the fact
that the smaller the transmission power is the better it is.
Furthermore, we consider the monotonic property of the
objective function and the convexity of the privacy budget
in relative to Binomial parameter n to obtain the constraint
(27). Theorem 2 bellows formally states the relationship
between the problem (Φ1) and the problem (Φ2).
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Theorem 2 (Solutions of problems (Φ1) and (Φ2)).
(i): If (q∗, n∗, p∗, P ∗k ) is an optimal solution of (Φ2),
(q∗, n∗, p∗, P ∗k ) is also an optimal solution of (Φ1). (ii):
If (Φ2) is infeasible, (Φ1) is also infeasible.

Proof. See Appendix C.

We consider υ =
√
n. Fixing q and p, the privacy

budget ε is a quadratic function with respect to 1/υ. Hence
there exists a real number υ0 such that ε(υ) monoton-
ically increases over υ ∈ (−∞, υ0) and monotonically
decreases over υ ∈ [υ0,+∞). In particular, υ0 is defined
as υ0 = −2χ/ψ, where χ and ψ are defined by Eqs. (37)
and (38). As a result, for a given upper bound ε̄ of privacy
budget with fixed values of q and p, there exists three real
numbers n1 ≤ n2 ≤ n3 such that ε ≤ ε̄ if and only if
n ∈ [n1, n2] ∪ [n3,+∞). The values of n1, n2 and n3 are
found by applying the binary search with respect to n ∈ N .

We now explain the details of Algorithm 1. In particular,
ε(−2χ/ψ) is maximal on the domain set υ > 0, if
−2χ/ψ > 0. Hence, if ε(−2χ/ψ) ≤ ε̄, we have ε(υ) ≤ ε̄
for every t ≥ −2χ/ψ. Therefore, if ε(−2χ/ψ) ≤ ε̄,
Algorithm 1 returns n1 = n2 = n3 = 2.

Otherwise, we consider ε(−2χ/ψ) > ε̄ (lines 3-41). In
this region, we consider two cases, i.e., Case 1: −2χ/ψ ≤√

2 according to lines 4-17; Case 2: −2χ/ψ >
√

2
according to lines 18-40. In Case 1, if ε(

√
2) ≤ ε̄,

then ε(υ) ≤ ε̄ for all υ ∈ [
√

2,+∞), because ε(υ)
monotonically decreases over υ ∈ [

√
2,+∞). Otherwise, if

ε(
√

2) > ε̄, there exists an unique real υ1 ∈ [
√

2,+∞) such
that ε(υ1) = ε̄. To find υ1, first, we find υU ∈ [

√
2,+∞)

s.t. ε(υU ) ≤ ε̄ by applying binary search on lines 5-8. Then
we find υ1 by applying binary search on lines 9-16 with
the initial lower bound υL =

√
2 and upper bound υU . The

final values of n1, n2, and n3 are assigned on Line 17.
In Case 2: −2χ/ψ >

√
2, ε(υ) monotonically increases

over υ ∈ (
√

2,−2χ/ψ) and monotonically decreases over
υ ∈ [−2χ/ψ,+∞). Since ε(−2χ/ψ) > ε̄, there exists
υ2 ∈ [

√
2,−2χ/ψ) and υ3 ∈ [−2χ/ψ,+∞) s.t. ε(υ2) =

ε(υ3) = ε̄. The values of υ2 and υ3 are computed by
applying the binary search on lines 19-26 and lines 27-38,
respectively. Finally, values of n1, n2, and n3 are assigned
on Line 39.

To conclude this subsection, we compare problem (Φ1)
and problem (Φ2). Theorem 2 shows that we could obtain
the solution of (Φ1) by solving (Φ2). An advance of (Φ2)
in comparison to (Φ1) is that we only need to consider the
variables p and q, and easily derive the values of Pk and
n based on the Eqs. (21) and (26). In the next subsection,
we present an approximate algorithm to solve (Φ2) that
guarantees arbitrary small error and works effectively in
practice.

B. Approximate Algorithm
In this subsection, we introduce an algorithm to solve

the problem (Φ2). The algorithm’s main idea is to perform
a search on the Cartesian product set Q × P , where Q
and P are the finite subsets of the domain sets of the
quantization level q and the Binomial mechanism parameter
p, respectively. In particular, the quantization level set Q
is defined in (23). The Binomial mechanism parameter
domain set P is defined as P = Pλ∪{1/2}∪(Ξ∩(1/2, 1)).
Set Ξ is the zero points of the partial derivative of ε with
respect to p. This derivative is a quartic function and can
be solved by radicals [18]. Set Pλ contains all elements
that are larger than 1/2 and smaller than 1 of the arithmetic

Algorithm 1 Binary Search algorithm to solve the value
set n with fixed q and p s.t. ε ≤ ε̄

Input: q, p, and ε̄
Output: n1, n2, and n3

1: n1 ← 2, n2 ← 2, n3 ← 2
2: Compute χ, ψ applying formulas (37) and (38)
3: if ε(−2χ/ψ) > ε̄ then
4: if −2χ/ψ ≤

√
2 and ε(

√
2) > ε̄ then

5: υL ←
√

2, υU ←
√

2
6: while ε(υU ) > ε̄ and υ2U ≤ n̄N do
7: υU ← υU ×

√
2

8: end while
9: υ1 ←

√
(υ2L + υ2U )/2

10: while ε(υ1) 6= ε̄ and υU − υL ≥ 1 do
11: if ε(υ1) > ε̄ then
12: υL ← υ1, υ1 ←

