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Advanced predictive analytics coupled with an effective attribute selection method plays a pivotal role in the precise assessment of
chronic disorder risks in patients. Traditional attribute selection approaches suffer from premature convergence, high complexity,
and computational cost. On the contrary, heuristic-based optimization to supervised methods minimizes the computational cost
by eliminating outlier attributes. In this study, a novel buffer-enabled heuristic, a memory-based metaheuristic attribute selection
(MMAS) model, is proposed, which performs a local neighborhood search for optimizing chronic disorders data. It is further
filtered with unsupervised K-means clustering to remove outliers. *e resultant data are input to the Naive Bayes classifier to
determine chronic disease risks’ presence. Heart disease, breast cancer, diabetes, and hepatitis are the datasets used in the research.
Upon implementation of the model, a mean accuracy of 94.5% using MMAS was recorded and it dropped to 93.5% if clustering
was not used. *e average precision, recall, and F-score metric computed were 96.05%, 94.07%, and 95.06%, respectively. *e
model also has a least latency of 0.8 sec. *us, it is demonstrated that chronic disease diagnosis can be significantly improved by
heuristic-based attribute selection coupled with clustering followed by classification. It can be used to develop a decision support
system to assist medical experts in the effective analysis of chronic diseases in a cost-effective manner.

1. Introduction

According to healthcare data, the mortality rate of patients is
quite high due to the rise in chronic diseases. *e normal
lifestyle of patients gets affected, and a lot of financial burden
is also incurred by patients suffering from prolonged chronic
disorders [1]. *us, these disorders pose a great clinical
challenge throughout the world. Hence, proper analysis of
this issue at right time is crucial in order to minimize disease
risks. With the constant growth of technology in the medical
domain, recently data accumulation of patients is more
convenient. Personal information, clinical history, and

disease symptoms of patients are easily gathered in digital
form in the form of electronic health record (EHR). *ese
digital data of patients help in extracting relevant infor-
mation about patients in real time with reduced cost and
effort [2]. Meanwhile, the medical cost is rapidly increasing
in comparison to the capability to deal with it. Moreover due
to the availability of computers with technical assistance, a
massive quantity of data is getting accumulated for pro-
cessing. Decision-making of a human may be productive,
but it is not up to the mark when the amount of data to be
classified is massive and should be avoided in a sensitive real-
time area like the clinical domain. Decision-making based
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on inconsistent clinical data records is a very common error
observed during manual diagnosis [3]. *us, it is better
suited to enhance the usage of predictive learning models [4]
in the medical field by implementing it as an intelligent
problem-solving approach [5]. In the real world, heaps of
data are regularly gathered and mainly in the healthcare
industry processing these huge data are quite complicated. A
chronic disease dataset may be comprised of numerous
symptoms and attributes where not all of them are of equal
importance in disease diagnosis [6]. Few of those attributes
may be less relevant or may be noisy and redundant. *e
presence of these inconsistencies may degrade the overall
performance of the predictive model and may create uneven
delays in generating outcomes. *us, a suitable attribute
selection approach can be used to reduce the volume of such
datasets but still maintaining the effectiveness of diagnosis.
*e suitable selection of an attribute selector is a challenging
issue in predictive learning. In a disease sample set of “k”
attributes, a total of “2k” subsets are feasible, among which
the most optimum subset is to be chosen. In many scenarios,
it becomes tough when the value of “k” is large since it may
not be feasible to determine the model’s performance for
every subset of attribute [7]. *us, attribute selection is
applied to deal with such situations. In many previous
works, several attribute selectionmethods like greedy search,
exhaustive search, and random search are used to compute
the best subset. But the majority of those methods are
computationally expensive and complex along with un-
timely convergence [8]. In such cases, metaheuristic-based
attribute selection methods are very efficient as they de-
termine the best attribute subset, thereby maintaining the
model’s accuracy. *us, metaheuristic-driven attribute op-
timization techniques can be implemented in optimizing
chronic disease datasets to achieve an optimal efficiency in
disease risk prediction, which can help in proper medical
diagnosis. Figure 1 illustrates a sample demonstration of the
attribute selection procedure.

Besides metaheuristic methods, a suitable cluster anal-
ysis of the chronic disease datasets also can be utilized to
segregate the attribute values exhibiting homogeneous traits,
thereby recognizing the outliers. *is research is based on
developing and implementing an integrated hybrid unsu-
pervised-supervised model for assessing chronic disease
risks. A novel heuristic-based attribute selection method is
utilized to eliminate less significant attributes from the data
in quick time. *e K-means clustering further identifies the
outlier attributes, which is followed by classification with
Naive Bayes.*e result is quite promising and can be used as
an assistive framework for clinical staff in the accurate and
reliable diagnosis of chronic disorders in patients.*e prime
contributory elements of our research work are highlighted
below:

(i) *e impact of heuristic-based attribute selection on
chronic disease datasets is studied.

