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Nuclear spins were among the first physical
platforms to be considered for quantum informa-
tion processing[1, 2], because of their exceptional
quantum coherence[3] and atomic-scale footprint.
However, their full potential for quantum com-
puting has not yet been realized, due to the
lack of methods to link nuclear qubits within
a scalable device combined with multi-qubit
operations with sufficient fidelity to sustain
fault-tolerant quantum computation. Here we
demonstrate universal quantum logic operations
using a pair of ion-implanted 31P donor nuclei
in a silicon nanoelectronic device. A nuclear
two-qubit controlled-Z gate is obtained by im-
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parting a geometric phase to a shared electron
spin[4], and used to prepare entangled Bell states
with fidelities up to 94.2(2.7)%. The quantum
operations are precisely characterised using gate
set tomography (GST)[5], yielding one-qubit
average gate fidelities up to 99.95(2)%, two-qubit
average gate fidelity of 99.37(11)% and two-qubit
preparation/measurement fidelities of 98.95(4)%.
These three metrics indicate that nuclear spins
in silicon are approaching the performance de-
manded in fault-tolerant quantum processors [6].
We then demonstrate entanglement between the
two nuclei and the shared electron by producing
a Greenberger-Horne-Zeilinger three-qubit state
with 92.5(1.0)% fidelity. Since electron spin qubits
in semiconductors can be further coupled to other
electrons[7, 8, 9] or physically shuttled across
different locations[10, 11], these results establish
a viable route for scalable quantum information
processing using donor nuclear and electron spins.

Nuclear spins are the most coherent quantum systems
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Fig. 1 | Operation of a one-electron – two-nuclei quantum processor. a, Artist’s impression of a pair of
31P nuclei (red), asymmetrically coupled to the same electron (blue). The spins are controlled by oscillating magnetic
fields (yellow) generated on-chip. b, Effective-mass calculation of the wavefunction ψ(y, z) of the third electron on the
2P cluster. The observed values of hyperfine coupling are well reproduced by assuming a 6.5 nm spacing between the
donors. c, Experimental NMR spectrum of the 31P nuclei (top) and ESR spectrum of the shared electron (bottom)
at B0 = 1.33 T, along with energy level diagram (right) of the eight-dimensional Hilbert space (spacings not to scale).
The spectra yield the hyperfine couplings A1 ≈ 95 MHz and A2 ≈ 9 MHz between the electron and the nuclear qubits
Q1, Q2. d, Implementation of a geometric two-qubit CZ gate. A conditional π phase shift is acquired when a 2π
rotation is applied on the electron spin at frequency νe|⇓⇓, i.e. conditional on the nuclear spins being |⇓⇓〉. This
operation corresponds to the CZ gate on the nuclei when restricted to the electron |↓〉 subspace.

in the solid state [3, 12], owing to their extremely weak
coupling to the environment. In the context of quan-
tum information processing, the long coherence is associ-
ated with record single-qubit gate fidelities [13]. However,
the weak coupling poses a challenge for multi-qubit logic
operations. Using spin-carrying defects in diamond [14]
and silicon carbide [15], this problem can be addressed by
coupling multiple nuclei to a common electron spin, thus
creating quantum registers that can sustain small quan-
tum logic operations and error correction [16]. Exciting
progress is being made on linking several such defects via
optical photons [17, 18].

Still missing, however, is a pathway to exploit the
atomic-scale dimension of nuclear spin qubits to engineer
scalable quantum processors, where densely-packed qubits
are integrated and operated within a semiconductor chip
[19]. This requires entangling the nuclear qubits with elec-

trons that can either be physically moved, or entangled
with other nearby electrons. It also requires interspersing
the electron-nuclear quantum processing units with spin
readout devices [20]. Here we show experimentally that
silicon - the material underpinning the whole of modern
digital information technology - is the natural system in
which to develop dense nuclear spin based quantum pro-
cessors [1].
One electron – two nuclei quantum processor

The experiments are conducted on a system of two 31P
donor atoms, introduced in an isotopically purified 28Si
substrate by ion implantation (see Methods). A three-
qubit processor is formed by using an electron (e) with
spin S = 1/2 (basis states |↑〉 , |↓〉) and two nuclei (Q1, Q2)
with spin I = 1/2 (basis states |⇑〉 , |⇓〉). Metallic struc-
tures on the surface of the chip provide electrostatic con-
trol of the donors, create a single-electron transistor (SET)
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charge sensor, and deliver microwave and radiofrequency
signals through a broadband antenna (Fig. 1a, Extended
Data Fig. 1). With this setup, we can perform single-shot
electron spin readout [20], and high fidelity (≈ 99.9%)
single-shot quantum nondemolition readout of the nuclear
spins [21], as well as nuclear magnetic resonance (NMR)
and electron spin resonance (ESR) [22] on all spins in-
volved (see Methods).

The ESR spectra in Fig. 1c exhibit four resonances.
This means that the ESR frequency depends upon the
state of two nuclei, to which the electron is coupled by con-
tact hyperfine interactions A1 ≈ 95 MHz and A2 ≈ 9 MHz,
with a dependence on the gate potentials caused by the
Stark shift (Extended Data Fig. 2). We adopt labels
where, for instance, νe|⇓⇓ represents the frequency at
which the electron spin undergoes transitions conditional
on the two nuclear spin qubits being in the |Q1Q2〉 = |⇓⇓〉
state, and so on. The values of A1, A2 can be indepen-
dently checked by measuring the frequencies νQ1|↓, νQ2|↓
at which each nucleus responds while the electron is in the
|↓〉 state (Supplementary Information S1). The hyperfine-
coupled electron could either be the first or the third elec-
tron bound to the donor cluster. Since its spin relaxation
time T1e is three orders of magnitude shorter than ex-
pected from a one-electron system (Extended Data Fig. 3),
we interpret the ESR spectrum in Fig. 1c as describing the
response of the third electron bound to a 2P donor system.

An effective-mass calculation of the wavefunction of the
third electron in a 2P system (see Methods) reproduces the
observed values of A1 and A2 by assuming donors spaced
6.5 nm apart, and subjected to an electric field 2 mV/nm
that pulls the electron wavefunction more strongly to-
wards donor 1 (Fig. 1b). The 31P nuclei in this 2P cluster
are spaced more widely than those produced by scanning
probe lithography [8, 23], where the sub-nanometre inter-
donor spacing causes a strongly anisotropic hyperfine cou-
pling, which randomizes the nuclear spin state each time
the electron is removed from the cluster for spin readout
[24]. Here, instead, the probability of flipping a nuclear
spin by electron ionisation is of order 10−6 (Extended Data
Fig. 5), meaning that our nuclear readout is almost per-
fectly quantum nondemolition.
Nuclear two-qubit operations

We first consider the two 31P nuclear spins as the
qubits of interest. One-qubit logic operations are triv-
ially achieved by NMR pulses [21] (Methods and Extended
Data Fig. 4), where A1 6= A2 provides the spectral selec-
tivity to address each qubit individually (Fig. 1c). Two-
qubit operations are less trivial, since the nuclei are not
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Fig. 2 | Tomography of nuclear Bell states. a, Each
of the four Bell states has been generated using the same
quantum circuit, only varying the initial spin state. b-e,
Quantum state tomography results for (b) Φ+; (c) Φ−; (d)
Ψ+; (e) Ψ− Bell state. No corrections have been applied
to compensate readout errors. Hollow, black boxes indi-
cate the outcome of an ideal measurement for each Bell
state. f, Table of Bell state fidelities and concurrences.
The error bars are estimated using Monte Carlo bootstrap
re-sampling and represent 1σ confidence level.
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directly coupled to each other (Supplementary Informa-
tion S1 and S9). They are, however, hyperfine-coupled to
the same electron. This allows the implementation of a
geometric two-qubit controlled-Z (CZ) gate [4, 16].

When a quantum two-level system is made to trace a
closed trajectory on its Bloch sphere, its quantum state
acquires a geometric phase equal to half the solid angle
enclosed by the trajectory [25]. Fig. 1d illustrates how
an electron 2π-pulse at the frequency νe|⇓⇓ (see Fig. 1d)
constitutes a nuclear CZ 2-qubit gate. Starting from the
state |⇓〉⊗(|⇓〉+ |⇑〉)/

√
2 ≡ (|⇓⇓〉+ |⇓⇑〉)/

√
2, the electron

X2π pulse at νe|⇓⇓ introduces a phase factor eiπ = −1
to the |⇓⇓〉 branch of the superposition, resulting in the
state (− |⇓⇓〉+ |⇓⇑〉)/

√
2 ≡ |⇓〉 ⊗ (− |⇓〉+ |⇑〉)/

√
2, i.e. a

rotation of Q2 by 180 degrees around the z-axis of its Bloch
sphere, which is the output of a CZ operation. Conversely,
if the initial state of Q1 were |⇑〉, the pulse at νe|⇓⇓ would
have no effect on the electron, leaving the nuclear qubits
unaffected.

A nuclear controlled-NOT (CNOT) gate is obtained by
sandwiching the CZ gate between a nuclear −π/2 and π/2
pulse (Extended Data Fig. 6a). Applying an ESR X2π
pulse at νe|⇑⇓ transforms the sequence into a zero-CNOT
gate, i.e. a gate that flips Q2 when Q1 is in the |0〉 ≡
|⇑〉 state (Extended Data Fig. 6b, and Supplementary
Information S2).

We apply this universal gate set (Fig. 2a) to produce
each of the four maximally-entangled Bell states of the
two nuclear spins, |Φ±〉 = (|⇓⇓〉 ± |⇑⇑〉)/

√
2 and |Ψ±〉 =

(|⇓⇑〉 ± |⇑⇓〉)/
√

2. We reconstruct the full density matri-
ces of the Bell states using maximum likelihood quantum
state tomography [26] (Supplementary Information S3).
The reconstructed states (Fig. 2f) have fidelities of up to
94.2(2.7)%, and concurrences as high as 0.93(4), proving
the creation of genuine two-qubit entanglement. Here and
elsewhere, error bars indicate 1σ confidence intervals. Bell
fidelities and concurrences are calculated without remov-
ing state preparation and measurement (SPAM) errors
(Extended Data Table 1).
Gate set tomography

We used a customized, efficient gate set tomography
(GST) [27, 28, 5] analysis (see Methods, Extended Data
Figs. 7, 8, 9 and Supplementary Information S4, S5, S8)
to investigate the quality of six logic operations on two
nuclear-spin qubits: Xπ/2 and Yπ/2 rotations on Q1 and
Q2, an additional Y−π/2 rotation on Q2, and the entan-
gling CZ gate. No two single-qubit operations are ever
performed in parallel. GST probes these six logic oper-
ations and reconstructs a full two-qubit model for their

behavior. Earlier experiments on electron spins in silicon
used randomized benchmarking (RB) [29, 30] to extract
a single number for the average fidelity of all logic opera-
tions. Characterising specific gates required “interleaved”
RB, which can suffer systematic errors [31, 32]. Most im-
portantly, RB does not reveal the cause or nature of the
errors. Our GST method enables measuring each gate’s
fidelity to high precision, distinguishing the contributions
of stochastic and coherent errors, and separating local er-
rors (on the target qubit) from crosstalk errors (on, or
coupling to, the undriven spectator qubit).

GST estimates a two-qubit process matrix for each logic
operation (Gi : i = 1 . . . 6) using maximum likelihood es-
timation. We represent each Gi as the composition of
its ideal target unitary process (Gi) with an error pro-
cess written in terms of a Lindbladian generator (Li):
Gi = eLiGi. Each gate’s error generator (EG) can be
written as a linear combination of independent elemen-
tary EGs that describe distinct kinds of error [33]. Each
elementary EG’s coefficient in Li is the rate (per gate) at
which that error builds up. Any Markovian error process
can be described using just four kinds of elementary EGs:
Hamiltonian (H), indexed by a single two-qubit Pauli op-
erator, cause coherent or unitary errors (e.g., HZZ gen-
erates a coherent ZZ rotation); Pauli-stochastic (S), also
indexed by a single Pauli, cause probabilistic Pauli errors
(e.g. SIX causes probabilistic X errors on Q2); Pauli-
correlation (C), and active (A), indexed by two Paulis,
describe more exotic errors (see Methods) that were not
detected in this experiment. We found that each gate’s
behavior could be described using just 13-14 elementary
EGs: 3 local S errors and 3 local H errors acting on each
of Q1 and Q2, and 1-2 entangling H errors (discussed in
detail below). Extended Data Figure 8 shows those errors’
rates, along with the process matrices and full EGs used to
derive them. To get a higher-level picture of gate quality,
we aggregate the rates of related errors (see Methods) to
report total rates of stochastic and coherent errors on each
qubit and on the entire 2-qubit system. We present two
overall figures of merit in Figure 3a,c: generator infidelity
and total error. Generator infidelity is closely related to
entanglement infidelity, which accurately predicts average
gate performance in realistic large-scale quantum proces-
sors and can be compared to fault-tolerance thresholds
(see Methods and Supplementary Information S9). Total
error is related to diamond norm (see Supplementary In-
formation S9) and estimates worst-case gate performance
in any circuit, including structured or periodic circuits. In
Fig. 3c, we additionally report each gate’s average gate
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single-qubit gates confirm that the entangling coherent errors observed in a are not an artifact of gauge-fixing.
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fidelity on its target to ease comparison of these results
with those from the literature.

The process matrices estimated by GST are not unique.
An equivalent representation of the gate set can be con-
structed by a gauge transformation [34, 5] in which all
process matrices are conjugated by some invertible matrix,
Gi → MGiM

−1. Some gate errors, such as over/under-
rotations or errors on idle spectator qubits, are nearly un-
affected by choice of gauge; they are intrinsic to that gate.
But other errors, such as a tilted rotation axis, can be
shifted from one gate to another by changing gauge. These
relational errors cannot be objectively associated with any
particular gate. Recognizing this, we divide coherent er-
rors into intrinsic and relational components (Fig. 3a,c).
Intrinsic errors perturb a gate’s eigenvalues, whereas re-
lational errors perturb its eigenvectors. In Fig. 3a,c we
follow standard GST practice by choosing a gauge that
makes the gates as close to their targets as possible. This
associates relational errors with individual gates, in a way
that depends critically on the choice of gauge. But the
magnitude of a given relational error between a set of
gates is gauge-invariant, and Fig. 3d illustrates the to-
tal relational error between each pair of gates. In this
work, we found evidence only for pairwise relational er-
rors, although more complex multi-gate relational errors
are possible.

All 6 gates achieved on-target fidelities > 99%, with in-
fidelities as low as 0.07(3)% on Q1 and 0.68(7)% on Q2.
However, we observed significant crosstalk on the specta-
tor qubit during 1-qubit gates, resulting in full logic opera-
tions (1-qubit gate and spectator idle operation in parallel)
with higher infidelities of 0.68(6)%−3.5(2)%. Remarkably,
the CZ gate’s infidelity of 0.79(14)% is almost on par with
the single-qubit gates – a rare scenario in multi-qubit sys-
tems (Fig. 3a,c).

SPAM errors were estimated by GST as 1.05(4)% on
average, and as low as 0.25(3)% for the |⇑⇑〉 state (Ex-
tended Data Table 1). This is a unique feature of nuclear
spin qubits, afforded by the quantum nondemolition na-
ture of the measurement process [21] (Methods and Ex-
tended Data Fig. 5).