√
(υ2L + υ2U )/2

13: else
14: υU ← υ1, υ1 ←

√
(υ2L + υ2U )/2

15: end if
16: end while
17: n1 ← (υ1)2, n2 ← (υ1)2, n3 ← (υ1)2

18: else
19: υL ←

√
2, υU ← −2χ/ψ, υ2 ←

√
(υ2L + υ2U )/2

20: while ε(υ2) 6= ε̄ and υU − υL ≥ 1 do
21: if ε(υ2) > ε̄ then
22: υU ← υ2, υ2 ←

√
(υ2L + υ2U )/2

23: else
24: υL ← υ2, υ2 ←

√
(υ2L + υ2U )/2

25: end if
26: end while
27: υU = −2χ/ψ
28: while ε(υU ) > ε̄ and υ2U ≤ n̄N do
29: υU = υU ×

√
2

30: end while
31: υL = −2χ/ψ, υ3 =

√
(υ2L + υ2U )/2

32: while ε(υ3) 6= ε̄ and υU − υL ≥ 1 do
33: if ε(υ3) > ε̄ then
34: υL ← υ3, υ3 ←

√
(υ2L + υ2U )/2

35: else
36: υU ← υ3, υ3 ←

√
(υ2L + υ2U )/2

37: end if
38: end while
39: n1 ← 2, n2 ← (υ2)2, n3 ← (υ3)2

40: end if
41: end if
42: return n1, n2, n3

progression sequence iλ for λ > 0 and i ∈ N+. The reason
why we only consider the values p > 1/2 is explained by
Lemma 1.

Lemma 1 (The symmetric property of the feasible solution
set of problem (Φ2) with symmetry point p = 1/2). If
(q̃, ñ, p̃, P̃k) is a feasible solution of (Φ2) and p̃ ≤ 1/2
then (q̃, ñ, 1 − p̃, P̃k) is also a feasible solution of (Φ2)
with the equal objective value.

Proof. See Appendix D.

In Algorithm 2, each iteration of the FOR loop (lines
2-11) corresponds to a particular (q, p) ∈ Q×P . First, on
Line 3, we compute n1, n2, and n3. Second, on Line 4 we
compute the value n by (27). Third, on Line 5 we check
the satisfaction of constraint (14). If it satisfies, we compute
the objective value ϕ of (Φ2) and update the solution (lines
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Algorithm 2 Approximate algorithm solve Problem (Φ2)

Input: Domain sets Q, N , λ,
P = Pλ ∪ { 12} ∪ (Ξ ∩ ( 1

2 , 1))

Output: Approximated solution (q̃, ñ, p̃, P̃k)

1: ϕ̃← +∞
2: for (q, p) ∈ Q× P do
3: Determine n1, n2, n3 by using Algorithm 1
4: Compute n applying (27)
5: if n ≤ (1 + mink∈K

Pmax
k hk

ω0
)

TW
d − q then

6: ϕ← G2

(q−1)2 (1 + 4np(1− p))
7: if ϕ̃ > ϕ then
8: q̃ ← q, ñ← n, p̃← p, ϕ̃← ϕ
9: end if

10: end if
11: end for
12: for k ∈ K do
13: P̃k ← min{Pmax

k ,max{Pmin
k , ω0(q̃+ñ)

d
TW −1

hk
}}

14: end for
15: return (q̃, ñ, p̃, P̃k)

7-9). Finally, the transmit power Pk is computed (lines 12-
14).

Lemma 1 shows that instead of considering p ∈ (0, 1),
we only need to appraise p ∈ [1/2, 1). Thus this lemma
helps to speed up the running time of Algorithm 2. Like-
wise, in Lemma 2, we present an upper bound for the
quantization level that also helps to reduce the running time
of Algorithm 2.

Lemma 2 (The upper bound of the level quantization q for
p ∈ (0, (5−

√
5)/4)). For each p ∈ (0, (5−

√
5)/4), q has

an upper bound as:

q ≤ b (−A+
√
A2 − 4CH)2

4C2
+ 1c,

where, C, A, and H are defined by Eqs. (43), (44), and
(45), respectively.

Proof. See Appendix E.

Furthermore, We propose a binary search algorithm with
respect to the quantization parameter q ∈ [2, b(−A +√
A2 − 4CH)2/4C2 + 1c]∪N that can more tightly upper

bound q when p ≤ (5 −
√

5)/4. In particular, we prove
that for any p ≤ (5 −

√
5)/4 there exist a function which

monotonically increases with respect to q. This function
denoted by g(q) is formulated by Eq. (28).

g(p) =
∆2

√
2 ln 1.25

δ√
h(q)

+
∆2cp

√
ln 10

δ + ∆1bp

h(q)(1− δ
10 )

+
2
3∆∞ ln 1.25

δ + ∆∞dp ln 20d
δ ln 10

δ

h(q)
, (28)

where:

h(q) =
1

4

[
(1 + min

k∈K

Pmax
k hk
ω0

)
TW
d − q

]
.

We discussed the main ideas to implement Algorithm
2. In the next subsection, we will prove that we could
control the relative-error of this algorithm. Furthermore,
in Subsection 2, we will analyze the complexity of this
algorithm.

C. Relative Error of Algorithm 2
Theorem 3 states that Algorithm 2 can return a ρ-

relative error solution (q̃, ñ, p̃, P̃k), i.e., ϕ(q̃, ñ, p̃, P̃k)/ϕ∗ <
1 + ρ, where ϕ∗ is the optimal objective value of (Φ2).