(ii) A novel memory-based heuristic attribute selection
method (MMAS) is proposed to optimize the
chronic disease datasets, which can be utilized for
further classification using Naive Bayes.

(iii) *e attribute-optimized data are generated by in-
tegrating the heuristic MMAS method with the
K-means clustering approach. Further, the output is
subjected to classification to determine its efficiency
using different parameters.

(iv) Upon implementation, it is observed that the
proposed model generated excellent outcome, and
thus, it can assist medical experts in the effective and
reliable diagnosis of chronic disorders.

2. Related Works

Common factors accountable for chronic disorders include
age of patient, excess stress, heart risks, obesity, and less
physical exercise. Many other symptoms are associated with
different chronic diseases. All symptoms and risk factors are
aggregated from digital datasets using an attribute selector.
*en, it can be classified using suitable machine learning
models. *is section explores some existing and relevant
attribute selection methods and predictive techniques used
on chronic disease datasets to optimize the data samples.
Simons et al. [9] used some predictive models like decision
tables and neural networks for heart disorder data and it
enabled them to predict Framingham risks in the heart for
elderly people in Australia. Sah and Sheetalani [10] dem-
onstrated the implementation of important predictive
methods like nearest neighbors and support-vector ma-
chines to accurately predict cancer, liver, and heart risks
from digital datasets. Patil et al. [11] deployed a computa-
tional analytics framework for the prediction of diabetes
disease symptoms using clustering techniques, which was
followed by decision tree classifiers.

It generated an impressive accuracy of 92.38%. Authors
in [12] designed a predictive framework for the prediction of
knee joint risks, and they used VAC signals for the purpose.
Attribute selectors used were the apriori method and genetic
search. *e SVM was the classifier used. Piramuthu [13],
applied many distance and probabilistic-based attribute
selection techniques as a preprocessing method on chronic
disease datasets. *e outcome inferred that probabilistic
measures are relatively less effective than interclass dis-
tance parameters. Karegowda et al. [14] proposed a novel
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Figure 1: Attribute selection process.
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categorization approach with the use of genetic search as
wrapper and neural network for the classification of diabetic
patients. *e novel model proved to be better than neural
network used alone. Authors [15] in utilized filter methods
like Relief-F for attribute selection. Learning models like
regression were applied for classification. Various evaluation
measures like accuracy, precision, and recall were used.
Relief-F with the SVMmodel outperformed others. Kolukisa
et al. [15] used gain ratio and chi-square methods on the
coronary artery dataset to detect less relevant features and
remove them. Later, it was classified using random forest
and it produced the best accuracy with least latency.

Hamsagayathri and Sampath [16] discussed the imple-
mentation of different decision tree algorithms on breast
cancer data and concluded that the priority-driven decision
tree gave the best performance with 93.63% accuracy. Kaur
et al. [17] drew a comparative analysis of many attribute
selection techniques and used evaluation metrics like kappa
statistic, accuracy, positive rate, and latency to analyze the
performance. Ramasamy et al. [18] applied decision tables,
Hoeffding tree, logistic model tree (LMT), ensemble clas-
sifiers, and other trees to classify and compare risks of
hepatitis. It was found that random forest recorded better
performance than other algorithms. Hashem et al. [19],
presented an integrated classifier approach that used al-
ternating decision tree (ADT) and Pearson’s correlation
coefficient as attribute selector to predict liver fibrosis,
thereby obtaining 84.8% accuracy. Table 1 summarizes the
overall important research works conducted using attribute
selection techniques on chronic disease data.

An intelligent assessment model for kidney-related
disorders is discussed in [34]. Different analytic methods like
regression analysis, nearest neighbor, and decision tree were
used for classification. Authors in [35] presented a predictive
model to forecast various chronic risks using several ma-
chine learning methods like decision tree, ensemble clas-
sifiers, and probabilistic learners. A data mining-based
disease recommendation system was developed in [36] that
utilized online healthcare data records. A decision tree al-
gorithm was used for improving the classification accuracy.
Different immune and allergy symptom-based disease
predictions were performed by authors in [37] using in-
stance learners and margin learners. *e main aim of the
analysis was to determine the association between immu-
nogens and chemical attributes of the datasets. A scalable
chronic disorder risk detection system was developed in [38]
using a random forest algorithm to deal with data skewing
issues. A big data analytic-oriented approach for chronic
disease assessment was deployed in [39] that involved dif-
ferent heterogeneous disease data samples. A decision tree
was applied for classification, and MapReduce was used to
enhance the operational efficiency. Authors in [40] applied
neural network and ensemble learningmethods for early and
effective prediction of chronic kidney disorders.