GST provided unambiguous evidence for a surprising re-
lational error: weight-2 (entangling) HZZ and/or HGi[ZZ]
coherent errors on each 1-qubit gate Gi, with amplitudes
from 1.8 − 5.0% (Extended Data Figure 8). These er-
rors are consistent with an intermittent ZZ Hamiltonian
during the gate pulses. After ruling out a wide range of
possible error channels, we propose that the observedHZZ

error arises from the spurious accumulation of geometric

phase by the electron spin, caused by off-resonance leak-
age of microwave power near the ESR frequencies (Supple-
mentary Information S9). This observation illustrates the
diagnostic power of GST, which revealed an error channel
we had not anticipated. It also shows GST’s ability to
unveil correlated and entangling errors, whose detection
and prevention is of key importance for the realization of
fault-tolerant quantum computers [35].
Three-qubit entanglement
The nuclear logic gates shown above would not scale

beyond a single, highly localized cluster of donors. How-
ever, adding the hyperfine-coupled electron qubit yields a
scalable heterogeneous architecture. Electron qubits de-
cohere faster (see Extended Data Figs. 3 and 4 for a
comparison), but admit faster control. If high-fidelity en-
tanglement between electron and nuclear qubits can be
created, electron qubits can enable fast coherent commu-
nication between distant nuclei (via electron-electron en-
tanglement, or physical shuttling) or serve as high-fidelity
ancilla qubits for quantum error correction. To demon-
strate this capability, we produce the maximally entan-
gled three-qubit Greenberger-Horne-Zeilinger (GHZ) state
|ψGHZ〉 = (|⇑⇑↑〉 + |⇓⇓↓〉)/

√
2 using the pulse sequence

shown in Fig. 4a. Starting from |⇓⇓↓〉, an NMR Yπ/2 pulse
at νQ2|↓ creates a coherent superposition state of nucleus
2, followed by a nuclear zCNOT gate (as in Fig. 2a) to
produce a nuclear |Φ+〉 state, and an ESR Xπ pulse at
νe|⇓⇓ to arrive at |ψGHZ〉. Since the ESR frequency di-
rectly depends on the state of both nuclei, the latter pulse
constitutes a natural 3-qubit Toffoli gate, making the cre-
ation of 3-qubit entanglement particularly simple, as in
nitrogen-vacancy centres in diamond [36]. Executing Tof-
foli gates on electrons in quantum dots [37] requires more
complex protocols, but can be simplified by a combination
of exchange and microwave pulses [38].
Measuring the populations of the eight electron-nuclear

states (Supplementary Information S7) after each step
confirms the expected evolution from |⇓⇓↓〉 to |ψGHZ〉
(Fig. 4b). The evolution can be undone by applying the
sequence in reverse, yielding a return probability to |⇓⇓↓〉
of 89.6(9)%, including SPAM errors. As in the two-qubit
case, measuring the populations is a useful sanity check
but does not prove multipartite entanglement, which re-
quires knowing the off-diagonal terms of the density ma-
trix ρGHZ = |ψGHZ〉〈ψGHZ|.
Standard tomography methods require measuring the

target state in different bases, obtained by rotating the
qubits prior to measurement. However, the superposition
of |⇓⇓↓〉 and |⇑⇑↑〉 dephases at a rate dominated by the

6



a

b

c

d

GHZ

Phase increment

St
at

e 
pr

ob
ab

ilit
y

State population
Circuit step

Fig. 4 | Creation and tomography of an electron-nuclear three-qubit GHZ state. a, Starting from |⇓⇓↓〉,
the first three gates generate an entangled three-qubit GHZ state. All eight state populations are read out (b) at
each circuit step (red dashed lines), and estimated without correcting for SPAM errors (Supplementary Information
S7). The final three gates R(θi)φ reverse the operations of the first three if the rotation angles are θ1 = θ2 = θ3 = 0,
returning to the initial state in the absence of errors. The two gates that are conditional on Q2 are composed of
multiple pulses (Supplementary Information S6). c, The coherence between the GHZ components |⇓⇓↓〉 and |⇑⇑↑〉 is
probed by incrementing the phases θi of the reversal pulses. This induces oscillations at frequency f = 2π/(θ1+θ2+θ3)
whose amplitude and phase correspond to the purity and phase relation between |⇓⇓↓〉 and |⇑⇑↑〉. d, Density-matrix
extrema of the GHZ state. The state populations of the GHZ components |⇓⇓↓〉 and |⇑⇑↑〉 at circuit step 3 (b) provide
the diagonal entries, while the oscillation amplitude and phase (c) provide the off-diagonal entries. From these values,
the fidelity to the nearest GHZ state is estimated as 92.5(1.0)%, including SPAM.

electron dephasing time T ∗2e ≈ 100 µs (Extended Data
Fig. 3), which is only marginally longer than the nuclear
spin operation time≈ 10−20 µs. Therefore, the GHZ state
will have significantly dephased by the time it is projected
onto each measurement basis.

We circumvent this problem by adopting a tomography
method that minimises the time spent in the GHZ state.
An extension of a method first introduced for the measure-
ment of electron-nuclear entanglement in spin ensembles
[39], it is related to the parity scan commonly used in
trapped ions [40] and superconducting circuits [41]. We
repeat the reversal of the GHZ state (Fig. 4b) N = 100
times, each time introducing phase shifts θ1,2,3 to the ro-
tation axes of the three reversal pulses, with θ1 = 3θ2 =
9θ3 = 9N/125. The return probability to |⇓⇓↓〉 oscillates
with N ; the amplitude and phase of the oscillations yield
the off-diagonal matrix element 〈⇓⇓↓| ρGHZ |⇑⇑↑〉 = ρ18.
Since the ideal ρGHZ has nonzero elements only on

its four corners, the populations ρ11, ρ88 and the coher-

ence ρ18 are sufficient to determine the GHZ state fidelity
FGHZ = 92.5(1.0)%. Also here, SPAM errors remain in-
cluded in total infidelity. By comparison, an 88% GHZ
state fidelity has been reported in a triple quantum dot
after removing SPAM errors, whereas the uncorrected fi-
delity is 45.8% [37]. This highlights the drastic effect of
SPAM of multi-qubit entanglement, and the robustness
of our system against such errors. The different coher-
ence and operation timescales for electron and nuclei need
not be an obstacle for the use of such entangled states in
scaled-up architectures, because all further entangling or
shuttling operations between electrons will occur on' 1 µs
time scales.
Outlook

The demonstration of 1-qubit, 2-qubit and SPAM er-
rors at or below the 1% level highlight the potential of
nuclear spins in silicon as a credible platform for fault-
tolerant quantum computing. An often-quoted example,
based on surface code quantum error correction, sets a
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fault-tolerance threshold of 0.56% for the entanglement
infidelity of 1- and 2-qubit gates and the SPAM errors [6].

Several avenues are available to harness the high-fidelity
operations demonstrated here. Replacing the 31P donors
with the higher-spin group-V analogues such as 123Sb
(I = 7/2) or 209Bi (I = 9/2) would provide access to a
much larger Hilbert space in which to encode quantum
information. For example, a cluster of two 123Sb donors
contains the equivalent of six qubits in the nuclear spins,
plus an electron qubit. An error-correcting code can be
efficiently implemented in high-spin nuclei [42], where our
method would provide a pathway for universal operations
between the logical qubits encoded in each nucleus.

Moving to heavier group-V donors also allows the elec-
trical control of the nuclear spins [43]. Combined with
the electrical drive of the electron-nuclear ‘flip-flop’ tran-
sition [44], this implies the ability to control electron and
nuclei by purely electrical means. In a two-donor system
as shown here, the entangling CZ gate could similarly be
obtained by an electrical 2π-pulse on a flip-flop transition.

The electron-nuclear entanglement we have demon-
strated can be harnessed to scale up beyond a pair of
nuclei coupled to the same electron. Neighbouring donor
electrons can be entangled via exchange interaction by per-
forming controlled-rotation resonant gates [9] or

√
SWAP

gates [8]. Wider distances could be afforded by physi-
cally shuttling the electron across lithographic quantum
dots [45, 46], while preserving the quantum information
encoded in it [11]. Our methods would apply equally
to isoelectronic nuclear spin centres like 73Ge and 29Si,
where it has been shown that the nuclear qubit coherence
is preserved while shuttling the electron across neighbour-
ing dots [10]. Furthermore, electron spins can mediate the
coherent interaction between nuclear spin qubits and mi-
crowave photons [47, 48]. Recent experiments on electron
spin qubits in silicon report 1- and 2-qubit gate fidelities
above 99% [49, 50]. Therefore, the fidelity of electron qubit
operations will not constitute a bottleneck for the perfor-
mance of electron-nuclear quantum processors. These ex-
amples illustrate the significance of universal high-fidelity
two-qubit operations with nuclear spins in a platform like
silicon, which can simultaneously host nuclear and elec-
tron spin qubits, lithographic quantum dots, and dense
readout and control devices [19].
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Methods
Device fabrication
The quantum processor is fabricated using methods com-
patible with standard silicon MOS processes. We start
from a high quality silicon substrate (p-type 〈100〉; 10-20
Ωcm), on top of which a 900 nm thick epilayer of iso-
topically enriched 28Si has been grown using low-pressure
chemical vapour deposition (LPCVD). The residual 29Si
concentration is 730 ppm. Heavily-doped n+ regions for
Ohmic contacts and lightly-doped p regions for leakage
prevention are defined by thermal diffusion of phosphorus

and boron, respectively. A 200 nm thick SiO2 field oxide
is grown in a wet oxidation furnace. In the centre of the
device, an opening of 20 µm × 40 µm is etched in the field
oxide using HF acid. Immediately after, a 8 nm thick,
high quality dry SiO2 gate oxide is grown in this opening.
In preparation for ion implantation, a 90 nm × 100 nm
aperture is opened in a PMMA mask using electron-beam-
lithography (EBL). The samples are implanted with P+

ions at an acceleration voltage of 10 keV per ion. Dur-
ing implantation the samples were tilted by 8 degrees and
the fluence was set at 1.4 × 1012/cm2. Donor activation
and implantation damage repair is achieved through the
process of a rapid thermal annealing (5 seconds at 1000
◦C). The gate layout is patterned around the implantation
region in three EBL steps, each followed by aluminium
thermal deposition (25 nm thickness for layer 1; 50 nm for
layer 2; 100 nm for layer 3). Immediately after each metal
deposition, the sample is exposed to a pure, low pressure
(100 mTorr) oxygen atmosphere to form an Al2O3 layer,
which electrically insulated the overlapping metal gates.
At the last step, samples are annealed in a forming gas
(400 ◦C, 15 min, 95% N2 / 5% H2) aimed at passivating
the interface traps.

Experimental setup
The device was wire-bonded to a gold-plated printed cir-
cuit board and placed in a copper enclosure. The enclosure
was placed in a permanent magnet array [51], producing a
static magnetic field of 1.33 T at the device (see Extended
Data Fig. 1 for field orientation). The board was mounted
on a Bluefors BF-LD400 cryogen-free dilution refrigerator,
reaching a base temperature of 14 mK, while the effective
electron temperature was ≈ 150 mK.
DC bias voltages were applied to all gates using Stan-

ford Research Systems (SRS) SIM928 voltage sources. A
room-temperature resistive combiner was used for the fast
donor gates (Extended Data Fig. 1) to add DC voltages
to AC signals produced by the LeCroy Arbstudio 1104,
which then passed through an 80 MHz low-pass filter; all
other gates passed through a 20 Hz low-pass filter. All
filtering takes place at the mixing chamber plate. The
wiring includes graphite-coated flexible coaxial cables to
reduce triboelectric noise [52].
Microwave pulses to induce ESR transitions were ap-

plied to an on-chip broadband antenna [53] using a Rohde
& Schwarz SGS100A vector microwave source combined
with an SGU100A upconverter. The microwave carrier
frequency remained fixed at 37.1004125 GHz, while the
output frequency was varied within a pulse sequence by
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mixing it with a radiofrequency (RF) signal using double-
sideband modulation, i.e. by applying RF pulses to the
in-phase port of the SGS100A IQ mixer (the quadrature
port was terminated by a 50 Ω load). The carrier fre-
quency was chosen such that whenever one sideband tone
was resonant with an ESR pulse, the second sideband was
off-resonant with all other ESR frequencies. To suppress
microwave signals when not needed, 0 V was applied to
the in-phase port of the IQ mixer. Under these circum-
stances, the carrier frequency is expected to be suppressed
by 35 dB, according to the source data sheet. The RF
pulses used for double-sideband modulation were gener-
ated by one of the two channels of the Agilent 81180A
arbitrary waveform generator; the second channel deliv-
ered RF pulses to the microwave antenna to drive NMR
transitions. The microwave signal for ESR and RF signal
for NMR were combined in a Marki Microwave DPX-1721
diplexer.

The SET current passed through a Femto DLPCA-200
transimpedance amplifier (107 V/A gain, 50 kHz band-
width), followed by an SRS SIM910 JFET post-amplifier
(102 V/V gain), SRS SIM965 analog filter (50 kHz cut-
off low-pass Bessel filter), and acquired via an AlazarTech
ATS9440 PCI digitizer card. The instruments were trig-
gered by a SpinCore PulseBlasterESR-PRO. The measure-
ments instruments were controlled by Python code us-
ing the quantum measurement software packages QCoDeS
and SilQ.

System Hamiltonian
The static Hamiltonian of our combined electron-nuclei
system is

Hs = −γeB0Ŝz−γnB0(Î1,z+Î2,z)+A1~S ·~I1+A2~S ·~I2, (1)

where γe ≈ −27.97 GHz T−1 is the electron gyromag-
netic ratio [54], γn ≈ 17.23 MHz T−1 is the nuclear gy-
romagnetic ratio [55], ~S = [Ŝx, Ŝy, Ŝz] are the electron
spin operators, and ~Ii = [Îi,x, Îi,y, Îi,z] are the nuclear
spin operators for nucleus i ∈ 1, 2. The static magnetic
field B0 = 1.33 T is aligned along ẑ, and A1 ≈ 95 MHz,
(A2 ≈ 9 MHz) is the hyperfine interaction strength be-
tween the electron and nucleus 1 (2).

An AC drive applied to the microwave line is used to in-
duce transitions between nuclear spin states and between
electron spin states. The drive predominantly modulates
the transverse magnetic field as

Hrf(t) = −γe ~B1 · ~S sinωt− γn ~B1 · (Î1 + Î2) sinωt, (2)

where ~B1 is the oscillating magnetic field strength, pri-
marily aligned along ŷ.

Electron spin readout
An electron spin readout is realized through the spin to
charge conversion [56, 57]. This method utilizes a single
electron transistor (SET) as both a charge sensor and an
electron reservoir. The electron spin |↓〉 and |↑〉 states
are separated by the Zeeman energy, which scales linearly
with the external magnetic field. Thermal broadening of
the SET at 100 mK is much smaller than the Zeeman
splitting of two electron spin states. This means that,
at the read position, the donor electron spin down state
faces only occupied levels in the SET island (tunneling
is prohibited) and the spin up state faces only unoccupied
states and can freely tunnel out the SET island. This event
will shift the energy ladder in the SET island, bringing it
out of the Coulomb blockade, thus causing a burst in the
current. This burst will last until |↓〉 electron tunnels to
the donor. If the electron has been projected to the |↓〉
state then no change in the SET current will be recorded,
as the electron cannot tunnel to the SET island. At the
end of each read phase the electron spin is reinitialized in
|↓〉 for the next single shot cycle. The fidelity of single-shot
electron readout and |↓〉 initialisation by spin-dependent
tunnelling is ≈ 80% in this device. However, we further
increase the initialisation fidelity by letting the electron
thermalise to the lattice temperature for a time � T1e
(Fig. 3b) before triggering further operations.

Nuclear spin readout and initialisation
The readout of the two nuclear spin qubits is an extension
of the well-known method developed for a single donor
[21], based on the excitation of the electron bound to the
nuclei, conditional on a particular nuclear state, followed
by electron spin readout [20]. The same method is used
to initialise the nuclei in a known state.

In the present system, consisting of an electron cou-
pled to two 31P donors with different hyperfine couplings
A1 � A2, we find four well-separated electron spin res-
onance (ESR) frequencies (Fig. 1c), conditional on the
|⇓⇓〉 , |⇓⇑〉 , |⇑⇓〉 , |⇑⇑〉 nuclear states. An electron in the
|↓〉 state is initially drawn from a cold charge reservoir
onto the donor cluster (independently of nuclear states).
We then apply a microwave π-pulse at a particular ESR
frequency, for instance νe|⇓⇓ corresponding to the |⇓⇓〉 nu-
clear spin state, and then measure the electron spin. If it is
found in the |↑〉 state, then the nuclear spins are projected
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to the |⇓⇓〉 state. If the electron is |↓〉 (i.e. the pulse at
νe|⇓⇓ failed to flip it to |↑〉), the nuclear spins are projected
to the subspace orthogonal to the |⇓⇓〉 state. This con-
stitutes a nuclear spins single-shot readout, with a fidelity
given by the product of the electron single-shot readout
fidelity (typically ≈ 80%) and the electron π-pulse fidelity
(� 99%).