In addition, Theorem 4 gives an approach to compute
the value λ to guarantee an arbitrary ρ when η =
min{23 log(10d/δ), 6}/(Kn̄N ) < 0.25, where 6 is the
smallest value of 2(q+1), which appears in Eq. (4), and n̄N
is the maximal value of Binomial parameter set N . Since
η ≤ 6/(Kn̄N ), the condition η/(Kn̄N ) < 0.25 occurs if
K ≥ 13 or n̄N ≥ 13. We could add 13 to N to guarantee
that this condition always occurs. Since in practice, the
FLoWNs often contain hundreds to thousands devices of
[1], the condition K > 13 is likely to occur.

Theorem 3 (The relative error solution of Algorithm
2). For arbitrary ρ > 0, there exists a positive real λ̄
such that for every λ < λ̄, Algorithm 2 with Pλ =
{iλ|i ∈ N+, 1/2 ≤ iλ < 1} generates a feasible solution
(q̃, ñ, p̃, P̃k) satisfying ρ-relative error.

Proof. See Appendix F.

Theorem 4 (The relative error’s upper bound of the solu-
tion generated by Algorithm 2). For λ < λ̄, where λ̄ is
defined in Theorem 3, and η < 0.25, the relative error ρ of
the solution generated by Algorithm 2 satisfying: ρ < µλ,
where µ = 2/(1−

√
1− 4η).

Proof. See Appendix G.

Applying Theorem 4, we can estimate λ to guarantee
that Algorithm 2 returns a feasible solution satisfying a
given relative error ρ > 0. In general, we select value λ <
ρ/µ. However, for the case η << 1, since µ = 2/(1 −√

1− 4η) = 2(1 +
√

1− 4η)/(4η) ≈ 1/η, we can select λ
such that λ < ρη.

D. Complexity of Algorithm 2
Considering Algorithm 1, the most significant compu-

tation workload is in the WHILE loops 6-8, 10-16, 20-
26, 28-30, and 32-38. These loops implement the binary
search concept on the square root values of elements of
the Binomial parameter set N . For example, in the first
loop (lines 6-8), υ2U is integral and gets doubled after each
iteration until the privacy budget ε is smaller than the upper
bound ε̄ or υ2U exceeds n̄N . In the second loop (lines 10-
16), the search range elements are square roots of elements
of N with the lower and upper bounds υL =

√
2 and υU

obtained from the first loop (lines 6-8), respectively. The
complexity of the first two loops is thus O(log2(|N |)).
The other loops are analyzed analogically. Therefore, the
complexity of Algorithm 1 is O(log2(|N |)).

Considering Algorithm 2, the FOR Loop (lines 2-
11) repeats for |Q||P| times. Inside this loop, the most
significant amount of computation is the binary search
(Line 3) whose complexity is O(log2(|N |)). Therefore, the
complexity of Algorithm 2 is O(|Q||P| log2 |N |). Since
|P| = Pλ ∪ {1/2} ∪ (Ξ ∩ (1/2, 1)) ≤ 1/(2λ) + 4, the
complexity of Algorithm 2 is O(|Q| log2(|N |)/λ), which
is pseudo-polynomial. Recall that to satisfy the ρ-relative
error the following condition is satisfied: λ < ρ/µ. Since
µ is a constant, to achieve ρ-relative error, the complexity
of Algorithm 2 is O(|Q| log2(|N |)/ρ).

IV. SIMULATION RESULTS

To perform the simulation experiments, we consider a
network of 1000 mobile edge devices. We set the square
of channel gains h2 following the exponential distribution
with the mean g0(D0/D)4, where g0 = −40 dB, the
reference distance D0 = 1 m, and distances between the
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Fig. 2: The objective function value of (Φ2) returned by
Algorithm 2 when varying maximum privacy budget ε̄.
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Fig. 3: The objective function of (Φ2) returned by Al-
gorithm 2 when varying (from left to right) the maximal
transmit power, the bandwidth, and the transmission time.

mobile edge server and devices are randomly sampled from
[Dmin, Dmax] with Dmin = 2 m and Dmax = 200 [19].
For each device, the bandwidth is set to 900 MHz [20].
The transmit power is restricted between Pk ∈ [1, . . . , 20]
dBm, k ∈ K, similar to [19]. We implement a three-layer
model with 60 hidden nodes and ReLU activate function
and use the infinite MNIST dataset as input, similar to [1].
For the differential privacy security, we set δ = 10−10 [1].
In addition, we restrict the number of allowed transmit bits
per parameter not exceeding 16 bits, similar to [1].

We first investigate the impact of the maximum privacy
budget on the learning time of SLQBM-FL. Recall that the
objective of (Φ2) is to minimize the SLQBM-FL learning
time. Thus, the lower value of (Φ2)’s objective function is,
the lower the convergence time of SLQBM-FL is. We study
the scenarios corresponding to the privacy budget ε varies
from 1 to 10 [1]. Fig. 2 shows the objective function value
ϕ(q, n, p, Pk) of (Φ2) of the solution returned by Algorithm
2 when the upper bound of differential privacy budget ε̄
varies from 1 to 10. It is clear that as ε̄ increases, i.e.,
the privacy requirement gets less restricted, the objective
function value gets decreased, meaning that the conver-
gence time decreases. This is stemmed from the fact that
the higher the value of ε̄ is, the lower the amount of noise
added by the Binomial mechanism is. Consequently, the
learning time (indicated via our objective function) reduces
due to less noise as ε̄ increases from 1 to 10.