3. Chronic Disease Dataset Details

Chronic disorder risks have become a significant concern
throughout the world. In this study, four commonly detected

chronic risk instances have been considered including di-
abetes, breast cancer, hepatitis, and heart disease data. *ey
are perceived to be quite commonly spread chronic risks,
and the digital data related to these diseases are available
worldwide. *e samples are retrieved and accumulated from
the UCI repository. Table 2 represents diabetes data sample
information collected from the University of California. *e
PIMA Indian diabetes samples used in our study comprise
eight unique attributes and 768 records. *ere are two class
labels associated with it. *e “0” indicates the absence of
diabetes, and “1” denotes the presence of diabetes symptoms.

Table 3 represents the breast cancer samples utilized in
the work. It is also collected from the UCI database. A
cumulative ten attributes are available in the file exhibiting
2-class labels (recurrence or nonrecurrence).

*e heart disease data, as depicted in Table 4, are also
applied in the work. It constitutes 270 samples characterized
by 2 distinct labels of class to determine whether any heart-
related risks are found or not. *e dataset has 13 different
features.

Table5denotes thehepatitis dataset retrieved fromtheUCI
repository. As observed, the dataset consists of 13 attributes
and a class outcome that takes two values (either die or live).

*e above four mentioned chronic disease datasets are
applied in the research, upon which the proposed attribute
selector is used to optimize the data. *e reduced dataset is
used for classification using Naive Bayes. *e next section
presents the proposed methodology model and its steps.

4. Proposed Methodology

*e proposed model deals with designing a metaframework
for chronic disease risk assessment by proposing a new
heuristic-based attribute selector, thereby combining both
supervised and unsupervised learning.

Chronic disease datasets collected from the UCI re-
pository are input to the proposed model as shown in
Figure 2. *e model depicts the use of the novel heuristic
attribute selection method along with the Naive Bayes
classifier. Mostly, the chronic risk data are unstructured, and
so proper preprocessing and filtering are needed to map it in
desired structure. So disease dataset preprocessing forms the
next phase where any inconsistencies like comma, symbol,
and delimiters are dropped by proper scanning of dataset.
Other anomalies such as repeat values and missed out values
are identified, which are replaced with the average value of
the respective column. After successful preprocessing, min-
max normalization is applied to the data to map all attribute
values in homogeneous scaling. Here, each attribute is
mapped to a decimal value range between 0 and 1. Equation
(1) denotes the min-max normalization in the range of [0, 1]
as follows:

p′ �
p − min(p)

max(p) − min(p)
, (1)

where p denotes the original value, and p′ represents the
normalized one. *e feature reduced data are subjected to
unsupervised learning using K-means for outlier detection.
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*e K-means technique discloses data structure and gen-
erates clusters. At first, “n” features among the data D are
chosen to initially form the center of the cluster. On the
basis of the distance between cluster mean and attributes,
identical objects are allotted to the cluster. For every
cluster, the mean value is updated. *e phase is repeated
until there is no variation of features with an individual

cluster. Here, a number of clusters need to be specified at
prior. In the context of chronic risk analysis, two clusters
are formed for the data samples. Equation (2) highlights the
similarity between two attributes, which is computed
through Euclidean distance, while equation (3) denotes the
squared distance function between two vectors a � [a1, a2]
and b� [b1, b2] as the summation of squared differences in

Table 2: Diabetes dataset details [1].

Name of attribute at-description Domain range
Preg Pregnancy count 0–15
Plas Plasma glucose concentration 0–199
Pres Diastolic blood pressure 0–122 (mm Hg)
Skin Triceps’ skin (mm) thickness 0–99 (mm)
Insu Serum insulin (2-hour) 0–846 (mu U/ml)
Mass Body mass index 0–67.1 (kg/m2)
Pedi Diabetes pedigree function 0.08–2.42
Age Person’s age 21–81 years
Class Label of person 0� absence; 1� presence

Table 3: Breast cancer dataset details [1].