This nuclear readout is a projective, approximately
quantum non demolition (QND) process [21]. The ideal
QND measurement relies on the observable Iz to com-
mute with the Hamiltonian Hint describing an interaction
between the observable and the measurement apparatus
[Iz, Hint] = 0 [58]. In our case the hyperfine terms A1SzIz1
and A2SzIz2 constitute Hint. The observation of nuclear
spin quantum jumps originating from the electron mea-
surement by spin-dependent tunnelling (ionization shock)
hints at a deviation from QND nature of the readout pro-
cess [21]. It implies the presence of terms of the form
A||/2(S+I− + S−I+) in the hyperfine coupling, and pos-
sibly additional anisotropic terms, which do not commute
with Iz. In our experiment, the deviation from the ideal
QND measurement is extremely small, of order 10−6, as
shown in Extended Data Figure 5.

We exploit the near-perfect QND nature of the nuclear
spin readout by repeating the cycle [load |↓〉 – ESR π-pulse
– electron readout] between 7 and 40 times, to substan-
tially increase the nuclear single-shot readout fidelity. This
is the fundamental reason why our average SPAM errors
are ≈ 1% (Extended Data Table 1), and we have thus
reported Bell and GHZ state fidelities without removing
SPAM errors from the estimate.

ESR and NMR calibration
Gate calibration

Both the 1-qubit NMR gates and the 2-qubit ESR gate
were iteratively calibrated using a combination of GST
and other tuning methods. Rabi flops were first used to
obtain roughly calibrated 1-qubit NMR gates. Next, 1-
qubit GST was repeatedly employed to identify and cor-
rect error contributions such as over-/under-rotations and
detunings. Other routines such as the repeated application
of gates were performed in between GST measurements to
independently verify the improvements to 1-qubit gate fi-
delities of GST. The calibrated NMR π/2 pulse duration
of Q1 (Q2) is 12.0 µs (25.3 µs). The discrepancy between
the two durations is largely due to the hyperfine interac-
tion enhancing the Rabi frequency of Q1 and reducing the
Rabi frequency of Q2, combined with line reflections and

filtering.
For the geometric 2-qubit gate based upon an electron

2π pulse, we found that a trivial calibration using Rabi
flops already gave a near-optimal result. GST was then
used for fine-tuning and for the detection of small error
contributions such as a minor frequency shift. The cali-
brated ESR 2π pulse duration of the CZ gate is 1.89 µs at
an output power of 20 dBm.

Periodic frequency recalibration

To keep the system tuned throughout the measurements,
the NMR frequencies νQ1|↓ and νQ2|↓ and ESR frequency
νe|↓↓ were calibrated every ten circuits. The ESR fre-
quency was calibrated by measuring the ESR spectrum
and selecting the frequency of the ESR peak. The NMR
frequencies were measured by a variant of the Ramsey se-
quence, consisting of an Xπ/2 and Yπ/2 separated by a
wait time τ . An off-resonant RF pulse was applied dur-
ing the wait time to mitigate any frequency shift caused
by the absence of an RF drive. Since nuclear readout has
a near-unity fidelity, this measurement should result in
a nuclear flipping probability Pflip = 0.5 if the RF fre-
quency fRF matches the average NMR frequency fNMR
throughout the measurement. Therefore, any deviation of
Pflip from 0.5 provides a direct estimate of the frequency
mismatch ∆f = fNMR − fRF = arcsin (2Pflip − 1))/(2πτ),
provided that |∆f/τ | < 0.25. A higher τ more accu-
rately estimates δf , while a lower τ results in the condition
|∆f/τ | < 0.25 being valid for a broader range of ∆f . The
NMR recalibration sequence iteratively increased the wait
time τ = 40 µs→ 100 µs→ 160 µs to ensure that the con-
dition |∆f/τ | < 0.25 remains satisfied while increasing the
accuracy at which the NMR frequency is estimated. For
each τ , the NMR frequency was estimated by repeating
this sequence and updating the RF frequency until Pflip
fell within the range [0.4, 0.6].

Measurement overhead
Instrument setups and calibration routines add a signif-
icant overhead to the GST measurements. An estimate
of this overhead can be obtained by comparing the total
measurement duration to the duration of a single pulse
sequence. The 2Q GST measurement shown in Fig. 3 was
acquired over 61 hours, during which 300-503 shots were
acquired for each of the 1593 circuits. This results in an
average duration of 340 ms per GST pulse sequence itera-
tion. Compared to the average pulse sequence duration of
around 121 ms, this corresponds to an overhead of 185%.
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Effective mass theory simulations of the hy-
perfine interaction
To simulate the wave function of the third electron in the
2P system, the effective mass theory (EMT) model of the
neutral 2P system in Ref. [59] is extended in a mean-field
approach.

For short donor separations, the two inner electrons are
tightly bound in a magnetically inactive singlet orbital.
The third electron then only interacts with the inner ones
to the extent that it experiences the Coulomb repulsion of
their fixed charge distribution

V (~r) = e2

4πεSi

∫
ρS(~r′)
|~r′ − ~r|d

3~r′. (3)

Here, e is the electron charge, εSi the dielectric constant
in silicon and ρS(~r′) is the charge density of the tightly
bound electrons found in Ref. [59]. The third electron
is then effectively described by the sum of the 2P EMT
Hamiltonian in an electric field [59] and the corresponding
mean-field potential in Eq. (3).

Here, only 2P configurations along the [100] crystal axis
with distances d≤7 nm and realistic fields E≤2 mV/nm are
considered. In this regime the inter-donor exchange dom-
inates the on-site exchange and the mean-field approach
is justified.

The chosen basis is a combination of two STO-3G [59]
orbitals, one variationally optimized at d=0.5 nm and the
other at d=7 nm.
To compute the hyperfine interaction strength, the elec-

tron density at the nucleus is rescaled by a bunching factor
of 440 [60]. The experimentally found hyperfine configu-
ration is found for donors spaced 6.5 nm apart, and sub-
jected to an electric field 2 mV/nm.

Gate set tomography experiments
We designed a customized GST experiment for a set of
6 logic gates: Xπ/2 and Yπ/2 rotations on each qubit,
an additional Y−π/2 rotation on Q2, and the symmetric
CZ gate between them. A basic 2-qubit GST experiment
for this gate set comprises a list of quantum circuits de-
fined by: (1) choosing a set of 75 short “germ” circuits
that, when repeated, collectively amplify every error rate;
(2) repeating each germ several times to times to form
“germ power” circuits whose lengths are approximately
L = 1, 2, 4, . . . Lmax; and (3) prefacing and appending each
germ power with each of 16 “preparation fiducial” circuits
and each of 11 “measurement fiducial” circuits. We used
Lmax = 8, yielding a set of 20606 circuits (this is not

a simple multiplication because germ circuits with depth
> 1 do not appear at shorter L). We eliminated 92%
of these circuits using two techniques from [5]. First, we
identified a subset of 18 germs that amplify any dominant
errors in each gate (if Lmax was very large, subdominant
errors would get echoed away by dominant errors). This
yielded a total of 50 germ powers. Second, for the L > 1
germ powers, we identified and eliminated pairs of fidu-
cial circuits that provided redundant information. This
trimmed the circuits per germ power from 176 to as few
as 16, and the total number of circuits from 8800 to just
1592. Each of those circuits was repeated 300-500 times to
gather statistics. We used maximum likelihood estimation
(MLE) implemented in the pyGSTi software [61, 62] to es-
timate 16× 16 2-qubit process matrices {Gi : i = 1 . . . 6}
for all six operations.

Constructing and selecting reduced models
Process matrices are a comprehensive, but not especially
transparent, representation of gate errors. So we used each
gate’s ideal target (unitary) operation Gi to construct an
error generator [33] Li = log(GiG−1

i ) that presents the
same information more usefully. Representing noisy gates
this way enables us to split each gate’s total error into
parts that act on Q1 only, Q2 only, or both qubits together
– and then further into coherent and stochastic errors –
to reveal those errors’ sources and consequences. It also
enables the construction of simple, efficient “reduced mod-
els” for gate errors, by identifying swaths of elementary er-
ror generators whose rates are indistinguishable from zero.
Pinning the coefficients of k elementary error generators

to zero yields a reduced model with k fewer parameters,
whose likelihood (L) can be found by MLE. We evaluate
the statistical significance of error rates that were pinned
by seeing how much L declines. If a given error’s true rate
is zero, then pinning it to zero in the model reduces 2 logL,
on average, by 1 [63]. So when we pin k rates, we com-
pute the “evidence ratio” r = 2∆ logL/k, where ∆ logL
is the difference between the two models’ likelihood [64].
If r ≤ 1, the pinned rates are strictly negligible; if r ≤ 2,
then the smaller model is preferred by Akaike’s informa-
tion criterion (AIC) [65]; other criteria (e.g. the Bayesian
BIC) impose higher thresholds. We used a slightly higher
threshold and chose the smaller model whenever r ≤ 5.
Using this methodology, we constructed a model that de-
scribes the data well, in which just 83 (out of 1440) ele-
mentary errors’ rates are significantly different from zero.
The rates of all the un-pinned elementary errors form a

vector describing the noisy model. In general, un-physical

13



gauge degrees of freedom [5] will give rise to a foliation of
the model space into gauge manifolds on which the loglike-
lihood is constant. In our analysis, we work in the limit
of small errors and gauge transformations where the space
is approximately linear, and identify the subspace that
is gauge invariant. We are able to construct a basis for
the gauge-invariant subspace whose elements correspond
to relational or intrinsic errors and have a definite type
(H, S, or A), allowing us to decompose the model’s total
error as shown in Figure 3.

Extended Data Figure 8 presents each gate’s 13-14
nonzero elementary error rates after projecting the er-
ror vector onto the gauge-invariant subspace (column 3),
along with the process matrices (column 1) and error gen-
erators (column 2) from which they are derived. Here and
elsewhere, error bars are 1σ confidence intervals computed
using the Hessian of the loglikelihood function.

Aggregated error rates and metrics
Our GST analysis aims to identify specific gate errors and
understand how these errors affect the overall performance
of our system. It begins with the raw output of GST –
rates of elementary errors on gates. We aggregate these
error rates in different ways, yielding each gate’s total er-
ror and infidelity, and partitioning those metrics into their
components on Q1 or Q2 or both qubits together, in or-
der to summarize different aspects of system performance.
We additionally report average gate fidelities to facilitate
comparison with the literature.

Gate errors by definition cause unintended changes in
the state of the system. S error generators produce
stochastic errors that transfer probability to erroneous
states; H generators produce coherent errors that trans-
fer amplitude to erroneous states. We can interpret the
rate of an error generator, to first order, as the amount
of erroneous probability (denoted ε for S generators) or
amplitude (denoted θ for H generators) transferred by a
single use of the gate when acting on one half of a maxi-
mally entangled state.

It is useful to group similar errors together and aggre-
gate their rates. We classify and combine error generators
according to:

• Their type (H or S),

• Their support (Q1, Q2, or joint),

• Whether they are intrinsic to a single gate, or rela-
tional between gates (H errors only; relational S errors
were negligible).

The elementary error generators described in the main
text have definite type and support. For example, the
HXI generator has type H and support on Q1. Any er-
ror generator on a given gate is intrinsic to that gate if
it commutes with the gate, and relational otherwise. For
example, if single-qubit Xπ/2 and Yπ/2 gates produce ro-
tations around axes that are separated by only 89◦ instead
of 90◦, then either gate can be considered perfect at the
cost of assigning a 1◦ tilt error to the other gate. This
error can be moved between the two gates by a gauge
transformation M that rotates both gates by 1◦ around
the Z-axis. This error is purely relational; it cannot be
assigned definitively to one gate or the other, but can be
unambiguously observed in circuits containing both gates.

To divide each gate’s errors into intrinsic and relational
components, we represent the gate’s error generator as a
vector in a space spanned by the H and S elementary error
generators. Error generators that commute with the tar-
get gate form a subspace that is invariant under gauge
transformations. The error generator’s projection onto
this space is its intrinsic component. Error generators in
the complement of the intrinsic subspace are relational –
they can be changed or eliminated by gauge transforma-
tions – and the projection of the gate’s error generator
onto this complement is its relational component.

To construct aggregated error metrics, we start by ag-
gregating H and S rates separately. They add in differ-
ent ways, because H error rates correspond to amplitudes
while S error rates correspond to probabilities. Rates of
S generators add directly (εagg =

∑
i εi), while rates of H

generators add in quadrature (θagg = (
∑
i θ

2
i )1/2). Com-

bining H and S error rates into a single metric is trickier
– there is no unique way to do so because the impact of
coherent errors depends on how they interfere over the
course of a circuit. We therefore consider two quanti-
ties: total error εtot = εagg + θagg and generator infidelity
ε̂ = εagg + θ2

agg. Total error approximates the maximal
rate at which gate errors could add up in any circuit, while
infidelity quantifies the same errors’ average impact in a
random circuit.

Both of these metrics appear in Fig. 3, where in panels
a, c, and d we report aggregated error rates that partition
the overall error in various ways (see the discussion in S10
of the Supplement). We report a third metric, the aver-
age gate fidelity (AGF) on each gate’s target qubit[s], in
Fig. 3c and in the abstract to aid comparison with other
published results. The on-target AGF provides an over-
all (and gauge-dependent) measure of the average perfor-
mance of a gate when acting only on the target qubit(s).
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For a gate targeting Q1, it is defined as:

ε̄(Q1) = 1− 1
2

∫
dψ 〈ψ|trQ2

[
eL (|ψ〉〈ψ| ⊗ I)

]
|ψ〉 (4)

For a two-qubit gate, the on-target AGF is simply the
AGF of the two-qubit operation:

ε̄ = 1−
∫
dψ 〈ψ|eL(|ψ〉〈ψ|)|ψ〉, (5)

In both cases, dψ is the Haar measure (over 1-qubit states
in Eq. 4 and over 2-qubit states in Eq. 5) and L is the
error generator of the gate. Although AGF is provided
for comparison to the literature, it is not a good predic-
tor of performance in general circuits (see Supplemental
Information S9), and when we use the unqualified term
“fidelity”, it always denotes generator fidelity, ε̂. Section
S9 of the Supplement includes an extensive discussion of
overall gate error metrics and their relationships.
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Code availability
The GST analysis was performed using a developmental
version of pyGSTi that requires expert-level knowledge of
the software to install and run. A future official release
of pyGSTi will support the type of analysis performed
here using a simple and well-documented Python script.
Until this code is available, interested readers can con-
tact the corresponding author to get help with accessing
and running the existing code. Multivalley effective mass
theory calculations, some of the results of which are il-
lustrated in Fig. 1b, were performed using a fork of the
code first developed in the production of Ref. [60] that
was extended to include multielectron interactions as re-
ported in Ref. [59]. Requests for a license for and copy of
this code will be directed to points of contact at Sandia
National Laboratories and the University of New South
Wales, through the corresponding author. The analysis
code for Bell state tomography is in Figshare with the
identifier doi.org/10.6084/m9.figshare.c.5471706.
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Extended data figures and tables
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barrier gate