Next, we investigate the dependence of the objective
function value of (Φ2) on the system parameters, including
the maximal transmit power Pmax

k , the bandwidth W , and
the transmission time T , as shown in Fig. 3. Obviously, as
these system parameters increase, the domain sets of these
parameters get expanded, thus, the objective function value
of (Φ2) decreases or at least does not increase. In other
words, the convergence rate gets improved as the system
parameters increase. Fig. 3 shows the decreasing trend of
the objective function value when the maximal transmit
power, the bandwidth, and the transmission time increase.

Finally, we investigate the convergence of SLQBM-FL
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Fig. 4: The accuracy curves of the optimal solution and
feasible solutions with the baseline of no quantization and
differential privacy.

with the parameters of quantization and Binomial mech-
anisms obtained by our proposed Algorithm 2, namely
Prop. sol.. In this experiment, we select four baseline
approaches, i.e., the conventional FL that operates without
quantization and differential privacy mechanisms, and three
feasible solutions of problem (Φ2). As shown in Fig. 4, it
is observed that even though the quantization and Binomial
introduce noise to data, our proposed solution still achieves
an accuracy close to that of conventional FL after 2, 500
global update rounds. Thus, it demonstrates the effective-
ness of our proposed algorithm in finding parameters for
the SLQBM-FL.

V. CONCLUSION

In this paper, we have proposed a framework to improve
the convergence time as well as reduce communication
costs for FLoWNs while guaranteeing differential privacy
by jointly optimizing the level of quantization and the Bi-
nomial mechanism’s parameters. In particular, we have for-
mulated the system parameter optimization as an MINLP,
which is NP-hard. Then, the problem is transformed so that
the new formulated problem can be solved approximately
with an arbitrary relative error guarantee by our proposed
Binary Search algorithm. We have proved that the optimal
solution to the transformed problem is also the optimal
solution to the original problem. The numerical results
demonstrated that our proposed solution can achieve an
accuracy that is not only higher than those of other feasible
solutions but also close to that of the conventional FL.

APPENDIX A
PROOF OF THEOREM 1

Similar to [1], when the Binomial mechanism and level
quantization M is employed and the learning rate γ satis-
fying γ = min{1/L,

√
2Gf/(σ

√
LT )}, after SLQBM-FL

runs T iterations, we have the following inequality:

Et∼(Unif[T ])[‖∇F (wt)‖2] ≤ 2GfL

T
+

2
√

2LGf√
T

σ +GC,

where Et∼(Unif[T ])[·] is the expectation of 2-norm gradient
when t is uniformly sampled from T iterations and:

σ2 = max
1≤t≤T

2E
[
‖g(wt)−∇F (wt)‖2

]
+ max

1≤t≤T
2EM

[
‖g(wt)− g̃(wt)‖2

]
,

C = max
1≤t≤T

‖EM
[
g(wt)− g̃(wt)

]
‖.

Applying the Cauchy–Schwarz inequal-
ity to ‖EM [g(wt)− g̃(wt)] ‖2, we have:
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‖EM [g(wt)− g̃(wt)] ‖2 ≤ EM
[
‖g(wt)− g̃(wt)‖2

]
.

Therefore, we imply that:

Et∼(Unif[T ])[‖∇F (wt)‖2] ≤ 2GfL

T
+

2
√

2LGf√
T

σ+G
√
B,

(29)
where:

B = max
1≤t≤T

2EM
[
‖g(wt)− g̃(wt)‖2

]
, (30)

U = max
1≤t≤T

2E
[
‖g(wt)−∇F (wt)‖2

]
, (31)

σ2 = B + U, (32)
here, U is the variance of the global gradient, and B
represents the quadratic bias introduced by M. If B = 0,
g̃(wt) is an unbiased estimation of ∇F (wt) and the
SLQBM-FL becomes unbiased with ‖g(wt)−∇F (wt)‖2
is bounded by σ2. Equation (29) indicates that the algorithm
is expected to converge when T → +∞.

For the sake of convenience, we denote:

J =
2GfL

T
+

2
√

2LGf√
T

σ +GB, (33)

then from (29) we imply that:
Et∼(Unif[T ])[‖∇F (wt)‖2] ≤ J (34)

On the other hand, for some τ > 0 the Markov’s inequality
demonstrates that

Prob{X ≤ τE[X]} ≥ 1− 1

τ
, (35)

From (34) and (35), we obtain

Prob{‖∇F (wt)‖2 ≤ τJ } ≥ 1− 1

τ
, (36)

and then following the by proof of B-SGD in [12] to obtain
Theorem 1.

APPENDIX B
PROOF OF REMARK 1

As can be seen, if one of the parameters among the
maximal transmit power Pmax

k , the maximal transmission
time T , or the bandwidth W increases, the domain sets of
variables of both (Φ1) and (Φ2) get expansion. It follows
that, the optimal objective value will not increase.

APPENDIX C
PROOF OF THEOREM 2

At first, we state Lemma 3 to aid the proof of Theorem
2.

Lemma 3 (The domain range of the Binomial trial number
n in dependence to the level quantization q, Binomial
probability p and privacy budget upper bound ε̄). For
each upper bound ε̄ of privacy budget, fixing values of
q and p there exists three reals n1 ≤ n2 ≤ n3 such
that for all n ∈ [n1, n2] ∪ [n3,+∞), ε(n) ≤ ε̄ and all
n /∈ [n1, n2] ∪ [n3,+∞) satisfying ε(n) > ε̄.