Name of
attribute Description Domain range

Class Class label Nonrecurrence and recurrence

Age Age in years 10–19, 20–29, 30–39, 40–49, 50–59, 60–69, 70–79, 80–89, and
90–99

Menopause Whether the patient is pre- or postmenopausal
during treatment ge40 or lt40 or premeno

Tumor-size Tumour size (in mm) 0–4, 5–9, 10–14, 15–19, 20–24, 25–29, 30–34, 35–39, 40–44, 45–49,
50–54, and 55–59.

Iny-nodes Total axillary lymph nodes that contain metastatic
breast cancer

0–2, 3–5, 6–8, 9–11, 12–14, 15–17, 18–20, 21–23, 24–26, 27–29,
30–32, 33–35, and 36–39

Node-caps If tumor penetrated in lymph node capsule Yes or no
Deg-malig Histological level of the tumor 1, 2, or 3
Breast Which side of breast is affected Right or left

Breast-quad Breast is partitioned into four quadrants with
nipple as the center Right-up, left-up, right-low, left-low, and central

Irradiat Patient’s radiation (X-rays) therapy history Yes or no

Table 1: Existing work details on attribute selection over chronic disease datasets.

Existing works Attribute selector used Chronic disease dataset
El Akadi et al. [20] Genetic algorithm Dengue datasets
Mokeddem et al. [21] Genetic algorithm Coronary artery disease
Kora and Kalva [22] Bat algorithm ECG signal data
Keerthi Priya et al. [23] Whale optimization algorithm Breast cancer and hepatitis
Uzer et al. [24] Artificial bee colony algorithm Liver, diabetes, and hepatitis
Dogantekin et al. [25] Linear discriminant analysis Hepatitis datasets
Kohavi and John [26] Sequential forward selection *yroid dataset
Gandhi and Prajapati [27] Correlation feature selection PIMA Indian diabetes
Kavitha and Kannan [28] Principal component analysis Heart disease dataset
Yildirim [29] Consistency-based subset evaluation Hepatitis dataset
Ding and Fu [30] Information gain Breast cancer and diabetes dataset
Kohli and Arora [31] Adaptive boosting Heart disease, breast cancer, and diabetes
Mishra et al. [32] Genetic algorithm Diabetes
Sahoo et al. [33] DTNB algorithm Heart disorders
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coordinates. “dist” denotes the distance between the
following:

dist
2
a,b � a1 − b1( 

2
+ a2 − b2( 

2
, (2)
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2
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2



. (3)

After cluster formation is performed, the attributes not
complying with any specific cluster are removed. *e
overall pseudocode for K-means clustering is depicted in
Algorithm 1.

Memory-based metaheuristic attribute selection (MMAS)
is the memory buffer-based heuristic method employing
neighborhood search that is proposed and applied in this
work. Here, a potential solution to a problem is traversed and
its immediate nearest neighbors are looked upon so as to find
a new better solution. *e performance of the search is
improved by accepting nonoptimal solutions if no more
better solutions are explored. Also, already visited solutions
are discouraged, which prevent any repetition of any solution
space. *e search implements a buffer structure to store the
traversed solutions or rule set. If any solution is traversed at
prior in a specific time duration or if any rule is violated, then
that solution is no more considered. *e pseudocode for the
MMAS method is highlighted in Algorithm 2.

*e pseudocode denotes preliminary setup, thereby
building an initial solution selected at random. *e initial
solution is set as the optimum one at that instant and ini-
tializing a metalist with this initial solution. Here, a metalist
is a memory buffer storage containing a set of elements of the
stages traversed. *e main iterative loop begins, and it
continues searching for an optimum solution till the
threshold fitness value as defined by the termination criteria
is satisfied. *e neighboring solutions are validated for the
metalist elements. *e algorithm tracks the optimal solution
in the nearest solutions, which are not forbidden. *e fitness
function returns a score, which is considered as the new
solution space is determined. If the newly found local so-
lution exhibits a better fitness value compared to the present
best, then it is considered to be the new best solution. *e
local best solution is included in the metalist, and if the
metalist is full, then some elements will be permitted to
expire. Usually, the elements expire from the list in the same
sequence in which they are included. *e process selects the
best local solution so as to avoid the local optimum space. It
further continues till the termination criteria are satisfied
and at that instant the most optimum solution in the search
is returned. *e selected relevant attribute set is subjected to
classification with the Naive Bayes classifier. *is algorithm
is a supervised method, which operates on the Bayes the-
orem. *is classifier helps in prediction based on object
probability. Bayes’ theorem computes a hypothesis proba-
bility in context to prior knowledge as shown in equation (4).

p
x

y
  �

p(y/x) × p(x)

p(y)
. (4)

Here, p(x/y) denotes posterior probability, p(y/x)

denotes likelihood probability, p(x) denotes prior proba-
bility, and p(y) denotes marginal probability.