SET top gate

DC donor gate

DC donor gate

fast donor gate

fast donor gate

MW antenna

200 nm

Extended Data Fig. 1 | Device layout. Scanning electron micrograph of a device identical to the one used in
this experiment. 31P donor atoms are implanted in the region marked by the orange rectangle, using a fluence of
1.4× 1012/cm2 which results in a most probably inter-donor spacing of approximately 8 nm. Four metallic gates are
fabricated around the implantation region, and used to modify the electrochemical potential of the donors. A nearby
SET, formed using the SET top gate and barrier gates, enables charge sensing of a single donor atom, as well as its
electron spin through spin-to-charge conversion (Methods). The tunnel coupling between the donors and SET is tuned
by the rate gate situated between the SET and donor implant region. A nearby microwave (MW) antenna is used for
ESR and NMR of the donor electron and nuclear spins, respectively.
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Extended Data Fig. 2 | Electrical tunability of the hyperfine interaction and the electron gyromagnetic
ratio. a, Map of the SET current as a function of SET gate and fast donor gates (pulsed jointly). The white dashed
line indicates the location in gate space where the 2P donor cluster changes its charge state. The third, hyperfine-
coupled electron is present on the cluster in the region to the right of the line. Electron spin readout is performed
at the location indicated by the pink star. b, ESR spectrum of the electron bound to the 2P cluster, acquired while
the system was tuned within the blue dashed rectangle in panel a. The hyperfine couplings A1, A2 are extracted from
ESR frequencies as shown, namely A1 = (νe|⇑⇓ + νe|⇑⇑)/2 − (νe|⇓⇓ + νe|⇓⇑)/2; A2 = νe|⇑⇑ − νe|⇑⇓. c-d, Extracted
hyperfine couplings within the marked area. The data shows that A1 decreases and A2 increases upon moving the
operation point towards higher gate voltages and away from the donor readout position. e, A small change is also
observed in the sum of the two hyperfine interactions At = A1 + A2. f, Electrical modulation (Stark shift) of the
electron gyromagnetic ratio γe, extracted from the shift of the average of the hyperfine-split electron resonances. The
ESR frequencies can be tuned with fast donor gates at the rate of ∆νe|⇑⇑ = 0.3 MHz/V; ∆νe|⇑⇓ = 5.2 MHz/V;
∆νe|⇓⇑ = 7.6 MHz/V; ∆νe|⇓⇓ = 2.4 MHz/V.
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Extended Data Fig. 3 | Coherence metrics of the electron spin qubit. The columns correspond to the
nuclear configurations |⇓⇓〉, |⇓⇑〉, |⇑⇓〉, |⇑⇑〉, respectively. All measurements start with the electron spin initialized in
the |↓〉 state. Error bars are 1σ confidence intervals. a, Electron Rabi oscillations. The measurements were performed
by applying a resonant ESR pulse of increasing duration. The different Rabi frequencies fRabi on each resonance
are likely due to a frequency-dependent response of the on-chip antenna and the cable connected to it. b, Electron
spin-lattice relaxation times T1e. Measurements were obtained by first adiabatically inverting the electron spin to |↑〉,
followed by a varying wait time τ before electron readout. The observed relaxation times are nearly three orders of
magnitude shorter than typically observed in single-electron, single-donor devices [66], and even shorter compared to
1e-2P clusters. This strongly suggests that the measured electron is the third one, on top of two more tightly-bound
electrons which form a singlet spin state [67]. We also observe a strong dependence of T1e on nuclear spin configuration.
c, Electron dephasing times T ∗2e. The measurements were conducted by performing a Ramsey experiment, i.e. by
applying two π/2 pulses separated by a varying wait time τ , followed by electron readout. The Ramsey fringes are
fitted to a function of the form P↑(τ) = C0 +C1 cos(∆ω · τ + ∆φ) exp[−(τ/T ∗2e)2], where ∆ω is the frequency detuning
and ∆φ is a phase offset. The observed T ∗2e times are comparable to previous values for electrons coupled to a single
31P nucleus. d, Electron Hahn-echo coherence times TH

2e, obtained by adding a π refocusing pulse to the Ramsey
sequence. We also varied the phase of the final π/2 pulse at a rate of one period per τ = (5 kHz)−1., to introduce
oscillations in the spin-up fraction which help improve the fitting. The curves are fitted to the same function used
to fit the Ramsey fringes, with fixed ∆ω = 5 kHz. The measured TH

2e times are similar to previous observations for
electrons coupled to a single 31P nucleus.
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c
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Extended Data Fig. 4 | Nuclear spin coherence times. Panels in column 1 (2) correspond to nucleus Q1 (Q2).
Error bars are 1σ confidence intervals. a, Nuclear dephasing times T ∗2n, obtained from a Ramsey experiment. Results
are fitted with a decaying sinusoid with fixed exponent factor 2 (see Extended Data Fig. 3). b, Nuclear Hahn-echo
coherence times TH

2n. To improve fitting, oscillations are induced by incrementing the phase of the final π/2 pulse with
τ at a rate of one period per (3.5 kHz)−1. Results are fitted with a decaying sinusoid with fixed exponent factor 2 (see
Extended Data Fig. 3). c, Dependence of TH

2n on the amplitude of an off-resonance pulse. We perform this experiment
to study whether a qubit, nominally left idle (or, in quantum information terms, subjected to an identity gate) is
affected by the application of an RF pulse to the other qubit, at a vastly different frequency. Here, during the idle
times between NMR pulses, an RF pulse is applied at a fixed frequency 20 MHz – far off-resonance from both qubits’
transitions – with varying amplitude VRF. The red dashed line indicates the applied RF amplitude for NMR pulses
throughout the experiment. We observe a slow decrease of TH

2n with increasing VRF. This is qualitatively consistent
with the observation of large stochastic errors on the idle qubit, as extracted by the GST analysis in Fig. 3.
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Extended Data Fig. 5 | Nuclear spin quantum jumps caused by ionization shock. The electron and nuclear
spin readout relies upon spin-dependent charge tunnelling between the donors and the SET island. If the electron
tunnels out of the two-donor system, the hyperfine interactions A1, A2 suddenly drop to zero. If A1 and A2 include
an anisotropic component (e.g. due to the non-spherical shape of the electron wavefunction which results in nonzero
dipolar fields at the nuclei), the ionisation is accompanied by a sudden change in the nuclear spin quantisation axes
(“ionisation shock”), and can result in a flip of the nuclear spin state. We measure the nuclear spin flips caused by
ionisation shock by forcibly loading and unloading an electron from the 2P cluster every 0.8 ms. a, For qubit 1 with
A1 = 95 MHz, the flip rate is Γ1 = 2.8×10−6 Nflip

Nion
. b, For qubit 2 with A2 = 9 MHz, the flip rate is Γ2 = 4.0×10−7 Nflip

Nion
.

This means that the nuclear spin readout via the electron ancilla is almost exactly quantum non-demolition. From
this data, we also extract an average time between random nuclear spin flips of 283 seconds for qubit 1, and 2000
seconds for qubit 2. The extremely low values of Γ – comparable to those observed in single-donor systems – are the
reason why we can reliably operate the two 31P nuclei as high-fidelity qubits.
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Extended Data Fig. 6 | CNOT and zero-CNOT nuclear two-qubit gates. We perform Rabi oscillation on
the control qubit followed by the application of a, zCNOT or b, CNOT gates. The two qubits are initialized in the
|⇓⇓〉 ≡ |11〉 state. We observe the Rabi oscillations of both qubits in phase for zCNOT and out of phase for CNOT.
At every odd multiple of π/2 rotation of the control qubit the Bell states are created.
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⇑⇑
⇑⇓
⇓⇑
⇓⇓

Extended Data Fig. 7 | Two-qubit gate set tomography. a, Measurement circuit for the two-qubit gate set
tomography. A modified version of this circuit has been used for Bell state tomography. The green box prepares the
qubit 2 in the |⇑〉 state, then the orange box prepares the qubit 1 in the |⇑〉 state. The readout step in the blue box
(see Methods) determines whether the |⇑⇑〉 state initialization was successful. Only then the record will be saved. The
electron spin is prepared in |↓〉 during the nuclear spin readout process. Subsequently, the GST sequence is executed.
The red box indicates the Q1,Q2 readout step. The total duration of the pulse sequence is 120 ms, of which nuclear
spin initialization is 8.6 ms (green and yellow), initial nuclear spin readout is 26.5 ms (blue), 3 ms delay is added for
electron initialization (between blue and purple), GST circuit is 10 µs - 300 µs (purple), and nuclear readout is 80 ms
(orange). b, Measurement results for individual two-qubit gate set tomography circuit. The first 145 circuits estimate
the preparation and measurement fiducials, and the subsequent circuits are ordered by increasing circuit depth. At
the end of a circuit, there are three situations for the target state populations: 1) the population is entirely in one
state, while all others are zero; 2) the population is equally spread over two states, while the other two are zero; 3) the
population is equally spread over all four states. The measured state populations for the different circuits therefore
congregate around the four bands 0, 0.25, 0.5, and 1, as indicated by black dashed lines.
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Extended Data Fig. 8 | Estimated gate set, from process matrices to error rates. Experimental GST data
were analyzed using pyGSTi to obtain self-consistent maximum likelihood estimates of 2-qubit process matrices for all
6 elementary gates. These are represented (“Process Matrix” column) in a gauge that minimizes their average total
error, as superoperators in the 2-qubit Pauli basis. Green columns indicate positive matrix elements, orange ones
are negative. Wireframe sections indicate differences between estimated and ideal (target) process matrices. Those
process matrices can be transformed to error generators (“Error Generator” column) that isolate those differences,
and are zero if the estimated gate equals its target. Each gate’s error generator was decomposed into a sparse sum of
Hamiltonian and stochastic elementary error generators [33]. Those rates are depicted (“All Error Rates” column) as
contributions to the gate’s total error, with 1σ uncertainties indicated in parentheses. Each non-vanishing elementary
error rate (error generators are denoted “H” or “S” followed by a Pauli operator) is listed, and identified with its
role in the total error budget (reproduced from Figure 3). Orange bars indicate stochastic errors, dark blue indicate
coherent errors that are intrinsic to the gate, and light blue indicate relational coherent errors that were assigned to
this gate. Total height of the blue region indicates the total coherent error, but because coherent error amplitudes
add in quadrature, individual components’ heights are proportional to their quadrature.
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d f

Extended Data Fig. 9 | Simulation of standard and interleaved randomized benchmarking (RB). All
simulated RB experiments used 2-qubit Clifford subroutines compiled from the 6 native gates, requiring (on average)
14.58 individual gate operations per 2-qubit Clifford. a, Standard randomized benchmarking, simulated using the
GST-estimated gate set, yields a “reference” decay rate of rr = 22.2(2)%, suggesting an average per-gate error rate
of rr/14.58 ≈ 1.5%. 1σ confidence intervals are indicated in parentheses. b-f, Simulated interleaved randomized
benchmarking for the CZ gate, and 1-qubit Xπ/2 and Yπ/2 gates on each qubit, yielded interleaved decay rates rr + ri.
For each experiment, 1000 random Clifford sequences were generated, at each of 15 circuit depths m, and simulated
using the GST process matrices. Exact probabilities (effectively infinitely many shots of each sequence) were recorded.
Inset histograms show the distribution over 1000 random circuits at m=4. Observed decays are consistent with each
gate’s GST-estimated infidelities – e.g. 1− F = 0.79% for the C-Z gate (b). Performing these exact RB experiments
in the lab would have required running 90000 circuits to estimate a single parameter (ri) for each gate to the given
precision of ±0.25%. Using fewer (< 1000) random circuits at each m would yield lower precision. GST required only
1500 circuits to estimate all error rates to the same precision.
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Pr(        )
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Extended Data Table 1 | Estimated state preparation and measurement (SPAM) error rates. In the GST
analysis, the system’s initial state was represented by a 4× 4 density matrix ρ, and the final measurement/readout by
a 4-element 4× 4 POVM (positive operator-valued measure) {E⇑⇑, E⇑⇓, E⇓⇑, E⇓⇓} with Ej ≥ 0 and

∑
j Ej = I. We

quantified the overall quality of the SPAM operations by using the GST estimate to compute the table of conditional
probabilities shown here. Each cell shows the estimated probability of a particular readout (e.g. ⇑⇑) given (imperfect)
initialization in a particular state (e.g. |⇓⇓〉). The |⇑⇑〉 column can be read out directly from the estimate, since the
experiment initalized into |⇑⇑〉. Other states must be prepared by applying Xπ/2 or Yπ/2 pulses. These add additional
error, which should not be attributed to SPAM operations. To correct for this, we simulated ideal unitary rotation
of the real |⇑⇑〉 state into each of the other 3 states by (1) taking the GST-estimated Xπ/2 gates on each qubit and
removing all intrinsic errors from them, and (2) simulating a circuit comprising initialization in ρ, an appropriate
sequence of those idealized gates, and readout according to {Ej}. The resulting analysis shows probabilities of all but
one readout error to be below 1%, which is unprecedented in semiconductor spin qubit systems, and competitive with
the state of the art in other physical platforms.
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S1. ABSENCE OF DIRECT INTERACTION BETWEEN THE NUCLEAR SPIN QUBITS

In this section we provide experimental evidence for the absence of a direct interaction between the nuclear spin
qubits Q1 and Q2. First, we remove the outermost electron from the 2P cluster and measure the resonance frequencies
of Q1 and Q2. We apply RF pulses at very low power (-21 dBm at the source) to minimise power broadening of the
NMR resonances. Supplementary Figure S1a shows that the two qubits have identical resonance frequencies, which are
consistent with our estimate of the external magnetic field induced by the permanent magnet board (ν31P+ = γnB0,
γn = 17.23 MHz/T, B0 ≈ 1.328 T). These results are consistent with the remaining two electrons being in a perfect
S = 0 singlet state, whereby A1 = A2 = 0. They are also consistent with having removed all electrons from the
2P cluster, but we consider this interpretation less likely, based on the anomalously low value of the electron spin
relaxation time T1e (see Extended Data Fig. 2). We can also deduce that the direct dipole-dipole interaction between
the two nuclear spins is negligible in comparison to the broadening (∼ 1 kHz) of the NMR resonance peaks.
Next, we investigate the NMR spectrum of both Q1 and Q2 with all electrons present on 2P cluster. We measure

the frequency response of a target qubit (Q1 - Supplementary Figure S1b; Q2 - Supplementary Figure S1c) with the
spectator qubit (Q2 - Supplementary Figure S1b; Q1 - Supplementary Figure S1c) prepared in either |⇓〉 or |⇑〉 state.
We observe no detectable resonance frequency shift due to a coupling between the nuclei, which in this case might be
mediated by the shared electron.
These experiments corroborate the analysis in Section S11A, wherein it is shown that no plausible value of

inter-nuclear interaction can explain the presence of the weight-2 entangling errors unveiled by GST.
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Figure S1. a, NMR spectrum of Q1 and Q2 with the third electron removed. The data was acquired at -21 dBm NMR power
to minimise spectral broadening. The two remaining electrons are left in the magnetically inactive, S = 0 singlet state. The
resonance frequencies of the two qubits are equal and consistent with the prediction for the ionized 31P in the estimated magnetic
field produced by the permanent magnet board (B0 ≈ 1.328 T). b, NMR spectrum of Q1 (c, Q2) with all three electrons present
on the 2P cluster. Q2 (c, Q1) was prepared in either |⇓〉 or |⇑〉. In both cases the Q1 (c, Q2) resonant frequency remains the
same, indicating the absence of significant coupling between the two nuclei.
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S2. CNOT TRUTH TABLES
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Figure S2. Experimental CNOT truth-tables. The qubits, encoded on the nuclear spins, have been prepared in all four
eigenstates, with the electron spin in the |↓〉 state. We adopt a notation for the computational basis consistent with the standard
quantum information conventions, where |⇓〉 ≡ |1〉 and |⇑〉 ≡ |0〉. a, CNOT quantum logic gate, where Q1 serves as a control
and Q2 as a target. b, CNOT quantum logic gate, where Q1 serves as a target and Q2 as a control. c, Zero-CNOT (zCNOT)
quantum logic gate, where Q1 serves as a control and Q2 as a target. Here, by selecting a different ESR transition for the
electron 2π-pulse and exchanging the single-qubit gates, the target qubit is inverted when the control qubit is in the |0〉 state.
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S3. BELL STATE TOMOGRAPHY ANCILLARY DATA

The errors in the state preparation fidelity have been calculated using Monte Carlo bootstrap resampling. In this
method, we assume a binomial distribution on the measured results and compute the possible measurement outcomes
with regards to the experimental sampling (number of single shot readouts for state probability). We sample from the
binomial distributions and reconstruct the density matrices 500 times. For each density matrix we calculate state
preparation fidelity and concurrence. This allows for estimation of the average values, as well as assessment of the
uncertainties in our results.