We relax the integer condition of n and consider n ∈
[2,+∞). Denote υ =

√
n. The domain set of υ is

[
√

2,+∞). Fixing the value of q and p, we consider the
differential privacy budget ε as a mono-variable function
of υ. We can write ε(υ) in the form as:

ε(υ) =
χ

υ2
+
ψ

υ
,

where,

χ =
∆2cp

√
ln 10

δ + ∆1bp

p(1− p)(1− δ
10 )

+
2
3∆∞ ln 1.25

δ + ∆∞dp ln 20d
δ ln 10

δ

p(1− p)
, (37)

ψ =
∆2

√
2 ln 1.25

δ√
p(1− p)

. (38)

Reduce the expressions (6), (7), and (8) of bp, cp, and
dp, we have:

bp =
4p2 − 10p+ 5

3
, cp =

√
2(13p2 − 13p+ 5),

dp =
8p2 − 8p+ 4

3
. (39)

It is clear that bp, cp, and dp are quadratic functions of
p ∈ (0, 1). We can easily prove that:

− 1

3
≤ bp ≤

5

3
,

7
√

2

4
≤ cp ≤ 5

√
2,

2

3
≤ dp ≤

4

3
.

We can easily prove that ∆1, ∆2, and ∆∞ are positive.
Hence, ψ is positive. Take the derivative of ε(υ), we
achieve:

∂ε

∂υ
= −2χ

υ3
− ψ

υ2
= −2χ+ ψυ

υ3
.

The equation ∂ε/∂υ = 0 has one solution υ = −2χ/ψ.
Therefore, ∂ε/∂υ is negative for υ > −2χ/ψ and positive
for 0 < υ < −2χ/ψ when −2χ/ψ > 0. As a sequence, the
function ε(υ) monotonically decreases over [−2χ/ψ,+∞)
and monotonically increases on (0,−2χ/ψ) if −2χ/ψ > 0.
Otherwise, if −2χ/ψ ≤ 0, ε(υ) monotonically decreases
over (0,+∞).

Besides that, we have:
lim

υ→+∞
ε(υ) = 0 < ε̄.

We have the following conclusions.
• If −2χ/ψ ≤

√
2, ε(υ) monotonically decreases over

[
√

2,+∞). If ε(
√

2) > ε̄, then there exists υ1 on
[
√

2,+∞) s.t. ε(υ1) = ε̄ and we assign n1 = n2 =
n3 = (υ1)2. Otherwise, we assign n1 = n2 = n3 = 2.

• If −2χ/ψ >
√

2, ε(υ) monotonically increases
over [

√
2,−2χ/ψ) and monotonically decreases over

[−2χ/ψ,+∞). If ε(−2χ/ψ) > ε̄ and ε(
√

2) <
ε̄, there exists υ2 ∈ [

√
2,−2χ/ψ) and υ3 ∈

[−2χ/ψ,+∞) s.t. ε(υ2) = ε(υ3) = ε̄, we assign,
n1 = 2, n2 = (υ2)2, n3 = (υ3)2. If ε(−2χ/ψ) > ε̄
and ε(

√
2) > ε̄, we assign, n1 = n2 = n3 = (υ3)2.

In the other case, if ε(−2χ/ψ) ≤ ε̄, we assign
n1 = n2 = n3 = 2.

Lemma 3 is proved.
Considering Theorem 2, we will prove that any feasible

solution of (Φ2) is also a feasible solution of (Φ1). We con-
sider an arbitrary feasible solution S2 = (q2, n2, p2, Pk2)
of (Φ2). Based on constraint (27), we imply that n2 ≥
bmax{23log(10d/δ), 2(q2+1)}/(Kp2(1−p2))c that leads
to Kn2p2(1 − p2) ≥ max{23log(10d/δ), 2(q2 + 1)} ac-
cording to the constraint (4). It is clear that constraint
(26) leads to Pk2 ≥ ω0[(q2 + n2)d/(TW ) − 1]/hk that is
equivalently to d log2(q2 +n2) ≤ TW log2(1+Pk2hk/ω0)
which proves that solution S2 satisfies the constraint (14).
The constraints (26) implies that Pk2 ≥ Pmin

k . Combining
with the constraints (26), we have Pmin

k ≤ Pk2 ≤ Pmax
k

satisfying the constraints (20). S2 thus satisfies all the
constraints of (Φ1), therefore, it is also a feasible solution
of (Φ1).



9

Next, we will prove that any optimal solution of (Φ2) is
also an optimal solution of (Φ1). We consider an arbitrary
optimal solution S∗ = (q∗, n∗, p∗, P ∗k ) of (Φ1). Since S∗ is
an optimal solution of (Φ1) and ϕ is an increasing function
over n when fixing q and p, S∗ satisfies the constraint
(27). Consider P ∗k , we have can see that P ∗k ≥ Pmin

k and
P ∗k ≥ ω0[(q∗ + n∗)d/(TW ) − 1]/hk. Therefore, Pmin

k ≤
max{Pmin

k , ω0[(q∗ + n∗)d/(TW ) − 1]/hk} ≤ P ∗k ≤ Pmax
k .

We consider P ′k = max{Pmin
k , ω0[(q∗ + n∗)d/(TW ) −

1]/hk}. It is clear that S ′ = (q∗, n∗, p∗, P ′k) is a feasible
solution of (Φ2). In other hand, since ϕ(S ′) = ϕ(S∗), the
optimal objective function value of (Φ1) is not less than
the optimal objective function value of (Φ2). But as proved
above, the feasible solution set of (Φ2) is a subset of the
feasible solution set of (Φ1). As a sequence, S ′ is also an
optimal solution of (Φ2). Therefore, any optimal solution
of (Φ2) is also an optimal solution of (Φ1). Statement (i)
of Theorem 2 is proved.