*e defined attribute probabilities are determined. It is
followed by the computation of the posterior probability
using the Bayes theorem. *e main objective of a prediction
model is to ensure that the prediction is accurate upon test
datasets provided. *us, there is a need for a parameter that
can determine the preciseness of a classifier when it is
implemented on the testing dataset. *e cross-validation
technique is one such method that can solve this issue.

Table 5: Hepatitis disease dataset details.

Parameters Description
Class Die, Live
Age 10, 20, 30, 40, 50, 60, 70, 80
Sex Male, female
Steroid No, yes
Antivirals No, yes
Fatigue No, yes
Malaise No, yes
Anorexia No, yes
Liver big No, yes
Liver firm No, yes
Spleen palpable No, yes
Spiders No, yes
Ascites No, yes
Varices No, yes

Table 4: Heart disease dataset details [1].

Name of attribute Description Domain range
Age Age 1–100 years old
Sex Person’s gender 1�male. 0� female
Cp Uneasiness in chest General angina/nonanginal pain/asymptomatic/atypical angina/
Trestbps Blood pressure at rest Measured in mm Hg after admitted to medical centre
Chol Serum cholesterol level Measured in mg/dl
Restecg Electrocardiogram outcome at rest time Values of 0, 1, or 2
Oldpeak Exercise-induced ST depression prior to rest 3.05–3.81
Exang Exercise-induced angina 1� yes; 0�no
Smoke Smoker or not Value: 1� yes; 0�no
Slope ST segment peak exercise slope 1: upsloping; 2: flat; 3: downsloping
Ca Major vessel count 0–3
*al Maximum heart rate achieved 3� normal; 6� fixed defect; and 7� reversible defect
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Cross-validation is used to partition the entire dataset
such that the training set section is large enough when
compared to the validation set. *e benefit of using cross-
validation method is that it works well with all kinds of
datasets and makes proper utilization of the entire dataset.
Also, it prevents the model from overfitting and helps in
fine-tuning the hyperparameters of the developed model.
*en, this training set is used to train the system and use
the test set to validate and compute our accuracy. In our
research work, we have used a 10-fold cross-validation
method. In this procedure, data are randomly sorted and
then divided into 10-fold, and then, 10 iterations of cross-
validation are run. In every iteration, one among the
several folds is utilized to validate while the rest number of
folds are to be used as training. Post-training of the
classifier, its accuracy is computed on the validation set.
*e individual accuracy of all 10-fold is averaged to de-
termine the final cross-validation accuracy, which is
depicted in Figure 3.

5. Results and Analysis

*e research discusses the impact of heuristic-based attri-
bute optimization on optimizing the prediction performance

of chronic disease risks by using a combination of unsu-
pervised and supervised approaches. A new MMAS method
of attribute selection optimizes the chronic disease datasets.
*e K-means clustering further eliminates outliers. Later,
Naive Bayes classifies patients having chronic disorders.
With color map related to ship encountering probability, the
distribution of hot spots could be demonstrated for the sake
of navigation safety. Also, the latency delay is very minimum
and it can work well even with less data sample-based
chronic disease datasets.

Different evaluation parameters were used to figure out
the proposed model using confusion matrix values, which
include true positives (TP), true negatives (TN), false pos-
itives (FP), and false negatives (FN). Classification accuracy
is an important metric used to summarize the effectiveness
of a classification framework as the correct prediction count
divided by the total prediction count. It is shown in equation
(5).

Accuracy �
TP + TN

TP + TN + FP + FN
. (5)

Precision determines the quantity of predictions of
positive class, which genuinely belongs to the positive class
as shown in equation (6).

Testing set 
(10%)

Chronic Disorder 
Dataset

Training set 
(90%)

Data Normalization 
with Standardization

Memory based Metaheuristics 
for Feature Selection

Naive Bayes Classifier

Clustering based 
Outlier removal

Performance 
Evaluation

Iterate 10 times 
10-fold cross-

validation

Figure 2: *e proposed metaheuristic attribute selector-based classification model for chronic disorder detection.
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Precision �
TP

TP + FP
. (6)

Recall represents the number of positive class predic-
tions quantified of all positive instances in the data. Equation
(7) shows the recall metrics.

Recall �
TP

TP + FN
. (7)

*e F-score facilitates a single unified metric, thereby
balancing both the issues of precision and recall in a single
value, which is represented in equation (8).