ρΦ+ =




0.4802 + 0.0000i 0.0600 + 0.0063i −0.0333 + 0.0119i 0.4722− 0.0284i
0.0600− 0.0063i 0.0089 + 0.0000i −0.0054 + 0.0017i 0.0567− 0.0097i
−0.0333− 0.0119i −0.0054− 0.0017i 0.0096 + 0.0000i −0.0219− 0.0196i
0.4722 + 0.0284i 0.0567 + 0.0097i −0.0219 + 0.0196i 0.5013 + 0.0000i


 (1)

ρΦ− =




0.4880 + 0.0000i 0.0002 + 0.0248i −0.0433 + 0.0316i −0.4804− 0.0000i
0.0002− 0.0248i 0.0079 + 0.0000i 0.0070 + 0.0060i −0.0012 + 0.0355i
−0.0433− 0.0316i 0.0070− 0.0060i 0.0125 + 0.0000i 0.0481 + 0.0408i
−0.4804 + 0.0000i −0.0012− 0.0355i 0.0481− 0.0408i 0.4916 + 0.0000i


 (2)

ρΨ+ =




0.0055 + 0.0000i 0.0365 + 0.0166i 0.0464 + 0.0054i 0.0017− 0.0000i
0.0365− 0.0166i 0.4461 + 0.0000i 0.4664− 0.0902i 0.0121− 0.0575i
0.0464− 0.0054i 0.4664 + 0.0902i 0.5301 + 0.0000i 0.0103− 0.0498i
0.0017 + 0.0000i 0.0121 + 0.0575i 0.0103 + 0.0498i 0.0184 + 0.0000i


 (3)

ρΨ− =




0.0328 + 0.0000i −0.0724 + 0.0147i 0.0784− 0.0149i 0.0104− 0.0022i
−0.0724− 0.0147i 0.4730 + 0.0000i −0.4728 + 0.0167i −0.0138 + 0.0131i
0.0784 + 0.0149i −0.4728− 0.0167i 0.4847 + 0.0000i 0.0236− 0.0153i
0.0104 + 0.0022i −0.0138− 0.0131i 0.0236 + 0.0153i 0.0095 + 0.0000i


 (4)
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S4. SINGLE-QUBIT GATE SET TOMOGRAPHY

During the initial calibration stage and in the preparation for the two-qubit gate set tomography, we performed
single-qubit GST on both qubits. The 1-qubit GST experiments consist of 448 circuits of length up to 14. We have
used these GST error estimates to iteratively correct our control pulses for imperfect calibration, in order to obtain
the highest gate fidelities. Supplementary Figure S3a shows an example of data from a single-qubit GST on both Q1
and Q2.

The table in Supplementary Figure S3b compares the estimates of single qubit average gate fidelities obtained during
these 1-qubit GST experiments, with those obtained as a subset of the 2-qubit GST experiments described in the
main text. We choose to report average gate fidelities, rather than generator infidelities or entanglement infidelities, to
facilitate easy comparison with other 1Q result available in the literature. The three datasets were acquired within 3
months from each other. Some variability in the gate fidelities across such a time span is entirely plausible, reflecting
slow drifts in the sample caused e.g. by rearrangement of charges in the vicinity of the donors. Nevertheless, these
experiments show that the 1-qubit gate fidelities extracted within 2-qubit GST are very close to those obtained by
performing 1-qubit GST on each nucleus, and that the sample is remarkably stable over the course of many months.
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2
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Figure S3. Single-qubit gate set tomography. a, Measured nuclear |⇑〉 fraction of Q1 and Q2 for each of the 448 circuits on Q1
(blue) and Q2 (orange), sorted by circuit length. In the case of perfect gates and perfect measurements, the target |⇑〉 fractions
would be either 0, 0.5, or 1 (dashed lines), depending on the specific sequence. b, Average gate fidelities of the identity (I),
Xπ

2
and Yπ

2
single-qubit gates as obtained from the 1-qubit GST experiments shown in panel a (1Q), compared to the same

quantities as obtained within the 2-qubit GST experiments described in the main text (2Q). For a fair comparison, we include
in the 2Q fidelities only the component acting on the target qubit.
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S5. FREQUENCY RECALIBRATION DURING GST
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Figure S4. Electron νe|⇓⇓ (a) and nuclear νQ1|↓ and νQ2|↓ (b) frequency drifts measured while performing two-qubit gate set
tomography. The effects of the drifts were periodically cancelled by calibrating the frequencies every tenth GST circuit (see
Methods for calibration routines). The electron spin resonance frequency νe|⇓⇓ (a) experiences a fairly constant upwards drift,
consistent with a steady increase of the magnetic field B0. This could be caused by the assembly of the permanent magnet
board where the device resides in; in this particular board, some of the NdFeB magnets were purposely oriented in an opposing
direction in order to reduce the magnetic field to < 1.4 T (limit set by the maximum frequency of our microwave source). This
frustrated magnetic configuration could slowly relax to a lower-energy configuration, with a corresponding higher magnetic
field. Conversely, the shifts of the NMR frequencies (b) do not appear to be dominated by a magnetic field drift. νQ1|↓ (blue)
and νQ2|↓ (orange) show an evident anti-correlation. This is consistent with hyperfine-induced shifts, since the two hyperfine
interactions A1 and A2 were observed to shift in opposite directions in response to applied gate voltages (Extended Data Fig. 2).
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S6. EXPANSION OF GHZ ECHO CIRCUIT

Expanded circuit

Simpli�ed circuit

|⇓〉 Y-π/2
Yπ/2 R(-π/2+θ2)π/2

R(π/2+θ2)π/2
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|⇓〉 Xπ R(θ2)-π

|⇓〉 Xπ/2
R(θ3)-π/2

|↓〉 Xπ R(θ1)-π

Figure S5. Expansion of the GHZ echo circuit. The circuit used to create a GHZ state and subsequently reverse the operations
(top circuit and Fig. 4a in the main text) contains two nuclear operations on Q1 that are conditional on the state of Q2 (blue
and green box). These operations are each composed of three pulses that are expanded in the bottom circuit.
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S7. HIGH-FIDELITY MEASUREMENT OF THREE-QUBIT STATES BY MAPPING AND READOUT
ON THE NUCLEAR SPINS

The measurements on the electron-nuclear three-qubit GHZ state (Fig. 4 in the main text) require extracting the
populations of all eight basis states of the Hilbert space of the two nuclei and electron. One approach to do so is to
first measure the electron spin, and then measure the nuclear spins by mapping their state onto the electron (see
Methods). However, in this approach the readout fidelity is limited by the electron readout fidelity ≈ 80%, which
would therefore limit the observable GHZ fidelity, unless the effect of SPAM errors were removed in post-processing.

In order to prove our ability to produce and measure a high-fidelity GHZ state without removing SPAM errors, we
designed a method where specific qubit populations are swapped using conditional NMR or ESR π pulses, followed by
high-fidelity (> 99%) quantum nondemolition nuclear readout (see Methods). Each circuit is repeated three times,
applying each of the following additional sets of swapping pulses prior to nuclear readout:

A. No additional pulses,

B. Xπ at frequency νQ2|↓,

C. Xπ at frequency νe|⇓⇓, then Xπ at frequency νQ1|↓.

Each set of swapping pulses α ∈ [A,B,C] yields four measured nuclear state populations [P (⇓⇓)α, P (⇓⇑)α, P (⇑⇓)α,
P (⇑⇑)α], resulting in a total of twelve measured nuclear state populations. Each of the eight state populations
P (Q1 Q2 e) can be reconstructed from a minimum of five of the twelve measured state populations in ten different
combinations, one example being

P (⇑⇑↑) = (P (⇑⇑)A − P (⇑⇓)B + P (⇑⇓)C − P (⇓⇓)B + P (⇑⇑)C)/2,
P (⇑⇑↓) = (P (⇑⇑)A − P (⇑⇑)B + P (⇓⇓)C − P (⇓⇑)B + P (⇓⇑)C)/2,
P (⇑⇓↑) = (P (⇑⇓)A − P (⇑⇑)B + P (⇑⇑)C − P (⇓⇓)B + P (⇑⇓)C)/2,
P (⇑⇓↓) = (P (⇑⇓)A − P (⇑⇓)B + P (⇓⇑)C − P (⇓⇑)B + P (⇓⇓)C)/2,
P (⇓⇑↑) = (P (⇓⇑)A − P (⇓⇓)B + P (⇑⇓)C − P (⇑⇓)B + P (⇓⇑)C)/2,
P (⇓⇑↓) = (P (⇓⇑)A − P (⇓⇑)B + P (⇓⇓)C − P (⇑⇑)B + P (⇑⇑)C)/2,
P (⇓⇓↑) = (P (⇓⇓)A − P (⇓⇑)B + P (⇓⇑)C − P (⇑⇓)B + P (⇑⇓)C)/2,
P (⇓⇓↓) = (P (⇓⇓)A − P (⇓⇓)B + P (⇑⇑)C − P (⇑⇑)B + P (⇓⇓)C)/2.

Each of the ten combinations produce slightly different state populations dependent on the individual measurement
outcomes. The final state populations are then taken as the average of the ten possible state populations.

The validity of this state-readout technique is characterized by preparing each of the eight possible states, and then
measuring the populations in all eight states. Figure S6 shows the measured populations, uncorrected for SPAM
errors. The results show that for each of the eight initialized states, the measured population of the initialized state is
near-unity. With this method we obtained the GHZ fidelity FGHZ = 92.5(1.0)% quoted in the main text, including the
residual SPAM errors associated with nuclear readout.
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Figure S6. Extraction of eight electron-nuclear states by nuclear readout. Each row corresponds to the spin states of the two
nuclei and electron being initialized into one of the eight possible eigenstates. Three sets of swapping pulses are then applied in
distinct measurement instances, followed by nuclear readout. The resulting nuclear state populations are then combined to
extract the eight state populations of the nuclei and electron. In all eight cases, the measured state population of the initialized
state is close to unity, with small deviation arising from SPAM errors.
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S8. COMPARISON OF GST MODEL FITS

The reduced model we analyzed in the main text was selected through a process that compared multiple candidate
models (see Fig. S7). In all the candidate models we considered, the errors on gate Gi were described using an
error generator Li = log(GiG−1

i ), where Gi is the ideal target operation. Any 2-qubit Li can be written as a linear
combination of 240 elementary error generators of four types described in Ref. [1]: Hamiltonian (H), Pauli-stochastic
(S), Pauli-correlation (C), and active (A).

• H generators, indexed by a single Pauli operator, cause coherent unitary errors (e.g., HZZ generates a coherent
ZZ rotation).

• S generators, also indexed by a single Pauli, cause probabilistic Pauli errors (e.g. SIX causes probabilistic X
errors on Q2).

• C generators, indexed by two Paulis, transform Pauli-stochastic errors into stochastic errors that are not aligned
with the Pauli basis.

• A generators, indexed by two Paulis, cause errors requiring feedback from the environment, including cooling
(e.g. T1 decay).

The largest model we considered allowed all 240 error generators on each of the 6 gates, and had a total of 1263
parameters (1440 gate + 63 SPAM - 240 gauge). We label this model “CPTP” because it can model almost all gate
sets consisting of completely positive trace-preserving operations. We then repeatedly considered smaller (reduced)
models, and compared each one to the next larger model using the technique described in the “Constructing and
selecting reduced models” Methods section of the main text.
First we pinned all of the A and C generator rates of the CPTP model (1260 parameters) to zero. The resulting

“H+S” model had an evidence ratio of r = 1.1, indicating that it was clearly preferable to the CPTP model. Next, we
pinned all weight-2 S generator rates (correlated stochastic errors, 54 parameters) on all gates. The evidence ratio
between this “H+S1” model and the H+S model was r = 2.8, and so again we preferred the smaller model. Pinning all
of the weight-2 H generator rates to zero in a third “H1+S1” model was unacceptable, as this model had an evidence
ratio of r = 21.1 when compared with the H+S1 model. By considering several models that added back different sets
of weight-2 H rates, we found the final model analyzed in the main text. This model, labeled “H1+S1+ZZ∗∗”, includes
all the error rates of the H1+S1 model (all weight-1 H and S generators) along with the following weight-2 H rates:

• HZZ on all 6 gates

• HG[ZZ] on each single-qubit gate G, e.g. HY Z for the Xπ/2 ⊗ I gate.

With only these specific weight-2 H generators, the H1+S1+ZZ∗∗ model has 33 fewer physical parameters (43 fewer
rates, of which 10 are gauge degrees of freedom) than the H+S1 model and an evidence ratio of r = 3.4, which we
accept based on our r < 5 criterion. The log-likelihood and evidence ratios for the nested series of candidate models
are shown in Fig. S7, along with diagrams showing the decrease in allowed error rates per gate as we consider smaller
models.
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Figure S7. Comparison of candidate gate set models. Models are ordered left-to-right from the largest (most parameters) to
the smallest. As explained in the text, the CPTP model allows gates to be arbitrary CPTP maps with all 240 error generator
rates per gate. Moving rightward, more and more of these rates are pinned to zero, resulting in smaller models that necessarily
provide worse fits to the data. For each model, a gate’s allowed error generator rates are depicted as a set of blue boxes against a
15× 16 grid of all the possible error generators for an arbitrary 2-qubit gate. Red boxes indicate the number of error generators
that were pinned relative to the next larger model. Gray boxes indicate the number pinned to zero. For each model, the overall
number (gates + SPAM - gauge) of model parameters N is given, along with the model violation, 2∆ logL (lower = better fit to
the data). The evidence ratio r = 2∆ logLi−2∆ logLj

Nj−Ni is computed between each pair of models, and we prefer the smaller model
when r ≤ 5. A green rectangle highlights H1+S1+ZZ∗∗, the best model among our candidates, which is used for the analysis in
the main text.

S9. REDUCED METRICS OF GATE ERROR

Process matrices are the standard model for errors in quantum gates [2]. They provide a comprehensive description
of all possible Markovian errors that can affect a gate’s performance, and they can be used to predict the measurement
outcome distribution for arbitrary quantum circuits. The price of this flexibility is that process matrices can be
very complex. An arbitrary n-qubit process matrix is a dense 4n × 4n matrix describing a completely positive,
trace-preserving map on density matrices. One way to simplify the interpretation of process matrices is through the
use of reduced metrics, such as average gate infidelity or the diamond error, that summarize the performance of a
quantum gate with a single number. Because the impact of a gate’s errors depends strongly on where that gate appears
in a quantum circuit, there are many different reduced metrics. In this section, we discuss the most common metrics
that appear in the literature, as well as their relation to the novel metrics we introduce in the main text.

Here, as in the main text, we represent a quantum gate by a process matrix G = eLG, where G is the process matrix
for the perfect unitary implementation of the gate and L is the error generator. As discussed in the Methods, the error
generator is a weighted sum of Hamiltonian (H) and stochastic (S) terms. The rates of the Hamiltonian terms are
labeled θ, and those of the stochastic terms are labeled ε. Here we define three of the most common reduced metrics of
gate quality in terms of the gate’s error generator L:

1. The entanglement infidelity (εe):
εe = 1− 〈ϕ|(I⊗ eL)(|ϕ〉〈ϕ|)|ϕ〉, (5)

where ϕ is any maximally entangled state over a doubled state space (here, a 4-qubit state space) and I is the
identity operator.

2. The average gate infidelity (ε̄):

ε̄ = 1−
∫
dψ 〈ψ|eL(|ψ〉〈ψ|)|ψ〉, (6)

where dψ is the Haar measure (here, over 2-qubit states).

3. The diamond error (ε�):

ε� = 1
2 sup

ρ
||(eL ⊗ I)(ρ)− ρ||1, (7)
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where ρ is a state over a doubled state space (here, a 4-qubit state space) and I is the identity operator. The
supremum over states can be performed using a semidefinite program [3].

Both the entanglement infidelity (εe) and the average gate infidelity (ε̄) capture a gate’s performance in a random
context. As discussed below, these metrics are often used to report the results of randomized benchmarking [4]. The
diamond error, on the other hand, characterizes worst-case performance. For any quantum circuit, the total variation
distance between the observed and ideal probabilities of measurement outcomes is bounded above by the sum of
diamond errors over all operations in the circuit [5]. For this reason, thresholds for error correcting codes are often
stated in terms of the diamond error [6–8].

In the main text, we introduce two novel reduced metrics that can be computed simply in terms of the error generator
rates:

4. The generator infidelity (ε̂)

ε̂ = εagg + θ2
agg, (8)

where εagg =
∑
i εi is the sum of the rates of the stochastic error generators, and θagg =

√∑
i θ

2
i is the root sum

square of the rates of the Hamiltonian error generators. As shown below in Sec. S9A, the generator infidelity is
approximately equal to the entanglement infidelity.

5. The total error (εtot)

εtot = εagg + θagg, (9)

where εagg and θagg are defined above. The total error captures worst-case performance, and, as shown in
Sec. S9B, is closely related to the diamond error.