As proved above, considering any optimal solution S∗

of (Φ1) we can imply an optimal solution S′ of (Φ2).
Therefore, applying proof by contradiction, we imply that
if (Φ2) is infeasible then (Φ1) is also infeasible. Statement
(ii) of Theorem 2 is proved.

The considering theorem is proved, however to investi-
gate further, we can easily prove the following relationship
between the optimal solutions of (Φ1) and (Φ2):
• If (q∗, n∗, p∗, P ∗k ) is an optimal solution of (Φ2),

(q∗, n∗, p∗, P̃k) is also optimal solution of (Φ1), for
P ∗k ≤ P̃k ≤ Pmax

k .
• If (q∗, n∗, p∗, P ∗k ) is an optimal solution of (Φ1),

(q∗, n∗, p∗, P̃k) is also optimal solution of (Φ2), where
P̃k = max{Pmin

k , ω0[(q∗ + n∗)d/(TW ) − 1]/hk}.
The above transformation rules between the optimal solu-
tions of (Φ1) and (Φ2) shows that two problems (Φ1) and
(Phi2) are equivalent to each other.

APPENDIX D
PROOF OF LEMMA 1

Consider Eqs. (6), (8) and (7), it is clear that cp = c1−p,
dp = d1−p and bp ≥ b1−p for p ≤ 1/2. In addition, the
denominators of fraction terms of Eq. (5) do not change
if we replace p by 1 − p. Moreover, considering Eqs. (9),
(10) and (11), we have ∆1 > 0, ∆2 > 0 and ∆∞ >
0. Therefore, we have ε(q, n, 1 − p) ≤ ε(q, n, p) for any
(q, p) ∈ Q× P and p ∈ (0, 1/2].

It is clear that ϕ(q, n, p, Pk) = ϕ(q, n, 1 − p, Pk). The
formulas of the constraints (4) and (27) which contain p do
not change if we replace p by 1−p. Therefore, we conclude
that if (q̃, ñ, p̃, P̃k) is a feasible solution of problem (Φ1)
((Φ2)) and p̃ ≤ 1/2 then (q̃, ñ, 1− p̃, P̃k) is also a feasible
solution of problem (Φ1) ((Φ2)) with the equal objective
value.

APPENDIX E
PROOF OF LEMMA 2

We replace q − 1 for 2D/s into Eqs. (9), (10) and (11)
and obtain:

∆1 =
√
d(q − 1) +

√
2
√
d(q − 1) ln

(
2

δ

)
+

4

3
ln

(
2

δ

)
,

∆2 = q − 1 +

√√√√∆1 +

√
2
√
d(q − 1) ln

(
2

δ

)
,

∆∞ = q + 1.

In the Appendix C, we proved that cp ≥ 7
√

2/4 and
dp ≥ 2/3. Moreover, it is clear that bp is non-negative for
p ≤ (5 −

√
5)/4. In addition, we have: ∆1 >

√
d(q − 1),

∆2 > q− 1 + 4
√
d
√
q − 1, ∆∞ = q− 1 + 2. Therefore, we

have:

ε >

√
2 ln 1.25

δ√
np(1− p)

(q′2 +
4
√
dq′)

+
7
√

2

4

√
ln 10

δ

np(1− p)(1− δ
10 )

(q′2 +
4
√
dq′)

+
ln 1.25

δ + 2
3 ln 20d

δ ln 10
δ

np(1− p)
(q′2 + 2), (40)

where q′ =
√
q − 1.

We have: np(1− p) ≤ n/4 ≤ (q+n− 2)/4. Combining
this inequality and constraints (14) (20), we obtain:

np(1− p) ≤ 1

4

[
(1 + min

k∈K

Pmax
k hk
ω0

)
TW
d − 2

]
(41)

Combining (40) and (41), we have:

ε >
2
√

2 ln 1.25
δ√

(1 + mink∈K
Pmax

k hk

ω0
)

TW
d − 2

(q′2 +
4
√
dq′)

+
7
√

2
√

ln 10
δ

[(1 + mink∈K
Pmax

k hk

ω0
)

TW
d − 2](1− δ

10 )
(q′2 +

4
√
dq′)

+
8

3

ln 1.25
δ + ln 20d

δ ln 10
δ

(1 + mink∈K
Pmax

k hk

ω0
)

TW
d − 2

(q′2 + 2). (42)

Applying ε ≤ ε̄, we have: Cq′2 +Aq′ +H < 0, where:

C =
2
√

2 ln 1.25
δ√

(1 + mink∈K
Pmax

k hk

ω0
)

TW
d − 2

+
7
√

2
√

ln 10
δ

[(1 + mink∈K
Pmax

k hk

ω0
)

TW
d − 2](1− δ

10 )

+
8

3

ln 1.25
δ + ln 20d

δ ln 10
δ

(1 + mink∈K
Pmax

k hk

ω0
)

TW
d − 2

, (43)

A =
2
√

2 ln 1.25
δ

4
√
d√

(1 + mink∈K
Pmax

k hk

ω0
)

TW
d − 2

+
7
√

2
√

ln 10
δ

4
√
d

[(1 + mink∈K
Pmax

k hk

ω0
)

TW
d − 2](1− δ

10 )
(44)

H =
16

3

ln 1.25
δ + ln 20d

δ ln 10
δ

(1 + mink∈K
Pmax

k hk

ω0
)

TW
d − 2

− ε̄. (45)