F − score �
2TP

2TP + FP + FN
. (8)

Latency denotes the response time delay of the
classification model in context to the time taken to
generate the prediction outcome, which is highlighted in
equation (9).

Latency � Model
Train

+ Model
Test

. (9)

Table 6 highlights the impact of the use of the MMAS
method on dataset attribute details of these chronic diseases
along with the instance count of all datasets. When it is
applied to heart disease data, the resultant attributes were
reduced to 10. In the case of diabetes and breast cancer data
samples, 2 less relevant attributes were dropped in each,
while for hepatitis data, 15 important attributes were chosen
after applying the MMAS method.

Figure 4 demonstrates the use of the proposed MMAS
method on the classification accuracy of chronic disease
datasets. As it is observed that in all four datasets, the
classification accuracy is enhanced when the MMAS
method is used rather than simply using the Naive Bayes
classifier. Hepatitis data showed the best accuracy of
95.3% using the MMAS method. *e mean accuracy
obtained with MMAS is 94.5%, while 88.8% accuracy is
noted if the Naive Bayes classifier is used without any
attribute selector.

Input: DS(A1, A2, . . . , An): Training set, M: Number of clusters.
Output: A best: Optimal attribute subset.
Initial cluster center “n” is selected;
Compute distance from each attribute to every cluster “n” using Euclidean distance equations (2) and (3);
Assign all attributes to nearest cluster based on cluster mean and similarity metric;
Determine updated mean for every cluster;
Repeat step 2 and 4;
Terminate process on convergence condition;
Drop irrelevant attributes which do not fit to any cluster;
End.

ALGORITHM 1: Cluster K-means.

t optimal←t0;
optimal solution←t0;
meta list � [ ];
meta list .push(t0);
while terminate_criteria not empty do
t neighbor←get neighbor(optimal solution);
optimal solution←t neighbor[0];
for t solution ∈ t neighbor do
if notmeta_list .has(t solution)AND
(fitness(t solution)fitness(optimal solution)) then
optimal solution←t solution;

end
end

end
if fitness(optimal solution)←fitness(t optimal) then
t optimal> optimal solution;
meta list .push(optimal solution);
if meta list .size>max .meta size then
meta list .dropFirst( );

end
end
returnt optiomal

ALGORITHM 2: MMAS procedure.

Computational Intelligence and Neuroscience 7



Performance of the new heuristic-based approach is
analyzed with some existing popular attribute selection
techniques like greedy stepwise (GSS), particle swarm
optimization (PSO), and genetic search (GS) to deter-
mine its effectiveness, while Naive Bayes was the classifier
used.

*e NB-MMAS method showed an excellent accuracy
of 94.2% with diabetes data, while a relatively less accuracy
of 89.9% was noted with the GSS method while NB was the
classifier. *e mean accuracy recorded with other heu-
ristic methods is 91.1%. Figure 5 shows the overall result of

the comparative analysis of classification accuracy of the
MMAS method with other heuristic approaches taking the
diabetes dataset.

In the case of breast cancer data, NB-MMAS recorded
an optimal accuracy of 94.9% while 88.3% accuracy was
noted with the GS method using the same Naive Bayes
classifier. *e aggregated mean accuracy obtained with
other heuristic methods was 90.7%. *e result analysis of
the implementation is shown in Figure 6.

In the case of heart disease data samples as shown in
Figure 7, the NB-MMAS recorded an optimal accuracy of

Table 6: Reduced dataset details after applying MHAS.

Chronic disease dataset Dataset details MMAS

Heart disease dataset
Samples 270

Initial attributes 13
Reduced attributes 10

Diabetes dataset
Samples 768

Initial attributes 8
Reduced attributes 6

Breast cancer dataset
Samples 286

Initial attributes 9
Reduced attributes 7

Hepatitis dataset
Samples 155

Initial attributes 20
Reduced attributes 15

Round 1 Round 2 Round 3 Round 4 Round 10

Test Accuracy (%) 93 90 91 92 95

Final Accuracy=Average (Round 1, Round 2, ...... )

Validation/Test set

Training set

Figure 3: Demonstration of cross-validation method.
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93.9% while the NB-PSO also generated a very impressive
accuracy of 93.5%. A comparatively low 87.1% accuracy
was noted with the BFS method using the same Naive
Bayes classifier. An average mean accuracy of 90.1% was
noted with other methods, which is less than the accuracy
obtained with the MMAS method.

Similarly, the NB-MMAS recorded an optimal accuracy
of 95.3% and a less 89.5% accuracy with the NB-PSOmethod
when subjected to the hepatitis dataset. A relatively less
average accuracy of 90.6%was generated with other heuristic
methods as depicted in Figure 8.