In this work, five of the six gates we study are intended to implement single-qubit logic operations. In order to capture
crosstalk effects, we model these single-qubit gates with two-qubit process matrices. Nonetheless, it can be useful to
consider reduced metrics that quantify the performance of these gates when restricted to a single qubit (either the
target qubit, or the spectator, which should undergo an identity operation). In the main text we use the following two
restricted metrics:

6. The single-qubit infidelity (ε̂(Qj)):

ε̂(j) = εagg,(j) + θ2
agg,(j), (10)

where εagg,(j) =
∑
i,(Qj) εi is the sum of the rates of the stochastic error generators with support solely on qubit

Qj , and θagg,(j) =
√∑

i,(Qj) θ
2
i is root sum square of the rates of the Hamiltonian error generators that act solely

on the qubit Qj .

7. The single-qubit average gate infidelity (ε̄(Qj)):

ε̄(Q1) = 1− 1
2

∫
dψ 〈ψ|trQ2

[
eL (|ψ〉〈ψ| ⊗ I)

]
|ψ〉, (11)

ε̄(Q2) = 1− 1
2

∫
dψ 〈ψ|trQ1

[
eL (I⊗ |ψ〉〈ψ|)

]
|ψ〉, (12)

where dψ is the Haar measure over 1-qubit states, and trQj is a partial trace over the spectator qubit, Qj . The
single-qubit average gate infidelity is equal to the average gate infidelity of the following single-qubit quantum
process:

a. Initialize the system in a pure state of target qubit |ψ〉 〈ψ| and a completely mixed state of the spectator
( 1

2 I).
b. Apply the error channel (eL) to the two-qubit product state (|ψ〉 〈ψ| ⊗ 1

2 I).
c. Trace out the spectator qubit.

The result is a mixed state (ρ), whose state infidelity to ψ can be computed simply as 1− 〈ψ| ρ |ψ〉. Averaging
this quantity over Haar-random initial states yields the single-qubit average gate infidelity.
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Each of the infidelities defined above has a corresponding fidelity equal to one minus the infidelity. In the literature,
it is common to see the terms “infidelity” and “process infidelity” used to refer to either the entanglement infidelity
or the average gate infidelity, often without specification. These two quantities are related to one another by a
dimension-dependent proportionality factor [9], εe = 2n+1

2n ε̄, for an operation on n qubits. The average gate fidelity ε̄ is
not a “stable” metric [10] – it does not compose nicely upon combination of multiple qubits – but it is nonetheless
commonly used to report results from randomized benchmarking [4]. Randomized benchmarking has been broadly
adopted to experimentally characterise the performance of quantum gates [11–15], so we have reported the on-target
average gate fidelities to ease comparison of our results to previous work. Whenever “infidelity” appears unqualified in
the main text, it refers to ε̂, as defined in Eq. 8.

In Supplementary Information S9A, we show that the infidelity ε̂ is equal to the entanglement infidelity εe at lowest
order in εagg and θagg. Unlike the average gate infidelity, the entanglement infidelity is a stable metric [10] – if two
gates are performed on separate qubits in parallel, the entanglement fidelity of the composite layer is simply the
product of the entanglement fidelities of the two individual gates. The stability of the entanglement infidelity partially
motivated its adoption in the context of “cycle benchmarking,” which has been used, e.g., for estimating gate errors in
a 10-qubit ion-trap quantum processor [16].
In Supplementary Information S9B, we show that the total error εtot provides an upper bound on the diamond

error for single-qubit process matrices. This bound must be relaxed slightly for multi-qubit processes.
The infidelity ε̂ and the total error εtot also share the appealing property of being equal to each other when

θagg = 0, i.e., in the absence of coherent Hamiltonian errors (“perfect gate calibration”). This property recalls a similar
relationship between the diamond error and entanglement infidelity, which coincide for Pauli stochastic error channels
[4].

In Table S1, we list the infidelity, the entanglement infidelity, the total error, and the diamond error for the six gates
considered in the main text. For all gates, the infidelity and the entanglement infidelity are nearly equal, and the total
error and the diamond distance agree to within 22% relative error.

Gate Infidelity Entanglement infidelity Total error Diamond error
ε̂ εe εtot ε�

Xπ
2
⊗ I 0.68(6)% 0.66(6)% 3.4(3)% 3.2(2)%

Yπ
2
⊗ I 0.75(6)% 0.73(7)% 3.4(3)% 3.6(4)%

I⊗Xπ
2

2.86(7)% 2.78(7)% 6.9(3)% 6.3(3)%
I⊗Yπ

2
3.44(10)% 3.34(11)% 6.3(5)% 5.9(1.6)%

I⊗Y−π2 3.54(16)% 3.39(18)% 9.1(5)% 7.7(5)%
CZ 0.79(14)% 0.80(16)% 5.5(4)% 7.0(4)%

Table S1. Comparison between the various metrics used to summarize quantum gate performance. The infidelity (ε̂) is very
close to the entanglement infidelity (εe) – all the relative differences, |ε̂− εe|/εe, are less than 5%. The 1σ confidence intervals
show that the two quantities take values consistent with each other, indicating that the higher order terms discussed in the text
are insignificant. The the total error (εtot) and the diamond error (ε�

show larger disagreement, but all relative differences, |εtot − ε�|/ε�, are less than 22%.

A. Relationship between generator infidelity and entanglement infidelity

As part of our analysis within the main text, infidelities are computed for each gate in the H1+S1+ZZ∗∗ model.
As stated in the “Aggregated error rates and metrics” Methods section, the infidelity we report, ε̂, is computed by
summing the rates of the S generator rates and the squares of the rates of the H generator rates:

ε̂ =
∑

i

εi +
∑

j

θ2
j = εagg + θ2

agg, (13)

where εi and θj run over all the S and H generator rates respectively. The infidelity (ε̂) is closely related to the
entanglement infidelity (εe), defined in Eq. 5. This relationship can be seen by direct calculation. The entanglement
infidelity [9] of a quantum process ρ→ E(ρ) is equal to:

εe = 1− 1
d3

∑

Q

tr (QE(Q)) (14)
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where Q is a Pauli operator and d is the Hilbert space dimension. We express the quantum process using the error
generator framework introduced in Ref. [1] as E(Q) = exp(L)(Q) and we assume the Lindblad generator L contains
only Hamiltonian (H) and stochastic (S) generators. Each of these generators is indexed by a single Pauli operator:

HP (Q) = −i[P,Q] (15)
SP (Q) = PQP −Q (16)

Expanding the error process to second order in the generator, we have:

εe = 1− 1
d3

∑

Q

tr (Q exp(L)(Q)) (17)

' 1− 1
d3

∑

Q

tr
(
Q

[
1 +

∑

P

(θPHP + εPSP ) + 1
2
∑

PP ′

(θPHP + εPSP ) (θ′PH ′P + ε′PS
′
P )
]

(Q)
)

(18)

The terms in this sum evaluate to:

1
d3

∑

Q

tr(Q2) = 1 (19)

1
d3

∑

P,Q

θP tr(QHP (Q)) = −i
d3

∑

P,Q

θP tr(Q[P,Q]) = 0 (20)

1
d3

∑

P,Q

εP tr(QSP (Q)) = 1
d3

∑

P,Q

εP tr(QPQP −Q2) = −
∑

P

εP (21)

1
2d3

∑

Q,P,P ′

θP θP ′ tr(QHP (HP ′(Q))) = − 1
2d3

∑

Q,P,P ′

θP θP ′ tr(Q[P, [P ′, Q]]) = −
∑

P

θ2
P (22)

1
2d3

∑

Q,P,P ′

εP θP ′ tr(QSP (HP ′(Q))) = 1
2d3

∑

Q,P,P ′

εP θP ′ tr(QP [P ′, Q]P −Q[P ′, Q]) = 0 (23)

1
2d3

∑

Q,P,P ′

θP εP ′ tr(QHP (SP ′(Q))) = −i
2d3

∑

Q,P,P ′

θP εP ′ tr(Q[P, P ′QP ′ −Q]) = 0 (24)

1
2d3

∑

Q,P,P ′

εP εP ′ tr(QSP (SP ′(Q))) = 1
2d3

∑

Q,P,P ′

εP εP ′ tr(QP (P ′QP ′ −Q)P −Q(P ′QP ′ −Q)) = O(ε2) (25)

Including the terms that are lowest-order in ε and θ gives:

εe '
∑

P

(
εP + θ2

P

)
= ε̂ (26)

In evaluating the traces above, we have used the following facts for d-dimensional Pauli matrices Q,P, P ′:

• tr(Q) = 0 unless Q is the identity matrix, in which case the trace is equal to d.

• tr(Q2) = d

• tr(PP ′) = d if P = P ′. Otherwise this trace vanishes.

• tr(QPQP −Q2) = −2d if {P,Q} = 0. Otherwise, this trace vanishes.

• tr(QP ′QP − P ′P ) = −2d if P = P ′ and {P,Q} = 0. Otherwise, this trace vanishes.

• There are d2 Pauli matrices, and any non-identity Pauli matrix commutes with exactly half of all Pauli matrices,
and anti-commutes with the other half.

A comparison of ε̂ and εe for the gates discussed in the main text is shown in Table. S1.
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B. Relationship between the total error and the diamond error

In this section, we show that the total error (εtot) upper bounds the diamond error (ε�) for single-qubit gates in the
H+S model. For gates on multiple qubits, the diamond error can, in the worst case, exceed the total error by a factor
that grows exponentially in the number of qubits.

The error generator for a gate in the H+S model is a sum of stochastic and Hamiltonian terms. S and H generators
are each indexed by a single n-qubit Pauli matrix (P or Q):

L =
∑

P

εPSP +
∑

Q

θQHQ. (27)

By the Trotter-Suzuki formula,

exp(L) = lim
t→∞


exp


∑

Q

θQ
t
HQ


∏

P

exp
(εP
t
SP

)


t

(28)

We can now compute the diamond error of the error map exp(L). By subadditivity of the diamond norm,

ε�(exp(L)) ≤ lim
t→∞

t


ε�(exp(

∑

Q

θQHQ/t)) +
∑

P

ε�(exp(εPSP /t))


 (29)

We can bound the contributions of the stochastic terms:

ε�(exp(εPSP /t)) = 1
2 sup

ρ
|| exp(εPSP /t)(ρ)− ρ||1 (30)

= 1
2 sup

ρ
|| exp(−εP /t)ρ+ (1− exp(−εP /t)PρP − ρ||1 (31)

= (1− exp(−εP /t))
1
2 sup

ρ
||PρP − ρ||1 (32)

= (1− exp(−εP /t)) (33)
≤ εP /t, (34)

where P is the Pauli operator associated with the SP error generator. The supremum in Eq. 32 is equal to 2, and is
achieved by ρ = 1

2 (I +Q) for any Pauli Q such that {P,Q} = 0.
The Hamiltonian term, exp(

∑
Q θQHQ/t) describes unitary evolution about an effective HamiltonianH =

∑
Q θQQ/t,

where Q is the Pauli operator corresponding to the HQ error generator. In order to evaluate this term’s contribution
to Eq. 29, we rely on the well-known formula for the diamond error of a unitary channel:

ε�(U) =
√

1−min
|ψ〉

(
〈ψ|U |ψ〉2

)
, (35)

Because of the Trotter expansion, the rotation induced by the effective Hamiltonian is very small. Expanding the
unitary operator to second order in the effective Hamiltonian, we see:

ε�(U) = max
|ψ〉

(
〈ψ|H2 |ψ〉 − 〈ψ|H |ψ〉2

)
(36)

= max
|ψ〉

Var
|ψ〉

(H) (37)

= 1
2(Emax − Emin) (38)

The state that maximizes the variance of the Hamiltonian is an equal superposition of the eigenstates corresponding to
the highest (Emax) and lowest (Emin) eigenvalues of the Hamiltonian. For a single qubit, eigenvalues of the effective
Hamiltonian have magnitude E =

√∑
Q θ

2
Q/t = θagg/t. This results from the fact that all single-qubit Pauli matrices

anti-commute with one another. For multiple qubits, it is possible for the Hamiltonian to be a sum of commuting
terms. In this case, the extremal eigenvalue corresponds to the simultaneous +1 eigenstate of the Pauli operators
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comprising the Hamiltonian, with magnitude E =
∑
Q θQ/t. There are 2n − 1 traceless, mutually commuting Pauli

operators on an n-qubit system, so the largest eigenvalue can be as high as
√

2n − 1θagg/t. The magnitude of the other
extreme eigenvalue generally doesn’t grow quite as quickly because it corresponds to a frustrated state. For local error
channels (no crosstalk), the discrepancy will instead be proportional to

√
n. For few qubits, this correction is relatively

small, and so θagg can nonetheless serve as a useful heuristic for aggregating the contributions from the Hamiltonian
terms.

For a single qubit, we can combine the above results to see:

ε�(exp(L)) ≤ lim
t→∞

t


∑

Q

ε�(exp(θHQ/t) +
∑

P

ε�(exp(εPSP /t))


 (39)

≤ lim
t→∞

t

[
θagg/t+

∑

P

εP /t

]
(40)

= εagg + θagg (41)
= εtot(exp(L)) (42)

For two or more qubits, the total error no longer bounds the diamond error. Instead, the significantly weaker bound
follows from the above discussion:

ε�(exp(L)) ≤ εagg +
∑

Q

θQ (43)

This bound is achievable (at first order). For example, an n-qubit channel where each qubit is subject to small,
single-qubit, coherent Z-rotations will saturate this bound. A comparison of εtot and ε� for the gates discussed in the
main text is shown in Table. S1.
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S10. DETAILED ANALYSIS OF THE Xπ/2 GATE ON Q2

The analysis presented in Fig. 3 utilized several distinct metrics of gate performance. In this section, we detail how
these metrics emerge by taking a detailed look at one exemplary gate, the Xπ/2 gate on qubit Q2. Recall that the
errors on this gate (and all the others) are given by a Lindbladian generator (L), so that if G and G are the noisy
estimated and ideal I⊗Xπ

2
gate, respectively, then G = eLG. As in the main text, L is a weighted sum of particular

(see S8) Hamiltonian (H) and Pauli-stochastic (S) elementary error generators:

L =
∑

P

εPSP +
∑

Q

θQHQ, (44)

where P and Q are two-qubit Pauli operators and the sums range over allowed elementary generators. Rates εP and
θQ are given by our GST estimate. This estimate possesses gauge degrees of freedom which we resolve by either 1)
choosing a gauge that minimizes the sum-of-squared error rate estimates, or 2) computing linear combinations of the
estimated error rates that are, in the limit of small errors, gauge invariant.

The first option is more straightforward, and leads to the results shown in panels (a) and (b) of Fig. 3. Choosing a
sensible gauge gives meaning to εP and θQ, which are then categorized by their support and whether they are intrinsic
(those that commute with the gate) or relational (those that don’t, see Methods). The categorization of errors on the
I⊗ Xπ

2
gate are shown in Fig. S8 and listed in Table S9, the former of which is an excerpt from Extended Data Fig. 8

and identical to a column of Fig. 3b except for the presence of labeled rates. For example, we see that HXI , with rate
θXI = 0.4%, is categorized as having support on Q1 (the bar is in the left "lane") and being an intrinsic error (XI
commutes with the I⊗Xπ

2
gate).

0

Q1 Q2

Figure S8. Distribution of error for the Xπ/2 gate on Q2. Figure
excerpted from Extended Data Fig. 8.

Elementary error generator rate type support
HZY -0.7% relational joint
HZZ -1.7% relational joint
HXI 0.4% intrinsic Q1
HY I -0.6% intrinsic Q1
HZI -2.8% intrinsic Q1
HIY 1.2% relational Q2
HIZ -0.3% relational Q2
HIX -2.1% intrinsic Q2
SZI 2.06% intrinsic Q1
SIX 0.14% intrinsic Q2
SIY 0.1% intrinsic Q2
SIZ 0.4% intrinsic Q2

Figure S9. Elementary error rates of the Xπ/2 gate on Q2

By aggregating these elementary rates we obtain the values in the cells of Fig. 3c. Stochastic errors add directly,
and so the total stochastic error is 0.0206 + 0.0014 + 0.001 + 0.004 = 2.7%. Coherent errors add in quadrature,
so aggregating the intrinsic H rates results in

√
0.0042 + (−0.006)2 + (−0.028)2 + (−0.021)2 = 3.6%. Similarly the

relational H rates combine to give
√

(−0.007)2 + (−0.017)2 + 0.0122 + (−0.003)2 = 2.2%. The total coherent error
(not shown in Fig. 3c), obtained by adding in quadrature all eight of the Hamiltonian error rates, is 4.2%.