Solve the quadratic equation Cq′2 + Aq′ + H < 0, we
imply that q′ < (−A +

√
A2 − 4CH)/(2C). Since q =

q′2 + 1 ∈ N+, we have:

q ≤ b (−A+
√
A2 − 4CH)2

4C2
+ 1c.
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APPENDIX F
PROOF OF THEOREM 3

Fixing q, n, let us consider the derivative of ε by p as
follows:

∂ε

∂p
= −

∆2

√
2 ln 1.25

δ (1− 2p)

2s
√
n
√
p(1− p)

3

−
5
√

2∆2

√
ln 10

δ (1− 2p)

sn(1− δ
10 )p2(1− p)2

+
∆1(−6p2 + 10p− 5)

3sn(1− δ
10 )p2(1− p)2

−
2∆∞ ln 1.25

δ (1− 2p)

3snp2(1− p)2
−

4∆∞ ln 20d
δ ln 10

δ (1− 2p)

3snp2(1− p)2
.

Consider ∂ε/∂p = 0, we have:

∆2

√
2 ln 1.25

δ

2s
√
n

(1− 2p)
√
p(1− p) =

−
5
√

2∆2

√
ln 10

δ

sn(1− δ
10 )

(1− 2p) +
∆1

3sn(1− δ
10 )

(−6p2 + 10p− 5)

−
2∆∞ ln 1.25

δ

3sn
(1− 2p)−

4∆∞ ln 20d
δ ln 10

δ

3sn
(1− 2p).

Squaring both sides of the above equation, we have:
∆2

22 ln 1.25
δ

4s2n
(1− 2p)2p(1− p) =−5

√
2∆2

√
ln 10

δ

sn(1− δ
10 )

(1− 2p) +
∆1

3sn(1− δ
10 )

(−6p2 + 10p− 5)

−
2∆∞ ln 1.25

δ

3sn
(1− 2p)−

4∆∞ ln 20d
δ ln 10

δ

3sn
(1− 2p)

]2
.

For the sake of brevity, let us denote:

ζ1 =
∆2

22 ln 1.25
δ

4s2n
, ζ2 = −

5
√

2∆2

√
ln 10

δ

sn(1− δ
10 )

,

ζ3 =
∆1

3sn(1− δ
10 )

, ζ4 = −
2∆∞ ln 1.25

δ

3sn
,

ζ5 = −
4∆∞ ln 20d

δ ln 10
δ

3sn
, ζ6 = 5ζ3 − ζ2 − ζ4 − ζ5,

then,
ζ1(1− 2p)2p(1− p) =

[
ζ2(1− 2p) + ζ3(−6p2 + 10p− 5)+

ζ4(1− 2p) + ζ5(1− 2p)]
2
.

Expanding and then reducing the above equation, we
have:
(36ζ23 − 4ζ1)p4 + (8ζ1 − 24ζ3ζ6)p3 + (−5ζ1 + 12ζ3ζ6+

4ζ26 )p2 + (ζ1 − 4ζ26 )p+ ζ26 = 0. (46)
Equation (46) is a quartic equation. Similar to the

quardratic function, the quartic equation can be easily
solved by radicals with arbitrary coefficients [18]. We
denoted the roots set of (46) as Ξ.

We consider an arbitrary optimal solution
(q∗, n∗, p∗, P ∗k ) of (Φ2). With fixed variable q = q∗,
n = n∗, Pk = P ∗k , ϕ(q∗, n∗, p, P ∗k ) is a continuous
function over p ∈ (0, 1). Therefore, there exists a
closed interval [p∗ − λ1, p

∗ + λ1] ⊂ [1/2, 1) such that
ϕ(q∗, n∗, p, P ∗k )/ϕ∗ < 1 + ρ for p ∈ [p∗ − λ1, p∗ + λ1].

If ε(p∗) = ε̄ and ε(p∗) is the local minimum point, then
(∂ε/∂p)(p∗) = 0 or p∗ ∈ Ξ. It follows that p∗ ∈ P .
Therefore, the output of Algorithm 2 satisfying ϕ̃ = ϕ∗.
We now consider the case ε(p∗) is not a local minimum
point of ε(p).

Fixing variable q = q∗, n = n∗, ε(q∗, n∗, p) is also a
continuous function of p ∈ [0, 1). Therefore, there exists
λ2 satisfying for all p ∈ [p∗−λ2, p∗] ⊂ [1/2, 1) or for all
p ∈ [p∗, p∗ + λ2] ⊂ [1/2, 1): ε(q∗, n∗, p) < ε(q∗, n∗, p∗) ≤
ε̄. We investigate the case ∀p ∈ [p∗ − λ2, p∗] ⊂ [1/2, 1):
ε(q∗, n∗, p) < ε̄, the other case is similar.

Let denote λ3 = min{λ1, λ2}. There exists a positive
real λ̄, such that for any λ ≤ λ̄ and {iλ|i ∈ N+} ∩
[p∗ − λ3, p∗] is not empty. Consider p′ ∈ Pλ = {iλ|i ∈
NN , 1/2 ≤ iλ < 1}. If p∗ = 1/2, since 1/2 ∈ P we have
(q∗, p∗) ∈ Q× P . It is not hard to prove that ϕ̃ = ϕ∗.

We consider the case p∗ 6= 1/2. Since p(1 − p) is a
parabolic curve over p ∈ (0, 1) with maximum point at
p = 1/2. If p∗ 6= 1/2 we can find λ̄ ≤ λ2 being small
enough that for every λ satisfying λ < λ̄, there always
exists p′ ∈ [p∗−λ2, p∗]∩P satisfying p′(1− p′) > p∗(1−
p∗).