*e impact of clustering on the performance of chronic
disease datasets was studied in Figure 9. It was noticed that
clustering using K-means acted as a positive force, and it
enhanced the accuracy of classification. A mean accuracy of

94.6%was noted when clustering was included, while amean
accuracy of 93.5% was the result without clustering.

*e effectiveness of the MMAS method was evaluated
with other learning indicators like precision, recall, and
F-score. Both with and without using MMAS attribute se-
lector were considered, and the outcome is highlighted in
Table 7. *e hepatitis dataset recorded the best precision,
recall, and F-score values with 96.6%, 95.1%, and 95.85%,
respectively. *e average mean precision, recall, and F-score
metric noted were 96.05%, 94.07%, and 95.06%, respectively.

*e latency analysis was performed for different
chronic disease datasets using various attribute selector-
based classifications. Naive Bayes was the common
classifier used in all cases. As depicted in Figure 10, it was
observed that classification with the proposed MMAS
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Figure 5: Comparison of the MMAS method with other heuristic methods for diabetes data.
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Computational Intelligence and Neuroscience 9



90.6

88.3

91.7

92.3

94.9

84 86 88 90 92 94 96

NB-BFS

NB-GS

NB-PSO

NB-GSS

NB-MMHFS

Accuracy (%)

Fe
at

ur
e s

el
ec

tio
n 

m
et

ho
d

Figure 6: Comparison of the MMAS method with other heuristic methods for breast cancer data.
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Figure 7: Comparison of the MMAS method with other heuristic methods for heart disease data.
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Figure 8: Comparison analysis of the MMAS method with other heuristic methods for hepatitis data.

10 Computational Intelligence and Neuroscience



method generated the best outcome. *e latency period
was found to be the least with the MMAS method on all
datasets. *e latency delay with hepatitis, heart disease,
breast cancer, and diabetes disease data was recorded to
be 0.63 sec, 0.92 sec, 0.89 sec, and 0.74 sec, respectively.
*us, a very less mean latency of 0.8 sec was computed
using the MMAS method.

*e importance of individual attributes in the chronic
datasets taken into consideration upon applying heuristics
is highlighted and compared with the other methods. *is
analysis is called feature relevance analysis. Here, the
ranking of attributes on a score of 10 is graphically pre-
sented. Attributes are depicted on X-axis, and attribute
score after applying heuristic methods is represented on Y-
axis. On the basis of a low relevance score, those attributes
are dropped from the result dataset. When the feature
relevance analysis is conducted on heart disease data, it was
observed that the attributes “oldpeak” and “Exang” com-
puted the lowest relevance score with all heuristics as
shown in Figure 11. Among all the methods, the MMAS
recorded was able to generate the most optimal attribute set
eliminating three attributes, which include “oldpeak,”
“Exang,” and “ca”.

*e overall result of feature relevance analysis on heart
data is depicted in Table 8, where the MMAS records the
most optimal dataset.

*e feature relevance analysis was also carried out on breast
cancer data, and it was observed that almost all methods were
able to successfully eliminate the least important attribute
“irradiat” from the resultant set. Still, the MMAS method
generated the best result dropping two less important attributes
including “inv-nodes” and “irradiat” as shown in Figure 12.

Table 9 highlights the optimal outcome generated by the
MMAS method as it can be seen that it is able to detect and
drop two less relevant attributes from the final dataset, while
other heuristics successfully detected only one less relevant
attribute from breast cancer data.

A detailed feature relevance analysis was undertaken on
diabetes data as shown in Figure 13, and interestingly, almost all
the heuristic methods failed to optimize the data samples except
the MMAS method. While others were able to hardly identify
one low relevance score attribute, theMMASmethod computed
the two least significant attributes, which include “skin” and
“pres.”

As noted in Table 10, optimization with the MMAS
heuristic method generated the best outcome with
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Figure 9: Impact of clustering on accuracy performance of the model.

Table 7: Impact of the MMAS method on different performance metrics.

Diabetes Breast cancer Heart disease Hepatitis
Without MMAS method

Precision 90.8 89.9 89.9 90.4
Recall 90.2 85.6 87.6 88.1
F-score 90.5 87.7 88.7 89.2

With MMAS method
Precision 95.5 96.3 95.8 96.6
Recall 94.4 94.1 92.7 95.1
F-score 94.9 95.2 94.2 95.8
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thereby identifying the two least attributes from the data
samples of diabetes.