Following the formulas for total error and infidelity given in S9 (and in Methods), we compute a total error of
0.027 + 0.042 = 6.9% and an infidelity of 0.027 + 0.0422 = 2.9%. Columns of Fig. 3c headed by (Q1) or (Q2) restrict the
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aggregated error rates to those with the given support. For example, the total error for support (Q1) is found by summing
the stochastic contribution, 2.06%, with the coherent contribution of

√
0.0042 + (−0.006)2 + (−0.028)2 = 2.9%.

The second way we resolve the issue of gauge freedoms is by computing gauge-invariant error rates. These are linear
combinations of the elementary error rates of one or more gates that are, to first order, unaffected by small gauge
transformations (i.e., the gauge transformation matrix M is close to the identity). These gauge-invariant error rates
are shown Fig. 3d. Gauge-invariant rates that are local to a single gate are placed on the nodes of the graph. These are
identical to the intrinsic rates from before, and so we see that the I⊗Xπ

2
node displays the same intrinsic stochastic

rate (2.7%) and intrinsic coherent rate (3.6%) that were computed above.
Gauge-invariant rates that are linear combinations of elementary generators from two or more gates are called

gauge-invariant relational error rates. In our analysis, all the gauge-invariant relational error rates were pairwise – they
involved error generators from just 2 gates – and they are displayed as edges in Fig. 3d. These are a different type of
error rate: they cannot be attributed to any one gate and have “units” different from those of the gauge-fixed on-gate
relational errors of Fig. 3a,c (e.g., an error in the angle between two gates’ rotation axes). The largest relational error
involving I⊗Xπ

2
is a 2.7% coherent error relative to the Yπ

2
⊗ I gate. This indicates that by different choices of the

gauge, error can be moved between these gates.
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S11. RATIONALIZING TWO-QUBIT ERRORS ON ONE-QUBIT GATES

In Section S11A we discuss the evidence for the surprising weight-2 entangling errors that GST infers for our one-qubit
gates, concluding that it is not caused by non-Markovian effects or outlier data points. This motivates a search for the
physical origins of these errors. In Section S11B we will conclude that the direct entangling interaction between 31P
nuclear spins is far too weak. Then, in Section S11C we will account for the presence of an indirect electron-mediated
entangling interaction between the nuclear spins through concatenated Schrieffer-Wolff transformations [17] that leave
us with dressed nuclear spin qubit states. Finally, in Section S11D we will consider the impact of driving fields in
the doubly Schrieffer-Wolff transformed frame that defines our nuclear spin qubit states. We will find that plausible
magnetic and electric fluctuations in the effective Hamiltonian, occurring due to the NMR drive, do not rationalize the
GST-inferred coherent entangling errors. However, in Section S11E, we invoke the leakage of microwaves near the
ESR transition frequencies to rationalize the effective entangling interaction. The effect of this microwave leakage is
qualitatively different from the types of errors studied in the context of fluctuations in the NMR drive, as they result
in the accumulation of a geometric phase on the electron spin qubit that is conditioned on the nuclear spin state. The
sizes of the observed errors are consistent with plausible levels of leakage in our experimental setup.

A. Validation of entangling errors

Analysis of the GST data using model selection (see “Construction of reduced model” in the Methods section of the
main text) indicated strong evidence for weight-2 entangling H errors on the single-qubit gates. Our final 83-parameter
model contained 2 entangling H errors on each of the 5 single-qubit gates. Eliminating them from the model decreased
2 logL by 803. This evidence ratio of r = 80 constitutes compelling evidence that entangling errors on single-qubit
gates are necessary to explain the data (we consider r > 5 significant). Eliminating HZZ and HG[ZZ] on any single gate
yielded evidence ratios between 46 and 257, which constitutes compelling evidence for entangling errors on every gate.

We investigated whether this evidence could be caused by non-Markovian effects (e.g. slow drift or persistent
environments), or whether it might be the result of outlier data points. The quality of the GST fit indicated a moderate
degree of non-Markovianity – i.e., variations in the data that are inconsistent with any Markovian gate set – as follows.
Relative to a “maximal model” constructed to fit each one of the 1592 circuit’s observed frequencies exactly, the full
GST model displayed a total 2∆ logL of 8793. Perfectly Markovian data would yield 2∆ logL ≈ 3×1592−1263 = 3513
(the number of free parameters in the data minus the number in the model), so these data are overdispersed by a factor
of
√

8793/3513 ≈ 1.6. In principle this much overdispersion could create spurious effects at the scale we observed,
but only if the deviations are concentrated on a small number of circuits. We did not observe such concentration.
Instead, the observed deviations on almost all of the 1592 circuits were consistent with an overdispersed χ2

3 distribution,
indicating that the physical effects causing the deviations affected all circuits fairly uniformly. However, we observed
between 6 and 15 clear outliers. Eliminating the largest 6 or 15 outliers and reanalyzing the data did not change
conclusions.

Finally, we looked for correlation between (1) the circuits that provided evidence for non-Markovianity, and (2) the
circuits that provided evidence for entangling errors. For each circuit, we computed:

1. Its contribution to 2∆ logL between (a) the maximal model and (b) the full GST model;

2. Its contribution to 2∆ logL between (a) the GST model including entangling errors and (b) the GST model
without entangling errors.

We observed no evidence at all of correlation.
In summary, we found no reason to suspect that the evidence of entangling errors on single-qubit gates is an artifact

of outliers, data analysis, or systematic non-Markovian effects. This does not rule out such explanations, but it
motivates searching for physical (Hamiltonian) causes in what follows.

B. The direct entangling interaction between nuclear spins is too weak

The only direct entangling interaction between the two nuclear spin qubits is the mutual interaction of their magnetic
dipole moments through the magnetic fields that they generate. Due to the dipolar nature of these fields the strength
of this interaction decays cubically with the distance between the nuclei, realizing a coupling of ≈1 Hz at 5 nm. For a
one-qubit gate time of ≈10 µs, this translates into an always-on ZZ error of ≈10 µrad in size. Instead, the coherent
entangling errors are predicted to be ≈10 mrad, which would require an internuclear separation of 0.5 nm. This is
approximately the lattice constant of silicon, meaning that the nuclear spins would have to be within only a couple
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of lattice sites of each other to rationalize this direct interaction as the source of the coherent entangling errors on
our one-qubit gates. Such proximity is inconsistent with the degree of controllability of the relative contact hyperfine
interactions of the two nuclei (Extended Data Fig. 2), the weak anisotropic hyperfine interactions evident in the
non-demolition nature of our readout (Extended Data Fig. 5), and the NMR spectra reported in Section S1. We can
thus conclude that the direct interaction between the two nuclear spins is not the origin of these errors.

C. Accounting for electron-mediated internuclear entanglement

This still leaves the possibility of an indirect effective interaction between the two nuclear spins that is mediated
by the electron that they share. To study the impact of such an effective interaction, we apply a sequence of two
transformations to the static Hamiltonian for the two nuclear spins and their shared electronic spin. The first
transformation will mix certain states with opposite nuclear spin parity and opposite electronic spin. This will give
us an effective Hamiltonian in which there is a XX+YY coupling between the nuclear spins. We can then project
onto the electron spin-down subspace of this Hamiltonian and apply a second transformation to reduce the remaining
off-diagonal coupling even further. Identifying this doubly dressed basis will be critical to analyzing the impact of the
electron-mediated effective entangling interaction in the presence of the driving fields that implement one-qubit gates
in Section S11D.
We first separate the static lab frame three-qubit Hamiltonian (Ĥ) into the diagonal Zeeman term (Ĥ0) and a

perturbation due to the contact hyperfine interaction (V̂ ),

Ĥ = Ĥ0 + V̂ , (45a)

Ĥ0 = −γnB0

(
Î1,z + Î2,z

)
− γeB0Ŝz, and (45b)

V̂ =
(
A1Î1,x +A2Î2,x

)
Ŝx +

(
A2Î1,y +A2Î2,y

)
Ŝy +

(
A1Î1,z +A2Î2,z

)
Ŝz. (45c)

The first transformation that we will apply is a Schrieffer-Wolff transformation to third order in V̂ accompanied by a
projection onto the electron spin-down subspace. The unitary component of this transformation is generated by a
Hermitian operator of the form

Ĝa =θ1

[
1 + θ2

2
4

](
Î1,yŜx − Î1,xŜy

)
+ θ2

[
1 + θ2

1
4

](
Î2,yŜx − Î2,xŜy

)
. . .

. . .+θ1θ2

(
Î1,y Î2,zŜx + Î1,z Î2,yŜx − Î1,xÎ2,zŜy − Î1,z Î2,xŜy

)
, (46)

where

θ1 = A1
(γe − γn)B0

= −2.55× 10−3 rad and (47a)

θ2 = A2
(γe − γn)B0

= −2.42× 10−4 rad, (47b)

in which the numerical values for the coefficients are A1=95 MHz, A2=9 MHz, γn=17.23 MHz T−1, γe=-27.97 GHz T−1,
and B0=1.33 T.
This unitary transforms the bare eigenbasis of Ĥ0 into a dressed basis that incorporates the effects of V̂ such that

we can project out the electron spin-up subspace, leaving only the two nuclear spin qubits. From the form of Ĝa, it
is evident that this change of basis will mix states in which the electron and exactly one of the nuclear spins have
both flipped. This dressed basis will be closer to the true qubit states than the eigenstates of Ĥ0, though the effective
Hamiltonian will still not be strictly diagonal even in the absence of the driving fields that perform one- and two-qubit
gates. Before writing down the effective Hamiltonian in the dressed basis, it is instructive to consider the form of the
dressed ground state in terms of the bare eigenbasis. Up to a constant for normalization, the leading contributions are

|⇑⇑↓′〉 ∼ |⇑⇑↓〉+ θ1 |⇓⇑↑〉+ θ2 |⇑⇓↑〉+O(θ1θ2). (48)

This indicates that the dominant effect of the off-diagonal component of the contact hyperfine interaction is to weakly
mix the bare ground state with both of the states with opposite nuclear parity and opposite electronic spin. This also
suggests that the always-on nature of the contact hyperfine interaction means that our qubit states aren’t strictly the
up and down states of the individual nuclear spins, but they are to a very good approximation thanks to the smallness
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of θ1 and θ2 evident in Eq. 47. It is this weak mixing that is at the heart of effective entangling interactions between
the nuclear spins. While the effective Hamiltonian expanded to third order will only include second order terms from
Ĝa, we note that we included third order terms in Eq. 46 to illustrate that the next order of corrections will not
introduce any new mixing among the bare eigenstates. Thus it will be safe to project the third order Hamiltonian onto
the electron spin-down subspace and to concatenate a second transformation.

Projecting onto the electron spin-down subspace, the effective Hamiltonian in the dressed basis defined by Ĝa is

Ĥ ′↓ =Ĥ0,↓ + V̂eff,↓ +O(V̂ 4), (49a)

Ĥ0,↓ =
(
−γnB0 −

A1
2

[
1− θ1

2 −
θ2

2
4

])
Î1,z +

(
−γnB0 −

A2
2

[
1− θ2

2 −
θ2

1
4

])
Î2,z, and (49b)

V̂eff,↓ =
(
A1θ2 +A2θ1

4

[
1− θ1 + θ2

4

])(
Î1,xÎ2,x + Î1,y Î2,y

)
+
(
A1θ2 +A2θ1

4
θ1 + θ2

2

)
Î1,z Î2,z, (49c)

where we have shifted away terms proportional to the identity by redefining the zero of energy. We see that the change
of basis and projection has renormalized the diagonal component of the contact hyperfine interaction experienced by
either nuclear spin. We also note that there are now two always-on entangling interactions between the dressed nuclear
spin qubit states:

1. A relatively strong XX+YY interaction, with strength ≈3 kHz.

2. A relatively weak ZZ interaction, with strength ≈4 Hz.
We note that the quoted strengths include factors of 2 from spin matrices.

On the timescale of an ≈10 µs one-qubit gate, these always-on interactions translate into a rotation of ≈30 mrad.
While this rotation is the same order of magnitude as the ≈10 mrad coherent errors inferred by GST, most of this
interaction is mediated by a term of the form (Î1,xÎ2,x + Î1,y Î2,y) and the coefficient of the Î1,z Î2,z term is three orders
of magnitude too small to be consistent with the ZZ errors inferred by GST. The stronger XX+YY interaction seems
to be at odds with the GST model that gives the best rationalization of our data. But these simplistic considerations
do not account for the fact that the inferred two-qubit errors occur in the presence of driving RF fields that implement
one-qubit gates.

To facilitate the analysis of the impact of driving fields on this effective interaction we need to reduce the remaining
off-diagonal coupling due to the XX+YY interaction. The first Schrieffer-Wolff transformation mixed states with
opposite nuclear parity and opposite electronic spin, whereas a second unitary that reduces this coupling will mix
states with fixed electronic spin and the same nuclear spin parity. While one might naively expect the size of this
mixing to be much smaller than the first transformation, the generator Ĝb will have comparable weights because the
ratio of the off-diagonal coupling to the diagonal matrix elements separating the coupled states are roughly the same
order of magnitude. In other words, while the effective XX+YY coupling is three orders of magnitude weaker than
the contact hyperfine interaction, it is between states that are separated by an energy scale that is three orders of
magnitude weaker than the electronic Zeeman splitting, namely the difference in the contact hyperfine interaction
between the two nuclei.

The desired form of Ĝb↓ is

iĜb↓ = iθ3

(
Î1,y Î2,x − Î1,xÎ2,y

)
(50)

with the value of the mixing angle being

θ3 =
(A1θ2 +A2θ1)

(
1− θ1+θ2

4
)

4
(
E′⇓⇑ − E′⇑⇓

) ≈ A1θ2 +A2θ1
2 (A1 −A2) = 2.67× 10−4 rad, (51)

where E′⇓⇑ and E′⇑⇓ are the diagonal components of the effective Hamiltonian for the subscripted basis states. This
second transformation eliminates the residual off-diagonal coupling in the effective Hamiltonian at leading order in the
XX+YY interaction strength. The concatenation of the two transformations thus provides a description of the nuclear
spin qubit states that incorporates dressing of the bare qubit basis states by a coherent electron-mediated internuclear
interaction.

D. Analysis of the impact of the electron-mediated interaction on one-qubit gates

Finally, we consider the impact of the driving fields in terms of the doubly dressed Schrieffer-Wolff basis that defines
our nuclear spin qubit states. This change of basis naturally includes the electron-mediated entangling interaction
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between nuclear spins that might explain the presence of coherent entangling errors during our one-qubit gates. There
are five distinct oscillatory contributions to the effective Hamiltonian expressed in this basis that might rationalize
these errors.

1. Resonant magnetic drive of the nucleus on which one-qubit gates are targeted.

2. Off-resonant magnetic drive of the nucleus on which one-qubit gates are not targeted.

3. Off-resonant magnetic drive of the electronic spin that mediates the entangling interaction between the nuclei.

4. Electrical drive of both nuclear spins, through the modulation of their contact hyperfine couplings.

5. Electrical drive of the electron spin, through the modulation of its gyromagnetic ratio.

The first three contributions are due to the B1 field that implements one-qubit NMR gates and the last two contributions
are due to an errant electric component to that driving field, which is henceforth indicated by a parametric dependence
on the electric potential (V ). Each of these will contributions will have the form

Ĥdrive(t) = ∆Ĥgen cos(ωt− φ), (52)

where ∆ is the drive amplitude in units of frequency, Ĥgen is a unitless operator through which the drive generates
a rotation, ω is the frequency of the drive chosen to be resonant with driving exactly one of the nuclear spin flip
transitions, and φ is the phase of the drive that determines the precise rotation being implemented. At linear order in
the Schrieffer-Wolff generators, these terms will introduce coherent errors of the form

Ĥerr(t) = ∆
([
iĜa↓, Ĥgen

]
+
[
iĜb↓, Ĥgen

])
cos(ωt− φ). (53)

Here we have extended the subscript notation for Ĝb↓ to Ĝa↓ to represent the combined action of Ĝa and a projection
onto the electron spin-down subspace. The effect of this projection is to discard terms that are proportional to Ŝx or
Ŝy, which lead to stochastic errors when tracing out the electron. It will be evident that terms that are higher order in
the generators will be too small to plausibly rationalize the errors of interest, as we will be unable to find sufficiently
strong errors at leading order. We provide the form for each of these errors in Table S2.