Applying Algorithm 1 with parameters q = q∗, p = p′,
we compute n′1, n′2, n′3. For n ∈ [n′1, n

′
2] ∪ [n′3,+∞), we

have: ε(q∗, p′, n) ≤ ε̄.
Since λ < λ2, we have ε(q∗, p′, n∗) ≤ ε̄. Therefore,

n∗ ∈ [n′1, n
′
2] ∪ [n′3,+∞). Let denote,

n′ = min([b
max{23 ln 10d

δ , 2(q∗ + 1)}
Kp′(1− p′)

c,+∞)

∩([n′1, n
′
2] ∪ [n′3,+∞))). (47)

Since p′(1− p′) > p∗(1− p∗), we have:
max{23 ln 10d

δ , 2(q∗ + 1)}
Kp′(1− p′)

<
max{23 ln 10d

δ , 2(q∗ + 1)}
Kp∗(1− p∗)

.

Therefore, we have:

n∗ > min([b
max{23 ln 10d

δ , 2(q∗ + 1)}
Kp′(1− p′)

c,+∞)

∩([n′1, n
′
2] ∪ [n′3,+∞))). (48)

Combining (47) and (48), we imply that: n∗ > n′.
Therefore, ϕ(q∗, n′, p′, P ∗k ) < ϕ(q∗, n∗, p′, P ∗k ). Moreover,
since p′ ∈ [p∗ − λ1, p∗ + λ1] we have:

ϕ(q∗, n∗, p′, P ∗k )

ϕ∗
< 1 + ρ.

As a sequence, we have:
ϕ(q∗, n′, p′, P ∗k )

ϕ∗
< 1 + ρ.

Since (q∗, p′) ∈ Q × P , the objective function value
of the output solution of Algorithm 2 does not exceed
φ(q∗, n′, p′, P ∗k ). Theorem 3 is proved.

APPENDIX G
PROOF OF THEOREM 4

We will prove that:
ϕ(q∗, n∗, p, P ∗k )

ϕ(q∗, n∗, p∗, P ∗k )
< 1 + µλ, (49)

where p ∈ (0, 1) is an integral multiple of λ and |p−p∗| <
λ.

Transform (49), we have the following equivalent to each
other inequalities:

1 + 4n∗p(1− p)
1 + 4n∗p∗(1− p∗)

< 1 + µλ

4n∗p(1− p) < 4n∗p∗(1−p∗) + µλ+ µλ4n∗p∗(1− p∗)
4n∗(p− p∗)(1− p− p∗) < 4µλn∗p∗(1− p∗) + µλ.

(50)
We will prove that: 4n∗(p − p∗)(1 − p − p∗) <

4µλn∗p∗(1− p∗) or (p− p∗)(1− p− p∗) < µλp∗(1− p∗).
We need to consider only the case (p−p∗)(1−p−p∗) > 0.
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The case (p − p∗)(1 − p − p∗) ≤ 0 is trivial. Firstly, we
have λ > |p− p∗|. In addition, we will prove that

µp∗(1− p∗) > |1− p− p∗|. (51)
Considering when (p − p∗)(1 − p − p∗) > 0, we have

two following cases.
Case 1: p > p∗, we have 0 < 1− p− p∗ < 1− 2p∗. We

will prove that µp∗(1− p∗) > 1− 2p∗, which is equivalent
to the quadratic inequality µ(p∗)2−(µ+2)p∗+1 < 0. The
quadratic inequality is true if (µ+ 2−

√
µ2 + 4)/(2µ) <

p∗ < (µ+2+
√
µ2 + 4)/(2µ). It is clear that, since µ > 0,

we have (µ+2+
√
µ2 + 4)/(2µ) > 1 > p∗. We transform

(µ+ 2−
√
µ2 + 4)/(2µ) as follows,

µ+ 2−
√
µ2 + 4

2µ
=

2

µ+ 2 +
√
µ2 + 4

<
1

µ

=
1−
√

1− 4η

2
.

Next, we will prove that:

p∗ ≤ 1−
√

1− 4η

2
. (52)

Case 2: If p < p∗ then 0 < p + p∗ − 1 < 2p∗ − 1. We
will prove that: µp∗(1−p∗) > 2p∗−1, which is equivalent
to the quadratic inequality µ(p∗)2−(µ−2)p∗−1 < 0. The
quadratic inequality is true if (µ− 2−

√
µ2 + 4)/(2µ) <

p∗ < (µ − 2 +
√
µ2 + 4)/(2µ). It is clear, since µ > 0,

that (µ − 2 −
√
µ2 + 4)/(2µ) < 0 < p∗. We transform

(µ− 2 +
√
µ2 + 4)/(2µ) as follows,

µ− 2 +
√
µ2 + 4

2µ
>

2µ− 2

2µ
= 1− 1

µ
= 1− 1−

√
1− 4η

2

=
1 +
√

1− 4η

2
.

Later, we will prove that:
1 +
√

1− 4η

2
≤ p∗. (53)

Applying (4), we have: p∗(1 − p∗) ≥
max{23 log(10d/δ), 2(q∗ + 1)}/(Kn∗) ≥
max{23 log(10d/δ), 6}/(Kn̄N ) = η, then
0 ≥ (p∗)2 − p∗ + η. We imply that (1 −

√
1− 4η)/2 <

p∗ < (1 +
√

1− 4η)/2. Therefore, the inequalities (52)
and (53) are true. Hence, the inequality (50) is true. This
proves the Theorem 4.
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