When the feature relevance analysis is carried out on
hepatitis data, not much impact is observed using heu-
ristic methods as shown in Figure 14. With the majority
methods, only two attributes were found to be least
significant, while with the MMAS method, five attributes
were detected as less relevant, and a more optimized
attribute set is the output.

With the MMAS heuristic approach, as many as five
attributes were reduced, which include “ascites,” “histology,”
“malaise,” “liver firm,” and “liver big.” *us, it generated a
more optimum outcome as shown in Table 11.

*e Matthews correlation coefficient (MCC) is another
evaluation parameter that can be used in machine learning-
based classification. It determines the association of the true
classes with that of the predicted classes. It computes a high
score if the classification model accurately detected the majority
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Figure 11: Feature relevance graph for heart disease dataset.
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Table 8: Impact of heuristics on heart disease dataset using feature relevance score.

Parameters BFS GS PSO GSS MMAS
Number of instances 270 270 270 270 270
Initial attribute set 13 13 13 13 13
Reduced attribute set 11 11 12 11 10
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Figure 12: Feature relevance graph for breast cancer dataset.

Table 9: Impact of heuristics on breast cancer dataset using feature relevance score.

Parameters BFS GS PSO GSS MMAS
Number of instances 286 286 286 286 286
Initial attribute set 9 9 9 9 9
Reduced attribute set 7 8 8 8 7
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Figure 13: Feature relevance graph for diabetes dataset.
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of the positive data samples and negative data samples. *e
MCC metric was evaluated against the heuristic approach
followed in this study on all chronic disease datasets as shown in
Figure 15. *e MMAS heuristic method determines the
maximum MCC values in all four datasets as shown in Fig-
ure 16. While it generates 93.8% and 94.5% in diabetes and
breast cancer data, it also records 93.8% and 95.1% values with
heart disease and hepatitis datasets, respectively.

*e proposed model can also be used in other risk
disorder datasets. *e authors have included a graphical
analysis of the use of the proposed methodology in some
other disease datasets.

*e impact of the proposed MMAS method is eval-
uated using different datasets like cervical cancer, kidney
disease, skin diseases, and lung cancer data. It is noted
that the performance remains very consistent as it

Table 10: Impact of heuristics on diabetes dataset using feature relevance score.

Parameters BFS GS PSO GSS MMAS
Number of instances 768 768 768 768 768
Initial attribute set 8 8 8 8 8
Reduced attribute set 7 7 7 8 6
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Figure 14: Feature relevance graph for hepatitis dataset.

Table 11: Feature relevance graph for hepatitis dataset.

Parameters BFS GS PSO GSS MMAS
Number of instances 155 155 155 155 155
Initial attribute set 20 20 20 20 20
Reduced attribute set 16 18 18 18 15
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generates a very impressive accuracy rate with all these
disease risks. *e highest accuracy recorded was 94% with
skin disease data samples.

6. Conclusion

Chronic disease symptom detection is a vital task in the
medical field. *is research analyzes the impact of at-
tribute selection on chronic disorder instances. Breast
cancer, diabetes, heart disease, and hepatitis are the
datasets used in the study. *e work deals with the
proposal of a new heuristic-driven attribute selector,
thereby developing an integrated metamodel that com-
bines both supervised and unsupervised methods for
chronic disease assessment. It presents a novel proposed
heuristic-based attribute selector, the MMAS method
that acts as an accurate attribute optimizer that picks the

top relevant attributes of the chronic disease datasets. *e
K-means algorithm further drops the outlier attributes
from the dataset. Later, Naive Bayes is used for the
classification of patients’ data to determine whether a
patient has any major chronic disease symptoms or not. A
mean accuracy of 94.5% was noted using the MMAS
technique as compared to 88.8% accuracy when only
Naive Bayes is used without any attribute selector. A
mean accuracy of 94.6% was noted when clustering was
included, while a mean accuracy of 93.5% was the result
without clustering. *e average mean precision, recall,
and F-score metric noted were 96.05%, 94.07%, and
95.06%, respectively. *us, a very less mean latency of
0.8 sec was computed using the MMAS method. *us, the
presented heuristic-based attribute selector was able to
successfully optimize the chronic disease datasets, which
were later used for the accurate detection of disease
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Figure 15: Matthews correlation coefficient (MCC) analysis.
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symptoms. *e system model may be used to assist
medical experts in the efficient diagnosis of chronic
disease risks. In the future, the research study can be
further enhanced to validate the model on more complex
heterogeneous datasets with varying sizes and structures.
Also, deep learning methods can be used using image-
based real-time datasets.
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