∆ Ĥgen
[
iĜa↓, Ĥgen

] [
iĜb↓, Ĥgen

]

-γnB1 ≈ −25 kHz Î1,x/y 0,
[
iĜa, Ĥgen

]
strictly acts on Ŝx/y θ3Î1,z Î2,x/y

-γnB1 ≈ −25 kHz Î2,x/y 0,
[
iĜa, Ĥgen

]
strictly acts on Ŝx/y θ3Î1,x/y Î2,z

-γeB1 ≈ 40 MHz Ŝx/y - θ1
2 Î1,x/y − θ2

2 Î2,x/y −
θ1θ2

2

(
Î1,x/y Î2,z + Î1,z Î2,x/y

)
,

0, due to electron spin-down projection

δA1(V ) ≈ −100 kHz ~̂I1 · ~̂S θ1
2 Î1,z − θ2

2

[
1 + θ1

2

] (
Î1,xÎ2,x + Î1,y Î2,y

)
−

θ1θ2
4

(
Î2,z − 2Î1,z Î2,z

) -θ3
(
Î1,xÎ2,x + Î1,y Î2,y

)

δA2(V ) ≈ 70 kHz ~̂I2 · ~̂S θ2
2 Î2,z − θ1

2

[
1 + θ2

2

] (
Î1,xÎ2,x + Î1,y Î2,y

)
−

θ1θ2
4

(
Î1,z − 2Î1,z Î2,z

) -θ3
(
Î1,xÎ2,x + Î1,y Î2,y

)

δγe(V )B1 ≈ 13 Hz Ŝx/y − θ1
2 Î1,x/y − θ2

2 Î2,x/y −
θ1θ2

2

(
Î1,x/y Î2,z + Î1,z Î2,x/y

) 0, due to electron spin-down projection

δγe(V )B0 ≈ 12 kHz Ŝz
[
iĜa, Ĥgen

]
strictly acts on Ŝx/y 0, due to electron spin-down projection

Table S2. A summary of the forms of the error terms in Eq. 53 for each of the five mechanisms described at the beginning
of Section S11D. Estimates for the electric modulation of the hyperfine couplings and electron gyromagnetic ratio are taken
from experiment, δA1(V ) ≈ −10 MHz V−1 × 10 mV ≈ −100 kHz, δA2(V ) ≈ 7 MHz V−1 × 10 mV ≈ 70 kHz, and δγe(V ) ≈
−0.9 MHz V−1 T−1 × 10 mV ≈ 9 kHz T−1. We note that contributions that are third order in the generators are not indicated
because they strictly renormalize errors that already occur at lower orders.

We next examine each entry of Table S2 to assess its impact on the execution of one-qubit gates. It is worth noting
that the terms that resolve to zero because they act on Ŝx/y will still contribute to stochastic errors, but the focus of
this assessment is on rationalizing the relatively strong coherent entangling errors. The only terms that will contribute
appreciably to one-qubit gates are those that involves generators that flip exactly one of the nuclear spins. This is
essential because of the oscillatory time dependence on all terms except for the term in the sixth row, which involves
simultaneous electric and magnetic modulation resulting in an always-on term and a term that oscillates at twice the
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driving frequency. For all other terms, those that flip exactly one nuclear spin will be constant in the rotating frame
associated with driving a one-qubit gate on that particular nucleus.
We now summarize the strength and form of the coherent errors in Table S2. We will consider errors occurring

during XI and IX gates for convenience and generalization to YI and IY gates is straightforward.

1. Applying an XI (IX) gate leads to an error of the form ZX (XZ) as is evident in the first two rows of Table S2.
However, because the resonance frequencies of the two nuclei are different, this error will remain oscillatory in the
rotating frame of the gate being applied. As the amplitude of this error is ≈2 Hz, this effect does not rationalize
the errors inferred in the GST model.

2. However, the off-resonant magnetic drive on the other qubit when applying an XI (IX) gate will generate a XZ
(ZX) error that is constant in the rotating frame of the gate being applied. However, over the course of an ≈10 µs
one-qubit gate, this will only lead to an XZ (ZX) rotation of ≈17 µrad, which is still three orders of magnitude
weaker than the plausible XZ (ZX) errors in the GST analysis.

3. Off-resonant magnetic drive of the electron that mediates the entangling interaction between nuclei gives rise to
a number of errors evident in the third row of Table S2. The leading order contribution when driving an XI
(IX) gate itself an XI (IX) “error”. Really, this is only an error in as far as it shifts the Rabi frequency and
comparable physics has been predicted and observed in diamond NV centers [18, 19]. In spite of the smallness of
θ1 (θ2), this shift is still 10s of kHz because of the largeness of γe and it is evident in our experiments. There is
also a XZ (ZX) error proportional to θ1θ2. Over the course of an ≈10 µs one-qubit gate, this will lead to an XZ
(ZX) rotation of ≈31 µrad, which is three orders of magnitude weaker than the plausible XZ (ZX) errors in the
GST analysis.

4. Electric drive of the contact hyperfine couplings also gives rise to a number of errors, evident in the fourth and
fifth rows of Table S2. However, each of them is rapidly oscillatory in the frame of any one-qubit X or Y gate.
The amplitude of the aggregate XX+YY error is ≈19 Hz, so this effect does not rationalize the errors inferred in
the GST model.

5. Electric drive of the electron gyromagnetic ratio gives rise to errors evident in rows six and seven of Table S2.
Modulation of the coefficient on the oscillatory B1 drive will give rise to a constant term and a term that oscillates
at twice the drive frequency in a non-rotating frame. However the strength of the former will be exceptionally
small, with XZ and ZX terms that have totally negligible amplitudes of ≈ 1 µHz. Modulation of the coefficient
on the static B0 coupling will strictly lead to stochastic errors.

In summary, we have shown that a microscopic model that accounts for all of the known physics in the NMR
drive of our three-qubit system fails to rationalize the relatively large coherent entangling errors on one-qubit gates
that were inferred by GST. The error mechanisms that come the closest to rationalizing these errors are due to an
indirect electron-mediated entangling interaction between the nuclei, and the coupling of the magnetic drive to either
the shared electron or the nucleus that isn’t being resonantly driven. However, the strength of the former (latter)
mechanism is two (three) orders of magnitude weaker than the comparable errors that were inferred by GST.

E. Leakage of the ESR carrier signal leads to coherent entangling errors

In order to rationalize the observed ZZ errors, we instead need to turn to the leakage of microwaves near the ESR
transition frequencies. The ESR pulses are driven by the modulation of a drive at a carrier frequency chosen to be off
resonance relative to all four of the electron spin flip (ESR) transitions associated with the distinct nuclear spin basis
states. When the ESR pulses are being driven, it is one of the sidebands generated by this modulation that is on
resonance with one of these transitions. However, when these pulses aren’t being driven, the carrier frequency persists
and some fraction of it will leak through the IQ-mixer.
The off-resonance drive provided by the leaked microwaves at the carrier frequency persist even during the NMR

gates, which are produced by a separate signal generator. This leads to oscillations in the electron spin state, with a
small amplitude proportional to the ratio of the intensity of the oscillating magnetic field produced by the carrier
leakage and the detuning of the carrier frequency relative to any individual ESR transition. The frequency of these
oscillations is determined by this same detuning, which is on the order of 10s of MHz allowing for the accumulation of
many of these small oscillations over the course of an NMR gate. This detuning and the leakage magnetic field will
differ for each of the individual nuclear spin basis states upon which the electron transitions are conditioned. Each
basis state will then experience the accumulation of a distinct and spurious geometric phase due to these small but
fast oscillations.
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That these spurious phases depend on the support of the nuclear spin state on each of the relevant basis states
during an NMR gate gives rise to the ZZ nature of the error that these leakage fields induce, rationalizing the coherent
ZZ errors inferred by GST. Note also that the double-sideband modulation that is used to drive any individual
ESR transition frequency introduces another source of off-resonance driving that introduces a comparable spurious
accumulation of a geometric phase during the ESR pulse, i.e. the CZ gate, as well.

We next provide quantitative estimates of the size of errors due to leakage of the ESR carrier through the IQ-mixer.
It is useful to begin by considering the impact of off-resonantly driving one of the ESR transitions for a fixed nuclear
spin configuration. Without loss of generality, we consider this drive within the subspace spanned by {|⇑⇑↓′′〉 , |⇑⇑↑′′〉},
where the ′′ notation indicates that these basis states are in the doubly Schrieffer-Wolff transformed frame. We provide
the caveat that we are no longer considering projection onto the electron spin-down subspace prior to the second
transformation and will thus require augmentation of the generating unitary to accommodate removal of the effective
XX+YY interaction on the electron spin-up space, as well.

It is then straightforward to adapt the solution to the off-resonant Rabi problem to the evolution of the dressed
electron spin qubit states within this particular subspace. The effective rotating-frame Hamiltonian within this
subspace is given as

H ′′⇑⇑ = ∆⇑⇑Ŝ′′z + ΩŜ′′x , (54)

where ∆⇑⇑ is the detuning of the carrier frequency relative to the ESR spin-flip transition frequency when the nuclei
are in the ⇑⇑ state (positive when the carrier frequency is less than the transition frequency), Ω is the effective Rabi
frequency due to the coupling of the leakage field to the electron, and the notation ′′ indicates that the electron spin
matrices are defined relative to the natural rotating frame in the doubly transformed basis. Ω is proportional to the
effective B1 field produced by the leaking carrier signal, which we will estimate based on the outcomes of our GST
analysis. It is worth noting that because we are in the doubly Schrieffer-Wolff transformed frame Ω will be dressed by
a nuclear-spin-dependent coupling of the leaked field to the nuclei beyond leading order. But this is negligible for the
purposes of our estimates and we will assume that Ω is identical for all nuclear spin configurations.
The leakage field will drive small oscillations on the Bloch sphere associated with the dressed electron spin qubit

basis states with frequency Ωeff,⇑⇑ =
√

Ω2 + ∆2
⇑⇑. The amplitude of these oscillations will be such that the maximum

probability of the electron spin being observed as |↑〉 is Ω2/Ω2
eff,⇑⇑. The angle of the axis of this rotation is defined by

the usual effective magnetic field, ~Beff = Ωx̂+ ∆⇑⇑ẑ (see the arrows indicated in Fig. S10). Over the period of one of
these oscillations, 1/Ωeff,⇑⇑, the electron spin qubit will accumulate a geometric Aharonov-Anandan phase [20] as it
moves in a small circle on the Bloch sphere starting and ending at |⇑⇑↓′′〉. The associated geometric phase is given as

β⇑⇑ = π

(
1− ∆⇑⇑

Ωeff,⇑⇑

)
. (55)

We will find it convenient to introduce a tilde to indicate the total geometric phase accumulated over a time t,

β̃⇑⇑ = β⇑⇑Ωeff,⇑⇑t = πΩt
(

Ω
2∆⇑⇑

+O
([

Ω
∆⇑⇑

]3
))

. (56)

This picture can be extended to the other nuclear spin basis states noting that each will accumulate distinct geometric
phases, β⇓⇓, β⇓⇑, β⇑⇓, and β⇑⇑. In the rotating frame of an NMR pulse implementing an Xπ/2 ⊗ I gate, the effective
Hamiltonian accounting for the geometric phase due to leakage is

HXπ/2⊗I = π

4

(
ei(β̃⇓⇓−β̃⇑⇓) |⇓⇓′′〉 〈⇑⇓′′|+ ei(β̃⇑⇑−β̃⇓⇑) |⇑⇑′′〉 〈⇓⇑′′|+ h.c.

)
, (57)

which can be decomposed into tensor products of Pauli matrices as

HXπ/2⊗I = π

8

(
Re{ei(β̃⇓⇓−β̃⇑⇓) + ei(β̃⇑⇑−β̃⇓⇑)}X ⊗ I − Im{ei(β̃⇓⇓−β̃⇑⇓) − ei(β̃⇑⇑−β̃⇓⇑)}Y ⊗ I . . .

. . .+Re{ei(β̃⇓⇓−β̃⇑⇓) − ei(β̃⇑⇑−β̃⇓⇑)}X ⊗ Z − Im{ei(β̃⇓⇓−β̃⇑⇓) + ei(β̃⇑⇑−β̃⇓⇑)}Y ⊗ Z
)
, (58a)

being careful to note that we have factored out a common coefficient of 1/2. This expression can be further simplified
at first order in the geometric phases,

HXπ/2⊗I = π

4

(
X ⊗ I − 1

2

(
β̃⇓⇓ − β̃⇑⇓ − β̃⇑⇑ + β̃⇓⇑

)
Y ⊗ I − 1

2

(
β̃⇓⇓ − β̃⇑⇓ + β̃⇑⇑ − β̃⇓⇑

)
Y ⊗ Z

)
. (59)
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Figure S10. (Bottom panel) Bloch spheres for the electron spin qubit in each of the four nuclear spin basis states. The coloured
vectors represent the effective driving field in the rotating frame, ~Beff , composed of the vector sum of the detuning and the
driving field Ω, caused by the leakage of the carrier signal of the microwave source, at frequency νc, and the detunings ∆∗∗
(where ∗∗ indicates any of the four nuclear orientations) from the individual ESR frequencies ESR spin-flip transitions ν∗∗ (top
panel). Starting from an electron spin in the |↓〉 state (south pole of the Bloch sphere), the microwave leakage will lead to
off-resonant driving of the electron spin through a trajectory indicated by the circles on each sphere, about an axis of rotation
determined by ~Beff . These oscillations are quite small (≈ 1 mrad): for illustrative purposes, the value of Ω is drawn 100 times
larger than the true experimental value. Even though the oscillations are 100 times smaller than illustrated, the associated
geometric phases accumulate over the hundreds of cycles of the single-qubit NMR gates. While the effective Rabi frequency due
to the leakage field is approximately the same for each nuclear spin basis state, the associated detunings vary over a range of
100 MHz (top). The basis state with the smallest detuning (in magnitude) will accumulate the largest geometric phase, in this
case |⇓⇑↓′′〉 The accumulation of different geometric phases across each nuclear spin basis states leads to coherent entangling
errors on the nominally single-qubit gates. This figure was generated with the help of plotting routines in QuTiP [21].

This form of the rotating frame Hamiltonian makes it evident as to how leakage of the ESR carrier will lead to coherent
errors on the nominally single-qubit gate. A unitary model for the gate itself is realized by the exponentiation of Eq. 59,
leading to coherent single-qubit YI and ZI errors at first order in the geometric phase factors, as well as coherent YZ
and ZZ errors. The ZI and ZZ errors arise due to the commutator between the XI term (rate ≈ 0.8) and the YI and
YZ terms, appearing at first order in the geometric phases in the Zassenhaus formula. For a π/2 rotation the size of
the ZI and ZZ errors will then be comparable to the YI and YZ errors, respectively, but they will be proportionally
smaller for a rotation by a smaller angle (e.g., a rate � 0.8). It is straight forward to work out these same details for
the other single-qubit gates, yielding two-qubit coherent errors of the form predicted by GST.

The carrier frequency used in our experiment was νc =37 100.4125 MHz, and typical detunings from one set of
measurements are ∆⇓⇓=−18.8225 MHz, ∆⇓⇑=−11.6625 MHz, ∆⇑⇓=80.4375 MHz, and ∆⇑⇑=87.5475 MHz. For these
values, we can rationalize ≈ 1% two-qubit coherent errors on a 20 µs NMR gate with an effective leakage B1 field of
5.8 µT. This translates to a 22 dB attenuation of the carrier relative to the 725 kHz ESR Rabi frequency driven with
double-sideband modulation. This is a high but not implausible level of leakage, considering that we did not calibrate
the IQ-mixer prior to the experiments.

For readers most accustomed to the standard picture of spin resonance, it is worth highlighting that this leakage has
negligible effect on the electron spin state itself, as one can easily verify from a simple Rabi formula: the far-off-resonance
drive on the electron resets to zero periodically and often. Conversely, the geometric phase imparted by electron on
the nuclei does not reset – it accumulates with time. Since the imparted geometric phase differs for each of the four
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ESR frequencies, due to the different values of ∆∗∗, it does not amount to an irrelevant global phase.
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